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Propagation of elastic waves in a fluid-loaded anisotropic
functionally graded waveguide: Application to
ultrasound characterization
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Non-destructive evaluation of heterogeneous materials is of major interest not only in industrial but
also in biomedical fields. In this work, the studied structure is a three-layered one: A laterally
heterogeneous anisotropic solid layer is sandwiched between two acoustic fluids. An original
method is proposed to solve the wave equation in such a structure without using a multilayered
model for the plate. This method is based on an analytical solution, the matricant, explicitly
expressed under the Peano series expansion form. This approach is validated for the study of a
fluid-loaded anisotropic and homogeneous plane waveguide with two different fluids on each side.
Then, original results are given on the propagation of elastic waves in an asymmetrically
fluid-loaded waveguide with laterally varying properties. This configuration notably corresponds to
the axial transmission technique to the ultrasound characterization of cortical bone in vivo.
© 2010 Acoustical Society of America. �DOI: 10.1121/1.3292949�
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I. INTRODUCTION

A lot of natural media have unidirectional varying elas-
tic properties. The mantel crust, the oceans, and cortical bone
are some of these functionally graded media. Scientists fo-
cused on the advantages presented by this type of materials
in terms of mechanical behavior, and since the 1980s, they
developed industrial functionally graded materials �FGMs�
particularly exploited in high-technology and biomedical ap-
plications. Consequently, the non-destructive evaluation of
these materials is a key issue. Surface and guided waves play
a major role in non-destructive testing and evaluation of
complex structures. Several studies are dedicated to the leaky
Lamb wave propagation in fluid-loaded plates �Chimenti and
Nayfeh, 1990; Chimenti and Rokhlin, 1990; Deschamps and
Poncelet, 2000�. In all these studies, the media are homoge-
neous or multilayered. In this work, we introduce a general
method to take into account the continuity of the property
variation in an anisotropic waveguide. This method is based
on the knowledge of an analytical solution of the wave equa-
tion, the matricant, explicitly expressed via the Peano series
�Peano, 1888�. The accuracy of the numerical evaluation of
this solution and its validity domain are perfectly managed
�Baron, 2005; Youssef and El-Arabawi, 2007�. Because it
deals with an analytical solution, all the wave propagation
parameters are controlled. This represents an advantage with
respect to numerical methods such as finite-element and
finite-difference methods for which the problem treated is a
global one, making difficult to analyze and interpret the ex-
perimental data, which result from the interaction and cou-
pling of numerous physical phenomena. To the best of our
knowledge, this is the first method to evaluate the mechani-
cal behavior of a fluid-loaded anisotropic waveguide with
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continuously varying properties without modeling the FGM
plate by a multilayered plate. Consequently, in the context of
real materials with continuously varying properties �such as
bone, bamboo, or manufactured FGM�, this method could
allow assessing the solution to a more realistic model with a
controlled accuracy and without an increase in the
computation-time.

In this work, we first present the method and its setup
with fluid-structure interaction; then we proceed to the vali-
dation of the method by comparing our results to the disper-
sion curves obtained from classical schemes on homoge-
neous waveguides �isotropic and anisotropic�. Two
advantages of the method are underlined: �i� An asymmetric
fluid-loading may be taken into account without modifying
the scheme for the numerical solution, and �ii� the influence
of the property gradient on the ultrasonic response of the
waveguide may be investigated via the frequency spectrum
of the reflection coefficient modulus. Finally, we get onto the
relevancy of this model applied to the ultrasound character-
ization of cortical bone by the axial transmission technique.

II. BACKGROUND

Contemporary work efforts over the last 2 decades illus-
trate some of the technology interest on guided waves to
non-destructive evaluation. Namely, Rose �2002� gave a re-
view of ultrasonic guided wave inspection potential. A lot of
papers deal with the interaction between guided waves and a
solid plate immersed in a fluid or embedded between two
different fluids. Guided modes in an infinite elastic isotropic
plate in vacuum were first treated by Rayleigh �1885� then
by Lamb �1917�. The Lamb wave problem is reserved,
strictly speaking, for wave propagation in a traction-free ho-
mogeneous isotropic plate. To deal with guided modes in a
fluid-loaded plate, we use the term “leaky Lamb waves” as
the energy is partly radiated in the fluids on both sides of the

plate. For the basic Lamb problem—plate in vacuum—the 87
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solutions of the dispersion equation are real whereas in the
case of a plate bounded by media on both sides, the disper-
sion equation has complex solutions. In 1961, Worlton
�1961� gave an experimental confirmation of the theoretical
work of Lamb �1917�, by obtaining experimentally the dis-
persion curves of aluminum and zirconium plates, asserting
that water loading has little effect on the behavior of waves
in plates. In 1976, Pitts et al. �1976� presented some numeri-
cal test results on the relationship between real part of the
reflection coefficient poles and the phase velocity of leaky
Lamb modes in a homogeneous isotropic brass plate in wa-
ter. Folds and Loggins �1977� proposed analytical expres-
sions of the reflection and transmission coefficients for plane
waves at oblique incidence on a multilayered isotropic plate
immersed in water based on Brekhovskikh’s �1980� analysis.
They found good agreement with their theoretical results and
experimental data. Few years later, Fiorito et al. �1979� de-
veloped a resonance formalism for the fluid-loaded elastic
plate and gave some theoretical and numerical results for an
isotropic steel plate immersed in the water. This formalism
was generalized to the interactions of acoustic plane waves
with an asymmetrically fluid-loaded elastic plate by Franklin
et al. �2001�. Nayfeh, Chimenti, and Rokhlin produced a lot
of works on wave propagation in anisotropic media and par-
ticularly in fiber composite plates immersed in a fluid �Chi-
menti and Nayfeh, 1986, 1990; Chimenti and Rokhlin, 1990;
Nayfeh and Chimenti, 1988, 1989; Rokhlin and Wang,
2002�. Based on their formalism, Deschamps and Poncelet
�2000� placed the emphasis on the difference between what
they called transient Lamb wave-solutions of the character-
istic equation of the plate for complex frequency and real
slowness �time attenuation�, and heterogeneous Lamb waves
for which the slowness is complex and the frequency is real
�spatial attenuation�. These two ways of resolution of the
dispersion equation have two different physical meanings—
space or time attenuation—and consequences of this differ-
ence are developed in their paper �Deschamps and Poncelet,
2000�. A critical point is the validity of the Cremer’s coinci-
dence hypothesis: The real couples �angular frequency � and
phase velocity v��, such that the reflection coefficient is
minimum, may be identified as velocity dispersion of plate
waves. Experimentally checked in a lot of configurations, it
appears to be not well satisfied in several cases �for instance,
graphite-epoxy plates when the ratio between fluid and plate
mass densities is not “small”� �Chimenti and Nayfeh, 1986;
Nayfeh and Chimenti, 1988�. The results obtained by Des-
champs and Poncelet �2000� on fluid-loaded plate show a
good correlation between dispersion curves obtained in com-
plex frequency and the minima of the reflection coefficient,
which suggests that the Cremer’s coincidence principle is
still valid considering time attenuation. All these studies
show the evidence that the wave propagation in fluid-loaded
elastic plate emerges as a very delicate problem, which needs
cautious treatment.

III. GENERAL FORMULATION OF THE PROBLEM

We consider a three-dimensional multilayer system com-

posed of one elastic solid layer sandwiched between two

2 J. Acoust. Soc. Am., Vol. 127, No. 3, March 2010 C. B
acoustic fluid layers. Let R�O,x1 ,x2 ,x3� be the Cartesian
frame of reference where O is the origin of the space and
�x1 ,x2 ,x3� is an orthonormal basis for this space. The coor-
dinate of the generic point x in R is specified by �x1 ,x2 ,x3�.
The acoustic fluid layers occupy an open unbounded domain.
Both fluids f1 and f2 are supposed perfect, of respective mass
densities � f1

and � f2
; the constant speeds of sound in each

fluid are cf1
and cf2

, respectively. The thickness of the solid
layer is denoted by d and its mass density by �. The inter-
faces between the fluids and the solid layer are infinite planes
parallel to the �x1 ,x2�-plane. The x3-axis is oriented down-
ward and the origin O is located at the interface between the
upper fluid f1 and the solid layer. Therefore, we assume that
the structure is a two-dimensional one and that the guided
waves travel in the plane x2=0; in the following parts, this
coordinate is implicit and is omitted in the mathematical ex-
pressions. Moreover, the solid layer will be so-called plate.

The elastic plate is supposed to be anisotropic and is
liable to present continuously varying properties along its
thickness �x3-axis�. These mechanical properties are repre-
sented by the stiffness fourth-order tensor C=C�x3� and the
mass density �=��x3�.

A. System equations

1. The wave equation in the fluid fn „for n=1 or 2…

In the fluid fn and the context of the linear acoustic
theory, the linearized Euler equation and the constitutive
equations are written as

−
�p�n�

�xj
= � fn

�2uj
�n�

�t2 ,

p�n� = Kfn
div u�n�, �1�

where u�n� and p�n�, respectively, represent the displacement
vector and the pressure in the fluid fn; its compressibility and
the speed of sound in the fluid at equilibrium are, respec-
tively, Kfn

and cfn
=�Kfn

/� fn
. The operator div is the diver-

gence.
The solutions of system �1� for the fluid fn are sought

under the form

fn�x1,x2;t� = An�x3�exp ı�k1x1 + k3
�n�x3 − �t� , �2�

where k1 and k3
�n� are the wavenumbers, respectively, along

the x1-axis and x3-axis in the fluid fn; the angular frequency
is noted � and ı is the imaginary unit.

We consider an incident wave reaching the plate at an
angle �1 from the x3-axis in the fluid f1. The incident
displacement-field is defined in the following form, assum-
ing that its amplitude is normalized:

uI
�1� = � sin �1

0

cos �1
�exp ı�k1x1 + k3

�1�x3 − �t� , �3�

with k1= �� /cf1
�sin �1 and k3

�1�= �� /cf1
�cos �1. From this, the

expressions of the reflected displacement-field uR
�1� in f1 and

of the transmitted displacement-field uT
�2� in f2 are deduced as
follows: 193
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uR
�1� = R� sin �1

0

− cos �1
�exp ı�k1x1 − k3

�1�x3 − �t� ,

uT
�2� = T

cf1

cf2� sin �1

0

cos �1
�exp ı�k1x1 + k3

�2�x3 − �t� . �4�

where R=R�x1 ,x3 ; t� and T=T�x1 ,x3 ; t�, respectively, repre-
sent the reflection and transmission coefficients, which will
be expressed explicitly in the sequel. The incident, reflected,
and transmitted pressure fields, respectively, noted pI

�1�, pR
�1�,

and pT
�2�, are deduced from expressions �3� and �4�, and the

second equation of the system �1�

pI
�1� = − ı� � � f1

cf1
� exp ı�k1x1 − k3

�1�x3 − �t� ,

pR
�1� = − ı� � � f1

cf1
� R � exp ı�k1x1 − k3

�1�x3 − �t� ,

pT
�2� = − ı� � � f2

cf2
� T � exp ı�k1x1 + k3

�2�x3 − �t� . �5�

B. The wave equation in the plate waveguide

The body forces in the solid plate are neglected. The
balance equation of linear momentum associated with the
constitutive law of linear elasticity �Hooke’s law� gives the
following equations:

��ij

�xj
= �

�2ui

�t2 ,

�ij =
1

2
Cijk�� �uk

�x�

+
�u�

�xk
	 , �6�

where ui �for i=1, . . . ,3� and �ij �for i , j=1, . . . ,3�, respec-
tively, represent the components of the displacement-field u
and of the stress �. In system �6�, the Einstein convention of
summation on repeated indices is used. The solutions are
sought for the vectors of displacement u and traction �i3 �for
i=1, . . . ,3� �assumed to be harmonic in time t and space
along the x1-axis� under the form

f�x1,x3;t� = A�x3�exp ı�k1x1 − �t� . �7�

C. Fluid-loading interface conditions

The conditions at both interfaces x3=0 and x3=d are the
continuity of the normal displacement and the one of the
normal stress. We consider that the fluids f1 and f2 are per-
fect; consequently, the shear stresses are zero at the inter-
faces ��13�x1 ,0 ; t�=�13�x1 ,d ; t�=0 and �23�x1 ,0 ; t�
=�23�x1 ,d ; t�=0�. The following relations are obtained:

u3�x1,0;t� = u3
�1��x1,0;t�, u3�x1,d;t� = u3

�2��x1,d;t� ,

�33�x1,0;t� = − p�1��x1,0;t�, �33�x1,d;t� = − p�2��x1,d;t� ,

�8�
with

J. Acoust. Soc. Am., Vol. 127, No. 3, March 2010 C. Baron an
u3
�1� = uI

�1� · x3 + uR
�1� · x3, u3

�2� = uT
�2� · x3 and

p�1� = pI
�1� + pR

�1�, p�2� = pT
�1�. �9�

D. A closed-form solution: The matricant

Introducing expression �7� in Eq. �6�, we obtain the
wave equation under the form of a second-order differential
equation with non-constant coefficients. For particular forms
of profiles, this equation has analytical solutions expressed
with special functions �Bessel or Hankel functions� �Vlasie
and Rousseau, 2004�. But, in the general case, there is no
analytical solution to the problem thus formulated. The most
current methods to solve the wave equation in unidirection-
ally heterogeneous media are derived from the Thomson–
Haskell method �Haskell, 1953; Thomson, 1950�. These
methods are appropriate for multilayered media �Hosten and
Castaings, 2003; Kenneth, 1982; Lévesque and Piché, 1992;
Wang and Rokhlin, 2001�. But, for continuously varying me-
dia, these techniques mean to replace the continuous profiles
of properties with step-wise functions. Thereby, the studied
problem becomes an approximate one, even before the reso-
lution step; the accuracy of the solution as its validity do-
main is hard to evaluate. Moreover, the multilayered model
of the waveguide creates some “virtual” interfaces likely to
induce artifacts. In order to deal with the exact problem, that
is to keep the continuity of the properties’ variation, the wave
equation is re-written under the form of an ordinary differ-
ential equation system with non-constant coefficients for
which an analytical solution exists: the matricant �Baron,
2005�.

1. Hamiltonian form of the wave equation

We consider that the plate presents material symmetries
that allow decoupling the pressure–shear vertical �P-SV�
waves, polarized in the propagation plane �x1 ,x3� and the
shear horizontal �SH� waves polarized along x2-axis. The
incident medium f1 is a perfect fluid; only the P-SV waves
travel in the plate. Applying a spatio-temporal Fourier trans-
form on �x1 , t� of the displacement-field �noted û�k1 ,x3 ;��
after Fourier transform� and on the traction field �noted
�̂i3�k1 ,x3 ;�� for i=1, . . . ,3� and using the Voigt notation
�Cijk� for i , j ,k ,�=1, . . . ,3 is replaced with cIJ for I ,J
=1, . . . ,6�, Eq. �6� leads to Stroh’s �1962� sextic plate for-
malism �Hamiltonian formulation of the wave equation�

��̂13

�x3
= �����2û1 − �k1�̂11,

��̂33

�x3
= ��ı��2û3 − ık1�̂13,

�10�

�̂11 = �k1c11û1 + c33
� û3

�x3
, �̂13 = c55� � û1

�x3
+ �k1û3	 ,

�̂33 = �k1c13û1 + c33
� û3 . �11�

�x3 273
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According to Eqs. �10� and �11�, �̂11 is function of û1

and �̂33. The wave equation becomes a matrix system ex-
pressed using the Thomson–Haskell parametrization of
Stroh’s �1962� sextic plate formalism
��d� = M�d,0���0� . �16�
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d

dx3
��x3� = ı�Q�x3���x3� , �12�

that is,
d

dx3�
ı�û1

ı�û3

�̂13

�̂33

� = ı��
0 s1 1/c55�x3� 0

− s1c13�x3�/c33�x3� 0 0 1/c33�x3�
��x3� − s1

2	�x3� 0 0 − s1c13�x3�/c33�x3�
0 ��x3� − s1 0

��
ı�û1

ı�û3

�̂13

�̂33

� , �13�
318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339
with the relations

	�x3� = c11�x3� −
c13

2 �x3�
c33�x3�

, k1 = �s1, �14�

where s1 is the x1-component of the slowness. The matrix Q
includes all the information about the heterogeneity of the
waveguide because it is expressed from the plate mechanical
properties ���x3� ,C�x3�� and from two acoustical parameters
�s1 ,��.

2. Explicit solution: The Peano expansion of the
matricant

The wave equation thus formulated has an analytical
solution expressed between a reference point �x1 ,0 ,x3

0� and
some point of the plate �x1 ,0 ,x3� in the propagation plane.
This solution is called the matricant and is explicitly written
under the form of the Peano series expansion �Gantmacher,
1959; Peano, 1888; Pease, 1965�:

M�x3,x3
0� = I + �ı��


x3
0

x3

Q�
�d
 + �ı��2

�

x3

0

x3

Q�
��

x3

0




Q�
1�d
1	d
 + . . . , �15�

where I is the identity matrix of dimension �4,4�. If the ma-
trix components Q�x3� are bounded in the study interval,
these series are always convergent �Baron, 2005�. The com-
ponents of the matrix Q are continuous in x3 and the study
interval is bounded �thickness of the waveguide�; conse-
quently the hypothesis is always verified. We underline that
the ı�-factorization leads up to a polynomial form of the
matricant. The ı�-polynomial coefficients are matrices inde-
pendent of �.

3. Boundary conditions: Fluid-structure interaction

Using the propagator property of the matricant through
the plate thickness, the state-vector �defined in Eq. �13�� at
the second interface ��d� is evaluated from the state-vector
at the first interface ��0� as follows:
The fluid-structure interaction sets the conditions of zero
shear stresses �see Sec. III C�, used after a spatio-temporal
Fourier transform on �x1 , t�. Equation �16� becomes

�
ı�û1�k1,d;��
ı�û3�k1,d;��

0

�̂33�k1,d;��
� =�

M11 M12 M13 M14

M12 M22 M23 M24

M13 M23 M33 M34

M14 M24 M34 M44

�
��

ı�û1�k1,0;��
ı�û3�k1,0;��

0

�̂33�k1,0;��
� . �17�

The condition to obtain a nontrivial solution to Eq. �17�
leads to the following relation:

ı�û1�k1,0;�� � M13 + ı�û3�k1,0;�� � M32

+ �̂33�k1,0;�� � M34 = 0, �18�

where Mij �for i , j=1, . . . ,4� represent the components of the
matrix M. The displacement component û1�k1 ,0 ;�� can be
expressed as a linear combination of û3�k1 ,0 ;�� and
�̂33�k1 ,0 ;��; thus system �16� of dimension 4 is reduced to a
matrix system of dimension 2

��d� = �P1 P2

P3 P4
	��0� where ��x3� = �ı�û3

�̂33
	 , �19�

with the relations

P1 = M22 − M21
M32

M31
, P2 = M24 − M21

M34

M31
,

P3 = M42 − M41
M32

M31
, P4 = M44 − M11

M34

M31
. �20�

Interface conditions �8� are transformed in the Fourier
domain �k1 ,��. The expressions of the displacement and the
pressure in the fluids �see Eqs. �3�–�5��, so that the one of the
displacement and traction fields in the solid plate �see Eq.

�19��, are substituted in the transformed interface conditions. 340
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Setting ��0�= ��1 ,�2�T exp ı�k1x1−�t�, where the super-
script T designates the transpose operator, we obtain the fol-
lowing matrix equation:

�
ı�s3

�1�cf1
1 0 0

− ı�� f1
cf1

0 1 0

0 P1 P2 − ı�s3
�2�cf2

exp�ı�s3
�2�d�

0 P3 P4 − ı�� f2
cf2

exp�ı�s3
�2�d�

�� R̂

�1

�2

T̂
�

=�
ı�s3

�1�cf1

ı�� f1
cf1

0

0
� , �21�

where s�n�=k�n� /� is the slowness-vector in the fluid fn �n
=1 or 2�. The quantities R̂ and T̂ are, respectively, the reflec-
tion and transmission coefficients expressed in the Fourier

domain: R̂= R̂�k1 ,x3 ;�� and T̂= T̂�k1 ,x3 ;��. The two first
lines of system �21� express the boundary conditions at the
first interface �x3=0� and the two last lines those at the sec-
ond interface �x3=d� introducing the Fourier transform of
expressions �3�–�5� in the following relations:

��0� − �ı�û3R

�1�

− p̂R

	
x3=0

= �ı�û3I

�1�

− p̂I

	
x3=0

,

�P1 P2

P3 P4
	��0� − �ı�û3T

�2�

− p̂T

	
x3=d

= �0

0
	 , �22�

where û3R

�1�, û3I

�1�, and û3T

�2� are the components along x3-axis of

ûR
�1�, ûI

�1�, and ûT
�2� vectors, respectively. Note the equality

between the quantities u3T

�2� and u3
�2� where this last is defined

in Eq. �9�.

4. Expression of the reflection and transmission
coefficients

From Eq. �21�, we deduce the analytical expressions of
the reflection and transmission complex coefficients

R̂�s1,x3;�� =
�P3 − P1Z2 + P4Z1 − P2Z1Z2�
�P3 − P1Z2 − P4Z1 + P2Z1Z2�

,

T̂�s1,x3;�� = −
2Z2�� f1

cf1
/� f2

cf2
��P1P4 − P2P3�

�P3 − P1Z2 − P4Z1 + P2Z1Z2�

�exp�− ı�s3
�2�d� , �23�

with Zn=� fn
/�1 /cfn

2 −s1
2 �for n=1 or 2� and k1=�s1.

IV. VALIDATION OF THE METHOD

The aim of this section is to check that the Peano expan-
sion of the matricant is well-adapted to study fluid-loaded
waveguides. We take into account the fluid-structure interac-

tion in different configurations of homogeneous plates com-
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paring the results obtained from the numerical implementa-
tion of the Peano expansion of the matricant to results taken
from literature.

The numerical evaluation of P1, P2, P3, and P4 requires
us to truncate the Peano series and to numerically calculate
the integrals. Thus, the error can be estimated and controlled
�Baron, 2005�. We retained 70 terms in the series and evalu-
ate the integrals over 100 points using Simpson’s rule
�fourth-order integration method�. These choices ensure the
convergence of the solution and the accuracy of the results
for a reasonable computation-time �never exceeding few
minutes on a desktop computer�. Expressions �23� give the
frequency spectrum �modulus and phase� of the reflection
coefficient for different incidences �s1 varies from zero-
normal incidence to 1 /cf1

corresponding to the critical inci-
dence in the fluid f1�.

A lot of works detailed the relationship between the
poles and the zeros of the reflection coefficient and the leaky
Lamb wave dispersion curves �Chimenti and Rokhlin, 1990;
Deschamps and Poncelet, 2000�. The results of Sec. IV A
compare the dispersion curves obtained by seeking the poles
of reflection coefficient �23� and the results taken from lit-
erature or from closed-form solution.

A. Validation for a homogeneous and isotropic or
anisotropic fluid-loaded plate

The method is tested by plotting the dispersion curves
�variation of the phase velocity versus frequency-thickness
product� for an isotropic aluminum plate immersed in water.
The data in the paper of Chimenti and Rokhlin �1990� are
used. The results obtained �not shown� by the present method
are in perfect agreement with the results presented by them
�Chimenti and Rokhlin, 1990�.

As mentioned by Chimenti and Rokhlin �1990�, there
are few differences between the zeros’ loci and the poles’ loci
for a plate immersed in a fluid whose the mass density is
lower than the plate mass density. As underlined by several
authors, fluid-load does have just a weak influence on guided
wave traveling in the plate immersed in water.

Taking into account the anisotropy does not change the
scheme for the numerical solution of wave equation with the
matricant. We consider a transverse isotropic plate immersed
in water �� f =1 g cm−3 , cf =1.485 mm �s−1� whose proper-
ties are reported in Table I. For that configuration, Nayfeh
and Chimenti �1989� developed a method to obtain an ana-
lytical expression of the reflection coefficient. By using the
data from this paper, the results obtained �see Fig. 1� with the
present method are in perfect agreement with theirs. The
curves presented in Figs. 1�a� and 1�b� are superimposed and

TABLE I. Elastic properties of transversely isotropic plate �with c23=c22

−2c44�.

�
�g cm−3�

c11

�GPa�
c22=c33

�GPa�
c12=c13

�GPa�
c44

�GPa�
c66=c55

�GPa�

1.85 23.05 15.1 8.7 3.25 4.7
need to be presented separately. 421
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B. Validation for an asymmetrically loaded
homogeneous isotropic plate „f1Å f2…

The formalism presented here to solve the wave equa-
tion in an unidirectionally graded medium presents two main
advantages: Without changing the scheme to obtain the nu-
merical solution we can take into account �i� an asymmetric
loading and �ii� the unidirectional continuous heterogeneity.

The mechanical behavior of the plate is different for
symmetric and asymmetric loadings. For example, in the
symmetric loading case, there is a unique critical frequency
and a unique phase velocity value v� in the plate, which
corresponds to the propagation velocity in the fluid �v�=cf1

=cf2
�, for which the displacements and the stresses at the

interfaces are quasi-null; whereas in the asymmetric loading
�f1= f2�, there are two critical frequencies and two values of
the phase velocity in the plate for which the structure does
not respond �Dickey et al., 1995�. The validation is done on
an isotropic aluminum plate with the following properties:
�=2.79 g cm−3; the longitudinal and transverse wave
velocities are, respectively, vL=6.38 mm �s−1 and vT=
3.10 mm �s−1. The characteristic properties of the fluid f1

correspond to those of water �see Sec. IV A�; the character-
istic properties of the fluid f2 correspond to glycerine: � f2

=1.26 g cm−3 and cf2
=1.920 mm �s−1. This configuration

is the same as the one studied by Franklin et al. �2001�. The
modulus of the reflection coefficient versus the incident
angle is plotted in Fig. 2 for a fixed frequency-thickness
product �f �d=4.7 MHz mm�.

This figure shows the perfect agreement between our

FIG. 1. Dispersion curves for a transversely isotropic plate immersed in
water; comparison between �a� analytical results from Nayfeh and Chimenti
�1989� and �b� results obtained via the Peano series of the matricant.
results and the ones presented by Franklin et al. �2001�.

6 J. Acoust. Soc. Am., Vol. 127, No. 3, March 2010 C. B
V. RELEVANCY OF THE METHOD FOR ULTRASOUND
CHARACTERIZATION OF CORTICAL BONE

Cortical bone is a kind of hard tissue found at the edges
of long bones and supports most of the load of the body.
Several studies demonstrated the heterogeneous nature of the
cortical bone, particularly they show evidence the gradual
variation of the volumetric porosity �ratio between pores and
total volume� along the cortical thickness. Yet, the porosity is
intrinsically linked to the macroscopic mechanical behavior
of the cortical bone �Baron et al., 2007�. Therefore, the con-
tinuous variation of porosity induces a continuous variation
of material properties. Taking into account the gradient
should prove itself to be essential in the context of diagnosis
and therapeutic monitoring of osteoporosis. Indeed, the gra-
dient characterization would allow assessing geometrical
�cortex thickness� and material �elastic coefficients variation�
information, which are fundamental parameters to evaluate
the bone fragility. For several years, the quantitative ultra-
sonography �by axial and transverse transmissions� proved
itself to be a hopeful alternative technique to evaluate the
fracture risk �Marin et al., 2006�. However, the inter-
individual and inter-site variations of bone mechanical prop-
erties make the standardization of the protocol of fracture
risk evaluation by ultrasound very delicate.

The focus is set on a configuration closed to the axial
transmission device for in vivo conditions. In this context,
the relevancy of studying the head wave propagation has
been demonstrated �Bossy et al., 2004a, 2004b; Camus et al.,
2000�. As a consequence all the reflection coefficients pre-
sented in this paper were calculated for an incident angle
corresponding to the grazing-angle for longitudinal waves
�critical angle of longitudinal wave propagation in the plate
at the first interface �x3=0��.

The surrounding media in the in vivo configuration of
ultrasound characterization of cortical bone are the muscle
for the upper fluid f1 �cf1

=1.54 mm �s−1 and � f1
=1.07 g cm−3� and the marrow for the lower fluid f2 �cf2
=1.45 mm �s−1 and � f2

=0.9 g cm−3� �Burlew et al., 1980;
Hill et al., 1986�. We are interested in the influence of the
continuous gradient of the mechanical properties on the ul-
trasonic response in the configuration of in vivo cortical bone

P

Q

P QP RP SP TP UP VP

�r
�Ò

Q@ A

FIG. 2. Reflection coefficient modulus for an asymmetrically fluid-loaded
aluminum plate �water and glycerine� versus incident angle: in dark lines
results published in Franklin et al. �2001�, and in gray crosses the reflection
coefficient modulus calculated from Eq. �23�. The vertical lines �dashed�
represent the two critical angles for longitudinal waves and transverse
waves. The dashed curve corresponds to the resonant amplitudes �Franklin
et al., 2001�.
characterization. 493
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A. Determination of a realistic range of variation of
elastic bone properties

In order to define numerical values for a realistic value
of the gradient of the different material properties, it is nec-
essary to determine the limiting values reached by each elas-
tic property. Our approach consists in considering in vitro
measurements published in Dong and Guo, 2004 and per-
formed in 18 samples. It is assumed that these limiting val-
ues for elastic properties are relevant for physiologic ranges
of variations.

We assume that cortical bone is transverse isotropic.
Transverse isotropy has been shown experimentally by dif-
ferent authors �Dong and Guo, 2004; Reilly and Burnstein,
1974; Rho, 1996� to be a realistic approximation of cortical
bone degree of anisotropy.

Dong and Guo �2004� measured the homogenized bone
properties by performing tensile and torsional tests with a
mechanical testing system on 18 different human femoral
bone specimens. The authors measured the values of the lon-
gitudinal and transverse Young’s moduli �EL and ET, respec-
tively� as well as the values of the longitudinal shear modu-
lus GL. From these measurements and by assuming constant
values of Poisson’s ratio, the values of the different compo-
nents of the stiffness-tensor corresponding to the values of
EL, ET, and GL measured in Dong and Guo, 2004 were ob-
tained following the relationships given in the Appendix.

The value of the longitudinal Poisson’s ratio L is taken
equal to 0.37 for all computations because it corresponds to
the average value found in Dong and Guo, 2004. The value
of the transverse Poisson’s ratio T is taken equal to 0.45
following Eq. �A3� of the Appendix. The values of the stiff-
ness coefficients corresponding to the mean values of the
bone mechanical properties are referred to as “reference” set
of parameters in what follows. The maximum and minimum
values of the stiffness coefficients are obtained by consider-
ing, respectively, the maximum and minimum values of EL

and ET within the range of variation measured in Dong and
Guo, 2004, which is a simple way to obtain a realistic range
of variation for the stiffness coefficients in cortical bone.
Furthermore, the elastic properties deduced from the ap-
proach reported above were constrained to verify the thermo-
dynamical stability conditions given in the Appendix by Eq.
�A4�.

We choose reference value of mass density � equal to
1.722 g cm−3, following the value taken in Macocco et al.,
2006. In order to derive a realistic range of variation for mass
density, we assume that the reference value is given by a
porosity of 7%, which corresponds approximately to the
mean porosity at the radius �Baron et al., 2007�. The porosity
was assumed to vary between 3% and 15% �Bousson et al.,
2001; Dong and Guo, 2004� and a rule of mixture leads to
the range of variation of mass density.

B. Modeling a gradient of material property

The impact of a controlled gradient vector � of any in-
vestigated material property S on the response of the struc-
ture studied is assessed. The scalar S corresponds to one of

the stiffness coefficients cij of C or to mass density �. In each

J. Acoust. Soc. Am., Vol. 127, No. 3, March 2010 C. Baron an
set of simulations, all the material properties are constant and
equal to their reference value while S is subjected to the
defined gradient.

The gradient vector �=grad S=�x3 is assumed to be in-
dependent of x1 in all cases, where x3 is a unit vector along
x3-axis and grad is the gradient operator acting on a scalar
field. The quantity � is always taken positive because the
porosity is known to be higher in the endosteal part �x3=d�
than in the periosteal part �x3=0� of the bone. Moreover,
only the simple situation of affine spatial variations of S is
considered, corresponding to a constant value of �. This af-
fine spatial variation of S is chosen because the actual physi-
ological spatial dependence of S remains unknown. Two dif-
ferent affine spatial dependencies of the studied material
property are considered and are illustrated in Fig. 3. Associ-
ated gradient � will be referred to as type 1 or 2.

Type 1. The gradient of type 1 is such that the physical
property S takes the same value SM at the upper interface
x3=0 of the solid plate for all values of the gradient �. The
quantity S�x3� is therefore given by

S�x3� = SM + � � x3, �24�

where SM is given by the maximal value of the material
property S considered. The maximal value �M of � is chosen
so that S�d� is equal to Sm, where Sm is given by the minimal
value of S. The gradient �M is given by

�M =
�Sm − SM�

d
. �25�

Type 2. The gradient of type 2 is such that the physical
property S takes the same value at the middle x3=d /2 of the

Fluid

Fluid

Solid

Fluid

Fluid

Solid

Variation of type 1 of S

Variation of type 2 of S

(a)

(b)

Physiological range of variation ofPhysiological range of variation of SS

Max value of S

Min value
of S

Max value of S

Min value
of S

FIG. 3. Schematic representation of the two types of spatial variation con-
sidered for the material property S corresponding to the stiffness coefficient
and to mass density. The solid lines in the solid layer indicate the spatial
dependence of S. The dotted line in the solid layer indicates homogeneous
material properties corresponding to the reference material properties. The
variation of type 1 shown in �a� corresponds to a constant value at the
bone-soft tissues’ interface. The variation of type 2 shown in �b� corresponds
to a constant value in the middle of the bone.
solid plate for all values of gradient �. Furthermore, the 579
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mean value of the property S is identical for all �. The quan-
tity S�x3� is given by

S�x3� =
�Sm + SM�

2
+ � � �x3 −

d

2
	 . �26�

The maximal value of � is also given by Eq. �25�, so that
all values of S�x3� are again always comprised between Sm

and SM. Again, the maximal value �M of � is given by Eq.
�25�.

Gradient of type 2 leads for all magnitudes of � to a
constant value of the spatial average of the gradient.

For both types of spatial variations, five different values
of � regularly distributed between 0 and �M are arbitrarily
considered in the thickness.

Table II recalls the maximum, minimum, and mean mea-
sured values of EL, ET, and GL as given by Dong and Guo
�2004�. Table II also shows the maximum, minimum, and
mean values of the four components �c11, c13, c33, and c55� of
the stiffness-tensor C affecting wave propagation derived
from Eq. �A3� of the Appendix.

In Table III, the minimal and maximal values of each
variable corresponding to the realistic range of variation ob-
tained �i� by considering the reference values of Table II and
�ii� by verifying that the thermodynamical stability condi-
tions are fulfilled. Values resulting from the stability condi-
tions are marked with an asterisk.

In the simulations, the values of SM and Sm are those
reported in Table III.

C. Results and discussion

First of all, the method allows investigating the influence
of the fluids on the ultrasonic response. In the case of the
characterization of cortical bone, the two fluids f1 and f2 are
different, which corresponds to an asymmetrical loading �see
Sec. IV B�: The fluid f1 has been considered as muscle �cf1
=1540 m s−1 and � f1

=1.07 g cm−3� and fluid f2 as marrow
�cf2

=1450 m s−1 and � f2
=0.9 g cm−3�. The properties of

these two fluids are very close to those of water. The fre-
quency spectrum of the reflection coefficient modulus has

TABLE II. Mean value, maximum, and minimum
Young moduli, of the four elastic constants and of
framework of the model. These values are taken from

Mechanical quantity
EL

�GPa�
ET

�GPa�

Mean value �reference� 16.6 9.5
Minimum 13.4 6.5
Maximum 20.6 12.8

TABLE III. The minimal and maximal values of each
obtained �i� by considering the reference values of
stability conditions are fulfilled. Values resulting from

Material property S
c11

�GPa�

Realistic range �Sm ,SM� �reference� �17.6, 29.6�
8 J. Acoust. Soc. Am., Vol. 127, No. 3, March 2010 C. B
been plotted for the in vivo configuration and compared with
the result obtained for a cortical bone plate immersed in wa-
ter for the ten profiles of mechanical properties �figure not
shown�. For homogeneous plates as for linearly graded
plates, the two curves are very close; however, the modulus
of the reflection coefficient at null-frequency is not null and
the minimum values are greater than for water but obtained
for the same frequency-thickness products. That is why all
the following results have been calculated for a cortical bone
plate immersed in water.

The reflection coefficient calculated with the Peano se-
ries of the matricant is sensitive to the variation of the prop-
erties gradient. As we consider that the osteoporosis entails a
trabecularization of cortical bone from the endosteal side, the
characterization of the gradient of the properties between the
endosteal and periosteal regions may be an element of the
diagnosis of the osteoporosis progress and of the therapeutic
follow-up.

It is known that the gradient of the properties along the
cortical thickness is due to the continuous variation of the
porosity growing progressively from the periosteal to the en-
dosteal region. From previous work, we know that the po-
rosity influences all the stiffness coefficients �Baron et al.,
2007�. The frequency spectrum of the reflection coefficient
has been plotted for the ten profiles presented in Fig. 3 ap-
plied to all the stiffness coefficients implied �c11, c13, c33, and
c55 and to the mass density �� �see Table III�. The reflection
coefficients have been calculated at an incident angle corre-
sponding to the grazing-angle �critical angle for the longitu-
dinal waves in the bone plate�. For the two types of gradi-
ents, differences appear between all the gradients and the
homogenized plates �corresponding to the maximum value
for type 1 and to the average value for type 2� particularly on
the location of the extrema values of the reflection coefficient
modulus �see Fig. 4�.

The increase in the gradient of properties shifts the mini-
mum and maximum values forward high frequency-
thickness products. However, the results �see Fig. 4� put on
evidence that the behavior of the reflection coefficient modu-
lus is sensibly the same for frequency-thickness products be-

s of the homogenized longitudinal and transversal
density affecting the ultrasonic propagation in the

ng and Guo �2004�.

�
c13

�GPa�
c33

�GPa�
c55=GL

�GPa�
�

�g cm−3�

8.7 15.1 4.7 1.722
5.1 9.1 3.3 1.66

15.9 25.9 5.5 1.753

able corresponding to the realistic range of variation
II and �ii� by verifying that the thermodynamical

stability conditions are marked with an asterisk.

c13

Pa�
c33

�GPa�
c55=GL

�GPa�
�

�g cm−3�

, 11.1�� �11.8�, 25.9� �3.3, 5.5� �1.66, 1.753�
value
mass

Do

c11

�GPa

23.1
17.6
29.6
vari
Table

the

�G

�5.1
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tween 0 and 1.5 MHz mm. Beyond this value, the behavior is
clearly different. At sufficiently high frequency, the wave-
length is smaller and more sensitive to the affine variation of
the material properties. It is noteworthy that for a heteroge-
neous waveguide, the minima of the reflection coefficient
magnitude do not reach zero �except for null-frequency� but
end at a finite value and the changes in phase �not shown� are
not so rapid, which means that total transmission does not
take place in this situation.

The influence of the variation of each parameter �stiff-
ness coefficients� on the frequency spectrum of the reflection
coefficient has been investigated. This analysis has been led
for an incidence angle corresponding to the longitudinal
wave critical angle in the plate at x3=0. This incidence cor-
responds to the generation and the propagation of the head
wave.

It appears that each of them has an impact on the reflec-
tion wave, but the leading term is c11. The frequency spec-
trum of the reflection coefficient for a varying c11 in an affine
way is very close to the frequency spectrum of the reflection
coefficient obtained for the affine variation of all the material
properties �cij and �� and is the most different to the results
from homogenized plates �average value or maximum value�
compared to the frequency spectrum calculated for the one-
parameter variation of the other elastic parameters �c13, c33,
and c55, and �� �see Fig. 5�. It is noteworthy that c11 is the
stiffness coefficient associated with the axial direction and
determining the speed of the head wave. So, it seems that the
head wave would be the indicator of the c11 gradient. It is
important to note that for homogenized plates �extremum
value or average� the frequency spectrum of the reflection

0

1

0 1 2 3 4 5 6

(MHz.mm)f d�

�

�

�

� �

0

1

0 1 2 3 4 5 6

(MHz.mm)f d�

�

�

�

b)

FIG. 4. Frequency spectrum of the reflection coefficient modulus for differ-
ent properties’ variations corresponding to �a� the five profiles of type 1 �Fig.
3�a�� and �b� the five profiles of type 2 �Fig. 3�b��.
coefficient is really different from that of the plate with con-
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tinuously varying properties. We infer that the approximation
by a homogeneous plate of cortical bone and all the more so
for the osteoporotic cortical bone �for which the gradient
would be greater� may induce bad interpretation of the ultra-
sonic response.

The authors do not know any results in literature about
the measurement of the variation of the porosity within the
cortical thickness. The assumption of an affine gradient is a
first step; other gradients may be investigated and the method
presented in this article would be applied in the same way for
non-affine gradients �Shuvalov et al., 2005�.

VI. CONCLUSION AND PERSPECTIVES

Stroh’s �1962� sextic plate formalism has been employed
for analyzing the leaky Lamb waves in anisotropic heteroge-
neous plates immersed in fluids. This formalism and espe-
cially the polynomial form of the solution �see Eq. �15��
presents several analytical and numerical advantages. First,
the low-frequency asymptotics are naturally assessed evalu-
ating only two or three terms in the series �Shuvalov et al.,
2005�. The information thus collected is of major interest in
the analysis of the elastic behavior of waveguides �Baron et
al., 2008�. Second, the polynomial form makes the numerical
evaluation of the solution faster. Indeed, the polynomial co-
efficients are independent of the frequency, so they are cal-
culated for a fixed slowness value and stored. When the fre-
quency varies, there is no need to recalculate the polynomial
coefficients, it comes to a polynomial evaluation whose co-
efficients are perfectly known, which is time-saving.

The Peano series of the matricant is a method that keeps
the continuity of the profiles and so, the authenticity of the
problem. One of the key points for methods based on multi-
layered media to deal with FGM is to relevantly discretize
the properties’ profiles. The choice of the discretization may
lead to some errors especially in the evaluation of the reso-

0

1

0 1 2 3 4 5 6

|R
|

(MHz.mm)f d�

FIG. 5. Frequency spectrum of the reflection coefficient modulus for differ-
ent properties’ variations at grazing-incidence �1=�c: for a homogeneous
plate whose properties are those at x3=0 at �c=21.1° �thick gray line�, for a
homogeneous plate whose properties are the average of the properties
through the plate at �c=23.6° �thin gray line�, for a plate with all its prop-
erties linearly varying at �c=21.1° �black line�, and for a plate with an affine
variation of the c11 only at �c=21.1° �gray lozenges�.
nances. 722
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This elegant mathematical tool is also very adaptative to
different physical problems. In the case studied—a fluid-
loaded plane waveguide—the anisotropy, the heterogeneity
�continuous or discontinuous variation of properties� and the
asymmetric fluid-loading are taken into account without
changing the resolution scheme.

Further work needs to be done to relate the results pre-
sented in this paper to dispersion curves and propagation of
transient and heterogeneous waves in a fluid-loaded continu-
ously heterogeneous waveguide.

Furthermore, from this study, the transient response of a
fluid-loaded plate is considered. The frequency spectrum of
the reflection coefficient is calculated for incidences be-
tween the normal and critical incidences for compression
waves in the fluid f1. Thus, the plate transfer function is
calculated in the Fourier domain �x1-wavenumber, fre-

quency�: R̂�k1 ,x3 ;��. A double inverse Fourier transform on

�k1 ,�� is applied on R̂�k1 ,x3 ;�� to transform into the space-
time domain; the temporal signals can be obtained at differ-
ent points along the propagation x3-axis: R�x1 ,x3 ; t�.

Lastly, the formalism presented here is well-adapted to
deal with wave propagation in anisotropic tubes with radial
property gradients �Shuvalov, 2003�. The wave equation
keeps the same form as Eq. �12�, the state-vector is expressed
from the displacement and traction components in the cylin-
drical basis, and the matrix Q depends on the radial position
r �Q=Q�r��. In cylindrical homogeneous structures, taking
into account an anisotropy more important than transverse
isotropy is fussy because there is no analytical solution to the
“classical” wave equation �second-order differential equa-
tion�. Stroh’s �1962� formalism, upon which the Peano ex-
pansion of the matricant is based, is a promising alternative
solution that allows considering altogether the geometry
�cylinder�, the anisotropy, and the heterogeneity �radial prop-
erty gradients� of a structure.

APPENDIX: THERMODYNAMICS STABILITY
CONDITIONS AND STIFFNESS COEFFICIENTS

Hooke’s law is written under the form �ij =Cijk��k� for
�i , j ,k ,�=1, . . . ,3�, where � is the stress-tensor, � is the
strain-tensor, and C is the fourth-order stiffness-tensor. In the
transversely isotropic case, with �x2 ,x3� as isotropic plane,
the stiffness-tensor is expressed as a stiffness matrix �using
Voigt’s notation�

C =�
c11 c13 c13 0 0 0

c13 c33 c23 0 0 0

c13 c23 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c55 0

0 0 0 0 0 c55

� . �A1�

We introduce the matrix S, the inverse of the matrix C. It is

expressed by

10 J. Acoust. Soc. Am., Vol. 127, No. 3, March 2010 C. B
S =�
1/EL − L/EL − L/EL 0 0 0

− L/EL 1/ET − T/ET 0 0 0

− L/EL − T/ET 1/EL 0 0 0

0 0 0 1/GT 0 0

0 0 0 0 1/GL 0

0 0 0 0 0 1/GL

� .

�A2�

with EL,T, the longitudinal �L� and transverse �T� Young’s
moduli; L,T, the longitudinal �L� and transverse �T� Pois-
son’s ratios; and GL,T, the longitudinal �L� and transverse �T�
shear moduli. By inverting Eq. �A1�and identifying it with
Eq. �A2�, we obtain the following relations:

EL =
c11c33 − 2c13

2 + c11c23

c33 + c23
, L =

c13

c33 + c23
,

ET =
c11�c33

2 − c23
2 � + 2c13

2 �c23 − c33�
c11c33 − c13

2 , T =
c11c23 − c13

2

c11c33 − c13
2 ,

GT = c44, GL = c55. �A3�

Knowing the stiffness coefficient values, we can verify
if the thermodynamical stability conditions are satisfied as
follows:

EL � 0, ET � 0, − 1 � T � 1,

�1 − T�
2

EL

ET
− L

2 � 0, GL � 0. �A4�
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