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Gangliosides are functional components of membrane lipid rafts that con-

trol critical functions in cell communication. Many pathologies involve raft

gangliosides, which therefore represent an approach of choice for develop-

ing innovative therapeutic strategies. Beginning with a discussion of what a

disease is (and is not), this review lists the major human pathologies that

involve gangliosides, which includes cancer, diabetes, and infectious and

neurodegenerative diseases. In most cases, the problem is due to a protein

whose binding to gangliosides either creates a pathological condition or

impairs a physiological function. Then, I draw up an inventory of the dif-

ferent molecular mechanisms of protein-ganglioside interactions. I propose

to classify the ganglioside-binding domains of proteins into four categories,

which I name GBD-1, GBD-2, GBD-3, and GBD-4. This structural and

functional classification could help to rationalize the design of innovative

molecules capable of disrupting the binding of selected proteins to ganglio-

sides without generating undesirable effects. The biochemical specificities of

gangliosides expressed in the human brain must also be taken into account

to improve the reliability of animal models (or any animal-free alternative)

of Alzheimer’s and Parkinson’s diseases.

As surprising as it may seem, the definition of the term

‘disease’ is not obvious [1]. The current Covid-19 pan-

demic is a blatant example of this. This infectious dis-

ease, fatal for some, can be mild for others and

sometimes completely unnoticed. But the RT-PCR

screening tests for SARS-CoV-2 have been able to

maintain the confusion between people positive for the

virus, who may not show any symptoms, and patients

with symptomatic Covid-19. The same applies to

hypercholesterolemia or hypertension, which are more

risk factors for disease and not symptoms by them-

selves. What is and what is not a disease has been the

subject of interesting discussions [2], and the answers

of people to whom the question was asked could have

been very surprising. In general, infections such as

tuberculosis or malaria are considered illnesses, while

malnutrition, barbiturate overdose, carbon monoxide

poisoning, or skeletal fractures are considered illnesses

only by 20% of people [3]. We can welcome (or not)

the fact that aging was classified as number 1 in the

top 20 nondiseases by readers of the British Medical

Journal [3]. However, the debate is not closed, and we

can even say that the fight is fierce between those who

regard aging as a disease and those who refute this

association [4–8]. ‘Le temps ne fait rien �a l’affaire’

(dixit the french poet and singer Georges Brassens),

but now as years went by, I would tend to join the

camp of those who do not consider aging as a disease.

Anyway, this debate is relevant to the subject of this

review because among the age-related biochemical
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modifications, the expression of gangliosides holds a

preponderant place [9,10], in particular at the brain

level [11,12]. This is no way pathological by itself, but

a condition that could facilitate a loss of function [13–
16] or a gain of toxicity [17–19], in association with

other factors such as amyloid proteins [20]. I see this

situation as a police investigation leading to the identi-

fication of culprits (the proteins) and accomplices (the

gangliosides of the rafts). By neutralizing the accom-

plices, we can hope to prevent the crime, i.e., the dis-

ease. This explains why gangliosides [21] and/or drugs

targeting gangliosides [22] should be considered as pos-

sible therapeutic compounds for a broad range of

human disorders, including neurodegenerative diseases.

Membrane diseases and gangliosides

The fundamental unit of the living world is the cell.

Any disruption of cell function is therefore likely to

induce a pathological condition [23]. The plasma mem-

brane, which is positioned at the interface between the

cell and its environment, is a privileged place for com-

munication and the transfer of biological information.

It is also at its level that pathogens make their way to

infect a living organism. Overall, the components of

the plasma membrane have the function of establishing

a selective barrier between the cell and its environ-

ment, and also of ensuring communication with it.

Gangliosides, as key operators of signal transduction

pathways [24–27], are at the forefront of pathological

dysfunctions [28–31]. In this respect, they may repre-

sent a privileged target for a new class of drugs

[32,33].

The principal diseases that can be classified as mem-

brane disorders are listed in Table 1. As can be seen in

this summary, gangliosides are systematically involved

in all these diseases. In most cases, the problem is due

to a protein whose binding to gangliosides either cre-

ates a pathological condition [34] or alters a physiolog-

ical function [35]. Understanding the role of

gangliosides in each pathology is a prerequisite to

design specific drugs based on ganglioside structures

for innovative therapeutic approaches. To this end, we

must first analyze how gangliosides physiologically

behave in the plasma membrane, and how the patho-

logical conditions affect this behavior.

Ganglioside biochemistry and
membrane biology

Gangliosides are glycosphingolipids containing at least

one sialic acid [86]. At pH 7, they therefore have a

negative charge (Fig. 1). It may therefore seem

somewhat paradoxical that these gangliosides are not

subject to electrostatic repulsion and instead group

together in condensed clusters referred to as lipid rafts

[87]. However, these associations are stabilized by two

mechanisms: (a) in the apolar part of the membrane,

by a strong interaction with cholesterol and (b) at the

extracellular level, by the amide group of N-acetylated

sugars, which neutralizes the negative charge of sialic

acids (Fig. 1). This particular effect, coined ‘NH trick’

by Azzaz et al. [86] is operative for GM1, GD1a,

GD1b, and GT1b gangliosides, which are the four

main gangliosides expressed in adult human brain [88].

It does not apply for smaller gangliosides (GM3 and

GM4) that are lacking N-acetylated sugars but also

display the less intense electrostatic field (in addition

to the sialic acid, GM3 has two sugars and GM4 only

one sugar, whereas GM1 has four sugars including

N-acetylgalactosamine). The other sphingolipids that

segregate in lipid rafts are sphingomyelin (a zwitter-

ionic lipid displaying a positive and a negative electric

charge) and neutral glycosphingolipids such as GalCer

[87]. Sphingomyelin molecules can interact electrostati-

cally by charge complementarity and the sugar head-

groups of glycosphingolipids by hydrogen bonds.

Thus, each raft lipid has its own way to minimize

repulsion forces and favor attractive forces. The conse-

quence is that the conformational freedom of each raft

lipid is the result of a balance between attraction and

repulsion, a property that is highly dependent on the

local environment and can thus vary as a function of

time.

According to recent molecular dynamics simulation

data, three different subpopulations of gangliosides

Table 1. Principal membrane disorders involving gangliosides.

Disease

Plasma membrane

disorder (references)

Involvement of

gangliosides

(references)

Alzheimer’s disease [36–39] [31,40,41]

Parkinson’s disease [42,43] [29,44,45]

Creutzfeldt-Jakob/

Prion disease

[46,47] [48,49]

Rett syndrome [50,51] [52,53]

Cancer [54,55] [30,56,57]

Type 2 diabetes [58,59] [60,61]

Cystic fibrosis [62,63] [64,65]

Virus (and virotoxin)

diseases

[66–69] [70–73]

Bacterial (and

bacterial toxins)

diseases

[74–77] [78–81]

Parasite diseases [82,83] [84,85]
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(GM1) have been characterized in the same lipid raft

[22]. These patterns of ganglioside distribution in lipid

rafts are illustrated in Fig. 2. The gangliosides located

in the central zone of the raft have reduced mobility

because they are constrained by their neighbors. By

contrast, peripheral gangliosides have more conforma-

tional freedom, and they can modify their shape when

they interact with protein ligands. Finally, the ganglio-

sides at the edge of the raft can adopt a typical chalice

or butterfly-like (open wings) dimeric conformation

[89]. These conformational possibilities are further

extended by the biochemical diversity of gangliosides

[20]. In this respect, it is striking how gangliosides can

seem so similar and at the same time so different.

Their common points are the same backbone structure

(sphingosine and fatty acid embedded in the apolar

core of the plasma membrane) and the presence of at

least one negative charge in their extracellular part.

The concentration of these negative charges in the

same raft creates a large negative electrostatic surface

potential, which is one of the essential properties of

lipid rafts [90,91]. Thus, any protein, toxin, or patho-

genic agent will bind all the more quickly and easily to

a raft that it will have an electropositive potential [92].

However, the simplicity of this charge complementar-

ity masks the subtlety of protein-ganglioside interac-

tions, which also take into account the conformational

flexibility of gangliosides. This duality sums up the

main difficulty of designing therapeutic molecules rec-

ognizing gangliosides and capable of competitively

inhibiting the binding of pathogenic proteins to lipid

rafts. In this respect, one important question to ask is

against which ganglioside monomer, dimer, or cluster

do we need to design an antiganglioside drug? To

solve this problem, we must first study how proteins

bind to gangliosides.

Ganglioside-binding domains:
a proposed classification

Schematically, proteins that bind plasma membrane

gangliosides can be divided into two categories: host

plasma membrane proteins and extracellular proteins

(either from the host or from a pathogen). This dichot-

omy generates de facto two molecular mechanisms of

protein-ganglioside interactions. But there is more, as

we will see in this section. Let us first consider how

the extracellular part of plasma membrane proteins

interacts with gangliosides. Whether the protein has

single or multiple transmembrane domains, the same

rules should apply. First, this domain must be rela-

tively flexible to be able to reach the ganglioside, and

this is all the more so as the protein is constrained by

its part immersed in the membrane. It should be

Fig. 1. Structural properties of gangliosides. Left panel: electrostatic surface potential of ganglioside GM1 (red, electronegative; white/gray,

apolar). Right panel: structural organization of ganglioside GM1. In the extracellular oligosaccharide part, the negative charge of sialic acid is

neutralized by the NH of the amide group of N-acetylgalactosamine. Ceramide (sphingosine + acyl chain) is embedded in the apolar part of

the plasma membrane.
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remembered that gangliosides are generally associated

with cholesterol molecules, which also help to stabilize

the association of the protein with the plasma mem-

brane [93]. Even if the role of cholesterol-binding

domains is outside the scope of this article, we cannot

neglect the indirect role of raft-associated cholesterol,

which will influence the very nature of ganglioside-

binding domains [93,94]. Flexibility opposing the rigid-

ity of a well-ordered three-dimensional structure, the

consequence is that a ganglioside-binding domain is

generally unfold (or at least partially unfold) prior to

its interaction with a ganglioside. For this reason, gan-

gliosides may exert a chaperone activity, constraining

the protein to adopt a well-defined structure following

ganglioside binding [95,96]. This is a simple and

reversible way to regulate receptor function [95,97].

For geometrical reasons, this may occur preferentially

at the edge of a lipid raft, or even outside a lipid raft

if a single ganglioside is extracted from the raft by the

protein with which it will form a stabilized complex. A

representative example is given by synaptotagmin, a

synaptic vesicle protein that acts as a plasma mem-

brane receptor for botulinum toxin B [77]. The extra-

cellular domain of synaptotagmin is a region that is

highly flexible and intrinsically disordered [98,99]. Cir-

cular dichroism studies indicated that the ganglioside

GT1b induced the a-helical folding of synaptotagmin,

which incidentally is the structure recognized by the

botulinum toxin [77]. Hence, ganglioside GT1b is a

mandatory host cofactor that renders synaptotagmin

competent for botulinum toxin binding. The toxin also

has a second site that can bind gangliosides indepen-

dently of synaptotagmin, according to a dual receptor

mechanism [100,101].

The chaperone effect of gangliosides on the extracel-

lular domain of synaptotagmin probably has a

physiological function linked to the biology of synaptic

vesicles. Indeed, SNARE complex formation involves

disordered proteins (synaptobrevin, syntaxin, and

SNAP-25) that undergo structuration upon binding to

their partners [99,102]. I propose to call type 1 GBD,

or GBD-1 (Fig. 3, upper left), any ganglioside-binding

domain able to form a stoechiometric (1 : 1, mol : mol)

complex with a single ganglioside molecule. In the

membrane receptology field, GBD-1 generally belongs

to a flexible juxtamembrane region that can switch from

a disordered state to an ordered structure under the

control of a ganglioside acting as a molecular chaper-

one. Because they interact with transmembrane glyco-

proteins, the gangliosides recognized by those GBD-1

are expected to reside at the edge of a lipid raft, or in

the immediate environment of a raft. These regions are

in contact with the Ld phase of the membrane, which

has an increased fluidity [87]. Other examples of

membrane proteins displaying a GBD-1 include the

serotonin 5-HT1A receptor [103,104] and the tumor

stem cell marker CD133 (prominin-1) [105]. Further

potential candidates are EGF and PDGF receptors, as

well as ion transporters [88], which are also regulated

by gangliosides [106]. The formal characterization of a

potential GBD-1 in these membrane proteins is in

progress.

The second type of ganglioside-binding domain is a

dimeric structure resembling a flower chalice or the

open wings of a butterfly [89,107]. In this case, the

protein must open the chalice to interact deeply with

the ganglioside, starting a typical membrane insertion

process [107]. The interaction is generally mediated by

a hairpin loop of the protein (either pre-existing or

created during the binding reaction) that fits within

the ganglioside chalice. The targeted gangliosides

should have sufficient conformational flexibility to

Fig. 2. Different patterns of ganglioside distribution in lipid rafts. Not all gangliosides have the same level of mobility within rafts. This

distribution is illustrated here with a raft containing ganglioside GM1. In the central zone, the gangliosides are very condensed and therefore

have reduced mobility. When one approaches the edge of the raft, the gangliosides have higher degrees of freedom (peripheral zone).

Finally, the most mobile gangliosides are localized on the edge of the rafts where they can form typical chalice-like structures.
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accommodate this loop, as it would be the case at the

edge of a lipid raft but not in more central areas [22].

Thus, it is at the edge of a lipid raft that ganglioside-

dependent membrane insertion processes generally

occur. The fusion of HIV-1 with host cell membranes

[68,108] and the formation of oligomeric Ca2+ perme-

able amyloid pores [109,110], both ganglioside-

dependent mechanisms, require such chalice-shaped

ganglioside dimers. Incidentally, gangliosides exert a

chaperone effect on amyloid proteins that also belong

to the category of intrinsically disordered proteins

[110–113]. I propose to name this second type of

ganglioside-binding domain type 2 or GBD-2 (Fig. 3,

upper right). GBD-1 and GBD-2 are short linear frag-

ments of a protein and can thus be described by a con-

sensus sequence motif [89].

A third type of ganglioside-binding domain has

emerged with SARS-CoV-2, the coronavirus responsi-

ble for the current Covid-19 pandemic. It is a large

and discontinuous flat surface region of the Spike gly-

coprotein that can lie on the lipid raft, ensuring the

first contact and further reinforcement of the viral

particle adhesion on the host cell membrane [68]. The

binding of the Spike protein to a lipid raft involves

numerous gangliosides than include both central and

peripheral molecules. It is located on the cell-facing

surface of the N-terminal domain (NTD) of the Spike

protein and it has gradually evolved by mutations to

ensure that each SARS-CoV-2 variant has a selective

kinetics advantage over its predecessors [114]. I pro-

pose to name this type of ganglioside-binding domain

type 3 GBD or GBD-3 (Fig. 3, lower left).

Finally, the study of emerging viruses revealed new

aspects of protein-ganglioside interactions. The recent

analysis of the Monkeypox virus allowed to identify a

fourth type of ganglioside-binding domain character-

ized by a discontinuous annular organization [115].

This ganglioside-binding domain is conformationally

constrained, so that the binding reaction chiefly

involves a reorientation of amino acid side chains

without modifying the secondary structure of the pro-

tein [115]. I propose to name this last ganglioside-

binding domain type 4 GBD, or GBD-4 (Fig. 3, lower

right). Further research is needed to assess whether

GBD-3 and GBD-4 are present in viruses other than

SARS-CoV-2 and Monkeypox. In the virology field,

GBD-3 and GBD-4 are discontinuous epitopes that

trigger the production of neutralizing antibodies [92].

Despite clearcut differences in the spatial organiza-

tion, all four GBDs display common biochemical fea-

tures, i.e., the presence of key amino acid residues:

cationic (Arg or Lys), aromatic (Tyr, Phe, or Trp),

and flexible residues (Gly or Ser). Apart from this

usual triplet, one or two His residues are often found,

especially in GBD-2, GBD-3, and GBD-4 [86]. These

combinations ensure an electropositive potential,

enough flexibility, H-bonding, and CH-p stacking

(sugar-aromatic interactions), all properties essential

for ganglioside recognition.

Finally, this proposed classification is obviously

schematic, and its main objective is to order in a ratio-

nal way the different modalities of protein-ganglioside

interactions. In its essence, this classification is above

all of structural nature. In this respect, it should be

emphasized that our knowledge on the biological func-

tions of gangliosides, especially in the central nervous

system, is still incomplete. Phenotypic observations on

knock-out mice lines of GM2/GD2 synthase or GD3

synthase have shed some light on the physiological

role of gangliosides [116], but the abnormal pheno-

types observed in these knock-out mouse lines were

generally milder than expected, probably because of

compensatory mechanisms with remaining glycosphin-

golipids [117]. The principal abnormalities detected in

these studies were inflammatory reactions in the

Fig. 3. Classification of ganglioside-binding domains. GBD-1,

synaptotagmin-GT1b complex; GBD-2, amyloid protein bound to a

GM1 dimer; GBD-3, SARS-CoV-2 N-terminal domain (NTD) bound

to a GM1 raft; GBD-4, Monkeypox virus E8L protein bound a GM1

raft. The gangliosides are represented as yellow atomic spheres.

Proteins are represented as blue ribbons, helices, turns, and coils.

The light blue frame represents the apolar part of the plasma mem-

brane (extracellular leaflet).
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central nervous system [118] and an age-dependent

progressive neurodegeneration [119]. The advantage of

the proposed classification is that for each type of

GBD, it suggests a molecular mechanism of interac-

tion with a protein, and therefore a possible biological

function for the protein-ganglioside couple.

Ganglioside-based therapies: concept
and realities

In the preceding section, we have characterized several

types of ganglioside-binding domains including those

that mediate the pathological effects of amyloid pro-

teins and virus surface envelope glycoproteins. All these

proteins are responsible for infectious or neurodegener-

ative diseases that require efficient treatments. It is in

this context that new approaches targeting gangliosides

appear particularly interesting. The proposed classifica-

tion of ganglioside-binding domains may simplify the

conception of ganglioside-based molecules intentionally

designed as inhibitors of protein-ganglioside interac-

tions. Given the involvement of gangliosides in human

pathologies (Table 1), those drugs are expected to exert

beneficial preventive and/or curative effects. On the

other hand, gangliosides also fulfill important biological

functions, and thus these functions should not be

affected by these new drugs. Let us consider the case of

GBD-1.

The binding of a ganglioside to a GBD-1 domain

can be considered as straightforward, as it involves only

one ganglioside molecule per protein. However, the

binding reaction by itself is quite complex since the

ganglioside exerts a chaperone effect on an initially

disordered GBD-1. This chaperone effect is part of a

biological mechanism (e.g., membrane receptor regula-

tion [95], receptor endocytosis [120], or exocytosis of

synaptic vesicles [77]) that should not be targeted by the

therapeutic drug. Thus, whatever the approach selected

it should not affect ganglioside-GBD-1 interactions.

Incidentally, most ganglioside-binding proteins already

interact with gangliosides when they reach the plasma

membrane through the secretory pathway [121]. Thus,

the ganglioside to which they bind is generally masked

by the protein and not accessible to external ligands

[122]. Moreover, ganglioside-cholesterol interactions

may influence the accessibility of ganglioside head-

groups [122,123]. Any drug specifically designed to dis-

rupt ganglioside-GBD-1 interactions would therefore

probably not find its target.

A chimeric synthetic peptide that combines the

ganglioside-binding properties of the GBD-2 of Alzhei-

mer’s b-amyloid protein (Ab1–42) and Parkinson’s

disease-associated a-synuclein has demonstrated

therapeutic efficiency in several in vitro and ex vivo

models of these diseases [34,124]. This peptide, called

AmyP53, has improved ganglioside-binding properties

compared with the proteins from which it is derived

[22,89]. The difficulty to prevent ganglioside-GBD-2

interactions is that the structure of both partners

evolves during the binding reaction. Ab1–42 and

a-synuclein are intrinsically disordered proteins that

tend to adopt mixed turn/a-helix folding upon binding

to raft gangliosides. Once bound to gangliosides, these

amyloid proteins penetrate the plasma membrane, then

interact with cholesterol which controls the self-

assembly of amyloid proteins [125] and facilitates their

oligomerization into Ca2+ permeable amyloid pores

[109]. The massive entry of Ca2+ triggers a neurotoxic

cascade involving tau hyperphosphorylation, oxidative

stress, and neuronal loss [34,124]. The involvement of

gangliosides (especially GM1), cholesterol, and lipid

rafts in the pathogenesis of neurodegenerative diseases,

including amyloid pore formation and other mecha-

nisms of membrane damage, has been demonstrated

by numerous studies based on a broad range of experi-

mental approaches [125–146].
The binding of amyloid proteins to lipid raft gangli-

osides gives us an opportunity to disrupt this neuro-

toxic cascade at the very first step, and thus to tackle

the root cause of Alzheimer’s and Parkinson’s diseases,

i.e., the membrane neurotoxicity of amyloid oligomers

[147–153]. This possibility can be exploited by mole-

cules exhibiting ganglioside-binding properties [154]

able to prevent the access of amyloid proteins to lipid

rafts. This is the case of AmyP53 that has been shown

to adapt its structure to the flexible and moving con-

formations of raft gangliosides [22]. AmyP53 blocks

the binding of amyloid proteins to lipid rafts through

an unprecedent mechanism of interaction with ganglio-

sides, defining a new class of therapeutic agents coined

adaptative peptides. AmyP53 crosses the blood–brain
barrier after intravenous injection, and it can also

reach the brain after intranasal administration [155].

The design of AmyP53 opens the route for new thera-

peutic strategies for the patients with Alzheimer’s or

Parkinson’s disease and for a pipeline of antiganglio-

side drugs based on the same basic principles.

From a stochiometric point of view, GBD-3 and

GBD-4 recognize more raft gangliosides than GBD-1

and GBD-2. This situation must be considered for the

design of new antiviral drugs. It can be assumed that

to occupy the raft surface recognized by these large

GBDs, it is necessary to reach a high concentration of

antiviral compounds at the level of the infection sites.

A simple way to increase the local concentration of

the drugs is to use multimers, which can be based
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either on synthetic peptides [156–158] or sugar deriva-

tives [159–161].
Alternatively, why not directly using gangliosides as

therapeutic drugs [21]? Indeed, GM1 has been demon-

strated to exert a neuroprotective effect, which is justi-

fied to test it for the treatment of neurological

disorders including Parkinson’s disease [29,45,162,163].

One identified drawback is the fact that gangliosides

do not efficiently penetrate the blood–brain barrier

(BBB) [164]. An interesting alternative is to use the

soluble and hydrophilic GM1-oligosaccharide (Oli-

goGM1), which is able to cross the human BBB more

efficiently than GM1 [165]. In this regard, one might

wonder whether the fact of using either the ganglioside

GM1 [162] or an antiganglioside peptide (AmyP53)

[22] to treat neurodegenerative diseases is not contra-

dictory. In fact, any mechanism able to prevent the

binding of amyloid proteins to membrane gangliosides

would prevent amyloid pore formation, membrane

damage, and downstream Ca2+ neurotoxicity. What-

ever the therapeutic mechanism of exogenous GM1,

one could consider that exogenous GM1 micelles could

bind to amyloid proteins and neutralize their oligomer-

ization, maintaining them outside the plasma mem-

brane. AmyP53 can block amyloid pore formation by

preventing amyloid monomers and oligomers to inter-

act with the plasma membrane. Thus, collectively, all

these innovative approaches enrich our arsenal of

ganglioside-based therapeutic agents. Finally, due to

its prominent role in lipid raft homeostasis, cholesterol

is considered as a promising therapeutic opportunity

for the treatment of cancer [166] and neurodegenera-

tive diseases [167]. Such therapies may exert indirect

effects on ganglioside organization in lipid rafts [168],

which suggests the use of cholesterol-affecting drugs

such as cyclodextrins as an indirect ganglioside-

targeting therapy.

Sialic acid biochemistry and
translational neurosciences

It is particularly frustrating that numerous promising

drugs for neurodegenerative diseases, that were based

on work in rodent models, failed in clinical trials [169].

This raises the question of the real need of animal exper-

iments for human brain diseases [170]. These failures

may be due to various parameters including irrelevant

animal models selected on the basis of a wrong target or

different biodistribution of the medicine in rodents and

humans. However, in addition to these potential

caveats, there is a characteristic of human brain ganglio-

sides that needs careful consideration, especially for

pathological mechanisms controlled by gangliosides.

Two types of sialic acids exist in mammals, with a dis-

tinct biochemical structure: N-acetylneuraminic acid

(Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc)

[86]. Humans express only Neu5Ac, whereas other

mammalian species express both Neu5Ac and Neu5Gc

[171]. A side consequence is that high-meat diets induce

the production of anti-Neu5Gc antibodies, which may

be associated with an increased risk for cancer [172].

Interestingly, rabbit is the animal that expresses the low-

est amounts of Neu5Gc [172]. What is particularly criti-

cal for assessing the efficiency and safety of a

ganglioside-directed treatment is the sialic acid content

of gangliosides in the brain of the selected animal

models. Indeed, a protein that binds to a ganglioside

containing Neu5Ac (e.g., human GM1) will not neces-

sarily recognize this ganglioside if its sialic acid is

Neu5Gc. Biochemical analysis revealed that rabbits and

rats express almost exclusively Neu5Ac in their brain

gangliosides [173,174]. Hence, they are relevant models

for studying the effect of drugs that target human brain

gangliosides. On the other hand, dogs [175], pigs

[172,175], and most monkeys (including Old World spe-

cies that are widely used as animal models such as ver-

vets, rhesus, and cynomolgus [176]) express significant

amounts of Neu5Gc in the brain [177]. These animal

species are thus not relevant for testing antiganglioside

therapies. Now, if we consider peripheral tissues, rabbit

is again the best alternative for nonrodent species [172].

In summary, rats and rabbits are the species that should

be preferred for regulatory toxicology and proof-of-

concept studies of drugs targeting gangliosides. The

development of new animal models (or any alternative)

taking into account the expression of Neu5Ac together

with the absence of Neu5Gc will most likely increase

the reliability of translational neurosciences. Most

importantly, these models should be based on amyloid

oligomers, which are now considered as the most neuro-

toxic species in Alzheimer’s and Parkinson’s disease

[147,178].

Conclusion

We are at the very beginning of the development of

therapeutic molecules specifically designed to target

gangliosides. These new drugs will make it possible to

propose new strategies to prevent and treat many dis-

eases in which gangliosides are involved, including

cancer, diabetes, bacterial, virus, parasite, and prion

infections, and neurodegenerative diseases. In many

cases, we have been able to demonstrate the interac-

tion of a protein involved in these diseases (‘the cul-

prit’) with one or more gangliosides (‘the accomplices’)

located in a lipid raft. Thus, these diseases should be
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considered as membrane disorders. The proteins that

bind to these gangliosides have at their disposal a reper-

toire of ganglioside-binding domains, which includes, to

date, four types of domains which I propose to name

and classify from GBD-1 to GBD-4. It is likely that this

classification will be gradually enriched with new entries.

We will have to take into consideration the biochemical

characteristics of each of these domains in order to

develop a therapeutic arsenal adapted to the expression

of each targeted ganglioside according to the pathology

with which it is associated.
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