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Abstract
Word sense induction (WSI) is a challenging
problem in natural language processing that
involves the unsupervised automatic detection
of a word’s senses (i.e., meanings). Recent
work achieves significant results on the WSI
task by pre-training a language model that can
exclusively disambiguate word senses. In con-
trast, others employ off-the-shelf pre-trained
language models with additional strategies to
induce senses. This paper proposes a novel
unsupervised method based on hierarchical
clustering and invariant information clustering
(IIC). The IIC loss is used to train a small model
to optimize the mutual information between
two vector representations of a target word
occurring in a pair of synthetic paraphrases.
This model is later used in inference mode
to extract a higher-quality vector representa-
tion to be used in the hierarchical clustering.
We evaluate our method on two WSI tasks and
in two distinct clustering configurations (fixed
and dynamic number of clusters). We empiri-
cally show that our approach is at least on par
with the state-of-the-art baselines, outperform-
ing them in several configurations. The code
and data to reproduce this work are available to
the public.

1 Introduction

The automatic identification of a word’s senses is
an open problem in natural language processing,
known as "word sense induction" (WSI). WSI is
closely related to the word sense disambiguation
task (WSD). While the latter relies on a predefined
sense inventory (i.e., WordNet (Fellbaum, 1998;
Wallace, 2007; Feinerer and Hornik, 2020)) and
aims to classify the word’s sense in context, the for-
mer focuses on clustering a collection of sentences
according to the target word senses. For example,
Figure 1 shows the different clusters obtained using
our approach1 on 3000 sentences that contain the

1with RoBERTaLARGE (Liu et al., 2019) as underlying
model

word bank collected from Wikipedia. Note that the
in this case, the senses and their number are not pre-
defined, which highlights the difference between
WSI and WSD.

Word senses are more beneficial than simple
word forms for various tasks, including Information
Retrieval and Machine Translation (Pantel and Lin,
2002). Word senses are typically represented as a
fixed list of definitions from a manually constructed
lexical database. However, lexical databases are
missing important domain-specific senses. For ex-
ample, these databases often lack explicit semantic
or contextual links between concepts and defini-
tions (Agirre et al., 2009). Hand-crafted lexical
databases also frequently fail to convey the pre-
cise meaning of a target word in a specific context
(Véronis, 2004). In order to address these issues,
WSI intends to learn in an unsupervised manner the
various meanings of a given word. Although the
current state-of-the-art methods reasonably tackle
this problem, they have significant limitations that
should be addressed. For example, in their ap-
proaches, Ansell et al. (2021) and Amrami and
Goldberg (2019) choose a fixed number of senses
regardless of the target word without an explicit
justification for their choices. On the other hand,
Ansell et al. (2021) approach requires the pretrain-
ing of a new language model with a fixed vocabu-
lary specific to the task. Applying their approach to
a new vocabulary or a new language will be compu-
tationally expensive, which can impede the process
of experimentation.
This paper includes the following contributions:
1) We propose a new unsupervised method leverag-
ing pretrained language models, hierarchical clus-
tering, and mutual information maximization. Our
approach addresses some limitations of the previ-
ous efforts while providing a competitive perfor-
mance.
2) We apply a new method to estimate a dynamic
number of senses for target words. This method re-



Figure 1: The different sense-based clusters of the word bank with the most frequent words used in the corresponding
contexts. We use PCA to project the clusters’ centroids to a 2D space. Each color corresponds to a cluster. The size
of the points represents the frequency of the words in their corresponding cluster.

lies on word polysemy quantification (Xypolopou-
los et al., 2021).
3) We study the variation of performance w.r.t the
depth of the selected layer. Our findings in Section
5, covering four different models, are valuable for
researchers conducting future work on WSI.

2 Related Work

Previous works on WSI use generative statistical
models to solve this task. Mainly, they approach
this task as a topic modeling problem using La-
tent Dirichlet Allocation (LDA) (Lau et al., 2012;
Chang et al., 2014; Goyal and Hovy, 2014; Wang
et al., 2015; Komninos and Manandhar, 2016). Au-
toSense (Amplayo et al., 2019), one of the most
recent best-performing LDA methods, is based on
two principles: First, senses are represented as a
distribution over topics. Second, the model gen-
erates a pair composed of the target word and its
neighboring word, thus seperating the topic distri-
butions into fine-grained senses based on lexical
semantics. AutoSense throws away the garbage
senses by removing topics distributions that don’t
belong to any instance. Furthermore, it adds new
ones according to the generated (target, neighbor)
pairs which means that fixing the number of senses
by the model is not required. While most of the
WSI methods fix the number of clusters for all

the words, in our work we explore two setups for
the number of clusters, fixed and dynamic. Other
works (Song et al., 2016; Corrêa and Amancio,
2018) use the static word embedding Word2Vec
(Mikolov et al., 2013) to get the representations of
polysemous words before applying the clustering
method.
After the emergence of contextual word Embed-
dings, pretrained language models such as ELMo
(Peters et al., 2018) (based on BiLSTM) and BERT
(Devlin et al., 2019) (based on the transformers)
(Vaswani et al., 2017) are used with additional tech-
niques to induce senses of a target word. (Amrami
and Goldberg, 2018) and (Amrami and Goldberg,
2019) use consecutively ELMo and BERTLARGE

to predict probable substitutes for the target words.
Next, it gives each instance k representatives where
each one contains multiple possible substitutes
drawn randomly from the word distribution pre-
dicted by the language model. Each representative
is a vector conducted from TF-IDF. Following, the
representatives are clustered using the agglomera-
tive clustering where the number of clusters is fixed
to 7. Finally, each instance will be assigned to one
or multiple clusters according to the corresponding
cluster of each of its representatives. Instead of
using the word substitutes approach, our work uses
the contextual word embedding extracted from pre-



trained language models.
PolyLM (Ansell et al., 2021) is one of the most re-
cent techniques for word sense induction that uses a
MLM (Masked Language Model) to induce senses.
PolyLM took a novel approach to the problem of
learning word senses. It uses the transformer archi-
tecture to predict eight probabilities for each word,
where each probability represents the probability
of a word to be assigned to one of eight different
senses. It is built on two assumptions: the chance
of a word being predicted in a masked place is pro-
portional to the total of its distinct senses, and for a
particular context, one of the word’s senses is more
likely to be used. The model has the drawback of
assuming the same fixed number of senses for all
words.

3 Method

Our method consists of four main steps: First, we
construct a synthetic dataset of pairs, each con-
sisting of a sentence paired with a randomly per-
turbed version as explained in Section 3.1. Sec-
ond, we extract the pair of hidden state repre-
sentations of the target word using a pretrained
language model (e.g., BERT). In our experi-
ments, we consider three widely adopted lan-
guage models: RoBERTaLARGE , BERTLARGE

and DeBERTamnli
XLARGE . Third, we train an MIM

(Mutual Information Maximization) model where:
(1) Considering an instance of the hidden state rep-
resentations pairs, the network’s is trains using two
objectives: maximizing the mutual information and
minimizing the match loss between the output of
the two vectors. (2) The best instance of the model
is chosen according to the smaller loss on the pre-
defined test set. (3) We consider the output of the
first layer as the new vector representation for the
target word. Fourth, for each target word in the
evaluation datasets, we apply the agglomerative
clustering method on the new vector representa-
tions to obtain our clustering solution. To choose
the pre-defined number of clusters, we follow two
approaches: (i) Fix the number of senses (clusters)
to 7 as in Amrami and Goldberg (2018, 2019) and
(ii) Use a dynamic number of clusters based on
the polysemy score (Xypolopoulos et al., 2021) of
each target word.
The main steps are detailed in the following sub-
sections.

Actually, we don't 
 seem to live in a  
time of inflation at

all.

We don't seem to
live in a bubble of

inflation at all.

Pretrained
LM

Pretrained
LM

MIM

MIM

L( , )

Masked
tokens

prediction

Target sentence

Paraphrase : Mutual
Information
Max. Model

Training

MIM

 
Agglomerative

Clustering

Objective

Trained Model

Figure 2: The pipeline of our method: For the word
"live" chosen as target, a list of sentences is provided.
BART is used to generate their corresponding para-
phrases. The hidden representation Xl

live of the target
word is extracted from the layer l of a pretrained lan-
guage model. Dashed line denotes shared parameters.

3.1 Dataset Setup

BART (Lewis et al., 2020) is a denoising autoen-
coder for pretraining sequence-to-sequence models.
It is trained by training a model to rebuild a cor-
rupted version of the original sentences using an
arbitrary noising function. It is based on a stan-
dard Tranformer-based neural machine translation
architecture which can be seen as a generaliza-
tion of BERT (due to the bidirectional encoder),
GPT (Radford and Narasimhan, 2018) (with the
left-to-right decoder), and other recent pretraining
schemes. BART can be used also as a generative
model given an input i.e. sentence completion,
translation, summarization, etc..

Generating randomly perturbed replicates In
order to apply our method on the text input, we
need to create a pair of sentences where the target
word has the same sense. To fulfil this, a func-
tion is needed to introduce random perturbations
to the input sentence while preserving the meaning.
The sentence and it’s perturbed version are keep-
ing the same sense of the target lemma. Thus, we
can generate a pair of sentences that belong to the
same cluster. First, we masked 40% of the original
sentence while preventing -in most cases- masking
the target word. Second, we predicted the masked
tokens using BARTBASE with a beam size of one.



3.2 Vectors Extraction
The train set is used to train the parameters of
a small network while the test set is used to
perform the induction of the senses. Using the
best layer of each of the following transformer-
based models: BERTLARGE , RoBERTaLARGE

and DeBERTaXLARGE , we extracted representa-
tions of the target word from the different train and
test instances. The best layer for each pretrained
language model is chosen according to the best
performance on BERTScore (Zhang* et al., 2020)
with WMT16 To-English Pearson2.
At this stage, if the target word is broken down into
multiple tokens, we computed the average vector
of the corresponding word pieces. Note that, while
generating the perturbation on the input text using
BARTBASE , there is a small probability that the
paraphrase might not contain the target word. Thus,
all the sentences in the training set with their corre-
sponding paraphrases deprived of the target word
are removed.

3.3 Loss Function
We seek to minimize a loss function L with two
components, each of which is explained in the fol-
lowing:

L = LIIC + LM (1)

3.3.1 Invariant Information Clustering Loss
Invariant information clustering IIC (Ji et al., 2019)
is a clustering objective that learns a neural net-
work from scratch to perform unsupervised image
classification and segmentation. The model learns
to cluster unlabeled data based on maximizing the
mutual information score between the unlabeled
sample and a transformation of the input. There-
fore, both the input and its corresponding transfor-
mation surely contain the same information and do
belong to the same class/cluster. Maximizing the
mutual information is robust to clustering degen-
eracy where a single cluster tends to dominate the
predictions or some clusters tend to disappear as in
k-means. Also, it helps to avoid noisy data from
affecting the predictions by over-clustering. The
objective function is as follows:

maxΦI(Φ(x),Φ(x
′)) (2)

Where Φ is the classification neural network, x is
the input, and x’=g(x) is the transformation (ran-

2https://docs.google.com/spreadsheets/d/
1RKOVpselB98Nnh_EOC4A2BYn8_201tmPODpNWu4w7xI/
edit?usp=sharing

dom perturbation of the input) of x (i.e. rotation,
maximizing, minimizing, etc..). This is equiva-
lent to maximizing the predictability of Φ(x) from
Φ(x′) and vice versa. The mutual information func-
tion is defined by:

I(X,Y ) =
∑
y∈Y

∑
x∈X

PX,Y (x, y)log
PX,Y (x, y)

PX(x)PY (y)

(3)
The loss of invariant information clustering is there-
fore defined by:

LIIC = −I(Φ(x),Φ(x′)) (4)

We adopt the IIC loss to the NLP domain by chang-
ing the nature of the random perturbation intro-
duced to the input.

3.3.2 Match Loss
The output of the model’s last layer might be the
same for all the different train sentences in some
cases. To tackle this issue, we encourage the sim-
ilarity between the last layer’s outputs Φ(x) and
Φ(x′) by adding a match loss. This loss is pro-
portional to the cosine similarity between the two
outputs and it is inspired from (Ansell et al., 2021)
with the following:

LM = −0.1
∑ Φ(x) · Φ(x′)

∥Φ(x)∥∥Φ(x′)∥
(5)

3.4 Sense Embedding: Getting New Word
Vectors

The architecture of our MIM model is very simple.
It is formed of three projection layers with ReLU
activation function. The final layer is equipped
with the softmax function to get a probability dis-
tribution vector usable as an input to our loss. The
hidden size of one linear layer is set to the double
of RoBERTaLARGE’s and BERTLARGE’s hidden
state size which is 1024.
For each target word, we train a model while pro-
viding the pairs of extracted representations belong-
ing to the same cluster. In other terms, the target
word’s representations from the original sentence
and the sentence with lexical perturbation respec-
tively.
The training concerns 8 runs over 5 epochs with a
batch size of 32 using Adam optimizer (Kingma
and Ba, 2015). The learning rate starts with 2e-5
and then is reduced linearly to zero over the remain-
ing training time. The best model results from the
epoch minimizing the validation loss. The valida-
tion set represents 10% of pairs of sentences drawn

https://docs.google.com/spreadsheets/d/1RKOVpselB98Nnh_EOC4A2BYn8_201tmPODpNWu4w7xI/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1RKOVpselB98Nnh_EOC4A2BYn8_201tmPODpNWu4w7xI/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1RKOVpselB98Nnh_EOC4A2BYn8_201tmPODpNWu4w7xI/edit?usp=sharing


randomly from the train dataset.
Once the training is complete, the hidden state rep-
resentation of the first layer is extracted for each
test word vector of the original sentence. Thus, the
target word has a new projected representation.

3.5 Clustering

To cluster the instances into senses, we used the
agglomerative clustering method. The same setup
as in (Amrami and Goldberg, 2018, 2019) is used
along with cosine distance and average linkage.
To choose the number of clusters (senses) of each
target word, we follow two approaches: (i) Fix
the number of senses as in (Amrami and Goldberg,
2018, 2019; Ansell et al., 2021). (ii) Use a dynamic
number of clusters based on its polysemy score
obtained using the unsupervised word polysemy
quantification (Xypolopoulos et al., 2021). For the
dynamic clustering, we use the best configuration
in the paper with dimensionality D equal to 3 and
a level L equal to 8.

4 Evaluation

Several competitions were organized to systemat-
ically evaluate various methods applied for WSI,
including SemEval-2007 task 02 (Agirre and Soroa,
2007), SemEval-2010 task 14 (Manandhar and Kla-
paftis, 2009) and SemEval-2013 task 13 (Jurgens
and Klapaftis, 2013). The two tasks of SemEval-
2010 and SemEval-2013 are considered as the
benchmark for WSI. In this section, we publish
and analyse the mean and standard deviation over
8 runs of the previously described model on the
two mentioned tasks: SemEval-2010 task 14 and
SemEval-2013 task 13.

4.1 SemEval-2010 task 14:

On one hand, the primary objective of the SemEval-
2010 WSI challenge is to compare unsupervised
word-sense induction systems. It provides a map-
ping mechanism for evaluating WSI systems using
the WSD dataset. The target word dataset consists
of 100 tagged words, 50 nouns and 50 verbs ex-
tracted from OntoNet (Hovy et al., 2006). In the
test set, each target word has around one hundred
instances to be clustered. To learn its senses, a train-
ing set containing approximately 10,000 instances
is provided for each target word. The training set is
created using a semi-automatic web-based method.
For each sense of the target word in WordNet (Fell-
baum, 1998), the query grabs all the sentences con-

taining its corresponding stems and lemmas using
Yahoo! search API. Each instance in the test dataset
in this task is labeled with one sense only.
The performance in this task is measured with V-
Measure (Rosenberg and Hirschberg, 2007) (biased
toward high number of clusters) and F-Score (bi-
ased toward low number of clusters). We report the
overall performance (AVG) defined as the geomet-
ric mean of these two metrics.

4.2 SemEval-2013 task 13:

On the other hand, SemEval-2013 task 13 is a task
for evaluating Word Sense Induction and Disam-
biguation systems in a context where instances are
tagged with many senses whose applicability is
weighted accordingly (Fuzzy Setting). The task
focuses on disambiguating senses for 50 target lem-
mas: 20 nouns, 20 verbs, and 10 adjectives. The
ukWac corpus (Baroni et al., 2009) is provided as
a training corpus. It contains large number of in-
stances crawled from the web and can be filtered
by lemma, POS tag and many more filters3. Test
data are drawn from the Open American National
Corpus (Ide and Suderman, 2004) across a variety
of genres and from both the spoken and written
portions of the corpus.
The performance in this task is measured with
Fuzzy B-Cubed (F-BC)(Bagga and Baldwin, 1998).
It is a generalized version of B-Cubed that deals
with the fuzzy setting and Fuzzy Normalized Mu-
tual Information (F-NMI). The latter is a general-
ized version of mutual information that deals with
multi-sense annotation. We report as well the over-
all performance (AVG).

4.3 Experiments

In order to prepare the training set of SemEval
2010 task 14, we chose randomly 3500 sentences
from the provided training dataset of this task for
each target word. For SemEval 2013 task 13, we
extracted for each tagged target word up to 3500
random sentences from ukWac. Note that, if some
of the target words in SemEval 2013 task 13 do
not have 3500 sentences on ukWac, we extracted
all the possible sentences. Following, we generate
the paraphrases for both datasets by integrating the
random perturbation described in section 3.1. The
average percentage of perturbation for each dataset
is presented in table 3.

3https://corpora.dipintra.it/public/run.cgi/
first_form

https://corpora.dipintra.it/public/run.cgi/first_form
https://corpora.dipintra.it/public/run.cgi/first_form


Model # Clusters V-Measure F-score AVG

RoBERTa17LARGE 7 39.8 67.18 51.71
RoBERTa17LARGE (+MIM) 7 46.26±0.51 68.18±0.4 56.16±0.42

RoBERTa17LARGE Dynamic 37 67.42 49.94
RoBERTa17LARGE (+MIM) Dynamic 45.06±0.92 68.79±0.33 55.67±0.54

BERT18
LARGE 7 40.1 65.23 51.14

BERT18
LARGE (+MIM) 7 40.51±0.87 64.89±1.28 51.26±1.02

BERT18
LARGE Dynamic 41.2 67.17 52.6

BERT18
LARGE (+MIM) Dynamic 41.8±0.49 67.43±0.36 53.1±0.4

DeBERTa40XLARGE 7 40.5 66.64 51.95
DeBERTa40XLARGE (+MIM) 7 40.05±0.69 66.93±0.48 51.77±0.58

DeBERTa40XLARGE Dynamic 40.6 67.52 52.36
DeBERTa40XLARGE (+MIM) Dynamic 40.58±0.92 67.89±0.55 52.48±0.76

PolyLMBASE (Ansell et al., 2021) 8 40.5 65.8 51.6
PolyLMSMALL (Ansell et al., 2021) 8 35.7 65.6 48.4

BERT+DP (Amrami and Goldberg, 2019) 7 40.4 71.3 53.6
AutoSense (Amplayo et al., 2019) Dynamic 9.8 61.7 24.59

Table 1: Evaluation of WSI models on SemEval 2010 task 14. The (+MIM) label indicates that the mutual
information maximization is applyed to obtain the clustered vectors. Otherwise, the vectors from the pretrained
langauge models are directly used.

Method # Clusters F-BC F-NMI AVG

RoBERTa17LARGE 7 64.1 19.28 35.16
RoBERTa17LARGE (+MIM) 7 62.49±0.48 21.5±0.62 36.67±0.64

RoBERTa17LARGE Dynamic 64.2 16.11 32.16
RoBERTa17LARGE (+MIM) Dynamic 64.8±0.29 19.95±0.63 35.95±0.56

BERT18
LARGE 7 62.4 21.58 36.7

BERT18
LARGE (+MIM) 7 62.63±0.4 22.54±0.75 37.56±0.73

BERT18
LARGE Dynamic 64.81 20.86 36.77

BERT18
LARGE (+MIM) Dynamic 64.42±0.31 21.22±0.59 36.97±0.54

DeBERTa40XLARGE 7 63.16 18.57 34.25
DeBERTa40XLARGE (+MIM) 7 62.52±0.43 20.18±0.5 35.52±0.51

DeBERTa40XLARGE Dynamic 64.24 17.79 33.8
DeBERTa40XLARGE (+MIM) Dynamic 64.44±0.48 19.27±0.4 35.26±0.32

PolyLMBASE (Ansell et al., 2021) 8 64.8 23 38.3
PolyLMSMALL (Ansell et al., 2021) 8 64.5 18.5 34.5

BERT+DP (Amrami and Goldberg, 2019) 7 64 21.4 37
LSDP (Amrami and Goldberg, 2018) 7 57.5 11.3 25.4

AutoSense (Amplayo et al., 2019) Dynamic 61.7 7.96 22.16

Table 2: Comparison of WSI-specific techniques on SemEval 2013 task 13

Dataset Train Test

SemEval-2010 Task 14 3.02% 13.5%
SemEval-2013 Task 13 16.05% 9.95%

Table 3: The average perturbation percentage between
the input text and the paraphrase. This percentage rep-
resents the proportion of changed unigrams.

The instances in SemEval-2010 task 14 and
SemEval-2013 task 13 datasets contain some of
the target words with morphological variability.
Hence, lemmatizing is required to identify the
target lemma during the vector extraction phase.
Given this word and its POS tag, we use the Word-
NetLemmatizer from NLTK library to find its posi-
tion inside both the sentence and its paraphrase fol-

lowed by extracting the corresponding RoBERTa,
BERT and DeBERTa vectors. These vectors are
used to train the model as described earlier.

To infer the sense of a instance in SemEval 2010,
we first apply the agglomerative clustering method
on the extracted RoBERTaLARGE , BERTLARGE

and DeBERTaXLARGE vectors of the target word
in the SemEval instances (Section 3.2). The afore-
mentioned step studies the effect of our word vec-
tors enriching method. Second, for the model to
be tested, we forward the test word vectors to the
trained model and extract the corresponding hidden
state of the first layer. This state is considered as
the new word representation (sense embedding) of
dimension 2048.



Model #Clusters SemEval-2010 SemEval-2013
Layer V-measure F-score AVG Layer F-BC F-NMI AVG

RoBERTaLARGE 7 10 43.6 68.12 54.5 9 63.87 23 38.32
RoBERTaLARGE dynamic 10 41.9 68.52 53.58 9 65.08 18.84 35.02

BERTLARGE 7 21 40.8 66.7 52.17 20 63.16 22.07 37.34
BERTLARGE dynamic 21 41.3 67.65 52.85 20 65.54 21.26 37.32

DeBERTaXLARGE 7 32 49 69.48 58.35 33 64.86 24.14 39.57
DeBERTaXLARGE dynamic 32 46.4 69.49 56.78 33 66.62 21.71 38.03

Table 4: The best layers of different pretrained language models on SemEval-2010 Task 14 and SemEval-2013 Task
13

Finally, we applied agglomerative clustering on the
new word representations implementing our clus-
tering solution. We assigned each instance to a
single cluster.
The results of the evaluation on both SemEval-2010
and SemEval-2013 tasks are presented in tables 1
and 2 respectively providing the comparison with
other WSI systems.
In the SemEval 2013 task, there is a possibility for a
word to have multiple senses with a corresponding
degree of applicability. Thus, once the agglom-
erative clustering applied, we convert the cosine
similarity distances between each target word’s rep-
resentation and the centroids of the different clus-
ters to a vector of probabilities using the softmax
function. These probabilities are considered as
the senses’ degrees of applicability. The average
number of clusters for each dataset in the dynamic
setting is presented in table 5.

Dataset Average # of clusters

SemEval-2010 Task 14 6.73
SemEval-2013 Task 13 5.36

Table 5: The average number of clusters obtained by us-
ing the polysemy scores on SemEval 2010 and SemEval
2013 test datasets

4.4 Results

Table 1 shows the performance of our approach in
comparison to other baselines on SemEval 2010
task 14. The best performing system, among
the baselines, is BERT+DP (Amrami and Gold-
berg, 2019) providing the highest F-score of 71.3%.
With our method, RoBERTaLARGE outperforms
all baselines in both settings: Fixed and dynamic
number of clusters. This finding highlights the im-
portance of our MIM approach that allows for an
improvement of 2.5 absolute points over the previ-
ous state-of-the-art in terms on average score. In
addition, we observe that the only model using dy-
namic clustering among the baselines (AutoSense)

is largely outperformed by the other methods using
a fixed number of clusters. However, given that
WSI is an unsupervised task, the fixed number of
clusters is supposed to be arbitrary and there is
no guarantee that using the same number of clus-
ters on other datasets would be optimal. Our pro-
posed dynamic approach to choose the number of
clusters did not deteriorate the performance of our
method and in some cases led to a better perfor-
mance (BERT18

LARGE for example).
SemEval 2013 task 13 performances are shown
in Table 2. The best performing baseline is
PolyLMBASE providing the highest F-BC and F-
NMI scores. Although our approach did not out-
perform this baseline, it shows to be very competi-
tive. In fact, the results on SemEval 2013 task 13,
shows again the positive contribution of our MIM
approach, as we can observe a significant improve-
ment whenever it is applied. For example, applying
MIM to RoBERTaLARGE with dynamic clustering
led to an increase of 3.8 absolute points in terms
of average score. On the other hand, our method
has two main advantages over PolyLMBASE : (1)
It can use the dynamic number of clusters com-
pared to eight fixed senses for all words in PolyLM.
(2) It does not require a computational-heavy pre-
training to apply WSI on other languages. Indeed
our method can be applied on other languages us-
ing already pretrained language models such as
CamemBERT (Martin et al., 2020) or BARThez
(Kamal Eddine et al., 2021) for the French lan-
guage, AraBERT (Antoun et al., 2020) for the Ara-
bic Language, etc..
To sum things up, (1) our proposed intermediate
MIM phase led on average to an improved hier-
archical clustering and (2) the dynamic approach
to choose the number of clusters maintained the
stable and competitive performance of our different
evaluated models.
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Figure 3: The AVG scores of SemEval-2010 and SemEval-2013 WSI tasks using agglomerative clustering on all the
layers of different pretrained models.

5 Best LM Layer

During the evaluation in section 4, we used the
list provided by BERTScore (Zhang* et al., 2020)
authors regarding the best performing layer. This
choice is motivated by the fact that we are dealing
with an unsupervised task, thus it is not possible to
tune such a hyper-parameter without access to gold
annotations. However, Zhang* et al. (2020) chose
the best layer based on how good it performs in
the task of machine translation evaluation. Dealing
with a WSI task, there is no guarantee that the best
layer is the same. Thus we carry out a study of the
variation of the agglomerative clustering final score
with respect to the layer used for the extraction of
the vector representations. This study can help re-
searchers in future works to choose the appropriate
layer when dealing with a similar unsupervised
task.
Figure 3 shows the variation of agglomerative clus-
tering performance in function of the depth of the
chosen layer. Interestingly, we see that the vari-
ation of performance follows a similar pattern in
SemEval-2010 and SemEval-2013 which can sug-
gest a generalizable pattern over word sense in-
duction datasets. Also, we can see that the pat-
tern changes across different models. Despite hav-
ing a similar architecture, the best layer depth in
RoBERTaLARGE (layer 10) differs significantly
with respect to that of BERTLARGE (layer 21). A
future work should focus on this discrepancy and

study the semantic information captured by each
model’s layers. Table 4 presents the results re-
garding the best layer of each pretrained model on
SemEval 2010 task 14 and SemEval 2013 task 13.
The best performing pretrained contextual embed-
dings for both tasks is DeBERTaXLARGE with a
score that outperforms the state-of-the-art methods.

6 Conclusion

In this work, we introduced an unsupervised
method for the WSI task based on the tuning of
contextual word embeddings extracted from a pre-
trained language model. The method generates
paraphrases of the input sentences. Hence, both
sentences belong to the same sense cluster. Next, it
uses both sentences to train a MIM neural network
that maximizes the mutual information between
the two sentences’ outputs and minimizes the in-
tegrated match loss. The method improves on the
state-of-the-art in one of the two WSI tasks.
We also use the polysemy score to test the dynamic
number of senses setup as it claims superiority over
the fixed setting in two out of six experiments. The
MIM method proves, in most cases, an improve-
ment in score while it does not deteriorate the per-
formance in the others.
The extraction of representations for the target
word depends on the chosen layer from the used
pretrained language model. Thus, inspired by pre-
vious works, we conducts a comparison that helps
the future studies in this choice.



Limitations

The aforementioned method presents an important
improvement over some of the-state-of-art solu-
tions for WSI tasks. However, it suffers from some
limitations that are worth highlighting:
(1) This method is training a MIM model from
scratch for each target word proving a lack of gen-
eralizability. Thus, a further study can fulfil this
task by training the MIM model starting from a
pretrained language model for all target words. Ap-
plying this might yield to a general model that can
give the sense embedding for all possible target
words before applying agglomerative clustering.
(2) Using the pretrained language models partially
in our pipeline makes our method costly in terms
of computation time when comparing with PolyLM.
As consequence, our method suffers from higher
number of parameters especially with models of
bigger size such as DeBERTa. Thus, a further
approach is to test with smaller models (i.e Di-
tilBERT) that could maintain the same good per-
formance with faster training and inference time.
Finally, we must highlight the crucial role of the
quality of the training data in determining the per-
formance of our model on SemEval-2013 task 13.
Unlike the comprehensive and meticulously con-
structed training sentences utilized in SemEval-
2010 task 14, the training sentences sourced from
ukWac for SemEval-2013 task 13 are characterized
by their brevity, incompleteness, and nonuniform
extraction from the web. To illustrate the dispar-
ities between the training sets for both tasks, we
provide examples in the appendix.
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In what follows, we provide four examples from each SemEval WSI train and test datasets.

The Commission seeks comment on whether the analytical framework that was used to stream-
line AT &T ’s services should be applied to incumbent LEC access services. In particular ,
the Commission seeks comment on which of the factors that it used in examining AT &T ’s
pricing behavior could be used to determine when to remove incumbent LEC access services
from price cap regulation. It cites demand elasticity , supply elasticity , market share , and the
pricing of services under price cap regulation as relevant factors .
This works fine if AudioPlayer is n’t going to be subclassed. But what if you were going to
create a class called StereoAudioPlayer that is a subclass of AudioPlayer ? This class would
want access to the openSpeaker ( ) method so that it can override it and provide stereo-specific
speaker initialization. You still do n’t want the method generally available to random objects (
and so it should n’t be public ) , but you want the subclass to have access to it-so protected is
just the solution .
502.4 Floor or Ground Surfaces. Parking spaces and access aisles serving them shall comply
with 302. Access aisles shall be at the same level as the parking spaces they serve. Changes in
level are not permitted .
When developing kernel code , it is usually important to consider constraints and requirements
of architectures other than your own. Otherwise , your code may not be portable to other
architectures , as I recently discovered when an unaligned memory access bug was reported in
a driver which I develop. Not having much familiarity with the concepts of unaligned memory
access , I set out to research the topic and complete my understanding of the issues .

Table 6: Random examples for the target word ’Access’ from SemEval-2010 task 14 training set

Baby Welcome to my eBay Shop. Please add me to your list of favourite sellers and
digital jesters guys said they would NEVER add collision detection to TM , as this is
Also in the Spanish version, but more were added especially for the Japanese Complete Editions
destination that you have entered . You can add any number of intermediate waypoints to

Table 7: Random examples for the target word ’Add’ from SemEval-2013 task 13 training set



In more than four years , 2.2 billion yuan has been invested in the construction of harbors and
docks , storage fields , support facilities and infrastructure of the ports and city , creating good
conditions for building access to the sea for the Great Southwest .
The FDA is expected to approve today a program granting access free of charge to the drug
AZT for children with AIDS .
Federal health officials are expected today to approve a program granting long - deferred access
to the drug AZT for children with acquired immune deficiency syndrome .
The dispute stems from pretrial maneuvering in the pending court case , in which prosecutors
have been demanding access to a host of internal company memos , reports and documents .

Table 8: Random examples for the target word ’Access’ from SemEval-2010 task 14 test set

Lewinsky wrote "Return to Sender" on the envelope, adding, "You must be morons to send me
this letter!"
For instance, the Post also has the story about the woman meeting with Clinton just days before
his first Inaugural, but adds the detail that she says all the encounters were innocent.
if you add the um uh people of various sexual persuasions and those who never intend to
marry and those who are retired and those who are um just looking for fun they people with
families turn out to be such a small minority that they can’t get the tax bill passed no matter
what happens
The tripe with onions and garlic is cooked for several hours, posole or hominy is added, along
with red chile.

Table 9: Random examples for the target word ’Add’ from SemEval-2013 task 13 test set


