

Light-toned veins and material in Jezero crater, Mars, as seen in-situ via Nasa's Perseverance Rover (mars 2020 mission): stratigraphic distribution and compositional results

Marion Nachon, Guillermo López-Reyes, Pierre-Yves Meslin, Ann Ollila, Lucia Mandon, Elise Clavé, Olivier Forni, Sylvestre Maurice, Roger C. Wiens, Olivier Gasnault, et al.

▶ To cite this version:

Marion Nachon, Guillermo López-Reyes, Pierre-Yves Meslin, Ann Ollila, Lucia Mandon, et al.. Light-toned veins and material in Jezero crater, Mars, as seen in-situ via Nasa's Perseverance Rover (mars 2020 mission): stratigraphic distribution and compositional results. 55th Lunar and Planetary Science Conference, Lunar and Planetary Institute, Mar 2024, The Woodlands (Virtuel), United States. pp.2349. hal-04445372

HAL Id: hal-04445372 https://hal.science/hal-04445372v1

Submitted on 8 Feb 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

55th LPSC (2024) 2349.pdf

LIGHT-TONED VEINS AND MATERIAL IN JEZERO CRATER, MARS, AS SEEN IN-SITU VIA NASA'S PERSEVERANCE ROVER (MARS 2020 MISSION): STRATIGRAPHIC DISTRIBUTION AND COMPOSITIONAL RESULTS. M. Nachon¹, G. Lopez-Reyes², P.-Y. Meslin³, A. Ollila⁴, L. Mandon⁵, E. Clavé⁶, O. Forni³, S. Maurice³, R.C. Wiens⁷, O. Gasnault³, C. Quantin-Nataf⁸, N. Mangold⁹, S. Clegg⁴, A. Cousin³, J. Lasue³, E. Dehouck⁸, P. Pilleri³, and the SuperCam Team, J.F. Bell III¹⁰, B. Horgan⁷, J.I. Núñez¹¹, K.M. Stack¹², M. Tebolt¹³, G. Caravaca³, S. Gupta¹⁴, F. Calef¹², L. Crumpler¹⁵, Sandra Siljeström¹⁶, P. Russell¹⁷, A. Williams¹⁸, D. Shuster¹⁹, J. Rice¹⁰, A. Brown²⁰, S. Alwmark²¹, O. Kanine⁵ and the M2020Sed-Strat WG.

¹Texas A&M University - Department of Geology & Geophysics (mnachon@tamu.edu). ²ERICA Univ. Valladolid, Spain. ³IRAP, Toulouse, France. ⁴LANL, USA. ⁵Caltech, USA. ⁶CELIA, Univ. Bordeaux, France. ⁷Purdue Univ., IN, USA. ⁸Univ. Lyon1, France. ⁹LPGNantes, France, ¹⁰ASU, Tempe, USA. ¹¹JHUAPL, Laurel, USA. ¹²JPL, CA, USA. ¹³UT Austin, TX. ¹⁴Imperial Coll., UK. ¹⁵New Mexico Museum of Nat. Hist. & Sci., USA. ¹⁶RISE, Sweden. ¹⁷CLA, CA, USA. ¹⁸Univ. Florida, USA. ¹⁹UC Berkeley, USA. ²⁰Plancius Research, MD, USA. ²¹Lund Univ., Sweden.

Introduction: We (1) present the distribution of light-toned veins currently observed via the rover along its route in Jezero crater, focusing on their occurrences in the sedimentary terrains of the Delta front (Fig. 1); (2) introduce compositional results of veins as analyzed via *Perseverance*'s SuperCam instrument, and place them into the context of results from the other instruments.

Methods: To track the presence (and absence) of lighttoned veins in Jezero terrains, we systematically review the images acquired with the rover at different scales via the NavCam, MastCam-Z, SuperCam's Remote Micro-Imager (RMI) [3,4] and the WATSON cameras.

Composition: light-toned veins and material have now been analyzed via several rover instruments: Mastcam-Z multi-spectrometer, PIXL micro-XRF, SHERLOC Raman, SuperCam multiple techniques including Raman [5-7]. Here we focus on results from SuperCam's Laser-Induced Breakdown Spectrometer (LIBS).

Results: Light-toned veins were not observed during the exploration of the crater floor (i.e. until sol ~440 of the mission) that is composed of aqueously altered igneous rocks [8-9]. Light-toned veins have been observed in the 2 regions of the delta scarp visited with *Perseverance*: Hawksbill Gap (HG) and Cape Nukshak (CN) (Fig. 1). Veins are mostly seen in the HG's Hogwallow Flats member and in the CN's Yori Pass member (interpreted as representing former subaqueous environments [1]). Several fine veinlets (e.g. Fig. 2D) are also observed in the Kibler Knob rocks, that have an olivine-rich composition similar to Séítah crater floor [e.g. 8] but whose in-placeness is debatable.

Observing light-toned veins and material is made challenging by: (1) the light conditions; (2) the dust that covers most terrains; (3) the small width of some veins. Many veinlets have been observed thanks to SuperCam/LIBS analyses, as the first laser shots remove the dust. Altogether, this suggests that additional veins than the ones observed are likely present in the terrains explored.

Morphologically and texturally: light-toned material is typically observed cutting through the rocks: often in

the form of veinlets millimetric in width up to centimetric in width (Figs. 2,3). At CN, heavily fractured light-toned material is observed in areas up to ~10cm wide (Fig. 2C) and up to ~m long.

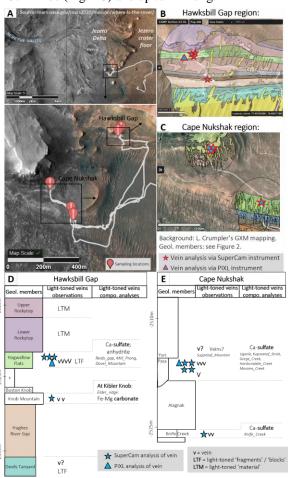


Fig. 1: **A.** *Perseverance* rover's route in Jezero crater up to sol 640. **B.-E.** Light-toned veins observations and compositional analysis via the SuperCam instrument.

Composition: based on SuperCam data, most veins analyzed are interpreted as calcium sulfate. The LIBS analyses show an enrichment (compared to the surrounding host rocks) in calcium and a depletion in other typical major oxides (Si, Ti, Al, Fe, Mg, Na, K; Fig. 3), as well as sulfur detection. Co-located

55th LPSC (2024) 2349.pdf

SuperCam VISIR analyses are also consistent with a sulfate signature. SuperCam Raman analyses provide further constraints on the hydration of the Ca-sulfate veins analyzed, clearly identifying anhydrite [5]. The veinlet analyzed at Kibler Knob (Fig. 2D) shows a unique composition, interpreted as Fe-Mg carbonate, based on SuperCam VISIR and LIBS analyses.

More recently (sol 931), a unique light-toned feature and possible vein has been observed in the Margin Unit and characterized via the SuperCam instrument (target Point Cloates) showing the presence of Ca-sulfate associated with F detection [10].

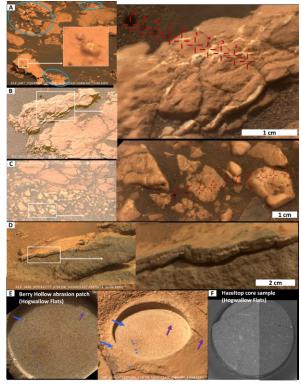


Fig. 2: Examples of light-toned veins and material. As seen via Mastcam-Z & RMI images in sedimentary rocks (A-C) and at Kibler Knob (**D**). **E**: In an abraded patch (WATSON & Mastcam-Z images). F: Sampling tube CacheCam image. Mcam-Z

Interpretation & discussion: Ca-sulfate veins cut through at least ~2m of sedimentary rocks at HG and ~10m at CN located laterally ~400m away, suggesting an emplacement via regional event(s). Light-toned material fills several concretions at Hogwallow Flats (Fig. 2A) and cut through the bedding of delta rocks, and thus represents at least 1 late episode of fluid circulation, post concretions formation and post sediment lithification. At Kibler Knob, the nature and origin of the Fe-Mg bearing carbonate veins (Fig. 2D) and of the rocks they cut is less clear but indicate a very

distinct fluid composition than at Hogwallow Flats and Yori Pass.

Comparison with previous Mars rover missions: after Ca-sulfate veins encountered with previous rover missions at Endeavour crater [11] and at Gale crater [12,13], the presence of similar features in a different context at Jezero crater suggests that such features may provide a greater understanding of aqueous processes across space and time on Mars. The anhydrous nature of the Jezero veins notably differs from the bassanite composition of most Gale crater veins that have been interpreted as emplaced via hydraulic fracturing, and gypsum dehydration [12-15].

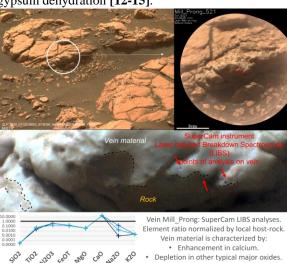


Fig. 3: Composition of a light-toned vein as analyzed with the SuperCam instrument's LIBS technique. Mcam-Z image ID: ZLF_0510_0712218603_973RAD_N0261222ZCAM08533_1100LMJ01.

· Depletion in other typical major oxides

These veins are not visible from orbit, and thus their study in-situ is a unique opportunity to understand the episode(s) of fluid circulation from which they originated, as well as their astrobiological potential [16]. Further analyses will also be possible on Jezero cached samples (e.g. Fig. 2F) to be brought back to Earth.

Acknowledgements: We are grateful to the Mars2020 Team for the continual effort that makes this extraordinary mission possible. M. Nachon acknowledges funding by NASA M2020 Participating Scientist grant#80NSSC21K0329.

References: [1] Stack K.M. et al., LPSC2023 [2] Williams A.,LPSC2023 [3] Maurice S. 2021 doi.org/10.1007/s11214-021-00807-w. [4] Wiens R.C. 2021 doi:10.1007/s11214-020-00777-5. [5] Lopez-Reyes G., LPSC2023 [6] Jones M., LPSC2023 [7] Roppel R., LPSC2023 [8] Beyssac O. et al., 2023. [9] Brown A.J, LPSC2023 [10] Cianciolo O. et al. LPSC2024. [11] Squyres S., 2012 doi:10.1126/science.1220476. [12] Nachon M. 2014 doi:10.1002/2013JE004588. [13] Nachon M. et al, 2017 https://doi.org/10.1016/j.icarus.2016.08.026. [14] Rapin W., 2016 doi.org/10.1016/j.epsl.2016.07.045. [15] Kronyak R., 2019 doi.org/10.1029/2018EA000482. [16] Benison K, LPSC2023.