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I. INTRODUCTION

Animal behavior unfolds as a structured sequence of stereotyped motor actions, much like language. Understanding behavior thus requires identifying the vocabulary, i.e. to categorize these elementary behavioral units, and to characterize the corresponding grammar, i.e. their relative organization [START_REF] Tinbergen | The study of instinct[END_REF]. As an illustration, navigation in Zebrafish larvae (see [START_REF] Orger | Zebrafish behavior: opportunities and challenges[END_REF][START_REF] Meyers | Zebrafish: development of a vertebrate model organism[END_REF][START_REF] Bollmann | The zebrafish visual system: from circuits to behavior[END_REF] for review) consists of a series of discrete swimming events of ∼ 100 ms duration, called bouts, separated by ∼1-2 second-long dwelling periods. Due to this inherent discretization, the navigation behavior appears particularly well suited to modeling in terms of Markovian dynamical processes.

However, to implement this approach effectively, reliable segmentation of consecutive bouts into different categories, or states, is essential. So far, the categorization of bouts has been carried out independently of the examination of their temporal organization. In [START_REF] Marques | Structure of the zebrafish locomotor repertoire revealed with unsupervised behavioral clustering[END_REF], unsupervised segmentation was performed through Principal Component Analysis (PCA) of tens of kinematic parameters extracted from the fish's tail and body motion. This approach yielded no less than 13 bout types, a number that the authors found sufficient to encompass the entire behavioral repertoire of the animal, including hunting, escape, social behavior, etc.

In other studies [START_REF] Chen | Navigational strategies underlying phototaxis in larval zebrafish[END_REF][START_REF] Dunn | Brain-wide mapping of neural activity controlling zebrafish exploratory locomotion[END_REF][START_REF] Horstick | Search strategy is regulated by somatostatin signaling and deep brain photoreceptors in zebrafish[END_REF][START_REF] Karpenko | From behavior to circuit modeling of light-seeking navigation in zebrafish larvae[END_REF][START_REF] Horstick | Molecular and cellular determinants of motor asymmetry in zebrafish[END_REF][START_REF] Le Goc | Thermal modulation of Zebrafish exploratory statistics reveals constraints on individual behavioral variability[END_REF][START_REF] Barabási | Functional neuronal circuits emerge in the absence of developmental activity[END_REF], the focus was put on the animal strategy of spontaneous exploration in spatially uniform environments or in the presence of sensory gradients (taxis). In this context, a crucial kinematic parameter fer a probabilistic framework that can be used to score part of trajectories or even simulate synthetic behavior.

To better assess the quality of the analysis, we consider recordings at different water temperatures. Because thermoregulation is critical for survival, and Zebrafish are ectothermic (a.k.a. cold-blooded) animals [START_REF] Haesemeyer | Thermoregulation in fish[END_REF], they employ strategies to keep their body temperature within a physiological range (18-33°C). As was shown in previous work, the animal navigates to its optimal temperatures by adjusting its behavior based on the temperature it experiences in its environment.

We systematically compare the 3-state sequences of bouts and their temperature dependence, as derived from two methods: the first one uses threshold-based labeling (as in [START_REF] Le Goc | Thermal modulation of Zebrafish exploratory statistics reveals constraints on individual behavioral variability[END_REF]) followed by Markov Chain modeling (MC); the second one relies on HMM to simultaneously label the bouts and infer their temporal organization. We find that HMM, by inferring a consistent bout labeling, allows one to reveal a more pronounced persistence of the bout type and bout orientation at low temperatures. Yet, this persistence in orientation is compatible with a Markovian description of the dynamics between (hidden) behavioral states, in contrast with results obtained with the ad-hoc thresholding approach.

We further leverage the scoring capability of HMMs to quantitatively assess how the trajectories change from a statistical point of view across time for the same animal, and how these temporal fluctuations compare to the inter-individual variability in the animals' navigation. Remarkably, the models corresponding to distinct animals remain sufficiently different across time to allow for automatic and reliable recognition of the animal identities from the observation of their trajectories.

Last of all, we discuss the implications of these results for our understanding of zebrafish navigation and its underlying neural processes.

II. RESULTS

This section is organized as follows. First, we briefly describe the dataset used in the present work. We then introduce two methods to model the trajectories: naive Markov Chains (MCs) inferred from manually classified data, and Hidden Markov Models (HMMs). The outcomes of the two methods are compared in terms of the markovianity of 3-states bout sequences, and their ability to reproduce the persistent properties of swimming exploration. Last of all, we evaluate the ability of HMM to perform behavioral phenotyping solely based on orientational statistics.

A. Data

The data used in the present paper comes from a previous publication that examined the kinematic of free exploration in zebrafish larvae [START_REF] Le Goc | Thermal modulation of Zebrafish exploratory statistics reveals constraints on individual behavioral variability[END_REF]. The experimental design (Fig. 1a) allowed us to record the trajectories of 

146 b n =      R, if δθ n < -δθ 0 F, if -δθ 0 < δθ n < +δθ 0 L, if δθ n > +δθ 0 (1)
The same threshold δθ 0 = ±10 • is applied for left and 147 right turns. This choice relies on the hypothesis that 148 zebrafish larvae, as a group, have no preferred direction 149 (a.k.a.. non-handedness). As the exact value of δθ 0 has 150 minimal qualitative impact on the results of the Markov 151 Chains, we adopt the same value as in [START_REF] Le Goc | Thermal modulation of Zebrafish exploratory statistics reveals constraints on individual behavioral variability[END_REF]; notice that 152 δθ 0 is the same for all temperatures to avoid introducing 

P (b ′ |b) = # b→b ′ # b→F + # b→L + # b→R (2)
with b, b ′ ∈ {F, L, R}.
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The top right eigenvector of the 3×3 transition matrix 

P (F → L) = P (F → R) P (L → L) = P (R → R) P (L → R) = P (R → L) P (L → F ) = P (R → F )
This in turn ensures that steady state bout proba-188 bility is left-right symmetric (P (L) = P (R)). turning bouts) at higher temperatures (see Fig. 1b). with temperature (see Supplementary Fig. 8b,c).

268

In order to assess the persistence in bout type, we fur- Interestingly, these memory effects in the orientation and bout-type vanish at higher temperatures, where the transition matrix becomes uniform (Supplementary Fig. 8a), and all bouts become equiprobable (P (F ) ≈ P (L) ≈ P (R), Fig. 3a). This suggests more erratic trajectories at higher temperatures, which is indeed in line with our observations (see Fig. 1b).

Overall, we found that by using a non-supervised method to simultaneously label the data and infer a Markov Model, we unveiled memory effects in zebrafish reorientation statistics, which had been previously underestimated or overlooked due to ad hoc hypotheses with MC approaches. We introduce the stubbornness factor f q to empirically 334 assess the tendency of larvae to maintain their orien-335 tation, even after a sequence of q intermediary forward 336 bouts (Fig. 4a, Materials and Methods sec. IV C): For a q-plet of bouts T1 → F → • • • → F → T2 with q intermediary forward bouts, a stubborn sequence is defined as one where directionality is conserved (i.e. T1 = T2), whilst a non-stubborn sequence will lose the memory of the initial turn (i.e. T1 ̸ = T2). (b) Evolution of the stubbornness factor fq (see eq.3) with the number of intermediary forward bouts q, comparing the Markov Chain inferred from thresholded trajectories and the Hidden Markov Model (HMM) trained directly from reorientation angles, for each temperature.

337 f q = P (T 1 → F q → T 2 |T 1 = T 2 ) P (T 1 → F q → T 2 |T 1 ̸ = T 2 ) (3) 
with

F q = F → F → • • • → F q . 338
As mentioned above, due to the loss of directional 339 memory after a forward bout, a non-handed 3-state 340 Markovian model should have f q = 1 for q ≥ 1 (Ma-341 terials and Methods sec. IV D). On the other hand, f q=0 342 is a measurement of directional persistence during unin-343 terrupted sequences of turning bouts.

344

We find that most of the memory effects captured by 345 the HMM occur at q = 0, and that the stubbornness 346 reaches f q ≈ 1 for q ≥ 1, suggesting that the HMM can 347 be considered as quasi-markovian at this temperature. In 348 comparison, and for lower temperatures, the thresholded 349 MC classification displays lower persistence at q = 0 but 350 higher stubbornness at q = 1 (and less significantly at 351 q = 2) (Fig. 4b, Supplementary Fig. 9b,c). This suggests 5a). The parameters 399 of these HMMs exhibit significant variability, compati-400 ble with the behavioral diversity of a single fish in time.

401

We then also trained a single HMM on all trajectories 402 of a single fish (the "global" HMM). Figure 5b Only four HMM parameters are shown for clarity, namely, the steady state probability of forward turns P (F ) , as well as the transition probabilities for forward-forward (P (F → F )), turn-turn in the same direction (P (T1 → T2|T1 = T2), and turn-turn in the opposite direction P (T1 → T2|T1 ̸ = T2)). Each dot represents a fish, and the error bars correspond to the standard error of the mean. Points labeled in orange correspond to fish misidentified in panel c. (c) Confusion matrix between data coming from fish i and HMM trained on data from fish j. The relative likelihood rLi,j = L(data i |model j ) L(data i |model i ) is used to evaluate which fish identity is most likely according to each model (indicated with black dots for clarity). (d) Number of correctly identified fish determined from model likelihood when only a fraction f of the test data is used for identification. The shaded area indicates the standard deviation across 100 trials. In each trial, the data trajectories of each fish were randomly split into train and test sets (50%).

no definitive procedure exists for selecting the right number of states or for defining valid labeling criteria. This choice typically depends on available observables and involves a compromise between interpretability and accuracy of representation.

Even for simple behaviors such as the one presented in this article, parsing behavioral data in defined categories can be challenging. In our case, the difficulty arises from The results presented in this article may have interesting implications for the understanding of the neuronal computation regulating navigation in zebrafish larvae.

The neuronal circuit responsible for the leftward versus rightward bout selection has been identified in the anterior hindbrain [START_REF] Dunn | Brain-wide mapping of neural activity controlling zebrafish exploratory locomotion[END_REF]. The activity of this so-called Anterior Rhombencephalic Turning Region (ARTR) exhibits slow alternation between two subpopulations, located in the left and right hemispheres, controlling the orientation of swim bouts [START_REF] Dunn | Brain-wide mapping of neural activity controlling zebrafish exploratory locomotion[END_REF]. The period of this pseudo-oscillation is consistent with the orientational persistence time observed in the behavioral assay (on the order of 5-20s).

Moreover, sensory stimuli such as unilateral visual stimulation and temperature changes can alter the dynamics of the ARTR in a manner that aligns with behavioral observations [START_REF] Le Goc | Thermal modulation of Zebrafish exploratory statistics reveals constraints on individual behavioral variability[END_REF][START_REF] Wolf | Sensorimotor computation 709 underlying phototaxis in zebrafish[END_REF]. The fact that a 3-state Markovian model adequately describes the sequence of bouts suggests that this same neuronal circuit could not only control the orientation of turn bouts but also control the selection of forward versus turning bouts. Recent analyses indicate the potential existence of three metastable states within this circuit, with left active, right active, and both inactive, which could thus correspond to the three bout types [START_REF] Wolf | Emergence of time persistence in a data-713 driven neural network model[END_REF].

In the last section of this article, we demonstrate that the HMM exhibits sensitivity to natural inter-individual phenotypic variability. Inter-and intra-individual variability are ubiquitous traits of animal behavior [START_REF] Honegger | Stochasticity, individual-715 ity and behavior[END_REF][START_REF] Shaw | Causes and consequences of individual vari-717 ation in animal movement[END_REF] and are necessary to ensure a trade-off between flexibility and adaptability to changing environmental demands and robustness in neural development [START_REF] Hiesinger | The evolution of vari-720 ability and robustness in neural development[END_REF]. Our model enables the identification of individual fish solely based on the dynamics of bout sequences. This ability could prove advantageous in the development of algorithms for tracking multiple moving animals. The state-of-the-art existing tools [START_REF] Pérez-Escudero | idtracker: tracking in-724 dividuals in a group by automatic identification of un-725 marked animals[END_REF][START_REF] Walter | Trex, a fast multi-animal 727 tracking system with markerless identification, and 2d 728 estimation of posture and visual fields[END_REF] rely on image-based neural networks to identify unmarked individuals using natural variations in their physical and/or behavioral appearance to accomplish fast and reliable multi-individual tracking in a versatile range of different organisms or scenarios.

Since our approach is based on gait phenotyping and is independent of image features, it is compatible with lowresolution videos (in which only the animal's position and orientation can be accessed) while still keeping versatility, reliability, and fast execution. shown in Supplementary Fig. 6a). From this extensive 554 dataset, we exclusively utilized the re-orientation angles, 555 defined as the difference between the heading direction 556 at bout n + 1 and the heading direction at bout n:

557 δθ n = θ n+1 -θ n (4) 
(a graphical illustration of this definition can be found in 558 Fig. 1c). This parameter encapsulates the angular change where w F +w L +w R = 1, and w F , w L , and w R denote the weights for forward, left, and right states, respectively.

Using Quantile-Quantile (QQ) plots, we show that this last mixture model accurately reproduces the observed distribution of δθ n in the data, and is much better than a GMM, especially in the tails of the distributions (Supplementary Fig. 7c).

C. Stubbornness factor

The stubbornness factor f q is a measurement of the animal's preference towards turning in the same direction over changing direction, after q intermediary forward bouts. It is defined as:

f q = P (T 1 → F q → T 2 |T 1 = T 2 ) P (T 1 → F q → T 2 |T 1 ̸ = T 2 ) (5) 
with T 1 , T 2 ∈ {L, R} and

F q = F → F → • • • → F q .
It can be computed from a sequence of classified bouts b n by first identifying and counting the q-plets T 1 → F q → T 2 where T 1 = T 2 and where T 1 ̸ = T 2 :

N = = #(T 1 → F q → T 2 , T 1 = T 2 ) N ̸ = = #(T 1 → F q → T 2 , T 1 ̸ = T 2 ) (6) 
and then computing their ratio:

f q = N = N ̸ = (7) 
In practice, this ratio has a physical interpretation only for long sequences of bouts where N = >> 1 and

N ̸ = >> 1.
As the trajectories in our dataset can be quite short (Supp Fig. 6a), we compute f q from all trajectories at a specific temperature, increasing the chance of observing a high number of stubborn (N = ) and non-stubborn (N ̸ = ) trajectories.

By considering that the probability of a given q-plet is stubborn follows a binomial distribution (E(N = ) = pN and E(N ̸ = ) = (1 -p)N with N = N = + N ̸ = ), we can evaluate the uncertainty in stubbornness as:

∆f q = f q 1 N = + N ̸ = N = N ̸ = + N ̸ = N = (8) 

D. Stubbornness factor and 3-state Markov Chain

The stubbornness factor can be defined directly from the transition matrix.

For q = 0 , calculations are simple:

f q=0 = P (L → L) + P (R → R) P (L → R) + P (R → L) (9) 
For q ≥ 1 , the stubbornness factor is defined from 602 the transition matrix as:

603 S L,q = P (L → F q → L) = P (L)P (L → F )P q (F → F )P (F → L) W L,q = P (L → F q → R) = P (L)P (L → F )P q (F → F )P (F → R) f q = S L,q + S R,q W L,q + W R,q
with S L,q the probability of a trajectory which starts and 604 ends with a left bout, W L,q the probability of a trajectory 605 which starts with a left bout and ends with a right bout, 606 and S R,q W R,q their symmetrical opposites.

607

For a 3-state model, the forward-forward bout proba-608 bility cancels out, giving:

609 f q = P (L)P (L → F )P (F → L) + P (R)P (R → F )P (F → R) P (L)P (L → F )P (F → R) + P (R)P (R → F )P (F → L)
and with our non-handedness hypothesis:

P (L) = P (R), 610 P (L → F ) = P (R → F ), and P (F → L) = P (F → R), 611 
yielding:

612 f q = 1 ∀q > 0 (10) 
Acknowledgment. We acknowledge the following fund- Temperature dependence of the stubbornness factor at q = 0 intermediary Forward bouts (fq=0 = P (L→L)+P (R→R) P (L→R)+P (R→L ). We interpret this factor as a measurement of directional persistence during sequences of turning bouts. (c) Temperature dependence of the stubbornness factor at q = 1 intermediary Forward bouts (fq=1 = P (L→F →L)+P (R→F →R) P (L→F →R)+P (R→F →L ). We interpret this factor as a measurement of directional memory after one forward bout, which for a 3-state model is a second order non-markovianity. (b,c) Throughout this figure, the width of the shaded curves represent the estimated error in stubbornness factor (see Materials and Methods IV C). FIG. 10. Supplementary panels to Fig. 5 Hidden Markov Model parameters inferred from all trajectories from an individual fish, compared with the average parameters inferred from chunks of that fish's trajectories. All HMM parameters are shown. Each dot represents a fish, with error bars corresponding to standard error of the mean. Points labeled in orange correspond to fish misidentified in Fig. 5c.
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  multiple freely swimming larvae aged 5-7 days. A set of 127 kinematic parameters was extracted from the fish trajec-128 tories at each bout n, such as the angular change δθ n in 129 heading direction, as well as the dwelling time and the 130 traveled distance (see Material and Methods sec. IV A). 131 The experiment was repeated in a range of controlled 132 temperatures, specifically 18°C, 22°C, 26°C, 30°C, and 133 33°C (Fig.1b). The ambient temperature impacted sys-134 tematically the statistics of trajectories, leading to qual-135 itatively different behaviors as illustrated in Figure 1b. 136 As the temperature increased, trajectories tended to be-137 come more winding and erratic. 138 B. Modeling with Markov Chains 139 Observation of the distribution of reorientation angles 140 after each bout in Figure 1d suggests a description of the 141 dynamics in terms of 3 states, labeling each swim bout 142 into forward (F ) or turn, either to the left (L) or to the 143 right (R). In practice, this categorization is carried out 144 by thresholding the distribution of re-orientation angles. 145 Denoting the state of swim bout n by b n we have:

  Figure 2a. In this model, after each bout n, a new state 161
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240 241

 240 Taken together, these results suggest that the Hid-242 den Markov Model might be better at capturing the 243 long-term persistence in reorientation while maintaining 244 a coherent (and perhaps more accurate) bout clas-245 sification. This is likely due to the model's ability 246 to label bouts of small reorientation angles based on 247 context, leading to a more stable classification where 248 the threshold method would induce oscillations between 249 turn and forward bouts.250 251 To better assess the different impacts between those 252 two labeling methods, we turn our attention to the in-253 ferred models. 254 As expected, we observe significant differences in the 255 steady-state bout-type probability P (b n ) with b n ∈ 256 {F, L, R} between MC and HMM (Fig.3a). Indeed, 257 HMM finds turning bouts to be significantly more fre-258 quent at lower temperatures than MC. While HMM finds 259 very little temperature dependence in bout-type distribu-260 tion, MC analysis leads to the appealing but potentially 261 erroneous conclusion that the rate of turning bouts in-262 creases uniformly with temperature. This temperature-263 dependent effect is most likely due to the ad hoc hypoth-264 esis that the threshold δθ 0 is independent of temperature, 265 while the HMM seems to suggest that the width of the 266 δθ n distribution corresponding to forward bouts increases 267

269FIG. 1 .

 1 FIG. 1. Experimental Setup and Behavioral Parameter: (a) Overview of the experimental configuration: Zebrafish larvae navigate freely within a temperature-controlled tank while an imaging system records images at a rate of 25 frames per second. The top-right panel offers a close-up view of a larva in a raw image. Adapted from Le Goc et al. [11]. (b) Example zebrafish larvae trajectories in 2D space at various temperatures. Each point represents a swim bout, with the color indicating the corresponding re-orientation angle according to panel c. The trajectories' starting points are denoted by black arrows. (c) Description of the convention used for the reorientation angle (δθn) between two consecutive swim bouts (n and n + 1). (d) Distribution of re-orientation angles (δθn) for each ambient temperature. The grayed-out area corresponds to the re-orientation angles classified as forward bouts by thresholds at ±10 • .

FIG. 2 .FIG. 3 .FIG. 4 .

 234 FIG. 2. 3-state Markov Chain and Hidden Markov Model, how behavioral labeling methods affect persistence: (a) Diagram illustrating the 3-state Markov Chain (MC) where behavioral states Forward (F), Left (L), and Right (R) bouts are classified using a hard threshold at δθ0 = ±10 • . (b) Diagram illustrating the 3-state Hidden Markov Model (HMM) with emissions modeled as a normal distribution for Forward bouts and gamma distributions for Turning bouts. (c) Differences in labeling between models MC and HMM for an example trajectory at 22°C. Each point represents a swim bout, with left color corresponding to the labeling according to the manual threshold used in MC, and right color corresponding to the labeling according to the HMM using the Viterbi algorithm. Top: trajectory in 2D space. Bottom: evolution of the reorientation angle δθn for this trajectory, with the dashed lines representing the threshold δθ0 = ±10 • . (d) Confusion matrix between MC and HMM labeling, for all trajectories at 22°C (normalized with respect to the MC labeling). (e) Probability P (L) of observing a streak of L consecutive forward bouts (black) or L consecutive turning bouts in the same direction (pink), for MC (circles) and HMM (triangles), measured from data at 22°C. Inset: Temperature dependence of the exponential decay characteristic length (L0).

437FIG. 5 .

 5 FIG.5. Fish identification from long trajectories: (a) Diagram describing the dataset. Trajectories from 18 fish, recorded over 2-hour sessions, were each split into 10 chunks (mean = 9.5 ± 0.5 trajectories per chunk). (b) HMM parameters inferred from all trajectories from one fish, compared with the average HMM parameters trained on chunks of that fish's trajectories. Only four HMM parameters are shown for clarity, namely, the steady state probability of forward turns P (F ) , as well as the transition probabilities for forward-forward (P (F → F )), turn-turn in the same direction (P (T1 → T2|T1 = T2), and turn-turn in the opposite direction P (T1 → T2|T1 ̸ = T2)). Each dot represents a fish, and the error bars correspond to the standard error of the mean. Points labeled in orange correspond to fish misidentified in panel c. (c) Confusion matrix between data coming from fish i and HMM trained on data from fish j. The relative likelihood rLi,j =

  453(i) the fact that swim bout kinematics are affected by the 454 bath temperature, and (ii) the fact that the distributions 455 of reorientation angles of distinct bout types overlap, in 456 particular at low temperatures. Because they can accom-457 modate such overlaps while taking into account the tem-458 poral regularities in the bout sequences, Hidden Markov 459 Models (HMMs) appear to be ideally suited for such a task. Given the absence of a definitive ground truth, one might question the central assertion of this article -that Hidden Markov Models outperform standard thresholdbased approaches. However, this claim is supported by the fact that the bouts re-labeled by HMM are not randomly placed, but are predominantly forward bouts within (left or right) turn streaks. The use of HMM over MC thus leads to the discovery of enhanced persistence in bout sequences through extended chaining of similar bouts.

Finally

  , the improvement made by the following ap-proach over previous studies is twofold. On one hand, 518 not relying on rigid thresholds allows a more efficient de-519 scription of how behavior changes in response to exter-520 nal perturbations in the environment, and, on the other 521 hand, the approach opens up the possibility of accessing 522 inter-and intra-individual variability. 523 In addition, to enhance the practical accessibility of 524 Hidden Markov Model (HMM) formalism for analyzing 525 behavioral sequences, we have developed a comprehen-526 sive and instructive Python tutorial (https://github. 527 com/EmeEmu/IBIO-Banyuls2023-Python). This tutorial 528 can be adapted for specific datasets or used as a resource 529 for broader educational goals. 530 IV. MATERIALS AND METHODS 531 A. Dataset 532 The dataset used in the present study is derived 533 from Le Goc et al. [11], and can be accessed directly 534 at https://doi.org/10.5061/dryad.3r2280ggw. This 535 dataset comprises spontaneous swimming trajectories of 536 5 to 7 dpf zebrafish larvae, collected at controlled bath 537 temperatures of 18°C, 22°C, 26°C, 30°C, and 33°C. A 538 camera was used to continuously record the swimming 539 behavior of the fish within an arena of 100×45×4.5mm³ 540 for 30 minutes at 25 frames/second. To eliminate border 541 effects, a Region of Interest (ROI) was defined at a dis-542 tance of 5mm from the arena's walls. Fish that swam out-543 side the defined tracking ROI were considered lost, and a 544 new trajectory was initiated upon their re-entry into the 545 ROI. Therefore, the dataset contains a varying number 546 of fish trajectories, ranging from 532 to 1513 trajectories 547 across the different temperatures (mean = 1148). Indi-548 vidual trajectories were tracked offline using the open-549 source FastTrack software [30], and were then discretized 550 into sequences of swimming bouts. Hence, each trajec-551 tory consists of a sequence of swim bouts, spanning from 552 9 to 748 bouts per trajectory (mean=60, distributions 553

559

  between consecutive bouts, providing insight into the 560 fish's ability to modify its orientation during swimming.561B. Emission of reorientation angles in the Hidden562 Markov Model 563 To validate the hypothesis that the re-orientation an-564 gles can be modeled using normal and gamma dis-565 tributions, we compared the distribution of the data 566 with a Gaussian Mixture Model (GMM) and a Gaus-sian&Gamma Mixture Model: p(δθ) = w F N (δθ; 0, σ) + w L Γ(δθ; α, θ) + w R Γ(-δθ; α, θ)
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 6789 FIG. 6. Supplementary panels to Fig.1: (a) Distributions of the number of bouts per trajectory in the entire dataset (black), and for each recorded temperature (inset, colored). (b) Observed transition probabilities between reorientation angles for the entire dataset.

states, see Figure2b. Contrary to MC, HMM makes a

To do so, we consider a Hidden Markov Model (HMM) on