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Ergodic pairs for degenerate pseudo Pucci’s fully1

nonlinear operators2

F. Demengel3

UMR 80-88, University of Cergy Pontoise, 95302, Cergy France.4

Abstract5

We study the ergodic problem for fully nonlinear operators which may be singular6

or degenerate when at least one of the compoenents of the gradient of solutions van-7

ishes. We prove the convergence of both explosive solutions and solutions of Dirichlet8

problems for approximating equations. We further characterize the ergodic constant as9

the infimum of constants for which there exist bounded sub solutions. As intermediate10

results of independent interest, we prove a priori Lipschitz estimates depending only on11

the norm of the zeroth order term, and a comparison principle for equations having no12

zero order terms.13

2010 Mathematical Subject Classification : 35J70, 35J75.14

1 Introduction15

This article deals with the existence of solutions to the ergodic problem associated to the16

”pseudo Pucci’s” operators.17

The history of the ergodic problem begins with the seminal paper of Lasry and Lions in
1989, [22] which considers the Laplacian case . More precisely Ω being an open bounded C2

domain in RN , for β ∈]1, 2] and f being continuous in Ω and bounded, (u, c) is a solution of
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the ergodic problem if {
−∆u+ |∇u|β = f + c in Ω
u = +∞ on ∂Ω

The results in [22] are extended to the case of the pLaplace operator by Leonori Porretta in1

[23]. In [15] the authors consider the case where the Laplacian is replaced by −div(A(x)∇u)2

where A is positively definite and regular enough. Recently in [13], we considered the case3

where the leading term is Fully Non Linear elliptic, singular or degenerate, on the model of4

−|∇u|αF (D2u), where α > −1 and F is fully non linear elliptic and positively homogeneous5

of degree 1.6

In the present paper, we will assume that7

-There exist some constants a < A, so that for any M ∈ S,N ∈ S,N ≥ 0,

atr(N) ≤ F (M +N)− F (M) ≤ AtrN, (1.1) fnl

where S is the space of symmetric matrices on RN . We will also assume that F is positively
homogenenous of degree 1. We define the operator

F (∇u,D2u) = F (Θα(∇u)D2uΘα(∇u)), where Θα(p) := Diag(|pi|
α
2 ) (1.2) defF

α ≥ 0, and F satisfies (1.1), and we are interested in the following :8

Let β ∈]α+ 1, α+ 2], find (u, c) which is a solution of the ”ergodic problem ”{
−F (∇u,D2u) + |∇u|β = f + c in Ω
u = +∞ on ∂Ω.

Note that this equation presents a new type of degeneracy, since the leading term degenerates
on every point where at least one derivative ∂iu is zero. When F (X) = trX, the operator is
nothing else than the anisotropic p-Laplacian for p = α+ 2 ( also called pseudo pLaplacian).
Let us recall that the equation of the ”anisotropic pLaplacian, ” called also ” orthoptic
pLaplacian” is

−
∑
i

∂i(|∂iu|p−2∂iu) = f. (1.3) plap

This equation can easily be solvable, for convenient f , by standard methods in the calculus of9

variations. But the regularity results are much more difficult to obtain. Lipschitz regularity is10
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proved in the singular case in [20] while the case p > 2 is treated in [4] for a more degenerate1

equation including the pseudo pLaplacian case. In [18], [10] the authors consider viscosity2

solutions for the fully non linear extension of the pseudop-Laplacian, say the case where the3

operator is −F (Θα(∇u)D2uΘα(∇u)), and α > 0. More general anisotropic fully non linear4

degeneracy is treated in [19]. In the variational case, one important result can be found in5

[3].6

In [10] the Lipschitz interior regularity of the solutions is obtained as a corollary of the
following estimate between u sub-solution and v super-solution of the equation with some
eventually different right hand side, say if Ω = B(0, 1), for all r > 0, r < 1, there exists cr so
that for all (x, y) ∈ B(0, r)2

u(x)− v(y) ≤ sup(u− v) + cr|x− y|.

This Lipschitz estimate is extended to the equations presenting an Hamiltonian of the form7

b(x)|∇u|β with β ∈ [α + 1, α + 2] when the sub-and super-solutions are bounded. This is8

done in Section 2. This estimate does not permit to prove existence’s results for the ergodic9

problem : This existence is generally obtained by passing to the limit in an equation with10

boundary conditions coming to +∞, and then requires Holder’s or Lipschitz estimates for11

globally unbounded solution. However, as in [22], [15], [13], the presence of an Hamiltonian12

”superlinear” with a good sign, permits to get an interior Lipschitz estimates for the solutions,13

which does not require that the solution be bounded, but that the zero order term be so.14

This is done in Section 3.15

The main result of this paper is then16

〈sympaetpas〉Theorem 1.1. Suppose that f is bounded and locally Lipschitz continuous in Ω, and that F
satisfies (1.2), and α ≥ 0. Consider the Dirichlet problems{

−F (∇u,D2u) + |∇u|β = f in Ω
u = 0 on ∂Ω,

(1.4) eq3

and, for λ > 0, {
−F (∇u,D2u) + |∇u|β + λ|u|αu = f in Ω

u = 0 on ∂Ω.
(1.5) eq45

The following alternative holds.1
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1. Suppose that there exists a bounded sub solution of (1.4). Then the solution uλ of2

(1.5) satisfies: (uλ) is bounded and uniformly converging up to a sequence λn → 0 to a3

solution of (1.4).4

2. Suppose that there is no solution for the Dirichlet problem (1.4). Suppose in addition5

that α ≥ 2. Then, (uλ) satisfies, up to a sequence λn → 0 and locally uniformly in Ω,6

?〈a〉? (a) uλ → −∞;7

?〈b〉? (b) there exists a constant cΩ ≥ 0 such that λ|uλ|αuλ → −cΩ;8

?〈c〉? (c) cΩ is an ergodic constant and vλ = uλ+|uλ|∞ converges to a solution of the ergodic
problem {

−F (∇v,D2v) + |∇v|β = f + cΩ in Ω
v = +∞ on ∂Ω

(1.6) ergodic

whose minimum is zero.9

Note that, even when a sub-soution to (1.4) exists, there exists an ergodic pair, this will10

be proved in Theorem 4.3, section 4.311

In a second time, we prove that the ergodic constant can be characterized by an inf-formula
analogous to the one which defines the principal eigenvalues for fully nonlinear operators.
Following [8], [25], we define

µ? = inf{µ : ∃ϕ ∈ C(Ω),−F (∇ϕ,D2ϕ) + |∇ϕ|β ≤ f + µ} .

For the following Theorem we introduce some new assumption :

C(x) = ((γ + 1)F (∇d,∇d(x)⊗∇d(x)))
1

β−α−1 γ−1 is C2 in a neighborhood of ∂Ω. (1.7) C(x)

In particular (1.7) is satisfied when the boundary is C3 and F is C2. But it is automatically12

satisfied in the case where F is one of the Pucci’s operators. We will prove in Theorem 4.313

that under the assumption (1.7), any ergodic function is equivalent near the boundary to14

C(x)d−γ and this allows to prove the uniqueness of the ergodic constant in Therorem 1.2 :15

〈ABCDE〉Theorem 1.2. Suppose that f is bounded and locally Lipschitz continuous in Ω, and that16

F satisfies (1.2), (1.1) and (1.7). Suppose that α ≥ 2. Let cΩ be an ergodic constant for17

problem (1.6); then:1
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1. cΩ is unique;2

2. cΩ = µ?;3

3. the map Ω 7→ cΩ is nondecreasing with respect to the domain, and continuous;4

4. if either α = 0 or α 6= 0 and supΩ f + cΩ < 0, then µ? is not achieved. Moreover, if5

Ω′ ⊂⊂ Ω, then cΩ′ < cΩ.6

Theorems 1.1 and 1.2 are obtained by means of several intermediate results, most of7

which are of independent interest. A first fundamental tool is an interior Lipschitz estimate8

for solutions of equation (1.5) that does not depend on the L∞ norm of the solution but only9

on the norm of the zero order term. This is done in section 3.10

The uniqueness in Theorem 1.2 is obtained, by using the results in Section 6 : In this11

part, we give a comparison theorem for sub- and super- solutions of equation (1.4), in which12

zero order terms are lacking. The change of equation that allows to prove the comparison13

principle of Theorem 6.1 is standard, it has already been employed in [23] and [13].14

Let us finally remark that the question of uniqueness (up to constants) of the ergodic15

function is open. We recall that the usual proof for linear operators, see [22, 25], relies on16

the strong comparison principle, which does not hold for degenerate operators. Let us also17

recall that for p-laplacian operators the uniqueness of the ergodic function is obtained in [23]18

for p ≥ 2, in [13] for p ≤ 2 and under the condition supΩ f + c < 0. The same result is19

obtained in [13]. In all these degenerate cases, the C1 regularity is a crucial step, see [14], in20

the case considered in [13]. In the present context of operators which degenerate as soon as21

one derivative ∂iu is zero, the C1 regularity is known only in the case N = 2, [2], and more22

precisely only for equation(1.3) and for f = 0, p = α + 2 . The method that the authors23

employ in [2] is very specific to the variational setting , since it relies essentially on very sharp24

Moser’s iterations.1
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Remark 1.3. In the equations considered here, we will use the euclidian norm for the gra-2

dient term |∇u|β, but other norms should lead to analogous results, with obvious changes.3

Remark 1.4. The threshold value α = 2 appears in a lot of papers treating of these anisotropic4

equations, let us cite in a non exhaustive manner [4], [26], The restriction α ≤ 2 or in some5

cases α ≥ 2 has been in posterior papers relaxed. We are convinced that the results restricted6

by this condition here, hold true without it, the fact that we cannot obtain them here is a7

lacking of the method employed.8

2 Existence results for the Dirichlet problem9

Notations10

• We use d(x) to denote a C2 positive function in Ω with coincides with the distance11

function from the boundary in a neighborhood of ∂Ω12

• For δ > 0, we set Ωδ = {x ∈ Ω : d(x) > δ}13

• We denote by M+,M− the Pucci’s operators with ellipticity constants a,A, namely,
for all M ∈ S,

M+(M) = A tr(M+)− a tr(M−)

M−(M) = a tr(M+)−A tr(M−)

and we often use that, as a consequence of (1.1), for all M,N ∈ S one has

M−(N) ≤ F (M +N)− F (M) ≤M+(N).

In some parts of the paper we will need the following properties of F which are an easy14

consequence of the assumptions (1.1) and (1.2) and of the positive homogeneity:1

(P1) There exists c so that for any (p, q) ∈ RN , and M ∈ S one has

|F (p,M)− F (q,M)| ≤ c(|p|α2 + |q|α2 )

N∑
1

∣∣|pi|α2 − |qi|α2 ∣∣ |M | .
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(P2) There exists c so that for any (p, q) ∈ RN , and M ∈ S, diagonal

|F (p,M)− F (q,M)| ≤ c
N∑
1

||pi|α − |qi|α| |M | .

The main result of this section is the following :2

〈exidir〉Theorem 2.1. Suppose that α > 0, β ≤ α + 2 and F satisfies, that f and b are bounded .3

Suppose that λ > 0. Then there exists a unique u which satisfies4 {
−F (∇u,D2u) + b(x)|∇u|β + λ|u|αu = f in Ω
u = 0 on ∂Ω

Furthermore u is Lipschitz continuous, with some Lipschitz bound depending on |u|∞, |f |∞, |b|∞5

in the case β < α+ 2, and requires that b be Lipschitz in the case β = α+ 2.6

It is classical that this existence’s result is obtained by exhibiting convenient sub- and7

super-solutions, proving a Lipschitz estimate between them, a comparison result, and finally8

applying Perron’s method adapted to the present context. We will not give the details of all9

the proofs, since the ideas here are a mixing of the arguments in [9], [12]. We enounce these10

results :11

〈theolip〉
Theorem 2.2. Suppose that u is a USC bounded by above viscosity subsolution of

−F (∇u,D2u) + b(x)|∇u|β ≤ g in B1

and v is a LSC bounded by below viscosity supersolution of

−F (∇v,D2v) + b(x)|∇v|β ≥ f in B1 ,

with f and g continuous and bounded, and b is continuous, and Holder continuous when
β = α+ 2. Then, for all r < 1, there exists cr such that for all (x, y) ∈ B2

r

u(x)− v(y) ≤ sup
B1

(u− v) + cr|x− y|.

In order to prove Theorem 2.2 we first need the following Hölder’s estimate:1

〈lem1〉Lemma 2.3. Under the hypothesis of Theorem 2.2, for any γ ∈ (0, 1), there exists cr,γ > 0
such that for all (x, y) ∈ B2

r

u(x)− v(y) ≤ sup
B1

(u− v) + cr,γ |x− y|γ . (2.1) holdest
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Proof of Lemma 2.3. We borrow ideas from [21], [5], [11], [10]. Fix xo ∈ Br, and define

φ(x, y) = u(x)− v(y)− sup
B1

(u− v)−M |x− y|γ − L(|x− xo|2 + |y − xo|2)

with L = 16(supu−inf v)
(1−r)2 and M = 4(supu−inf v)

δγ , δ will be chosen later small enough depending2

only on the data and on universal constants. We want to prove that φ(x, y) ≤ 0 in B1 which3

will imply the result, taking first x = xo and making xo vary.4

We argue by contradiction and suppose that supB1
φ(x, y) > 0. By the previous assump-5

tions on M and L the supremum is achieved on (x̄, ȳ) which belongs to B2
1+r
2

and it is such6

that 0 < |x̄− ȳ| ≤ δ.7

By Ishii’s Lemma [16], [17], for all ε > 0 there exist X and Y in S such that (qx, X) ∈
J

2,+
u(x̄), (qy,−Y ) ∈ J2,−

v(ȳ) with

qx = γM |x̄− ȳ|γ−2(x̄− ȳ) + 2L(x̄− xo),

qy = γM |x̄− ȳ|γ−2(x̄− ȳ)− 2L(ȳ − xo),

with (
X 0
0 Y

)
≤ 2

(
B −B
−B B

)
and B = D2(| · |γ). Hence

−F (qx, X) + b(x̄)|qx|β ≤ g(x̄), −F (qy,−Y ) + b(ȳ)|qy|β ≥ f(ȳ) (2.2) ?equaz?

Using the computations in [10] one gets the existence of c1 so that

F (qx, X) ≤ F (qy,−Y )− c1M1+α|x̄− ȳ|(γ−1)(α+1)−1

So to conclude in the present case it is sufficient to obtain that for δ small, |b(x)|qx|β −8

b(y)|qy|β | is small with respect to M1+α|x̄− ȳ|(γ−1)(α+1)−1. This is obtained using9

1) If β < α+ 21

|b(x)− b(y)||qx|β ≤ 2|b|∞Mβ |x̄− ȳ|(γ−1)β

≤ 2|b|∞|x̄− ȳ|2+α−β(M1+α|x̄− ȳ|(γ−1)(α+1)−1)

<< M1+α|x̄− ȳ|(γ−1)(α+1)−1.

2) If β = α+ 2 we just use the continuity of b

|b(x)− b(y)||qx|β ≤ o(1)M1+α|x̄− ȳ|(γ−1)(α+1)−1.
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We use also

|b(y)(|qx|β − |qy|β)| ≤ |b|∞|qx + qy|cMβ−1|x̄− ȳ|(γ−1)(β−1)

which is also small with respect to M1+α|x̄ − ȳ|(γ−1)(α+1)−1. We can then conclude to a2

contradiction, since one has3

−g(x̄) ≤ F (qx, X)− b(x̄)|qx|β

≤ F (qy, Y )− cM1+α|x̄− ȳ|γ−2+(γ−1)α − b(ȳ)|qy|β

≤ −f(ȳ)− cδ−γ(1+α)|x̄− ȳ|γ(α+1)−(2+α)

≤ −f(ȳ)− cδ−(2+α).

This is a contradiction with the fact that f and g are bounded, as soon as δ is small4

enough.5

Proof. of Theorem 2.26

For fixed τ ∈ (0, inf(1,α)
2 ), τ < α+ 2− β when α+ 2− β > 0 and τ < γb where γb is some

Holder’s exponent for b, and β = α+ 2. Let so = (1 + τ)
1
τ , and define for s ∈ (0, so)

ω(s) = s− s1+τ

2(1 + τ)
, (2.3) {?}

which we extend continuously after so by a constant.7

Note that ω(s) is C2 on s > 0, s < so, satisfies ω′ > 1
2 , ω′′ < 0 on ]0, 1[, and s > ω(s) ≥ s

2 .8

As before in the Hölder case, with L = 16(supu−inf v)
(1−r)2 and M = 4(supu−inf v)

δ , we define

φ(x, y) = u(x)− v(y)− sup
B1

(u− v)−Mω(|x− y|)− L(|x− xo|2 + |y − xo|2).

Classically, as before, we suppose that there exists a maximum point (x̄, ȳ) such that φ(x̄, ȳ) >9

0, then by the assumptions on M , and L, x̄, ȳ belong to B(xo,
1+r

2 ), hence they are interior10

points. This implies, using (2.1) in Lemma 2.3 with γ < 1 such that γ
2 > τ

inf(1,α) that, for11

some constant cr,12

L|x̄− xo|2 ≤ cr|x̄− ȳ|γ . (2.4) hh

and then one has |x̄− xo| ≤
(
cr
L

) 1
2 |x̄− ȳ|

γ
2 .1

9



Furthermore, there exist X and Y in S such that (qx, X) ∈ J2,+
u(x̄), (qy,−Y ) ∈ J2,−

v(ȳ)
with

qx = Mω′(|x̄− ȳ|) x̄− ȳ
|x̄− ȳ|

+ L(x̄− xo), qy = Mω′(|x̄− ȳ|) x̄− ȳ
|x̄− ȳ|

− L(ȳ − xo).

and (
X 0
0 Y

)
≤ 2

(
B −B
−B B

)
and B(x) = D2(ω(|x|)). Following the computations in [10] ( for this we need among other
things (2.4)), one gets the existence of c1 so that

F (qx, X) ≤ F (qy,−Y ) ≤ −c1M1+α|ȳ − x̄|τ−1

So to conclude we need to prove that |b(x̄)|qx|β−b(ȳ)|qy|β | is small with respect to M1+α|ȳ−2

x̄|τ−1. This is obtained as in the Holder’s case by using (the constant c can vary from one3

line to another)4

1) If β < α+ 2

|b(x̄)− b(ȳ)||qx|β ≤ 2|b|∞Mβ << M1+α|x̄− ȳ|τ−1

by the assumption τ < 2 + α− β.5

2) If β = α+ 2

|b(x̄)− b(ȳ)||qx|β ≤ c|x̄− ȳ|γbM2+α ≤ c|x̄− ȳ|γb−τ (M1+α|ȳ − x̄|τ−1).

We finally use

|b(ȳ)|
∣∣|qy|β − |qx|β∣∣ ≤ c|b|∞|qy + qx|Mβ−1 ≤ cMβ−1.

So the expected result holds by the choice of M respectively to δ. Once more as in the proof6

of lemma 2.3 one can conclude to a contradiction.7

8

It is clear that Theorem 2.2 can be extended to the case where Ω replaces B(0, 1) and9

Ω′ ⊂⊂ Ω replaces B(0, r). Furthermore it is not difficult to see as in [12] that we have the10

following Lipschitz estimate up to the boundary :1

If u is a sub-solution of

−|∇u|αF (D2u) + b(x)|∇u|β ≤ f,
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and v is a super-solution of

−|∇v|αF (D2v) + b(x)|∇v|β ≥ g,

and u ≤ 0 , v ≥ 0 on ∂Ω, then there exists c so that for any (x, y) ∈ Ω
2

u(x)− v(y) ≤ sup(u− v) + c|x− y|.
〈thcompar〉Theorem 2.4. Suppose that Ω is a bounded domain in RN . Suppose that α, β are as above,

as well as F . Let b be Hölder continuous. Let γ be a non decreasing continuous function such
that γ(0) = 0. Suppose that u is a sub-solution of

−F (∇u,D2u) + b(x)|∇u|β + γ(u) ≤ g

and
−F (∇v,D2v) + b(x)|∇v|β + γ(v) ≤ f

with g ≤ f , both of them being continuous and bounded. Then if g < f in Ω or γ is increasing,2

if u ≤ v on ∂Ω, u ≤ v in Ω.3

Proof. of Theorem 2.44

We use classically the doubling of variables. Suppose that u > v somewhere, then consider

ψj(x, y) = u(x)− v(y)− j

2
|x− y|2.

Then for j large enough the supremum of ψj is positive and achieved on a pair (xj , yj) ∈ Ω2,
both of them converging to some maximum point x̄ for u−v. Since (xj , yj) converges to (x̄, x̄),
both of them belong, for j large enough, to some Ω′ ⊂⊂ Ω, independant on j. Furthermore,
using the Lipschitz estimate proved in Theorem 2.2 :

sup(u− v) ≤ u(xj)− v(yj)−
j

2
|xj − yj |2 ≤ sup(u− v) + c|xj − yj | −

j

2
|xj − yj |2,

from this one derives that j|xj − yj | is bounded.5

Using Ishii’s lemma , [16], [17], there exist Xj and Yj in S such that (j(xj − yj), Xj) ∈
J

2,+
u(xj), (j(xj − yj),−Yj) ∈ J

2,−
v(yj) and Xj , Yj satisfy

−3j

(
I 0
0 I

)(
Xj 0
0 Yj

)
≤ 3j

(
I −I
−I I

)
.

We obtain, denoting the modulus of continuity of b by ω(b, δ) :1

g(xj)− γ(u(xj)) ≥ −F (j(xj − yj), Xj) + b(xj)|j(xj − yj)|β

≥ −F (j(xj − yj),−Yj) + b(yj)|j(xj − yj)|β + cω(b, |xj − yj |)
≥ f(yj) + o(1)− γ(v(yj)).

11



By passing to the limit, one gets on the point x̄ limit of a subsequence of xj

g(x̄)− γ(u(x̄)) ≥ f(x̄)− γ(v(x̄))

and in both cases we obtain a contradiction.2

3

Proof. of Theorem 2.1 We just give the hints to emphasize the difference with the operators
and the results in [12]. We begin by exhibit a sub- and a super-solution which are zero
on the boundary. Suppose first that β < α + 2. Let us choose some constant κ so that
λ log(1 + κ)1+α > |f |∞. Let us suppose d < κ

C , where C will be chosen large enough
depending on |f |∞, |b|∞ and on universal constants. We can assume that in d < κ

C the
distance to the boundary is C2 and satisfies |∇d| = 1. Let us consider in Cd < κ the function

ϕ(x) = log(1 + Cd(x)).

Then we have

−F (∇ϕ,D2ϕ)+b(x)|∇ϕ|β ≥ C2+α

(
a

∑
|∂id|2+α

(1 + Cd)2+α
−A |D

2d|∞
∑
|∂id|α

(1 + Cd)α+1

)
−Cβ |b|∞(

∑
|∂id|2)

β
2

(1 + Cd)β
.

Using the inequalities4 ∑
i

|∂id|α+2 ≤ (
∑
i

|∂id|2)
α+2
2 ,

and ∑
i

|∂id|β ≤ (
∑
i

|∂id|2)
β
2 , if β > 2,

∑
i

|∂id|β ≤ (
∑

∂id
2)

β
2N1− β2 if not,

and analogous inequalities for
∑
|∂id|α, one gets that for Cd < κ there exist constants5

κ1, κ2, κ3, depending only on a, A and on universal constants, so that1

−F (∇ϕ,D2ϕ) + b(x)|∇ϕ|β

≥ κ1
C2+α

(1 + Cd)α+2

(
1− Cβ−α−2κ2(1 + Cd)β−α−2 −AC−2κ3(1 + Cd)2

)
≥ κ1

2

C2+α

(1 + κ)α+2
.

as soon as C is large enough, more precisely such that

Cβ−α−2κ2 +AC−2κ3(1 + κ)2 <
1

2

12



and then assuming also C so that κ1
C2+α

(1+κ)α+2 > 2|f |∞, we get that ϕ is a super-solution in2

Cd < κ. Extending it by log(1 + κ) in Cd > κ and using the fact that the infimum of two3

super-solutions is a super-solution, we have the result. To get a sub-solution take −ϕ and4

adapt the constant.5

Note that in the case β = α+ 2 the previous conclusion still holds if |b|∞ is small enough
depending on universal constants. Note now that if u is a supersolution of the equation

−F (∇u,D2u) + b(x)|∇u|α+2 = ε1+αf

Then uε := u
ε satisfies

−F (∇uε, D2uε) + εb|∇uε|α+2 = f

and then a solution for the second problem gives one for the first one.6

The existence and uniqueness is then a direct consequence of the existence of these sub-7

and super-solutions and of Perrron’s method adpated to the context. We do not give the8

details.9

10

〈nonhom〉
Remark 2.5. In the sequel we will use a variant of this existence ’s result , that is to say, the11

boundary condition will be R in place of 0. This can be done by taking for the super-solution12

R + log(1 + Cd) in Cd < κ extended by R + log(1 + κ) in Cd > κ and for the sub-solution13

by taking for k large enough R − k log(1 + Cd) in Cd < κ extended by R − k log(1 + κ) in14

Cd > κ.15

3 Uniform Lipschitz estimates when α ≥ 2 for unbounded16

solutions17

〈secLipuni〉
In this subsection we prove the following Lipschitz estimates :1

〈lipunif〉Proposition 3.1. Let F satisfy (1.2), (1.1), and is positively homogeneous of degree 1, and,
for λ ≥ 0, α ≥ 2 and β > α + 1, let u and v be respectively a bounded by above sub-solution
and a bounded from below super-solution of equation (1.5) in B, with f Lipschitz continuous

in B. Then, for any positive p ≥ (2+α−β)+

β−α−1 , there exists a positive constant M , depending

13



only on p, α, β, a,A,N, ‖f − λ|u|αu‖∞ and on the Lipschitz constant of f , such that, for all
x, y ∈ B one has

u(x)− v(y) ≤ sup
B

(u− v)+ +M
|x− y|

(1− |y|)
β

β−α−1

[
1 +

(
|x− y|

(1− |x|)

)p]
Due to the results in the previous subsection, in the case β ≤ 2 + α, the existence and2

uniqueness of uλ for equation (1.4) has been proved, and the Lipschitz bound on uλ depends3

on the L∞ norm of uλ (more precisely on the oscillation of uλ). The strength of Proposition4

3.1 is that it provides bounds on uλ independent on λ, as soon as f − λuλ is bounded. This5

will allow to pass to the limit when λ goes to zero in the next sections.6

As in [15], [13] it is sufficient to do the case Ω = B(0, 1).7

Let us define a ”distance” function d which equals 1 − |x| near the boundary and is
extended as a smooth function which has the properties

d(x) = 1− |x| if |x| > 1
2

1−|x|
2 ≤ d(x) ≤ 1− |x| for all x ∈ B̄
|Dd(x)| ≤ 1 −c1Id ≤ D2d(x) ≤ 0 for all x ∈ B̄

for some constant c1 > 0.8

Let us define as in [15] ξ = |x−y|
d(x) and the function

φ(x, y) =
k

d(y)τ
|x− y| (L+ ξp) + sup(u− v)

where L and k will be chosen large later, as well as p and τ . It is clear that if we prove that9

for such k and L one has for all (x, y) ∈ B2
10

u(x)− v(y) ≤ φ(x, y),

we are done.11

So we suppose by contradiction that u(x)−v(y)−φ(x, y) > 0 somewhere, then necessarily12

the supremum is achieved on a pair (x, y) with d(x) > 0, d(y) > 0 and x 6= y. Using Ishi’s13

lemma, [16], [17], one gets that on such a point, one has for all ε > 0 the existence of two14

symmetric matrices Xε and Yε, such that1

14



(Dxφ,Xε) ∈ J2,+u(x), (−Dyφ,−Yε) ∈ J2,−v(y)

with

−
(

1

ε
+ |D2φ|

)
I2N ≤

(
Xε 0
0 Yε

)
≤ D2φ+ ε(D2φ)2. (3.1) eqine

Since u is a viscosity subsolution one has

−F (Θα(∇xφ)XεΘα(∇xφ)) + |∇xφ|β + λ|u|αu(x) ≤ f(x),

while
−F (−Θα(∇yφ)YεΘα(∇yφ)) + |∇yφ|β + λ|v|αv(y) ≥ f(y).

Let us multiply (3.1) on the right by(
Θα(∇xφ) 0

0 Θα(∇yφ)

)( √
1 + t IN 0

0 IN

)
where t > 0, and IN denotes the identity in RN , and on the left by its transpose, then we2

obtain that3

( √
1 + t Θα(∇xφ) 0

0 Θα(∇yφ)

)(
Xε 0
0 Yε

)( √
1 + t Θα(∇xφ) 0

0 Θα(∇yφ)

)
≤

( √
1 + t Θα(∇xφ) 0

0 Θα(∇yφ)

)(
D2φ

)( √1 + t Θα(∇xφ) 0
0 Θα(∇yφ)

)
+

( √
1 + t Θα(∇xφ) 0

0 Θα(∇yφ)

)(
ε(D2φ)2

)( √1 + t Θα(∇xφ) 0
0 Θα(∇yφ)

)
(3.2) eqXY

Note that by the positive homogeneity of F with respect to X, one has4

F (tΘα(∇xφ)XεΘα(∇xφ)) − F ((1 + t)Θα(∇xφ)XεΘα(∇xφ))

+ F (−Θα(∇yφ)YεΘα(∇yφ)) + λ(|u|αu(x)− |v|αv(y)) + |∇xφ|β

− |∇yφ|β − f(x) + f(y)

≤ 0

and then using u(x)− v(y) > 01

t|∇xφ|β ≤ F (∇xφ, tXε)− tλ|u|αu(x) + tf(x)

≤ F (∇xφ, (1 + t)Xε)− F (∇yφ,−Yε) + |∇yφ|β − |∇xφ|β + t(f(x)− λ|u|αu(x))+

+ f(x)− f(y)

≤ M+((1 + t)Θα(∇xφ)XεΘα(∇xφ) + Θα(∇yφ)YεΘα(∇yφ)) (3.3) ?eqesti1?

+ |∇yφ|β − |∇xφ|β + t(f(x)− λ|u|αu(x))+ + f(x)− f(y)

15



Suppose that we get an estimate of the form2

M+((1 + t)Θα(∇xφ)XεΘα(∇xφ) +Θα(∇yφ)YεΘα(∇yφ))

≤ ψ(t, x, y,Dφ,D2φ) + cε(1 + t)
(
|Θα(∇xφ)|2

+ |Θα(∇yφ)|2
)
|D2φ|2, (3.4) eqesti

for some function ψ, then we will derive that3

t|∇xφ|β ≤ ψ(t, x, y,Dφ,D2φ) + cε(1 + t)(|Θα(∇xφ)|2 + |Θα(∇yφ)|2|D2φ|2

+ |∇yφ|β − |∇xφ|β + t(f − λ|u|αu(x))+ + f(x)− f(y),

and then letting ε go to 0, one gets

t|∇xφ|β ≤ ψ(t, x, y,Dφ,D2φ) + |∇yφ|β − |∇xφ|β + t(f − λ|u|αu(x))+ + f(x)− f(y).

Let us recall some useful estimates on ψ in (3.4) : Using the computations and the estimates
in [15], let us recall that :

Dxφ =
k

d(y)τ
(
(L+ (1 + p)ξp)η − pξp+1Dd(x)

)
,

where η = x−y
|x−y| and

Dyφ = − k

d(y)τ
(L+ (1 + p)ξp)η + τ

k|x− y|
d(y)τ+1

(L+ ξp)Dd(y).

Note that one has

|Dxφ|, |Dyφ| ≤ ck
L+ ξp+1

d(y)τ+1

and always like in [15] we can choose L > 1 and large enough in order that |Dxφ| ≥4

ck (L+ξp)(1+ξ)
d(y)τ .5

We can sum up D2φ as follows1

D2φ = γ1

(
B −B
−B B

)
+ γ2

(
T −T
−T T

)
+ γ3

(
−(C +t C) C

tC 0

)
+ γ4

(
0 −tD
−D (D +t D)

)
+

(
X1 X2

X3 X4

)
(3.5) D2phi

with B = I − η ⊗ η, T = η ⊗ η, C = η ⊗Dd(x), D = η ⊗Dd(y), and where

γ1 =
k

d(y)τ
L+ (1 + p)ξp

|x− y|
, γ2 =

k

d(y)τ
p(1 + p)

ξp

|x− y|
, γ3 =

k

d(y)τ
p(1 + p)

ξp

d(x)
,
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γ4 =
k

d(y)τ
τ

(L+ (1 + p)ξp)

d(y)

and

X1 =
k

d(y)τ

(
p(p+ 1)ξp+1

d(x)
Dd(x)⊗Dd(x)− pξp+1D2d(x)

)
,

X2 =
k

d(y)τ
τpξp+1

d(y)
Dd(x)⊗Dd(y), X3 =

k

d(y)τ
τpξp+1

d(y)
Dd(y)⊗Dd(x)

X4 =
k

d(y)τ

(
τ(τ + 1)(L+ ξp)|x− y|

d(y)2
Dd(y)⊗Dd(y)− τ |x− y|

d(y)
(L+ ξp)D2d(y)

)
.

Then multiplying ( 3.5) by

( √
1 + t 0
0 1

)(
Θα(∇xφ) 0

0 Θα(∇yφ)

)
on the left and the2

right, one obtains3

ψ(t, x, y,Dφ,D2φ) := γ1

(
(1 + t)Θα(∇xφ)BΘα(∇xφ) −

√
1 + t Θα(∇xφ)BΘα(∇yφ)

−
√

1 + t Θα(∇yφ)BΘα(∇xφ) Θα(∇yφ)BΘα(∇yφ)

)
+ γ2

(
(1 + t)Θα(∇xφ)TΘα(∇xφ) −

√
1 + t Θα(∇xφ)TΘα(∇yφ)

−
√

1 + t Θα(∇yφ)TΘα(∇xφ) Θα(∇yφ)TΘα(∇yφ)

)
+ γ3

(
−(1 + t)Θα(∇xφ)(C +t C)Θα(∇xφ)

√
1 + t Θα(∇xφ)tCΘα(∇yφ)√

1 + t Θα(∇yφ)CΘα(∇xφ) 0

)
+ γ4

(
0 −

√
1 + t Θα(∇xφ)DΘα(∇yφ)

−
√

1 + t Θα(∇yφ)tDΘα(∇xφ) Θα(∇yφ)(D +t D)Θα(∇xφ)

)
+

(
(1 + t)Θα(∇xφ)X1Θα(∇xφ)

√
1 + tΘα(∇xφ) X2Θα(∇yφ)√

1 + t Θα(∇yφ)X3Θα(∇xφ) Θα(∇yφ)X4Θα(∇yφ)

)

Multiplying the inequality ( 3.2) by (tv,t v) on the left and

(
v
v

)
on the right, where v4

is any unit vector, one gets defining wt = (
√

1 + t Θα(∇xφ)−Θα(∇yφ))(v)1

tv((1 + t)Θα(∇xφ)XΘα(∇xφ) +Θα(∇yφ)YΘα(∇yφ))v

≤ γt1wtBwt + γt2wtTwt + cγ3t(|C|+ |tC|)(|Θα(Dxφ)|2 + |Θα(Dyφ)|2)

+ γ4t(|D|+ |tD|)(|Θα(Dxφ)|2 + |Θα(Dyφ)|2)

+ γ3(|C|+ |tC|)|Θα(Dxφ)−Θα(Dyφ)| |Θα(Dxφ)|+ |Θα(Dyφ)||v|2

+ γ4(|D|+ |tD|)|Θα(Dxφ)−Θα(Dyφ)|(|Θα(Dxφ) + Θα(Dyφ))|v|2

+ (
√

1 + t(|X1|+ |X2|) + |X3|) + |X4|)(|Θα(Dxφ) + Θα(Dyφ)||v|2.(3.6) eigenvalue
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Note that2

|wt|2 ≤ 2((
√

1 + t− 1)2|Θα(Dxφ)|2 + 2|
∑
i

|∂i,xφ|
α
2 − |∂i,yφ|

α
2 |2

≤ 2t2|Θα(Dxφ)|2 + 2|
∑
i

|∂i,xφ|
α
2 − |∂i,yφ|

α
2 |2.

Using ( 3.6), every eigenvalue of (1 + t)X + Y satisfies λi((1 + t)Θα(∇xφ)XΘα(∇xφ) +
Θα(∇yφ)YΘα(∇yφ)) ≤ ct2Γ1 + tΓ2 + (γ1 + γ2)Γ4 + Γ3 for some universal constant c, where
we have denoted

Γ1 = (γ1 + γ2)|Θα(Dxφ)|2 ≤ ck1+α (L+ ξp+1)1+α

d(y)τ+(τ+1)α|x− y|
.

Γ2 := (γ3+γ4+|X1|+|X2|+|X3|)(|Θα(Dxφ)|2+|Θα(Dyφ)|2) ≤ ck1+α (L+ ξp+2)(L+ ξp+1)α

d(y)(τ+1)(1+α)
.

Γ3 :=

4∑
1

|Xi| ≤ k1+α|x− y| (L+ ξp+2)(L+ ξp+1)α

d(y)2+τ+(τ+1)α
.

Finally

Γ4 := |
∑
i

|Di,xφ|
α
2 − ||Di,yφ|

α
2 |2.

To majorize Γ4 observe that If ξ ≤ 1,

|ξ|p+1|Dd|k
d(y)τ

≤ ξp|x− y|
d(x)d(y)τ

k ≤ 2k|x− y| ξp

d(y)τ+1

while if ξ ≥ 1,
ξp+1k

d(y)τ
≤ 2k(1 + ξp+1)

|x− y|
d(y)τ+1

As a consequence |Dixφ+Diyφ| ≤ ck(1 + ξp+1) |x−y|d(y)τ+1 .3

Then since α ≥ 2 one has by the mean value’s theorem1

Γ4 =
∑
i

||Dixφ|
α
2 − |Diyφ|

α
2 |2 ≤ c

∑
i

|Dixφ+Diyφ|2(|Dixφ|
α
2−1 + |Diyφ|

α
2−1)2

≤ c
kα|x− y|2

d(y)(τ+1)α

(
L+ ξp+1

)α
and then

Γ4(γ1 + γ2) = |
∑
i

(|Dixφ|
α
2 − |Diyφ|

α
2 )|2)k

(L+ ξp+1)

d(y)τ |x− y|
≤ ckα+1|x− y| (L+ ξp+1)α+1

d(y)τ(α+1)+α
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We now choose τ > α+1
β−1−α , and p > 2α+2

β−(α+1) , which imply that by taking k and L large2

enough one has Γ2 <
|Dxφ|β

2 . We have obtained that3

t

2
|Dxφ|β ≤ t(f(x)− λ|u|αu(x)) + |Dyφ|β − |Dxφ|β + (Γ1t

2 + Γ3 + (γ1 + γ2)Γ4)

Note now that we can choose t optimal or equivalently to = |Dxφ|β
4Γ1

and with this value of
to one has

|Dxφ|2β ≤ 16Γ1t(f(x)− λ|u|αu(x)) + Γ1(|Dyφ|β − |Dxφ|β) + Γ3Γ1 + Γ1(γ1 + γ2)Γ4)

There remains to see that from this one derives a contradiction, indeed, the left hand side

is greater than
(
L+ξp+1

d(y)τ

)2β

while

Γ1Γ3 ≤ ck2(1+α) (L2(1+α) + ξ2(p+2)(α+1))

d(y)2(τ+1)(α+1)

which is negligeable w.r.t. |Dxφ|2β by the choice of τ and p.4

Furthermore5

(γ1 + γ2)Γ4Γ1 ≤ c
k

d(y)τ
L+ (1 + p)2ξp

|x− y|
k1+α (L+ ξp+1)1+α

d(y)τ+(τ+1)α|x− y|
kα
|x− y|2(L+ ξp+1)α

(d(y)(τ+1)α

≤ ck2(1+α) (L+ ξp+1)2(1+α)

d(y)2τ(α+1)+2α

which is small w.r. t. |∇xφ|2β by the choice of τ , p, k and L . Finally

16Γ1t|f − λ|u|α|∞ ≤ 16|Dxφ|β |f − λ|u|α|∞

which is small with respect to |Dxφ|2β as soon as L and k are chosen large.6

Furthermore

||Dxφ|β − |Dyφ|β | ≤ |Dxφ+Dyφ|(ck
L+ ξp+1

d(y)τ+1
)β−1 ≤ ckβ |x− y|(L+ ξp+1)β

d(y)(1+τ)β

and then1

||Dxφ|β − |Dyφ|β |Γ1 ≤ kβ+1+α (L+ ξp+1)β+1+α

d(y)τ(α+1)+α+(τ+1)β

which is also small with respect to |Dxφ|2β using the assumptions on p and τ . We have
obtained a contradiction. Finally φ(x, y) ≤ 0, which implies some Lipschitz estimate. Arguing
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as in [15], one can obtain an optimal behaviour of the gradient of u when u is a solution , in
the form

|∇uλ| ≤ cd−γ−1.

Furthermore, these estimates can easily be extended to a C2 domain in place of a ball, using2

the interior sphere property, and replacing of course 1− |x| by d(x, ∂Ω).3

4 Existence and behaviour near the boundary of ergodic4

function.5

〈exiergo〉
In this section we prove the existence of solutions of equation (1.4) blowing up at the bound-6

ary, which will be used in the proof of existence of ergodic pairs. In what follows we drop7

the assumption on the boundedness of the right hand side f , and we consider continuous8

functions in Ω, possibly unbounded as d(x)→ 0.9

〈exilambda〉Theorem 4.1. Let α ≥ 0, β ∈ (α + 1, α + 2], λ > 0 and let F satisfy (1.1) and (1.2). Let
further f ∈ C(Ω) be bounded from below and such that

lim
d(x)→0

f(x)d(x)
β

β−1−α = 0 . (4.1) ?f1?

Then, the infinite boundary value problem{
−|∇u|αF (D2u) + |∇u|β + λ|u|αu = f in Ω ,

u = +∞ on ∂Ω ,
(4.2) eqlambdainfini

admits solutions, and any its solution u satisfies, for all x ∈ Ω,

c0
d(x)γ

− D1

λ
1

α+1

≤ u(x) ≤ C0

d(x)γ
+

D1

λ
1

α+1

if γ > 0 ,

c0| log d(x)| − D1

λ
1

α+1

≤ u(x) ≤ C0| log d(x)|+ D1

λ
1

α+1

if γ = 0 ,

(4.3) bou

for positive constants c0, C0 and D1 depending only on α, β, a,A, |d|C2(Ω) and on f .10

When F satisfies furthermore (1.7) one has a better estimate :1

〈precest〉Theorem 4.2. Let β ∈ (α + 1, α + 2], λ > 0 and let F satisfy (1.2), (1.1) and (1.7). Let
further f ∈ C(Ω) be bounded from below and such that

lim
d(x)→0

f(x)d(x)
β

β−1−α−γ0 = 0 , (4.4) ?f?
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for some γ0 ≥ 0. Then, any solution u of (4.2) satisfies: for any ν > 0 and for any
0 ≤ γ1 ≤ γ0, with γ1 < inf(1, α), and γ1 < γ when γ > 0, there exists D = D1

λ1/(α+1) , with
D1 > 0 depending on ν, γ1, α, β, a,A, |d|C2(Ω), |C(·)|C2(Ω) and on f , such that, for all x ∈ Ω,

C(x)

d(x)γ
− ν

d(x)γ−γ1
−D ≤ u(x) ≤ C(x)

d(x)γ
+

ν

d(x)γ−γ1
+D if γ > 0 ,

| log d(x)| (C(x)− νd(x)γ1)−D ≤ u(x) ≤ | log d(x)| (C(x) + νd(x)γ1) +D if γ = 0 .
(4.5) ?bouest?

Furthermore, the solution u is unique.2

Proof. of Theorem 4.1 :3

In almost all the results, we will just detail the case γ > 0 and leave the case γ = 0 to4

the reader. Let δ be small enough in order that in d < 2δ the distance is C2. We define5

ϕ(x) = C0 d(x)−γ ,

then we have, by an easy computation, using the fact that d is C2 near the boundary and the
properties of F :

|F (∇ϕ,D2ϕ)− γ1+α(γ + 1)d−(γ+1)α−γ−2C1+α
o F (∇d,∇d⊗∇d)| ≤ cd−(γ+1)α−γ−1,

and
|∇ϕ|β = Cβo d

−(γ+1)β |∇d|β

so taking Co conveniently large and using the asymptotic behaviour of f ,

−F (∇ϕ,D2ϕ) + |∇ϕ|β ≥ f+.

In particular for any positive constant D , ϕ1 := ϕ+D is also a supersolution of

−F (∇ϕ1, D
2ϕ1) + |∇ϕ1|β + λ|ϕ1|αϕ1 ≥ f+.

We extend ϕ1 inside Ω by taking6

w =


ϕ1 in d < δ

C0

δγ e
1

d(x)−2δ
+ 1
δ +D , if δ < d ≤ 2δ

D if d > 2δ.

where, since ϕ2 is C2, K1 being defined by

|F (∇ϕ1, D
2ϕ1)|+ |∇ϕ1|β ≤ K1,

we have chosen D ≥
(
|f |∞λ+K1

λ

) 1
1+α

. Then w is a convenient super-solution ( note that on7

δ < d ≤ 2δ we use the fact that the infimum of two super-solutions is still a super-solution).1
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Let us exhibit a convenient sub-solution : For s > 0, c0 = γ−1
(

(γ+1)a
2

) 1
β−α−1

and

x ∈ Ω \ Ω2δ, let us consider the function

ϕs(x) = c0(d(x) + s)−γ .

One has

−F (∇ϕs, D2ϕs) + |∇ϕs|β + λ(ϕs)1+α ≤ −|∇ϕs|αM−(D2ϕs) + |∇ϕs|β + λ(ϕs)1+α ≤ f(x) ,

for δ and s sufficiently small, since f is bounded from below.2

Moreover, for D ≥ c0δ
−γ +

(
|f−|∞
λ

) 1
α+1

, the constant function c0(δ + s)−γ −D is also a3

sub solution in Ω.4

Therefore, the function

ws(x) =

{
ϕs(x)−D in Ω \ Ωδ

c0(δ + s)−γ −D in Ωδ

is a convenient sub-solution.5

Using Remark 2.5 after the existence Theorem 2.1, let uR which satisfies{
−F (DuR, D

2uR) + |∇uR|β + λ|uR|αuR = fR in Ω
uR = R on ∂Ω,

(4.6) uR

where fR = inf(f,R). Observing, using the comparison principle in Theorem 2.4, one gets6

that ws ≤ uR ≤ w, uR is non decreasing, and since it is trapped between ws and ws7

it is locally uniformly bounded, hence locally uniformly Lipschitz. By classical results for8

uniformly Lipschitz viscosity solutions, it converges to a solution of ( 4.2). The boundary9

behaviour follows by letting s go to zero.10

Note that here we did not use the uniform Lipschitz estimates, so α ≥ 2 is not needed.11

Furthermore, we do not have the precise estimate at the boundary, and then the uniqueness12

could fail.13

1
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Proof. of Theorem 4.22

We introduce for δ > 0 small

ϕ1 =

((
F (∇d,∇d⊗∇d)(γ + 1)

γβ−α−1

) 1
β−α−1

+ νdγ1

)
d−γ +D

and

wε,δ =

((
F (∇d,∇d⊗∇d)(γ + 1)

γβ−α−1

) 1
β−α−1

− νdγ1
)

(d+ δ)−γ −D

where D is some constant to be chosen later . Recall that C(x) =
(
F (∇d,∇d⊗∇d)(γ+1)

γβ−α−1

) 1
β−α−1

.3

We prove that ϕ1 is a supersolution in Ω2δ = {x ∈ Ω, d(x, ∂Ω ≤ 2δ} for δ small enough.
We denote ϕ(x) = C(x)d−γ + νd−γ+γ1 . Then Dϕ = −γC(x)d−γ−1∇d(1 + ν γ−γ1γC(x)d

γ1) +

DC(x)d−γ ,

D2ϕ(x) = γ (γ + 1)C(x)d−γ−2
(

1 + ν (γ−γ1)(γ−γ1+1)
γ (γ+1)C(x) dγ1

)
∇d⊗∇d

−γ C(x)d−γ−1
(

1 + ν (γ−γ1)
γ C(x) d

γ1
)
D2d− γ d−γ−1 (∇d⊗∇C +∇C ⊗∇d) + d−γD2C .

In particular4

|D2ϕ− C(x)γ(γ + 1) d−γ−2(∇d⊗∇d)(1 + ν
(γ − γ1)(γ + 1− γ1)

γ(γ + 1)C(x)
dγ1)| ≤ cd−γ−1

which implies5 ∣∣F (Dϕ,D2ϕ) − C(x)γ(γ + 1) d−γ−2(1 + ν
(γ − γ1)(γ + 1− γ1)

γ(γ + 1)C(x)
dγ1)F (∇ϕ,∇d⊗∇d)

∣∣∣∣
≤ cd−(γ+1)(1+α) = o(d−(γ+1)α−γ−2+γ1). (4.7) majFD2

Let τ ∈]γ1α , 1[, by Property (P2) , one has ( in the computations below c denotes always some6

universal constant which varies from one line to another) :1

|F (∇ϕ,∇d⊗∇d) − F (−γC(x)d−γ−1∇d(1 + ν
γ − γ1

γC(x)
dγ1),∇d⊗∇d)

∣∣∣∣
≤ c|∇d|2d−(γ+1)α

i=N∑
i=1

∣∣∣∣∣∣∣∣γC(x)∂id(1 + ν
γ − γ1

γC(x)
dγ1)

∣∣∣∣α
−

∣∣∣∣γC(x)∂id(1 + ν
γ − γ1

γC(x)
dγ1) + ∂iCd

∣∣∣∣α∣∣∣∣
≤ cd−(γ+1)αdτα + c

∑
i,|∂id|>dτ

|∂id|α
((

1 +
∂iC

γC∂id(1 + ν γ−γ1γC(x)d
γ1)

d

)α
− 1

)
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2

≤ cd−(γ+1)α

dτα +
∑

i,|∂id|>dτ
|∂id|α

cd

|∂id|


≤ cd−(γ+1)α(dτα + d1−τ(1−α)+)

≤ cd−(γ+1)αdτα = o(d−(γ+1)α+γ1). (4.8) majphi

Now observe that by using a Taylor expansion at order 2 and the properties of F3

F (−γC(x)d−γ−1∇d(1 + ν
γ − γ1

γC(x)
dγ1),∇d⊗∇d)

= (γC(x)d−γ−1)α(1 + να
γ − γ1

γC(x)
dγ1)F (∇d,∇d⊗∇d)

+ o(d−(γ+1)α+2γ1). (4.9) TE

,4

Gathering (4.7) (4.8) and (4.9) one obtains5 ∣∣F (∇ϕ,D2ϕ)

− (C(x)γ)1+α(γ + 1) d−γ−2(1 + να
γ − γ1

γC(x)
dγ1)(1 + ν

(γ − γ1)(γ + 1− γ1)

γ(γ + 1)C(x)
dγ1)F (∇d,∇d⊗∇d)

∣∣∣∣
= o(d−(γ+1)(1+α)−1+γ1).

On the other hand one has, using a Taylor expansion at the order 2 and the mean value’s
Theorem∣∣∣∣|∇ϕ|β − (d−γ−1C(x)γ

)β
(1 + ν

β(γ − γ1)

γC(x)
dγ1)|∇d|β

∣∣∣∣ ≤ cd−(γ+1)β+2γ1 + d−(γ+1)β+1. (4.10) beta

Considering the term in dγ1d−γ−2−(γ+1)α in (C(x)γ)1+α(γ+1)α d−γ−2((1+να γ−γ1
γC(x)d

γ1))(1+6

ν (γ−γ1)(γ+1−γ1)
γ(γ+1)C(x) dγ1) and in (4.10), and using the definition of C(x), one has1

−(C(x)γ)1+α(γ + 1)

(
να

γ − γ1

γC(x)
+ ν

(γ − γ1)(γ + 1− γ1

γ(γ + 1)C(x)

)
F (∇d⊗∇d)

+ (C(x)γ)ββν
γ − γ1

γC(x)

> (C(x)γ)β−1ν
(γ − γ1)γ1

(γ + 1)
,
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and then2

−F (∇ϕ,D2ϕ) + |∇ϕ|β ≥ d−(γ+1)α−γ−2+γ1(C(x)γ)β−1ν
(γ − γ1)γ1

(γ + 1)
+ o(d−(γ+1)α−γ−2+γ1).

Taking δ small enough one gets that by the assumption on f and using γ1 < γo

−F (∇ϕ,D2ϕ) + |∇ϕ|β > f+ ≥ f,

and then
−F (∇ϕ1, D

2ϕ1) + |∇ϕ1|β + λϕ1+α
1 ≥ f.

We then consider in δ < d ≤ 2δ, as in the proof of Theorem 4.1

ϕ2 =
C(x)(1 + νδγ1)

δγ
e

1
d−2δ+ 1

δ +D

where, if K1 is so that |F (∇ϕ2, , D
2ϕ2)| + |∇ϕ2|β ≤ K1, we have denoted D some constant

so that D ≥
(
|f |∞+K1

λ

) 1
1+α

. We have obtained that for δ small and d < δ, the function

w,=

 ϕ+D in d < δ
ϕ2 +D in δ < d < 2δ
D in d > 2δ

is a convenient super-solution.3

In the same manner let

wδ =

((
F (∇d,∇d⊗∇d)(γ + 1)

γβ−α−1

) 1
β−α−1

− νdγ1
)

(d+ δ)−γ −D

Then4

−F (∇wδ, D2wδ) + |∇wδ|β + λ|wδ|αwδ − f

≤ −(d+ δ)−(γ+1)α−γ−2+γ1(C(x)γ)β−1ν
(γ − γ1)γ1

(γ + 1)
(1 + o(1))

+cλ(d+ δ)−γ(1+α) − f
≤ 0,

when d is small, and arguing as previously one can choose D in order that wδ be a sub-solution5

also in d > δ.1
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Now arguing as in the proof of the previous Theorem, more precisely taking uR a solution2

of (4.6) one gets the existence of u which blows up on the boundary and now is so that3

u ∼ C(x)d−γ near the boundary. The uniqueness can be shown as in [13].4

5

We can now prove the Theorem6

〈exiergo〉Theorem 4.3. Under the assumptions of Theorem 4.1, and assuming in addition that α ≥ 27

and f is Lipschitz continuous, there exists an ergodic pair (u, c) , furthermore u(x) ∼ C(x)d−γ8

near the boundary.1

Proof. of Theorem 4.3 : By Theorem 4.1, for λ > 0 there exists a solution Uλ of problem
(4.2), which satisfies estimates (4.3). It then follows that λ|Uλ|αUλ is locally bounded in Ω,
uniformly with respect to 0 < λ < 1. Let us fix an arbitrary point x0 ∈ Ω. Then, there exists
c ∈ R such that, up to a sequence λn → 0,

λ|Uλ(x0)|αUλ(x0)→ −c .

On the other hand, Proposition 3.1 yields that (Uλ) is locally uniformly Lipschitz continuous.
Therefore, for x in a compact subset of Ω, one has using again (4.3) and the mean value’s
Theorem,

λ ||Uλ(x)|αUλ(x)− |Uλ(x0)|αUλ(x0)| ≤ λ K

λ
α
α+1
|Uλ(x)− Uλ(x0)| → 0.

It then follows that c does not depend on the choice of x0 and, up to a sequence and locally
uniformly in Ω, one has

λ|Uλ|αUλ → −c .
Moreover, the function Vλ(x) = Uλ(x) − Uλ(x0) is locally uniformly bounded, locally uni-
formly Lipschitz continuous and satisfies

−F (∇Vλ, D2Vλ) + |∇Vλ|β = f − λ|Uλ|αUλ in Ω .

If V denotes the local uniform limit of Vλ for a sequence λn → 0, then one has

−F (∇V,D2V ) + |∇V |β = f + c in Ω .

Let us define for arbitrary s > 0 :

φ(x) =
σ

(d(x) + s)γ
− σ

(δo + s)γ
if γ > 0 ,

φ(x) = −σ log(d(x) + s) + σ log(δo + s) if γ = 0 ,
(4.11) ?phi?

and σ =
(
(γ + 1)a2

) 1
β−α−1 γ−1 if γ > 0, σ = a

2 if γ = 0. Using the computations in Theorem
4.1 and using Theorem 2.4, we have that, for some δ0 > 0 sufficiently small,

Vλ ≥ φ+ min
d(x)=δ0

Vλ in Ω \ Ωδ0 ,
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Letting λ, s → 0 we deduce that V (x) → +∞ as d(x) → 0. This shows that (c, V ) is an2

ergodic pair and concludes the proof. The asymptotic behaviour can be proved as in [13].3

5 Proof of Theorem 1.1.4

We now prove Theorem 1.1.5

Proof of Theorem 1.1. Let uλ be a solution of (1.5). We begin by giving a bound that will
be useful in the whole proof. Observe that u+

λ is a sub solution of

−F (∇u+
λ , D

2u+
λ ) ≤ |f |∞.

By the existence’s Theorem in [10] let V be a solution of{
−F (∇V,D2V ) = 2 in Ω
V = 0 on ∂Ω

Then V is bounded, |f |
1

1+αV is then a super-solution and the comparison Theorem in [10]
implies that

|u+
λ |∞ ≤ |V |∞|f |

1
1+α
∞ ≤ c|f |

1
1+α
∞ . (5.1) upper

Let us consider first the case where there exists a sub-solution ϕ for (1.4). Then, ϕ− |ϕ|∞ is6

a sub-solution of equation (1.5), and by the comparison principle we deduce uλ ≥ ϕ− |ϕ|∞.7

Thus, in this case (uλ) is uniformly bounded in Ω. The Lipschitz estimates in Theorem 2.28

then yield that uλ is uniformly converging up to a sequence to a Lipschitz solution of problem9

(1.4). Note that in this case we did not use α ≥ 2.10

We now treat the second case, i.e. we suppose that (1.4) has no solutions. In particular11

|uλ|∞ diverges, since otherwise we could extract from (uλ) a subsequence converging to a12

solution of (1.4).13

On the other hand, since −
(
|f |∞
λ

) 1
1+α

is a sub solution of (1.5), by the comparison14

principle we obtain u−λ ≤
(
|f |∞
λ

) 1
1+α

, which, jointly with (5.1), yields λ|uλ|1+α
∞ ≤ c1|f |∞.1
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Hence, there exists (xλ) ⊂ Ω such that uλ(xλ) = −|uλ|∞ → −∞ and there exists a constant2

cΩ ≥ 0 such that, up to a subsequence, λ|uλ|1+α
∞ → cΩ.3

The rest of the proof follows the lines in [13].4

5

Proof. of Theorem 1.2 We do not give the proof which follows the lines in [13].6

6 A comparison principle for degenerate non linear el-7

liptic equations without zero order terms8

〈compzero〉 :9

〈2.4〉
Theorem 6.1. Suppose that b is continuous and bounded on Ω and that either α = 0 or
α 6= 0 and f is a continuous function such that f ≤ −m < 0. Suppose that u and v are
respectively a sub-solution and a super solution of

−F (∇u,D2u) + b(x)|∇u|β = f.

Suppose that u or v is Lipschitz and both the two are bounded on Ω, that u ≤ v on ∂Ω. Then10

u ≤ v in Ω.11

Proof. Without loss of generality, we will suppose that u is Lipschitz continuous.12

The case α = 0 is quite standard, and is done in [13], for the sake of shortness we do not13

reproduce it here.14

For the case α 6= 0 and f < 0, we use the change of function u = ϕ(z), v = ϕ(w) with

ϕ(s) = −γ1(α+ 1) log
(
δ + e−

s
α+1
)
.

This function is used in [1], [6], [7], [23], [24].1

We choose δ small enough in order that the range of ϕ covers the ranges of u and v. The
constant γ1 will be chosen small enough depending only on a, α, β, infΩ(−f) and |b|∞; in
this proof, any constant of this type will be called universal . Observe that ϕ′ > 0 while
ϕ′′ < 0. Let Z =

∑
i |∂iz|

α
2 ∂iz, W =

∑
i |∂iw|

α
2 ∂iw. In the viscosity sense, z and w are

respectively sub- and super- solution of

−F ((ϕ′)1+αΘα(∇z)D2zΘα(∇z) + (ϕ′)αϕ′′(Z ⊗ Z)) + b(x)ϕ′(z)β−α−1|∇z|β − f ≤ 0. (6.1) eq1
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−F ((ϕ′)1+αΘα(∇w)D2wΘα(∇w)+(ϕ′)αϕ′′(W⊗W ))+b(x)ϕ′(w)β−α−1|∇w|β−f ≥ 0. (6.2) eq1

We define

H(x, s, p) =
−aϕ′′(s)
ϕ′(s)

∑
i

|pi|2+α + b(x)ϕ′(s)β−α−1|p|β +
−f(x)

ϕ′(s)α+1
.

The point is to prove that at x̄, a maximum point of z −w, ∂H(x̄,s,p)
∂s > 0 for all p. This will

be sufficient to get a contradiction. A simple computation gives

ϕ′ =
γ1e
− s
α+1

δ + e−
s

α+1
, ϕ′′ =

−γ1δe
− s
α+1

(α+ 1)(δ + e−
s

α+1 )2
.

Hence (
−ϕ′′

ϕ′

)′
=

δ

(α+ 1)2

e−
s

α+1

(δ + e−
s

α+1 )2
i.e.

(
−ϕ′′

ϕ′

)′
= − ϕ′′

(α+ 1)γ1
> 0.

Differentiating H with respect to s gives:

∂sH = a
∑
i

|pi|α+2 −ϕ′′

(α+ 1)γ1
+ (−f)

−(α+ 1)ϕ′′

(ϕ′)α+2
+ b(x)|p|β(β − α− 1)(ϕ′)β−α−2ϕ′′.

Since −ϕ′′ is positive, we need to prove that2

K :=
a
∑
i |pi|α+2

(α+ 1)γ1
+ (−f)

α+ 1

(ϕ′)α+2
− |b|∞|p|β(β − α− 1)(ϕ′)β−α−2 > 0.

We start by treating the case β < α+ 2.1

Observe first that the boundedness of u and v, implies that there exists universal positive
constants co and c1 such that

coγ1 ≤ ϕ′ ≤ c1γ1.

Hence, it is easy to see that there exist three positive universal constants C ′1, Ci, i = 2, 3
such that

K >
C ′1
∑
i |pi|α+2

γ1
+

C2

γα+2
1

−
C3(
∑
i |pi|2)

β
2

γα+2−β
1

.

We now observe that since α > 0 C ′1
∑
i |pi|α+2 ≥ C ′1N

−α
2 (
∑
i p

2
i )

α+2
2 := C1(

∑
i p

2
i )

α+2
2 =

C1|p|α+2. We choose γ1 = min
{

1, (C3

C2
)β , (C3

C1
)

1
α+1−β

}
. With this choice of γ1, for |p| ≤ 1,

C1|p|α+2

γ1
+

C2

γα+2
1

− C3|p|β

γα+2−β
1

≥ C2

γα+2
1

− C3

γα+2−β
1

> 0;
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while for |p| ≥ 1,

C1|p|α+2

γ1
+

C2

γα+2
1

− C3|p|β

γα+2−β
1

≥ (C1)|p|α+2

γ1
− C3|p|β

γα+2−β
1

> 0.

If β = α+ 2, just take γ1 <
a

(α+1)|b|∞ .2

This gives that for γ1 small enough depending only on min(−f) , α, |b|∞ and β one has,
for some universal constant C,

∂sH(x, s, p) ≥ C > 0. (6.3) gamma

We now conclude the proof of the comparison principle. Suppose by contradiction that3

sup(z − w) > 0.4

We introduce ψj(x, y) = z(x)− w(y)− j
2 |x− y|

2; ,

(pj , Xj) ∈ J
2,+
z(xj), (pj ,−Yj) ∈ J

2,−
w(yj), with pj = j(xj − yj)

and (
Xj 0
0 Yj

)
≤ j

(
I −I
−I I

)
.

On (xj , yj), by a continuity argument, for j large enough one has

z(xj) > w(yj) +
sup(z − w)

2
.

Note for later purposes that since z or w are Lipschitz, pj = j(xj − yj) is bounded. Observe

that the monotonicity of ϕ′′

ϕ′ implies that

N = pj ⊗ pj
(
ϕ′′(z(xj))

ϕ′(z(xj))
− ϕ′′(w(yj))

ϕ′(w(yj))

)
≤ 0.

Using the fact that z and w are respectively sub and super solutions of the equation (6.2),5

the estimate (6.3) and that H is decreasing in the second variable, one obtains:1

0 ≥ −f(xj)

(ϕ′)α+1(z(xj))
− F

(
pj , Xj +

ϕ′′(z(xj))

ϕ′(z(xj))
pj ⊗ pj

)
+ b(xj)|pj |βϕ′(z(xj))β−α−1

≥ −f(xj)

(ϕ′)α+1(z(xj))
− F (pj ,−Yj +

ϕ′′(w(yj))

ϕ′(w(yj))
pj ⊗ pj)

+a
∑
i

|(pj)i|2+α

(
ϕ′′(w(yj))

ϕ′(w(yj))
− ϕ′′(z(xj))

ϕ′(z(xj))

)
+ |pj |βb(xj)ϕ′(z(xj))β−α−1

≥ f(yj)− f(xj)

(ϕ′(w(yj))α+1
+ (b(xj)− b(yj))|pj |βϕ′(w(yj)))

β−α−1

+H(xj , z(xj), pj)−H(xj , w(yj), pj)

≥ C(z(xj)− w(yj)) +
o(1)

γα+1
1

.
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Here we have used the continuity of f and b, the boundedness of pj and that

ψ(xj , yj) ≥ sup(ψ(xj , xj), ψ(yj , yj)).

Passing to the limit one gets a contradiction, since (xj , yj) converges to (x̄, x̄) such that2

z(x̄) > w(z̄).3

Theorem 6 enables us to pove, arguing as in [13], Theorem 1.2.4
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