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Unstable oscillatory flow of non-Brownian suspensions in Hele-Shaw cells

The behavior of neutrally buoyant, non-Brownian suspensions subject to square-wave flow oscillations in Hele-Shaw cells is investigated. The velocity field across the cell gap is determined by tracking particles in a plane parallel to the main flow. Initially, the velocity field of the particles is parallel to the main flow and its profile across the gap is blunted due to a higher volume fraction of particles in the gap center; this has been confirmed by direct estimations of the particle fraction and likely results from shear-induced migration. Velocity fluctuations, both along and transverse to the flow direction, agree reasonably well with previous studies. At longer times, the suspension develops an instability characterized by the growth of a transverse velocity component that is periodic along the main flow direction and in time. No influence of inertia on the characteristic onset time of this instability is observed for Reynolds numbers varying over four decades below Re = 0.4. The inverse of the onset time increases linearly with the amplitude of the oscillatory flow. The dependence of the onset time on the particle volume fraction and the gap thickness is consistent with the characteristic time for particle migration across the gap due to shear-induced diffusion.

I. INTRODUCTION

Suspensions of non-Brownian particles in viscous fluids are present both in industrial (waste treatment, slurries, transport of pastes or granulates), and natural (coastal dynamics, landslides, dispersion of pollutants, siltation) flows. During the last two decades, studies of suspensions were performed both at the micro-and macro-scales [START_REF] Morris | Toward a fluid mechanics of suspensions[END_REF]. In particular, the rheology of macroscopic suspensions and the crucial role of particle contacts has been highlighted in both steady [START_REF] Gallier | Rheology of sheared suspensions of rough frictional particles[END_REF][START_REF] Singh | A constitutive model for simple shear of dense frictional suspensions[END_REF] and unsteady [START_REF] Peters | Rheology of non-Brownian suspensions of rough frictional particles under shear reversal: A numerical study[END_REF] flows. In the case of macroscopic suspensions at low Reynolds numbers, these contacts result in a particle contribution to pressure [START_REF] Morris | Curvilinear flows of noncolloidal suspensions: The role of normal stresses[END_REF][START_REF] Deboeuf | Particle pressure in a sheared suspension: A bridge from osmosis to granular dilatancy[END_REF][START_REF] Boyer | Unifying suspension and granular rheology[END_REF][START_REF] Garland | Normal stress measurements in sheared non-brownian suspensions[END_REF] and to normal stresses differences [START_REF] Zarraga | The characterization of the total stress of concentrated suspensions of noncolloidal spheres in newtonian fluids[END_REF][START_REF] Couturier | Suspensions in a tilted trough: second normal stress difference[END_REF]. From a microscopic point of view, the particle roughness and the collisions between particles can result in a diffusive motion of those [START_REF] Cunha | Shear-induced dispersion in a dilute suspension of rough spheres[END_REF][START_REF] Drazer | Deterministic and stochastic behaviour of non-brownian spheres in sheared suspensions[END_REF][START_REF] Drazer | Microstructure and velocity fluctuations in sheared suspensions[END_REF][START_REF] Martin | Hydrodynamic dispersion of noncolloidal suspensions: Measurement from Einstein's argument[END_REF]. Both approaches (diffusive motion and particle pressure) have been used successfully to explain the so-called shear-induced migration of particles from regions of high to low shear rate of the flow [START_REF] Leighton | The shear-induced migration of particles in concentrated suspensions[END_REF][START_REF] Phillips | A constitutive equation for concentrated suspensions that accounts for shear-induced particle migration[END_REF][START_REF] Nott | Pressure-driven flow of suspensions: simulation and theory[END_REF]; however, at a macroscopic level, the lack of migration in certain geometries could only be explained from the normal stress differences [START_REF] Morris | Curvilinear flows of noncolloidal suspensions: The role of normal stresses[END_REF].

In pressure-driven flows of suspensions through cylindrical tubes and channels with large aspect ratio, normal stresses induce migration of the particles towards the tube axis and the gap center, respectively, in both steady [START_REF] Nott | Pressure-driven flow of suspensions: simulation and theory[END_REF][START_REF] Yeo | Numerical simulations of concentrated suspensions of monodisperse particles in a poiseuille flow[END_REF] and oscillatory [START_REF] Snook | Dynamics of shear-induced migration of spherical particles in oscillatory pipe flow[END_REF] flows. For non-circular ducts, like channels with square and rectangular cross-sections, secondary flows occur due to normal stress differences [START_REF] Ramachandran | The influence of secondary flows induced by normal stress differences on the shear-induced migration of particles in concentrated suspensions[END_REF][START_REF] Ramachandran | Secondary convection due to second normal stress differences: A new mechanism for the mass transport of solutes in pressure-driven flows of concentrated, noncolloidal suspensions[END_REF][START_REF] Zrehen | Demonstration of secondary currents in the pressure-driven flow of a concentrated suspension through a square conduit[END_REF]. There is still shear-induced migration but the spatial distribution of particles may be changed by the secondary flows. A macrotransport approach was also used recently to describe suspension flows inside a Hele-Shaw cell [START_REF] Chakraborty | A macrotransport equation for the hele-shaw flow of a concentrated suspension[END_REF]. They considered the limit of fast migration and suggested that volume fraction gradients in the flow direction could also generate secondary flows which might influence the flow stability. In any case, in order to investigate the asymptotic distribution of particles in the cross-section, exceedingly long systems would be required [START_REF] Rashedi | Shearinduced migration and axial development of particles in channel flows of non-brownian sus-pensions[END_REF]. Thus, some authors have instead studied long time variations of the particle distribution in oscillatory flows [START_REF] Snook | Dynamics of shear-induced migration of spherical particles in oscillatory pipe flow[END_REF], which produce large cumulative deformations of the suspension without requiring very long channels. However, upon shear reversal, a transient reduction in suspension viscosity is observed, possibly due to changes in particle microstructure and temporary loss of contacts [START_REF] Peters | Rheology of non-Brownian suspensions of rough frictional particles under shear reversal: A numerical study[END_REF][START_REF] Blanc | Local transient rheological behavior of concentrated suspensions[END_REF]. Moreover, for small enough oscillation displacements, the system of particles reaches a so-called absorbing state, where they no longer collide and there is no change in the system from one period to the next [START_REF] Pine | Chaos and threshold for irreversibility in sheared suspensions[END_REF][START_REF] Corte | Random organization in periodically driven systems[END_REF]. Therefore, oscillatory flow may show additional features compared to steady flow along long channels.

In a previous work [START_REF] Roht | Stripes instability of an oscillating non-brownian iso-dense suspension of spheres[END_REF], we reported an instability occurring when a neutrally buoyant suspension of non-Brownian particles is subject to an oscillatory flow in a rectangular cell with large aspect ratio (Hele-Shaw cell). After the instability develops, light transmission through the cell aperture displays a two-dimensional periodic array of stripes perpendicular to the mean flow and following the oscillatory motion of the fluid. The measured wavelength of the stripes increases with the oscillation amplitude but is independent of the oscillation period for a given amplitude. The onset time for the instability depends on the particle concentration and oscillation amplitude. The latter instability is different from previously reported ones in suspensions with non-neutrally buoyant particles [START_REF] Carpen | Gravitational instability in suspension flow[END_REF], with Brownian particles [START_REF] Dhas | Stability of gravity-driven particle-laden flows-roles of shear-induced migration and normal stresses[END_REF][START_REF] Morris | A particularly unstable film[END_REF], for inertial flows [START_REF] Moosavi | Stripe formation in horizontally oscillating granular suspensions[END_REF] and for shear-thickening suspensions near the jamming transition [START_REF] Ovarlez | Density waves in shear-thickening suspensions[END_REF].

In the present study, using the same particle size and flow geometry as in [START_REF] Roht | Stripes instability of an oscillating non-brownian iso-dense suspension of spheres[END_REF], we deter-mine the particle velocity field both in the initial state and during the development of the instability. This is achieved using particles with the same optical index and density as the liquid, providing a transparent dispersion of neutrally buoyant particles. The motion of a small fraction of the particles tagged by a fluorescent dye is tracked in order to determine particle velocity components parallel and perpendicular to the mean flow and to estimate particle volume fraction profiles.

After describing the experimental set-up and suspensions used in this work, we shall discuss measurements of the mean profile and fluctuations of the velocity of the particles before the onset of the instability. We discuss then the influence of the instability on the particle trajectories and the occurrence of a transverse velocity component periodic in time and space. Finally, we define a characteristic time for the growth of the instability from the autocorrelation of the transverse velocity; its dependence on the oscillation amplitude of the flow and the volume fraction is discussed and compared to that of the characteristic time for shear-induced migration.

II. EXPERIMENTAL PROCEDURE, MATERIALS AND DATA PROCESSING

A. Experimental set-up and suspension preparation

We use a suspension of poly(methyl methacrylate) (PMMA) spheres in an aqueous solution with the following typical composition: 39.4% in weight (wt) of ammonium thiocyanate (NH 4 SCN), 36.7 %wt of glycerin and 23.9 %wt of water [START_REF] Bailey | An aqueous low-viscosity density-and refractive index-matched suspension system[END_REF][START_REF] Borrero-Echeverry | Aqueous ammonium thiocyanate solutions as refractive index-matching fluids with low density and viscosity[END_REF]. At room temperature (21 o C), the solution has the same optical index (n = 1.49) and density (ρ 0 = 1.19 g/cm 3 ) as PMMA and a viscosity µ 0 = 7.6 mPa.s (as measured by an Anton Paar MCR501 rheometer).

The spheres (CA40 Spheromers provided by Microbeads AS) have a diameter d = 40 ± 2µm (as measured with a Malvern Morpho G2 apparatus). In order to track their motion by laser induced fluorescence, a small fraction of the spheres (∼ 1%) is dyed by immersion in a solution of ethanol and rhodamine at 40 o C and dried before they are mixed with the other beads [START_REF] Lenoble | The flow of a very concentrated slurry in a parallelplate device: Influence of gravity[END_REF]. As a result, the dyed particles shine in orange when illuminated by green light (wavelength λ = 532nm). The volume fraction ϕ of the particles ranges between 20% and 40%. Suspensions with ϕ = 20% are first prepared and the composition of the solution is fine tuned to optimize transparency and density. Solutions with higher particle volume fractions are obtained by adding particles to this first one.

In addition, two other suspending fluids were prepared and used in a limited number of experiments. First, a solution composed of Triton-X 100 (73.9 %wt), ZnCl 2 (14.2 %wt) and water (11.9 %wt) which has a much higher viscosity (µ 0 = 3 Pa.s according to Ref. [START_REF] Souzy | Taylor's experiment in a periodically sheared particulate suspension[END_REF]).

Second, an aqueous solution of glycerin (71.8 %wt) that matches the density, but not the refractive index of the particles, allowing the qualitative observation of variations in particle distribution along the length and width of the cell.

The experimental set-up is shown in Fig. 1(a). The suspension oscillates inside a rectangular slot machined inside a PMMA block and closed thereafter by a PMMA plate. Two cells were constructed in this way: one of gap thickness H = 1 mm and another with H = 2 mm.

All the experiments presented here used the first one unless otherwise stated. The corresponding gap/sphere size ratios H/d are 25 and 50. The slot length (L) is kept vertical so that the cell may be filled up and drained more easily without trapping air. Some experiments were performed with the cell placed horizontally (gravity in the gap direction) and provided similar results.

A 25 cm 3 syringe filled with the suspension is attached to a pump (pump A in Fig. 1(a)) and the suspension is injected slowly into the set-up to saturate the connecting tubes and valves. The flow rate is kept low in order to allow for the evacuation of residual air bubbles by gravity. The injection is stopped when the suspension reaches the top of the experimental cell. After the complete saturation of the cell by the suspension and the evacuation of any residual air, we switch to a different pump (pump B in Fig. 1(a)). It uses a smaller syringe (1 cm 3 ), also filled with the suspension, which enables a more precise control of the oscillating flow.

We use the small syringe to create symmetric square-wave flow oscillations with a period ranging from T = 2 to 20 s. The typical absolute volume flow rate is Q 0 = 13.3 mm 3 /s, leading to a superficial velocity V 0 = Q 0 /S ≃ 1.16 mm/s, where S = 11.5 mm 2 is the average area of the cross-section, measured by filling the cell in a vertical position with water and monitoring the ascension of the liquid-air interface. The mean amplitude A 0 = V 0 T /2 of the displacement of the suspension during a half period ranges between 1.3 and 11.6 mm and is shown schematically in Fig. 1(b). For this flow rate and the fluid used in most experiments, the Reynolds number of the suspension is then Re = V 0 Hρ 0 /µ 0 ≃ 0.2.

In order to investigate the dependence of the results on the flow rate, additional exper- 

B. Image analysis and particle velocity determination

A laser sheet (green, λ = 532 nm) parallel to the (x, y) plane illuminates the flow channel (see Fig. 1(a)). This orientation of the light sheet was selected based on our previous experiments which suggest that the flow created by the instability is two-dimensional and contained in the (x, y) plane. Therefore, the relevant velocity components are V x and V y .

The distance of the light sheet from the side wall through which observations are performed is generally ≃ 3 mm; however, several experiments were performed at 5 mm (≃ W/2) without excessive light absorption and gave similar results. An optical notch filter eliminates the direct green illumination so that only the orange fluorescence light is detected. A digital camera provides images of the moving particles with a field of view of 1 × 22 mm 2 and frame rates up to 200 fps. A typical image is shown in Fig. 1(c).

Once acquired, the images are enhanced by convoluting them with a circle of the same radius as the experimental particles. Following this process, only the images of the beads are clearly visible. Residual low intensity noise is eliminated using a threshold intensity and the positions of the particle centers are determined from the local maxima of the light intensity.

Finally, the positions of the particles in consecutive images are compared and those spaced by less than one or two particles radius are joined into trajectories (the frame rate is adjusted so that this spacing remains small enough). The instantaneous velocity components v x and v y are computed for each particle from the displacement between two frames and averaged spatially and/or in time depending on the information of interest.

III. VELOCITY FIELD AND VOLUME FRACTION IN THE INITIAL STATE

This section discusses profiles of the velocity components and their fluctuations and of the particle volume fraction, in the initial part of the experiments before the instability has occurred.

A. Longitudinal velocity profile

The transverse profile of the mean longitudinal velocity is computed by first dividing the gap H into bins of width ∆y = H/n (n = 128); the x-component v x of the velocity of the particles inside each bin is then averaged to obtain an instantaneous mean velocity profile For dilute suspensions, the value of V x deduced from particle velocity measurements agrees with the superficial velocity V 0 . For high volume fractions (ϕ ≳ 20%) however, we observe discrepancies between these two values, together with a large dispersion in the measured V x .

For ϕ = 40%, there is a ∼ 20% difference between the maximum and minimum measured values of V x . This may be due to random variations of the distribution of the particles at the beginning of each experiment. Such variations may induce inhomogeneities in the volume fraction and longitudinal flow velocity across the width W . Therefore, in order to compare results from different experiments, we normalize all velocities by the reference value FIG. 3. Longitudinal velocity profiles across the gap compared to experimental and numerical results from the literature for two mean particle volume fractions, ϕ = 30% and 40% (same experiments as in Fig. 2).

to results from previous work [START_REF] Yeo | Numerical simulations of concentrated suspensions of monodisperse particles in a poiseuille flow[END_REF][START_REF] Rashedi | Shearinduced migration and axial development of particles in channel flows of non-brownian sus-pensions[END_REF][START_REF] Lyon | An experimental study of the motion of concentrated suspensions in two-dimensional channel flow. part 1. monodisperse systems[END_REF]. Again, we observe that, for the highest volume fraction, the profiles are more blunted (the maximum normalized velocity is smaller). Although all previous studies considered here share the same trend as our results, with more blunted profiles at higher volume fractions, the quantitative values display some dispersion.

The observed discrepancies could originate in the use of different methods to prepare the suspensions and start the flow, or may be due to differences in the normalization of the curves. The same considerations apply for the following comparisons.

B. Longitudinal velocity fluctuations

In addition to the average velocity, we compute the root mean square (rms) σ Vx (y, t) = v 2

x -V 2 x (y, t) of the velocity fluctuations. Then, we compute its time average σ Vx (y) over the same set of time intervals used to compute |V x |(y). Since the velocity fluctuations are expected to be proportional to the shear rate (∼ V x /H) and to the particle diameter (d) [START_REF] Nott | Pressure-driven flow of suspensions: simulation and theory[END_REF], we present in Fig. 4 the profile of the fluctuations σ Vx (y) normalized by V x d/H. The fluctuations are smaller at the center of the gap and reach a maximum at a distance ∼ d from the walls, in the region of highest mean velocity gradient: this confirms their dependence on the local shear rate. These features are qualitatively similar to the measurements reported in Ref. [START_REF] Lyon | An experimental study of the motion of concentrated suspensions in two-dimensional channel flow. part 1. monodisperse systems[END_REF] and to the numerical simulations presented in Ref. [START_REF] Yeo | Numerical simulations of concentrated suspensions of monodisperse particles in a poiseuille flow[END_REF]. 

C. Transverse velocity fluctuations

As expected, the normalized average of the transverse velocity component is very small, V y /V x ≲ 3×10 -3 . However, the instantaneous transverse velocity of individual particles v y is not zero, due to their interactions. Like for the fluctuations of v x , we characterize those of v y by the average σ Vy (y) over early times of their root mean square v 2 y -V 2 y (y, t). This allows us to compare longitudinal and transverse velocity fluctuations measured simultaneously; this comparison had only been previously performed on numerical simulations [START_REF] Yeo | Numerical simulations of concentrated suspensions of monodisperse particles in a poiseuille flow[END_REF]. Figure 5 shows profiles of σ Vy (y) normalized by V x d/H for ϕ = 30% and 40%. Like σ Vx (y), σ Vy (y) is smallest at the center of the gap and largest near the walls, and qualitatively follows the variation of the local shear rate. Moreover, the maximum value of σ Vy (y) is higher for the largest particle volume fraction ϕ = 40% while the minimum near the center of the gap is broader. These features reflect variations of the local shear rate due to the more blunted velocity profile at ϕ = 40%. Compared to the longitudinal velocity fluctuations, the maximum of the transverse fluctuations takes place at a larger distance from the wall and its amplitude is lower. These results are in reasonable agreement with those reported in Ref. [START_REF] Yeo | Numerical simulations of concentrated suspensions of monodisperse particles in a poiseuille flow[END_REF]. In contrast, transverse velocity fluctuations larger than longitudinal velocity fluctuations were reported for numerical simulations in an unbounded simple shear flow [START_REF] Drazer | Microstructure and velocity fluctuations in sheared suspensions[END_REF].

However, the lack of side walls and the uniform shear in the simulations do not allow for a meaningful direct comparison with our results. from Ref. [START_REF] Yeo | Numerical simulations of concentrated suspensions of monodisperse particles in a poiseuille flow[END_REF]. Same experiments as in Fig. 3.

D. Correlation of transverse and longitudinal velocity fluctuations

The correlation of the longitudinal and transverse velocities can be an indicator of irreversible behavior in the pair interaction of particles, with a negative value (given a positive velocity gradient) for sheared suspensions [START_REF] Drazer | Microstructure and velocity fluctuations in sheared suspensions[END_REF]. Like the individual fluctuations (σ Vx , σ Vy ), this magnitude is also expected to grow linearly with the velocity gradient, the particle size and to grow monotonically with the volume fraction.

For each tracked particle we compute δv x δv y where δv x = v x -V x (y, t) and δv y = v y are its velocity fluctuations with respect to the instantaneous velocity profile V x (y, t) (we assume V y (y, t) ≈ 0 due to confinement). Afterwards, we follow a scheme similar to the one described in Sec. III A for averaging, first, along the length and then, in time. Since this correlation is expected to change sign with the flow reversal, we multiply by -1 the values for the second half of the oscillation, during backward motion of the suspension (V x (t) < 0); otherwise, the contributions from each half-cycle cancel out.

Figure 6 shows the results of this calculation δv x δv y normalized by (V x d/H) 2 . The correlation presents the expected tendencies: it has a sign opposite to the velocity gradient ∂V x /∂y, increases in magnitude with it (maximum near the walls, zero in the center) and increases with the volume fraction. ). In Fig. 7, the resulting profiles ϕ(y) are compared to experimental and numerical results from the literature [START_REF] Yeo | Numerical simulations of concentrated suspensions of monodisperse particles in a poiseuille flow[END_REF][START_REF] Rashedi | Shearinduced migration and axial development of particles in channel flows of non-brownian sus-pensions[END_REF][START_REF] Lyon | An experimental study of the motion of concentrated suspensions in two-dimensional channel flow. part 1. monodisperse systems[END_REF]].

In the central 20% of the gap (-0.1 ≤ y/H ≤ 0.1), the volume fractions ϕ(y) present a maximum which is higher and narrower for ϕ = 40%; in this case, the variation of ϕ(y) with y is similar to that reported by Yeo and Maxey [START_REF] Yeo | Numerical simulations of concentrated suspensions of monodisperse particles in a poiseuille flow[END_REF] and Rashedi et al. [START_REF] Rashedi | Shearinduced migration and axial development of particles in channel flows of non-brownian sus-pensions[END_REF]. These results are consistent with a shear-induced migration of the particles toward the gap center that takes place when the cell is filled by the suspension before each experiment [39] 

IV. INSTABILITY AND TRANSVERSE FLOW

A. Influence of the instability on particle trajectories is marked by the emergence and growth of significantly larger transverse oscillations of the particle along y, with a period equal to that of the main flow. For this specific particle, Fig. 8(b) shows that, on average, v y > 0 for V x (t) < 0 and v y < 0 for V x (t) > 0, after the onset of the instability. However, the temporal variation of v y differs from that of v x as shown by the shape of cycles 15 and 21 and the increasing transverse separation between the two half cycles in Fig. 8(a). 

B. Structure of the transverse velocity field

To obtain information on the variation of the transverse velocity along the cell length, we calculated the instantaneous profile V center y (x, t) of its average in a central band (-0.1 ≤ y/H ≤ 0.1); this is analogous to the computation of longitudinal velocity profiles across the gap. The resulting normalized velocity V center y (x, t)/V x is presented in a spatiotemporal diagram in Fig. 9. No clear periodic structure is visible before t/T ∼ 9. At longer times, a "herringbone-like" pattern can be observed, in which V center y changes sign periodically

(alternate blue and red colors in Fig. 9) both spatially (wavelength λ/H ∼ 3.5) and in time (period T ). The zigzag geometry of the pattern reflects the fact that the spatially periodic structure of the transversal velocity follows the longitudinal oscillations of the suspension.

In order to compute the time-averaged transverse velocity component along both the longitudinal and transverse directions, we used a reference frame following the longitudinal oscillation of the particles. The coordinate x(t) of a given particle is replaced by the estimated material coordinate x 0 corresponding to its position at t = 0:

x 0 = x(t) - t 0 V x (y(u), u) du. (1) 
At a given time, each detected particle is characterized by its coordinates x 0 and y and by its calculated velocity components v x and v y . Using the same binning procedure as before but in the (x 0 , y)-plane and averaging in time during half periods with the same direction of the main flow, we obtain the transverse velocity fields V + y (x 0 , y) and V - y (x 0 , y), corresponding to averages obtained during the forward (V x (t) > 0) and backward (V x (t) < 0) motion of the suspension, respectively. These averages are presented as color maps in Fig. 10.

The upper (y > 0) and lower (y < 0) halves of the maps correspond to V + y (x 0 , y)/V x and V - y (x 0 , y)/V x respectively (both maps are symmetric with respect to y = 0). Note that the variations displayed in Fig. 10 correspond only to the contribution of the instability; that of the random velocity fluctuations is essentially eliminated by averaging over time.

During the first oscillation cycles (Fig. 10(a)), one observes only a disordered pattern of velocity variations in the maps, confirming that the particle velocity is parallel to the main flow, except for random fluctuations. After the instability has developed (Fig. 10(b)), both V + y (x 0 , y) and V - y (x 0 , y) vary periodically with x 0 . The magnitude of the transverse velocity is smaller near the walls, as shown by the lighter colors of the map in this region. The periodic variation along x is present in both sets V + y (x 0 , y) and V - y (x 0 , y) but with opposite signs, as seen by comparing the two halves in Fig. 10(b).

In order to compare the present instability to that observed previously [START_REF] Roht | Stripes instability of an oscillating non-brownian iso-dense suspension of spheres[END_REF], we prepared a suspension of PMMA particles without matching the optical index of the liquid to make 

V y /V x V x (t) > 0 V x (t) < 0 FIG. 10
. Maps in the (x 0 , y)-plane of the normalized transverse velocities components (color scale)

V + y (x 0 , y)/V x (upper half) and V - y (x 0 , y)/V x (lower half), averaged over two sets of half periods. them visible; the same cell as before is now illuminated uniformly from behind the (x, z)plane of its width and length in order to map light transmission. Periodic stripes of the same type as those presented in Ref. [START_REF] Roht | Stripes instability of an oscillating non-brownian iso-dense suspension of spheres[END_REF] are observed for similar amplitudes and periods of the flow oscillations. In both cases, these structures follows the oscillations of the main flow and their wavelength is the same as that of the transverse velocity field shown above within experimental uncertainty. This confirms that the results presented in the present work correspond to the same instability as that reported in Ref. [START_REF] Roht | Stripes instability of an oscillating non-brownian iso-dense suspension of spheres[END_REF].

V. DYNAMICS OF THE GROWTH OF THE INSTABILITY A. Time dependence of the transverse velocity

The variation of the normalized rms of the transverse velocity fluctuations σ Vy (y, t)/V x with time and across the gap is presented in the spatiotemporal diagram of Fig. 11. We use σ Vy instead of directly V y which, as mentioned in Sec. IV B, has a very small average value along x. There is a sharp increase of σ Vy (y, t)/V x in the center of the gap (-0.15 ≲ y/H ≲ 0.15) for t/T ∼ 9 as the instability develops and a peak value is reached for t/T ∼ 15 (black curve in Fig. 11). We note that the magnitude of σ Vy (y, t)/V x is initially (t/T ≲ 5 in this experiment) small in this central region, as shown before in Fig. 5. In contrast, closer to the walls (|y/H| ∼ 0.4), the magnitude of the fluctuations is larger and not significantly influenced by the development of the instability, as shown by the constant color shade: in this region, σ Vy (y, t) is mostly due to random velocity fluctuations. Globally, σ Vy (y, t) includes the effect of both the periodic instability and the random velocity fluctuations; in addition, it does not provide information on the spatial periodicity of the transverse velocity. A more detailed characterization of the instability, that is also less affected by the random velocity fluctuations, is provided by the autocorrelation along the flow direction of the instantaneous transverse velocity V center y (x, t) calculated in Sec. IV B,

F Vy (δx, t) = V center y (x, t) V center y (x -δx, t) dx. (2) 
The spatiotemporal diagram of Fig. 12 The curves start at a lower relative value (compared to their maximum) than, for example, the variation of σ Vy /V x in Fig. 11: this confirms the expectation of a smaller influence of the non-periodic random velocity fluctuations on the autocorrelation peaks and of a response that is more specific to the instability. For all curves, the peak magnitude rises toward a first maximum and, then, drops slightly before becoming nearly constant. This maximum and the time at which it is reached vary significantly with A 0 /H as discussed below. The presence of such a maximum may reflect a redistribution of the particles in the gap induced by the transverse flow after the development of the instability.

The five curves in Fig. 12(b) versus A 0 /H correspond to experiments where A 0 = V 0 T /2 varies while keeping the same flow rate, so that the Reynolds number remains constant (Re = 0.2). We compare then, in Fig. 13, experiments corresponding to three different Reynolds numbers spanning four decades, Re = 4 × 10 -5 , 5 × 10 -2 and 0.4, but within a narrow range of amplitudes (3.6 ≤ A 0 /H ≤ 4.6). This was achieved by using fluids of different viscosities (µ 0 = 7.6 mPa.s and 3.2 Pa.s) and varying the flow rate Q 0 . The three variations of the autocorrelation peak with t/T were almost identical, suggesting that inertia does not influence the development of the instability at the low Reynolds numbers used here (Re ≤ 0.4). 

B. Characteristic growth rate

In the following, we characterize the growth rate of the instability by the time t 50 at which the first autocorrelation peak reaches half its maximum amplitude. This point is marked by a black dot in the curves shown in Figs. 12(b) and 13. The corresponding growth rate is then 1/t 50 and we will use T /t 50 as its dimensionless form. Alternatively, the curves were fitted with exponential functions before their increase levels off, but the values of the corresponding characteristic times were more dispersed. We can therefore suggest the following dependence of the dimensionless growth rate:

t 50 = f (ϕ) d H 2 A 0 H , (3) 
where f (ϕ) is a dimensionless function to be determined. Since A 0 /H = V 0 T /(2H), the growth rate satisfies:

s 50 = 1 t 50 = 1 6 f (ϕ) γ d H 2 (4) 
where γ = 3V 0 /H is the average shear rate for Poiseuille flow.

VI. DISCUSSION OF THE RESULTS

We now seek to account for expression (4) of the characteristic time t 50 . As shown above, the comparison of experiments at different Reynolds numbers demonstrates that inertia is not a relevant parameter. Therefore the characteristic time scale should be associated to the Shear-Induced Migration (SIM) of the particles.

For determining the characteristic time τ SIM and the corresponding induction length L SIM for achieving segregation by SIM, we estimate first the corresponding diffusion coefficient D SIM by means of the relation from Ref. [START_REF] Leighton | The shear-induced migration of particles in concentrated suspensions[END_REF]:

D SIM (ϕ) = g(ϕ) γ (d/2) 2 . (5) 
In the present geometry, the average shear rate γ is taken equal to the value 3V 0 /H for Poiseuille flows and the dimensionless function g(ϕ) is given by [START_REF] Lyon | An experimental study of the motion of concentrated suspensions in two-dimensional channel flow. part 1. monodisperse systems[END_REF]40]:

g(ϕ) = 1 3 ϕ 2 (1 + 1 2 e 8.8ϕ ). (6) 
The characteristic time for diffusion across each half of the gap thickness is then [START_REF] Nott | Pressure-driven flow of suspensions: simulation and theory[END_REF]:

τ SIM = (H/2) 2 /(4D SIM ). (7) 
Eq. 7 allows us to estimate a dimensionless induction length parallel to the flow L SIM /H = V 0 τ SIM /H which satisfies then:

L SIM H = 1 12g(ϕ) H d 2 . ( 8 
)
For the present experiments with H = 1 mm, D = 40 µm and ϕ = 40% gives L SIM ∼ 55 mm.

Taking into account Eq. 6, it is clear that L SIM is even larger for lower volume fractions.

Therefore, the characteristic induction length is at least of the same order of magnitude as the typical distance from the cell inlet to the observed location (∼ 100 mm). This implies that large travel lengths may be necessary to reach equilibrium volume fraction profiles, particularly at low volume fractions. In the case of a steady flow in a very long channel, the experimental results from Ref. [START_REF] Rashedi | Shearinduced migration and axial development of particles in channel flows of non-brownian sus-pensions[END_REF] give: L SIM /H ∼ 1000 for ϕ = 40%, H = 2 mm, d = 80 µm.

We compare below the dimensionless growth rate T /τ 50 of the instability to the corresponding ratio T /τ SIM . Then, computing τ SIM from Eq. 7 and using the relations: γ = 3V 0 /H and A 0 = V 0 T /2, one obtains the expression:

T τ SIM = 24 g(ϕ) A 0 H d H 2 . (9) 
The ratio of times T /τ SIM is actually equal to the ratio of distances 2A 0 /L SIM and is always ≲ 0.2 in the present experiments.

The equation above predicts a linear increase of T /τ SIM with the normalized oscillation amplitude A 0 /H, observed in the experiments shown in Figs. 14. It also predicts a quadratic dependence on the particle size d. In Fig. 15(a), we plot (T /t 50 ) / [24g(ϕ)(d/H) 2 ] as a function of A 0 /H in order to check the validity of Eq. 9. All the experimental curves collapse indeed onto the same universal curve close to the diagonal A 0 /H indicated by a dashed black line. However, several of the curves present a threshold for A 0 /H ∼ 1, as also observed in Fig. 14. This might be due to a transition from a reversible (no evolution of the system from period to period) to an irreversible oscillation regime [START_REF] Pine | Chaos and threshold for irreversibility in sheared suspensions[END_REF]41]. In order to show the influence of the volume fraction ϕ on the growth rate, in Fig. 15(b) we plot the function f (ϕ) from Eq. (3), computed as the product of the slopes of the linear fits shown in Fig. 14 by (H/d) 2 . The corresponding prefactor for T /τ SIM is 24 g(ϕ): it is estimated by means of Eq. ( 6) and plotted for comparison in Fig. 15(b) as a dashed line.

We observe a fast increase of both variables with ϕ and their similar values.

The dimensionless growth rate T /t 50 increases linearly with the normalized oscillation amplitude A 0 /H for A 0 /H < 5; for larger values of A 0 /H the growth rate remains approximately constant. These observations suggest that the growth of the transverse velocities results from the repetition of a process taking place after each flow reversal and active up to a finite travel distance.

VII. CONCLUSION

We investigated the oscillatory flow of neutrally buoyant, non-Brownian suspensions in Hele-Shaw cells. Tracking a small fraction of all particles in a plane parallel to the main flow and the gap, we quantitatively determine particle velocity components parallel and transverse to the mean flow and estimate particle volume fraction profiles.

Results obtained in the initial state, before the instability appears, qualitatively agree with previous results for flow through narrow channels [START_REF] Rashedi | Shearinduced migration and axial development of particles in channel flows of non-brownian sus-pensions[END_REF][START_REF] Lyon | An experimental study of the motion of concentrated suspensions in two-dimensional channel flow. part 1. monodisperse systems[END_REF]. Following the initial injection of the suspension into the cell, we observe a shear-induced migration of particles towards the center and blunted velocity profiles. Moreover, the measured velocity fluctuations in both directions across the gap (longitudinal and transverse) are in good agreement with the numerical results from Ref. [START_REF] Yeo | Numerical simulations of concentrated suspensions of monodisperse particles in a poiseuille flow[END_REF].

At longer times, the suspension develops an instability marked by the occurrence of a nonzero velocity transverse to the mean flow and perpendicular to the gap walls. This component is periodic both with time and distance along the mean flow, giving the instability the form of stripes transverse to the oscillation. This instability has been observed consistently for 20% ≤ ϕ ≤ 40%. The amplitude of this periodic structure, characterized by the first peak of the spatial autocorrelation of the transverse velocity, increases with time until it reaches a maximum value and, then, decreases slightly.

We estimate a growth rate from the inverse of the number of cycles before reaching half the maximum amplitude (T /t 50 ). This growth rate varies linearly with the oscillation amplitude A 0 /H, with a threshold at A 0 /H ∼ 1 and a saturation at large oscillation amplitudes;

the threshold may reflect a reversible motion of the particles at small amplitudes A 0 /H.

Focusing our attention on the linear region, we observe that the slopes increase with the volume fraction ϕ and decrease with the gap thickness H. Ruling out the influence of inertia, we show that a growth rate estimated from the shear-induced transport across the gap has a similar dependence on the volume fraction and the gap thickness as the measured T /t 50 values.

Finally, this instability has not been observed in circular cylindrical tubes for analogous experimental conditions [START_REF] Snook | Dynamics of shear-induced migration of spherical particles in oscillatory pipe flow[END_REF]. Therefore, the rectangular cross section of our cells might be required for observing the instability due to specific features in that geometry such as secondary flows [START_REF] Ramachandran | The influence of secondary flows induced by normal stress differences on the shear-induced migration of particles in concentrated suspensions[END_REF][START_REF] Zrehen | Demonstration of secondary currents in the pressure-driven flow of a concentrated suspension through a square conduit[END_REF]. This issue deserves further investigation.
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the gap (Fig. 6b in [START_REF] Roht | Stripes instability of an oscillating non-brownian iso-dense suspension of spheres[END_REF]) suggested incorrectly a low particle volume fraction zone: this was due to a parasitic fluorescence eliminated in the present work. This bright band corresponded actually to the peak of particle volume fraction shown in Fig. 7. Note that this observation of a higher particle volume fraction in the center of the gap invalidates possible explanations of the instability that assume a larger fraction of particles near the walls [START_REF] Roht | Stripes instability of an oscillating non-brownian iso-dense suspension of spheres[END_REF].
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FIG. 1 .

 1 FIG. 1. (a) Schematic view of the experimental set-up. Cell dimensions: H = 1 ± 0.05 mm, W = 11 ± 0.5 mm, L = 200 mm. (b) Schematic variation of fluid displacement induced by the square-wave flow oscillations. (c) Small region (1 mm × 2 mm) of a snapshot of the fluorescent particles. The arrows indicate the computed velocities of the tracked particles.

V

  x (y, t). Lower case letters are used for velocity components of individual particles, capital letters for averages. When needed, a time averaged profile |V x |(y) is obtained by averaging the absolute value |V x |(y, t) over the 4 or 5 first periods T when the instability is not yet present; in each period, only time lapses during which |V x |(y, t) is approximately constant (indicated in red in Fig. 2(a)) are included. The reference value V x of the longitudinalvelocity is taken to be the average of |V x |(y) over y. Moreover, the average over y of the instantaneous velocity profiles V x (y, t) is referred to as V x (t) and changes sign with the main flow (the longitudinal oscillations imposed by the pump).

FIG. 2 .

 2 FIG. 2. (a) Experimental time variation of the maximum velocity V max x (t) at y/H = 0 for a very dilute suspension (ϕ < 1%) and A 0 /H = 4.6. The red parts of the curve indicate time intervals with stationary flow. (b) Transverse (half) profiles of |V x |(y)/V x . Same flow parameters as in Fig. 2(a), but ϕ ranges from 20% to 40%. Dashed line: parabolic Poiseuille profile.

V

  x determined experimentally. Normalized velocity profiles |V x |(y)/V x are shown in Fig. 2(b) for different volume fractions.At the lowest volume fraction (ϕ = 20%, blue line in Fig.2(b)), the experimental velocity profile at early times is close to a Poiseuille profile (dashed line in Fig.2(b)): the ratio |V x |(y)/V x is then approximately 1.5 at the center of the gap (y = 0). As ϕ increases from 20 to 40%, the profiles becomes more blunted, in agreement with previous work on shear-induced migration[START_REF] Yeo | Numerical simulations of concentrated suspensions of monodisperse particles in a poiseuille flow[END_REF][START_REF] Snook | Dynamics of shear-induced migration of spherical particles in oscillatory pipe flow[END_REF][START_REF] Rashedi | Shearinduced migration and axial development of particles in channel flows of non-brownian sus-pensions[END_REF][START_REF] Lyon | An experimental study of the motion of concentrated suspensions in two-dimensional channel flow. part 1. monodisperse systems[END_REF].

Figure 3

 3 Figure 3 compares normalized velocity profiles obtained for two mean volumes fractions

20 FIG. 4 .

 204 FIG. 4. Normalized longitudinal velocity fluctuations across the gap compared to experimental and numerical results from the literature. Same experiments as in Fig. 3.

20 FIG. 5 .

 205 FIG. 5. Normalized rms of the transverse velocity across the gap compared to numerical results

= 25 FIG. 6 .Fig. 3 .

 2563 FIG. 6. Correlation of transverse and longitudinal velocity fluctuations. Same experiments as in Fig. 3.

24 0 24 FIG. 7 .

 24247 FIG. 7. Profile ϕ(y) across gap of the local particle volume fraction estimated by counting of tagged particles in the initial flow state compared to experimental and numerical results from the literature.

Figure 8

 8 Figure8shows the trajectory an individual particle located in the center part of the gap during the development of the instability. It is clear that the amplitude of the oscillations of the position of the particle along the flow (coordinate x) remains of the same order of magnitude even as the instability develops. Note that this amplitude is more than 50 times larger than the corresponding variations of the coordinate y, in qualitative agreement with the magnitude of the velocity fluctuations presented in Fig.5. Before the development of the instability, the transverse displacements are small and the particle follows roughly the same path in each half period (see cycle 2 in Fig.8(a)) with a small global drift (see the evolution of the transverse position in time in Fig.8(b)). The development of the instability (t/T ∼ 9)

FIG. 8 .

 8 FIG. 8. (a) Trajectories the (x, y)-plane of one particle located in the center of the gap during three oscillation cycles in the initial state (cycle 2) and after (cycles 15 and 21) the onset of the instability. (b) Time variation of the transverse position y/H. Dashed vertical line: approximate onset of the instability. Orange: forward flow (V x (t) > 0), blue: reverse flow (V x (t) < 0). ϕ = 35%, A 0 /H = 4.6.

FIG. 9 .

 9 FIG. 9. Spatiotemporal diagram of the normalized transverse velocity V center y

  (a) Average over the first four cycles of oscillation. (b) Average over 58 oscillations for which the instability is present (cycles 17 -75). Same experiment as in Fig. 9 (ϕ = 35%, A 0 /H = 4.6).

FIG. 11 .

 11 FIG.11. Variation as a function of y and t of the normalized rms of the transverse velocity σ Vy /V x (color scale) for ϕ = 35% and A 0 /H = 4.6 (same experiment as in Fig.9). Each column corresponds to the average over one cycle. Black curve: time variation of the spatial average of σ Vy /V x over the interval -0.1 < y/H < 0.1 (same vertical axis as for the color scale).

  (a) shows alternate zones of positive and negative values of F Vy (color scale) visible only after the instability has developed. The separation between two maxima of the autocorrelation corresponds to the normalized wavelength λ/H of the transverse velocity field (the black line in the figure marks the first maximum). The number and spacings of the bands are not exactly constant with time and rearrangements occur: in the figure, for instance, a band disappears at δx/H ∼ 6 for t/T ∼ 13. The dependence of λ/H on the period and amplitude of the oscillation and on the gap H is discussed in detail in Ref.[START_REF] Roht | Stripes instability of an oscillating non-brownian iso-dense suspension of spheres[END_REF].

6 FIG. 12 .

 612 FIG. 12. (a) Spatiotemporal diagram of the normalized autocorrelation function F Vy (δx, t)/V x 2 of V center y

Figure 12 (

 12 Figure 12(b) shows the time evolution of the normalized magnitude of the first autocorrelation peak F peak Vy (t)/V x for different values of the amplitude A 0 /H of the flow oscillation. The curves start at a lower relative value (compared to their maximum) than, for example,

Re = 4 × 5 FIG. 13 .

 4513 FIG. 13. Variations of the normalized first autocorrelation peak with t/T for three different Reynolds numbers over a range of four decades. Black dots indicate time t 50 /T , corresponding to half the maximum value of the correlation peak amplitude.

Figure 14 (FIG. 14 .

 1414 Figure 14(a) shows the variation of T /t 50 with the oscillation amplitude A 0 /H for a constant gap H but different volume fractions. Figure 14(b) shows instead this same variation for two different gaps H but the same volume fraction ϕ = 40%. In both Figs. 14(a) and (b), T /t 50 varies approximately linearly with the amplitude A 0 /H, with a threshold of the order of A 0 /H ≃ 1 and a saturation at large amplitudes. The slopes obtained from a linear fit of the data increase with ϕ and decrease with H by a factor of 4 when H doubles (compatible

FIG. 15 .

 15 FIG. 15. (a) Plots of (T /t 50 ) / [24g(ϕ)(d/H) 2 ] as a function of A 0 /H for different volume fractions ϕ and gaps H/d. The dashed line of slope 1 is a plot of A 0 /H. (b) Plot of the estimation of f (ϕ) from the data in Fig. (a) and of 24g(ϕ) (dashed curve) versus ϕ.
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