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Abstract: Virus-cell interactions involve fundamental parameters that need to be considered in
strategies implemented to control viral outbreaks. Among these, the surface electrostatic potential
can give valuable information to deal with new epidemics. In this article, we describe the role of
this key parameter in the hemagglutination of red blood cells and in the co-evolution of synaptic
receptors and neurotransmitters. We then establish the functional link between lipid rafts and
the electrostatic potential of viruses, with special emphasis on gangliosides, which are sialic-acid-
containing, electronegatively charged plasma membrane components. We describe the common
features of ganglioside binding domains, which include a wide variety of structures with little
sequence homology but that possess key amino acids controlling ganglioside recognition. We analyze
the role of the electrostatic potential in the transmission and intra-individual evolution of HIV-1
infections, including gatekeeper and co-receptor switch mechanisms. We show how to organize the
epidemic surveillance of influenza viruses by focusing on mutations affecting the hemagglutinin
surface potential. We demonstrate that the electrostatic surface potential, by modulating spike-
ganglioside interactions, controls the hemagglutination properties of coronaviruses (SARS-CoV-1,
MERS-CoV, and SARS-CoV-2) as well as the structural dynamics of SARS-CoV-2 evolution. We relate
the broad-spectrum antiviral activity of repositioned molecules to their ability to disrupt virus-raft
interactions, challenging the old concept that an antibiotic or anti-parasitic cannot also be an antiviral.
We propose a new concept based on the analysis of the electrostatic surface potential to develop, in
real time, therapeutic and vaccine strategies adapted to each new viral epidemic.

Keywords: pandemic; vaccine; antiviral; SARS-CoV-2; HIV-1; MERS-CoV; monkeypox virus;
influenza virus; lipid raft; ganglioside; neutralization; electrostatic surface potential

1. Introduction

Our experience in teaching biochemistry and molecular biology at university level
has allowed us, over the years, to identify major concepts in biology that are insufficiently
covered in biology courses [1]. Among these concepts we can cite the multiple functions
of water molecules in biology [2], the temporal dimension of biological processes [3,4],
quantum phenomena at work in biology [5], and the electrostatic surface potential of
biomolecules [6]. This latter concept has taken on major importance over the past three
years in explaining the structural dynamics of SARS-CoV-2 variants [7]. More generally,
the electrostatic surface potential is a key element for understanding the evolution of
viruses [8,9] and, more specifically, the evolution of virus-host relationships [10]. It therefore
seemed important to us to devote this review article to defining the role of the electrostatic
surface potential in the evolution of SARS-CoV-2 and other viruses, and to draw possible
solutions from this in the face of future viral pandemics.
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2. Definition of the Electrostatic Surface Potential

Electrostatic interactions play a central role in biology [11]. Intuitively, molecular
interactions can be summed up in a double complementarity: geometric and electrostatic.
An electronegative hollow is thus naturally adapted to be occupied by an electropositive
protuberance [1]. This concept applies at several levels in biology, from molecular inter-
actions to cell–cell associations, and vice versa to different types of repulsion. Although
widely developed in the 20th century, it was not until 1982 with the advances in computer
graphics that it was possible to visualize the electrostatic potential of biological macro-
molecules [6]. A universal color code was then adopted: red for electronegative zones, blue
for electropositive zones, and white for neutral zones. In this princeps article, the authors
represented for the first time the surface electrostatic potential of not only trypsin and an
inhibitor attached to the enzyme, but also a DNA-protein complex. This visualization made
obvious the notions of geometric and electrostatic complementarities, which represented a
major advance for drug design.

A reflective exercise created for our students in the university’s Evolutionary Biology
course will allow us to illustrate the scope of this concept. Consider a series of peptide
motifs of a virus protein whose amino acid sequence has gradually evolved over time
(from t1 to t6):

t1: AEDEEDLDA
t2: AKDEEDLDA
t3: AKDERDLDA
t4: AKDERDLKA
t5: AKDRRDLKA
t6: AKDRRKLKA
Let us now look at Figure 1 in which the surface electrostatic potential of each of these

patterns is represented in a random order. The question is simple: can we attribute to each
peptide sequence its corresponding surface electrostatic potential?
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Figure 1. Electrostatic surface potential of an evolving peptide motif (see text for the amino acid
sequences). Note that both the electrostatic surface potential and the shape of the motifs are affected
by amino acid changes. The purpose of the exercise is to assign each peptide (represented by its
electrostatic surface potential and identified by a number) to its corresponding amino acid sequence.
Blue, positive; red, negative; white, neutral.

The answer is: yes, of course. First you must calculate the net charge of each peptide
sequence at pH7: negatively charged side chains (D, aspartic acid; E, glutamic acid) are
bold; positively charged side chains (K, lysine; R, arginine) are bold and underscored.

t1: AEDEEDLDA: −6
t2: AKDEEDLDA: −4
t3: AKDERDLDA: −2
t4: AKDERDLKA: 0
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t5: AKDRRDLKA: +2
t6: AKDRRKLKA: +4

The relative position of negatively charged, positively charged, or neutral amino acids
will help you assign each sequence its electrostatic surface potential (Figure 1):

t1: AEDEEDLDA: Number 2 (all red)
t2: AKDEEDLDA: Number 6 (mostly red + small lateral blue spot)
t3: AKDERDLDA: Number 5 (still mostly red, but blue zones become larger)
t4: AKDERDLKA: Number 3 (50% red, 50% blue)
t5: AKDRRDLKA: Number 1 (mostly blue + two small red spots)
t6: AKDRRKLKA: Number 4 (mostly blue + small lateral red spot)

We thus visualized the electrostatic logic of a biomolecule by converting the concept of
surface electrostatic potential into a tricolor code. Schematically two types of analysis can
visualize the electrostatic potential of a protein: (i) the electrostatic surface potential which
superimposes the distribution of charges on the relief of the protein, and (ii) its spatial
distribution (isopotential contours). Both types of representations are given in Figure 2.
Using isopotential contours is especially useful to highlight slight differences on protein
surface, e.g., when studying the evolution of mutants [12]. However, this representation
gives a distorted picture of the protein structure, as can be seen in Figure 2. In the next
part of this review, we will illustrate the impact of the electrostatic potential concept using
different examples from biology.
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Figure 2. Surface electrostatic potential and isopotential contours. The models (pdb files 1XQ8 and
3I40 for alpha-synuclein and insulin, respectively) were generated by PBEQ-Solver in the biomolecular
simulation program CHARMM. Two renditions are shown for each protein (electrostatic surface
potential and isopotential contours). Blue, positive; red, negative; white, neutral.

3. Biological Significance of the Electrostatic Surface Potential

Technically, the electrostatic potential can be generated by solving the Poisson–Boltzmann
equations, using the partial charges of all the atoms belonging to a given area of a
molecule [13,14], or by using Coulomb’s law [15]. In this review, we generally used Molegro
Molecular Viewer (http://molexus.io/molegro-molecular-viewer/, accessed on 14 January
2023) to visualize the surface electrostatic potential. The electrostatic potential measured
and illustrated by Molegro Molecular Viewer is the sum of the Coulomb potentials for each
atom of the considered molecule, with a distance-dependent dielectric constant. Alterna-
tively, the biomolecular simulation program CHARMM (http://www.charmm-gui.org,
accessed on 14 January 2023) proposes the PBEQ-Solver module to solve the finite-difference
Poisson–Boltzmann equation of submitted proteins. PBEQ-Solver gives the calculated elec-

http://molexus.io/molegro-molecular-viewer/
http://www.charmm-gui.org
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trostatic potential on the solvent-accessible surface as well as iso-electrostatic potential
contours [16,17].

Biomolecules present immense diversity at the level of their surface potential, which is
expressed not only by well-delimited zones presenting a positive or negative potential, but
also by distribution gradients of charges visualized by the shades of the color code blue-red-
white. However, there are major trends among biomolecules. Nucleic acids are negatively
charged because of the phosphate groups of the 3′-5′-phosphodiester bonds [18]. Lipid
rafts, which are rich in glycosphingolipids [19], are globally electronegative, especially
when these glycosphingolipids are gangliosides [20]. Proteins are more ambivalent, as they
can have anionic, cationic, and most often both amino acids in infinitely varied proportions.
Unlike nucleic acids and lipid rafts, the electrostatic surface potential of proteins is therefore
a characteristic property of each protein that needs to be studied independently for each
protein. Moreover, as we have seen in Figure 1 with selected peptides, evolution by point
mutations can have a very strong impact on the surface potential of a particular region of
the protein, with potentially important functional consequences.

If we had to illustrate with a single example the importance of the electrostatic surface
potential in biology, we would cite red blood cells. Despite their very large number in the
blood, these cells do not aggregate under physiological conditions. On the contrary, two
red blood cells repel each other if they get too close. The reason is that the plasma mem-
brane of red blood cells contains negatively charged glycoproteins and glycolipids, which
creates a repulsive electric potential (zeta) between cells and prevents their aggregation in
the bloodstream [21]. Correspondingly, both neuraminidase (which removes negatively
charged sialic acids from glycoproteins and gangliosides) and protease treatments of red
blood cells reduce charge surface density and promote agglutination [22,23].

Another important area of biology in which the electrostatic surface potential plays
a major role is the synapse [1]. Post-synaptic membranes are enriched in mono, di-, and
tri-sialylated gangliosides [24,25] which confer a strong electronegative field [1,26]. This
electrostatic shield repels glutamate away from the neuronal membrane, thus limiting the
risk of excitotoxicity [1]. However, this mechanism implies that the binding site of glutamate
and its agonists on their receptors is located outside the influence of the negative charges
of gangliosides. This is particularly clear on metabotropic receptors, such as mGluR5,
whose oversized Venus flytrap domain binds glutamate at a distance of about 80 Å from
the membrane (Figure 3) [27]. Thus, we should consider not only the surface electrostatic
potential of a protein, but also its dielectric constants which express the influence of the
environment on protein–protein and protein–ligand interactions [28].

In the plasma membrane, gangliosides are not randomly distributed but concentrated
in particular microdomains, referred to as lipid rafts [19]. Rafts are a privileged site of
attack for many pathogens, especially viruses [29–32]. There are many explanations for
this phenomenon, the first being topological. Rafts are relatively flat areas of the plasma
membrane [33]. They therefore represent very accessible landing strips for pathogens
(Figure 4A). The second reason is that many virus receptors and/or co-receptors are associ-
ated with lipid rafts. By directly targeting the rafts, viruses therefore have facilitated access
to these receptors. This is the case for ACE2, the main SARS-CoV-2 receptor, and for CD4,
the classical HIV-1 receptor. This situation moreover complicates the very notion of “virus
receptor”, since in certain cases raft gangliosides (or raft glycosphingolipids) can fulfill the
virus receptor function. Indeed, gangliosides have been identified as bona fide receptors
for various viruses, including influenza [34], Sendaï [35], SV40 [36], polyomaviruses [37],
and rotavirus [38]. HIV-1 also uses ganglioside GM3 as a fusion cofactor [39–42] and
galactosylceramide (GalCer) as an alternative receptor to infect CD4-negative neural [43]
and intestinal epithelial cells [44].
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before virus binding. (B) A typical loop-shaped ganglioside binding domain (HIV-1 gp120 V3 loop).
Note the raft curvature induced by the binding reaction. (C) Attachment of the N-terminal domain
(NTD) of SARS-CoV-2 Omicron BA.5 variant to a GM1 raft. In this case, the membrane curvature
induced by the binding reaction is particularly obvious. (D) Key amino acid residues controlling the
binding of HIV-1 gp120 V3 loop to a GM1 raft. (E) Key amino acid residues controlling the binding
of the BA.5 NTD to a GM1 raft. The structures were retrieved from pdb 1CE4 (V3 loop) and 7BNM
(Omicron spike protein) and modeled with Hyperchem.

The structural basis of the interaction between gangliosides and these viruses is a
ganglioside binding domain [19,26,45], which may be either a small loop [46] (Figure 4B),
a large flat surface [47] (Figure 4C), or an annular binding domain [48]. Despite the lack
of amino acid sequence homology, these domains display a combination of aromatic and
cationic residues which are particularly adapted for optimal ganglioside binding [26,49].
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For instance, the binding of HIV-1 gp120 to a cluster of three GM1 molecules involves a
central aromatic residue (F20) surrounded by two cationic amino acids (K10, R18) and
one histidine (H13) (Figure 4D). The binding of the N-terminal domain (NTD) of SARS-
CoV-2 to a GM1 raft involves a similar panel of amino acids (Figure 4E): aromatic (Y144,
F157), cationic (K147, R158), and one histidine (H146). A notable feature of this attachment
of a virus protein to a raft is the deformation that this molecular interaction causes in
the organization of gangliosides, inducing a local curvature of the raft, a phenomenon
facilitated by cooperative interactions between gangliosides. This curvature allows the raft
to form a kind of stabilization cocoon. The binding reaction is cooperative, starting with
one ganglioside molecule and gradually reinforced by its neighbors in the raft. The kinetics
of the reaction are controlled by attractive electrostatic forces between the electronegative
(red) surface of the raft and the electropositive (blue) surface of the virus protein. Molecular
dynamics simulations performed with the Hyperchem software [50] showed that the
conformational rearrangements needed to fit the raft surface concerns chiefly the amino acid
side chains of the virus protein that interact with gangliosides, rather than the secondary or
tertiary structure of the protein. In other words, it is the lipid raft that adapts its shape to the
viral protein surface, not the reverse. This phenomenon is well illustrated by comparing the
raft surface before (Figure 4A) and after binding to the V3 loop of HIV-1 gp120 (Figure 4B)
or to the SARS-CoV-2 Omicron Spike protein (Figure 4D).

4. Electrostatic Surface Potential in HIV-1 Evolution

The main HIV-1 receptor is the CD4 glycoprotein expressed by certain immune
cells [51]. However, one of the most surprising characteristics of this retrovirus is the
ability to use, in addition to CD4, a co-receptor necessary for the process of fusion between
the virus envelope and the plasma membrane of the host cell [52]. When an individual is
infected with HIV-1, it is usually a strain using the CCR5 co-receptor that is transmitted [53].
Then, as the virus evolves in the patient, a co-receptor switch occurs, allowing the virus
to use another co-receptor, CXCR4 [54]. In the first case, we speak of R5 viruses; in the
second case, of X4 viruses. The transition is marked by viruses that can use both types of
co-receptors: these are the R5X4 viruses [55]. The co-receptor switch (from CCR5 to CXCR4)
is associated with the emergence of more aggressive viruses, inducing a more rapid decline
of CD4+ lymphocytes [56,57]. The structural basis of this evolution is largely caused by
an increase in the net charge of the V3 loop, due to an accumulation of mutations that
dramatically affect its electrostatic surface potential [10]. This mechanism can be explained
by considering the electrostatic surface potential of CCR5 and CXCR4 (Figure 5), which
must be complementary to the V3 loop.

According to the analysis of Figure 5 performed with the ImageJ software [58], the
isopotential contours of CXCR4 are 2.12 times more electronegative than CCR5 (and
1.65 times for the determinations based on the electrostatic surface potential). Corre-
spondingly, the net charge of the V3 loop, and thus its electropositive surface potential,
gradually increases as the virus evolves in an infected individual. When it reaches a thresh-
old value (+4 or +5), the virus becomes able to use both CCR5 and CXCR4. Above this
value, the virus definitely switches and uses CXCR4 [10]. Thus, the value of the net charge
of the V3 loop makes it possible to predict the type of co-receptor used by each HIV-1
isolate. This type of analysis allows an understanding of this retrovirus’ evolution since its
emergence in the human species, giving us keys to anticipate its future evolution [59].

A representative example of V3 loop sequence evolution associated with the co-
receptor switch is given in Figure 6. The V3 loop of a typical R5 isolate has a net positive
charge of +3, which results from the compensation of 5 cationic and 2 acidic residues [60].
The electrostatic surface potential of this V3 loop is globally electropositive, but with a
large central electronegative spot generated by aspartic acids D25 and D29. The evolution
of this V3 loop led to a net charge of +6 due to the presence of a new cationic residue
(R11) and the substitution of D25 and D29 by two amide residues (Q25 and N29) which
are not electrically charged. These changes are associated with the R5 →X4 co-receptor
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switch. It is obvious that the electrostatic surface potential of this X4 V3 loop, which is
highly electropositive, is well adapted to interact with the large electronegative receptacle
of CXCR4 (Figure 5).
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loop is on the right side of the structure (GPGRAF motif). These structures were modeled from the
coordinates of pdb 1CE4.

Aside from mutations that increase the electrostatic potential, the X4 V3 loop lacks
the glycosylation site NNT which is changed to NNI (Figure 6). Glycans display an
electronegative potential [61] which favors the use of CCR5 rather than CXCR4 [10,60].
Thus, the lack of a glycosylation site in the X4 V3 loop can be interpreted as the result of the
selective pressure that allows the emergence of viruses with an increased electropositive
surface potential.
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Heterosexual transmission of HIV-1 is an imperfectly known process during which
a single virus is selected and transmitted to the recipient. In the majority of cases, even
if the sexual secretions contain a mixture of R5, R5X4, and X4 viruses, the transmitted
founder virus is a R5 virus [62]. The mechanisms responsible for this selection are still the
subject of debate. Several hypotheses have been put forward, some suggesting positive
selection, others negative selection. Among the multiple barriers that could protect the
recipient from X4 viruses, mucus is probably the more efficient, because it is not selective.
Human cervical mucus is made of mucins, which are polyanionic glycoproteins [63]. Since
the V3 loop of X4 viruses is more cationic than R5 viruses (Figure 6), this may result in
the trapping of X4 strains to mucins, leaving the field open to the less electropositive
R5 viruses [64]. In the same way, heparan sulfate proteoglycans that cover mucosal surfaces
display an electronegative surface potential able to attract and inactivate the V3 loop of
X4 viruses [65]. Sulfatides, which are negatively charged glycosphingolipids expressed by
vaginal and intestinal epithelial cells, can also selectively inhibit the sexual transmission of
highly cationic X4 viruses [66]. Vaginal epithelial cells are not infected by HIV-1 [67], but
the specific sequestration of X4 strains by the genital epithelium could also contribute to the
HIV-1 selection process [68]. Finally, the predominant transmission of R5 strains after sexual
intercourse may also involve the preferential transmigration of R5 viruses associated with
monocytes across the endocervical monolayer [69]. Taken together, these elements suggest
that there is not a single “gatekeeper” [70] but rather multiple barriers that gradually select
R5 over X4 HIV-1 strains after sexual intercourse [64]. Yet the problem is not easy to solve.
Indeed, the selection of R5 viruses after direct intravenous contamination (e.g., transfusion
with HIV-1 contaminated blood) suggests that post-mucosal gatekeeping mechanisms are
also operative [64]. In this case, the infection of macrophages by R5 viruses might play a
role, as these cells are less susceptible to cytotoxic lymphocytes [71]. What is clear is that
R5 viruses systematically evolve towards X4 strains by increasing the electrostatic surface
potential of the gp120 V3 loop by several mechanisms: (i) increase in the frequency of
cationic amino acids, (ii) disappearance of electronegative amino acids, and (iii) suppression
of the V3 loop glycosylation site (Figure 6) [12].

Differences in co-receptor usage have also been observed between genetic HIV-1 sub-
types with a distinct geographical distribution [72]. Interestingly, López de Victoria et al.
(2012) elegantly demonstrated that V3 loop subtypes with similar spatial distribution of
electrostatic potential cluster together [12]. Thus, for X4 and R5 viruses, the electrostatic sur-
face potential of the V3 loop is a fundamental property that can be used to characterize and
classify HIV-1 subtypes. This notion of a reference threshold value to categorize variants,
quasi-species, and/or subtypes of HIV-1 is in fact fairly standard for this retrovirus. Indeed,
variations in the genomic sequence of HIV-1 subtypes can also be detected retrospectively
in RT and/or protease sequence databases, when the divergence with a reference subtype
B virus (HXB2) exceeds the cut-off value determined by the algorithm [73].

5. Electrostatic Surface Potential in Influenza Virus Evolution

If there is a virus for which the electrostatic surface potential should be studied with
great interest, it is the influenza virus [9,74–76]. The basic reason for this is that this virus
uses the sialic acid residues of glycoproteins and gangliosides to infect host cells and
spread from animal species to humans, as well as from human to human [77–81]. The
sialic acid binding site of influenza virus hemagglutinin displays the same pattern of
cationic and aromatic residues as canonic ganglioside binding domains. This is perfectly
illustrated by a ferret-transmissible H5 avian influenza virus (Figure 7) [82]. Indeed, the
tip of this H5 hemagglutinin displays a high electropositive surface potential that fits with
the electronegative potential of the sialic acid receptor. This adaptation renders the virus
able to infect several animal species, representing a potential threat for humans. A totally
distinct situation has been demonstrated for the bat influenza virus H17N10. In this case,
electrostatic potential analyses revealed that its putative receptor-binding site is highly
acidic, making it unfavorable to bind any negatively charged sialylated receptors [83]. This



Viruses 2023, 15, 284 9 of 19

study highlights the power of the concept of surface electrostatic potential to predict the
spillover of influenza viruses. Any mutation or genetic rearrangement that would render
this domain electropositive would be considered a potential signal for future transmission
to humans. Focusing on these hot spots would simplify the virological surveillance based
on nucleotidic sequence studies. There are some advantages of this strategy. On the one
hand, sequence homology is not always related to structural similarity, meaning we may
need to consider structural homology instead [46,74]. On the other hand, a classification
based on the electrostatic surface potential is immediately informative since it is directly
related to virus-host interactions [7]. Furthermore, as developed for the monkeypox
virus, there is a consistent overlapping between the cationic ganglioside binding motifs
of virus glycoproteins and neutralizing epitopes [48]. In this respect, any increase in the
receptor-binding affinity to gangliosides and related sialic acid receptors should alert
us [81]. However, this requires complex physicochemical measurements and the real-time
availability of recombinant hemagglutinin. Sequencing methods bypass these delicate and
time-consuming steps. Identifying and periodically monitoring hot mutational spots in
the genomic regions coding for ganglioside binding motifs will give valuable and timely
information about the imminence of animal virus outbreaks, possible transmission to
humans, and pandemic risks.
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6. Electrostatic Surface Potential in Coronavirus Evolution

Three coronaviruses can trigger severe diseases in infected human individuals: SARS-
CoV-1 [84], MERS-CoV [85], and SARS-CoV-2 [86]. The binding of these viruses to the host
cell membrane is mediated by a spike protein arranged in a trimer configuration. Each
monomer has a typical Y shape where the lateral branches of the letter correspond to the
N-terminal domain (NTD) and the receptor binding domain (RBD). Sialic acids, ganglio-
sides, and/or lipid rafts are involved in the entry of these viruses [47,87–91]. In most cases
the NTD controls the initial interaction of the virus with lipid raft gangliosides, whereas the
RBD is assigned to the recognition of a protein receptor, dipeptidyl peptidase 4 (DPP4, also
known as CD26) for MERS-CoV [92], and ACE2 for both SARS-CoV-1 and SARS-CoV-2 [93].
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If we compare the NTD of these three coronaviruses, we can see that this domain has
evolved from an electronegative protuberance in SARS-CoV-1 to a curved electropositive
domain in MERS-CoV, and finally to a flat and mostly electropositive surface for the initial
SARS-CoV-2 strain (Figure 8). In parallel, the RBD was significantly rearranged in SARS-
CoV-2 to acquire a curved and mostly electropositive surface that fits particularly well with
the electronegative surface potential of ACE2 [7]. This evolution ensures both optimized
access to lipid rafts through a kinetic effect and a slight increase in the affinity for ACE2,
explaining why only SARS-CoV-2 has been pandemic. Moreover, the global electronegative
potential of the NTD of SARS-CoV-1 may explain why this virus does not hemagglutinate
red blood cells [89], in contrast with MERS-CoV [89] and SARS-CoV-2 [94]. In fact, the
ability of a virus to hemagglutinate red blood cells requires the co-expression of a sialic acid
recognition motif [95] and an electrostatic surface potential sufficiently positive to abolish
the repulsion of these cells due to their zeta potential [94]. MERS-CoV and SARS-CoV-2
fulfill these criteria, whereas SARS-CoV-1 does not.
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Figure 8. Comparison of the electrostatic surface potential of the three pathogenic coronaviruses for
the human species. These structures were retrieved and modeled from pdb 5X5B (SARS-CoV-1), 5X59
(MERS-CoV), and 7BNM (SARS-CoV-2).

From the initial strain originating from Asia in 2019, SARS-CoV-2 variants emerged se-
quentially to rapidly reach a global distribution [96]. In these variants, mutations, deletions,
and/or insertions have remodeled the NTD and the RBD according to a double selection
pressure: (i) an immune escape progressively decreasing the effectiveness of neutralizing
antibodies [97–99] and (ii) a faster access to lipid rafts determined by an increase in the
electrostatic surface potential of the NTD, which tends to become increasingly electroposi-
tive [7]. In parallel, compensation mutations have appeared, allowing the RBD to retain its
binding properties to the ACE2 receptor [100,101].

Analysis of the electrostatic surface potential of the spike trimers shows an overall
increase of this potential towards strongly electropositive forms (Figure 9). These global
changes mask the differences that may exist in the evolution of a particular domain such
as the NTD [102]. Thus, the electrostatic potential of NTD steadily increased in the Alpha
to Delta variant series [7]. On the other hand, it has decreased for Omicron, whereas the
overall potential of the trimer is markedly increased compared to Delta [94,103], due to
the very high electropositivity of the Omicron RBD [102]. Correspondingly, the Omicron
spike trimer has a higher hemagglutination capacity compared to other variants, including
Delta [94].
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Figure 9. Comparison of the electrostatic surface potential of trimeric spikes of SARS-CoV-2 variants.
NTD, N-terminal domain. The three receptor binding domains (RBD) are localized with a yellow
dashed circle. The value of the electrostatic surface potential (positive) is indicated for each virus.
Note that the NTD of Omicron is less electropositive than that of Delta. However, the surface of
Omicron is globally more electropositive than Delta. These structures were retrieved and modeled
from pdb file 7BNM.

This analysis demonstrates the usefulness of considering the surface electrostatic
potential as a marker of the evolution of viruses, consistent with the notion that this
parameter is one of the essential driving forces of variants [7]. In this respect, a clustering
based on the spatial distribution of HIV-1 V3 loop subtypes electrostatic potential was
successfully carried out by López de Victoria et al. (2012) [12]. It would also be interesting
to compare these analyses with those obtained from antigenic maps of SARS-CoV-2 and
influenza virus variants [104–107]. In this respect, the NTD antigenic mapping revealed a
supersite of vulnerability for SARS-CoV-2 [107], which overlaps the ganglioside binding
domain [47]. These findings strongly support the concept that ganglioside binding domains
coincide with neutralizing epitopes. Thus, identifying these domains in a virus protein is a
direct way to develop rapid vaccine formulations.

7. Clues for Managing Future Pandemics

How to manage a viral epidemic brutally striking the human species? Very recently we
have developed a strategy that could be applied in the event of a new health crisis due to an
infectious disease. We have illustrated this strategy using the example of the monkeypox
virus [48]. This virus hit the headlines in the summer of 2022 with an unexpected outbreak
outside its usual geographical area [108]. Our idea was to identify ganglioside binding
motifs in proteins of this virus known to be the target of neutralizing antibodies.

For instance, the ganglioside binding domain located in the NTD of SARS-CoV-
2 [47,109] overlaps with the neutralizing epitope of the 4A8 antibody [110].

A bibliographic search enabled us to identify the cell surface binding protein E8L. We
generated a 3D structural model of this protein using data from the UniProt database (https:
//www.uniprot.org, accessed on 26 December 2022) and the Robetta server (https://robetta.
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bakerlab.org, accessed on 26 December 2022). By a dedicated molecular modeling approach
adapted to the topology of E8L [111], we have determined a possible mode of interaction
of this protein, with a cluster of gangliosides mimicking a lipid raft (Figure 10A) [48]. The
electrostatic surface potential at the level of the protein domain containing the ganglioside
binding motif is strongly electropositive (Figure 10B), in agreement with all the viruses
previously studied by our team [26]. This study allowed us to identify a new type of
ganglioside binding domain, organized in an annular structure on the surface of the protein
(Figure 10C). As expected, this motif contains the usual amino acids necessary for the
recognition of gangliosides: cationic (arginine, lysine), aromatic (tyrosine), and histidine
amino acids. Thus, apart from the novelty at the level of the annular organization of the
motif, the ganglioside binding domain of the monkeypox virus fulfills the molecular criteria
governing virus-ganglioside interactions [48].
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The second step of our strategy consisted in identifying linear B epitopes [112] that
could be easily incorporated into a vaccine formulation in the form of synthetic peptides.
Finally, we selected, among all the potential epitopes, those which overlap with the ganglio-
side binding domain (Figure 10D,E). Given that this analysis is based on the 3D structure
of the E8L protein, we were able to determine the most suitable formulation to promote
synergies between epitopes and eliminate redundant epitopes. Indeed, neighboring, or
even partially superimposed, domains in the 3D structure of the protein may in fact corre-
spond to distant regions in the amino acid sequence. This is the case for epitopes 43–62 and
94–113 of E8L, which show some overlapping (Figure 10). In this case, the best antigenic
formula would be to mix synthetic peptides 94–113 and 204–223. These peptides are well
conserved among monkeypox virus strains and ideally localized in the structure of the E8L
protein to efficiently trigger neutralizing antibodies against monkeypox virus [48].

Until effective vaccines are available, it is possible to use broad-spectrum antivirals
to treat infected patients. Here again, the surface electrostatic potential of virus proteins
explains the nonspecific antiviral effects of many compounds. Indeed, anionic polymers
such as heparan sulfate [113] and glycosaminoglycans [114] are natural antivirals that
can bind to the electropositive regions of viruses and prevent their initial adhesion to
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raft gangliosides. Low molecular weight anionic compounds such as suramin [115] or
sulfatide [66], which bind to the V3 loop of HIV-1 gp120, also have potent antiviral activity.
Cationic peptide dendrimers which bind to cell surface glycosphingolipids [116] block the
infection of not only lymphocytes and macrophages but also CD4-negative cells by several
HIV-1 and HIV-2 strains [117,118]. Conversely, synthetic analogues of glycosphingolipids,
which interact with the cationic regions of viral proteins, have shown interesting anti-HIV
activity [119–123].

More recently we unraveled a new antiviral mechanism for hydroxychloroquine, an
antiparasitic drug used by some clinicians for treating SARS-CoV-2 infection [124]. We
showed that hydroxychloroquine strongly interacts with raft gangliosides [125] and thus
could provide protection against a broad range of viruses that use lipid rafts as the portal
of entry [47]. Additionally, our modeling studies identified a potential synergy between
hydroxychloroquine and azithromycin, a combination therapy also used for treating SARS-
CoV-2 infections [124]. We showed that azithromycin binds to the conserved ganglioside
binding domain located in the NTD of SARS-CoV-2 [126], confirming the synergy observed
in vitro in infection studies [127]. The antiparasitic drug ivermectin also has broad antiviral
properties [128]. In addition, this drug inhibits the hemagglutination of red blood cells
induced by the spike trimers of SARS-CoV-2 variants, including Omicron [94].

Despite these important findings, the connection between lipid rafts, surface elec-
trostatic potential, and antiviral activity has not been exploited enough by the medical
community. It is a fact that we must now abandon the outdated dogma that an antibiotic
cannot cure viral diseases [129]. At the molecular level, such a rigid classification is just
nonsense. Azithromycin [130], ivermectin [131], hydroxychloroquine [132], suramin [133],
and sulfolipids [134], to mention only a few, whatever they have been used or are used
for by clinicians, are also antivirals. Their broad-spectrum antiviral activity has a common
target—virus-raft interactions—as these drugs attach themselves either to rafts or to the
ganglioside binding domains of viruses. Correspondingly, the antiviral properties of
these drugs can be revealed with biological experiments using virus pseudotypes [135].
This assay focuses on viral entry mechanisms, excluding any other step in the replica-
tion cycle [136]. Virus pseudotypes have successfully demonstrated the antiviral effect
of various antibiotics and antiparasitics, including atovaquone [137], carrimycin [138],
azithromycin [139], hydroxychloroquine [140], and suramin [141], as well as glycoden-
drimers [142] and anionic drugs such as glycosphingolipid sulfatide [66]. By preventing the
attachment of viruses to lipid rafts, these compounds could somehow mimic the selection
barrier controlling transmission by the R5 strains of HIV-1, to the detriment of the X4
strains, which are blocked by various electronegative structures. The antiviral effect of all
these molecules takes its logic from the natural history of virus-cell interactions, which are
under the control of the surface electrostatic potential. It is time to incorporate this concept
into our therapeutic arsenal in order to reposition old molecules [143–146] and/or for the
design of new antivirals targeting virus-raft interactions [47].
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