
HAL Id: hal-04445164
https://hal.science/hal-04445164

Submitted on 7 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fairness-Privacy Issue in Adaptation of ZEXE Protocol
for Exchange Between Untrusted Parties

Victor Languille, David Menga, Gerard Memmi

To cite this version:
Victor Languille, David Menga, Gerard Memmi. Fairness-Privacy Issue in Adaptation of ZEXE Pro-
tocol for Exchange Between Untrusted Parties. Telecom Paris; EdF; Institut polytechnique de Paris.
2024. �hal-04445164�

https://hal.science/hal-04445164
https://hal.archives-ouvertes.fr

Fairness-Privacy Issue in Adaptation of ZEXE
Protocol for Exchange Between Untrusted

Parties

Victor Languille1,2, David Menga1, and Gerard Memmi2

1 EDF R&D Saclay
2 LTCI, Telecom-Paris, Institut polytechnique de Paris

Abstract. We present the main features of ZEXE, a privacy-preserving
system extending the Zerocash protocol. Then, through a realistic use
case, we show how a slight improvement can make this system more
effective. We point out some of its potential vulnerability in term of
anonymity followed by methods to overcome them.

Keywords : Blockchain, Privacy, Distributed Ledger Technology (DLT),
Zcash, ZEXE, ZKP, NFT.

1 Introduction

The Bitcoin protocol was designed circa 2008 [Nak08] aiming at creating a cur-
rency functioning without any central authority. Bitcoin has been intentionally
designed in such a way that anyone accessing the underlying public ledger gets
knowledge of the content and the whole history of transactions of any partici-
pant. Bitcoin is known to be pseudonymous and this is a major drawback with
regard to privacy pointed out in many papers (see [KYMM18] for a list of ci-
tations). Addressing privacy issues is one of the key recommendations made to
the French Administration in [DDJ+21] and is at the core motivation of this
research.

The Zerocash protocol was proposed in 2014 [BSCG+14], in order to reme-
diate the lack of privacy in Bitcoin, while also functioning on a decentralized
and publicly accessible ledger (known as Distributed Ledger Technology (DLT)).
Anonymity in Zcash was achieved through a notion of ”shielded pool”, a mech-
anism analyzed in [KYMM18]. This protocol recently improved in [HBHW22] is
now used at the core of the privacy-preserving cryptocurrency Zcash.

During the same period, the launch of Ethereum blockchain in 2015 3 inte-
grated the notion of smartcontract 4, a kind of program executed on the decen-
tralised ledger widely generalizing simple money transfers.

In 2018, the ZEXE protocol [BCG+20], combining both innovations, was pro-
posed to build privacy-preserving systems for execution of programs on a public

3 https://ethereum.org/en/whitepaper/
4 Notion introduced by N. Szabo circa 1994 [SJZG18].

2 Victor Languille1,2, David Menga1, and Gerard Memmi2

ledger, hiding not only the program’s inputs, but also the kind of computation
which constitutes them.

The ZEXE protocol relies on a system of records based on Non-interactive
Zero-knowledge Proofs [GMR89]. Roughly speaking, a Zero-Knowledge Proof is
a cryptographic tool allowing a Prover to prove to a Verifier, for a given program
P and a given output y, that he knows an input x such that P(x) = y, without
revealing anything about x. Furthermore, it is expected that the verification be
performed much more quickly than the computation of P.

1.1 Outline

In this report, we first briefly present the ZEXE protocol and its main features
Section 2. Then in Section 3, through the use-case of purchase and sale agree-
ment, we explain how an alteration of the original protocol can overcome some
security issues regarding the weak − liveness property. Finally Section 4, we
point out some privacy issue that can arise in case where multi-party computa-
tion techniques are utilized together with the ZEXE protocol. We conclude by
calling for a new specific cryptographic primitive allowing mutually distrustful
parties to share an obfuscated append-only list guarantying no repetition.

2 ZEXE

In this section, we present the functioning of ZEXE and a payment scheme
built from it that we will use in the following sections. We tried to make it as
concise as possible, sometimes at the cost of completeness. For a more in-depth
presentation we refer to the original ZEXE paper, which we quote freely and
from which we use the figures.

2.1 General Presentation

The protocol Zerocash is not just adding a privacy feature to the bitcoin proto-
col but works in a fundamentally different way from the bitcoin one. To make a
loose analogy, bitcoin works like a digital currency where each user has an ac-
count and is able to send and receive tokens with other users’ accounts through
public transactions. Zerocash works more like a fungible money, where each user
owns several real coins or bills and exchanges them in a potentially anonymous
manner.

The ZEXE protocol widely extends the Zerocash protocol, building a decen-
tralised private computation (DCP) scheme. Such scheme allows different mutu-
ally distrustful users to share an append-only ledger used to attest the execution
of offline computations in a private way. In such a context, participants individ-
ually hold some (partial) states of processes and can update them and transmit
their ownership following some specified rules. The different processes are them-
selves private in the sense that the shared ledger doesn’t allow observers telling

Title Suppressed Due to Excessive Length 3

what process is performed. Moreover, interaction between different processes is
permitted if the rule specifying the allowed state’s transitions of all involved
processes are compatible.

The Zerocash protocol can then be considered as a particular case of the
ZEXE protocol where the process is publicly known: its state corresponds to a
certain distribution of coins between users, and its transition rules must check
the balance between created and consumed coins.

2.2 ZEXE Functioning

Briefly, the basic idea is that the ownership of a (partial) state of a process by
a user u is represented on the ledger by a commitment biding together a public
address associated to u and the representation of this state. The transition from
one state to another one, potentially owned by a different user, is realised by
revealing a function of those information and the private address of u, with
a zero-knowledge proof ensuring that those information indeed corresponds to
the previous appended commitment, while keeping them private. This scheme
prevents the ownership of a state to be used twice to produce another one ; in
particular, this solves the double spending issue when ZEXE is used as Zerocash
(i.e. as a simple payment scheme).

The specification of the rules allowing to pass from one state to another will
be given by a couple of Boolean valued functions: a birth and a death predicates,
associated to any state, and specifying the rule by which it can be created from
other ones and serve for the creation of them.

In addition to a trusted append-only public ledger, which can typically be
realised as blockchain or any other kind of distributed ledger, ZEXE protocol
needs also cryptographic building blocks and associated public parameters, which
have to be specified and trusted.

Cryptographic Building Blocks and Public Parameters:

– Security parameter λ, determined by the desired level of security and the
supposed computational power of a potential attacker, and on which depends
implicitly the characteristics of the three following primitives.

– Pseudo-Random Function (PRF) families PRFadd
x () and PRFsn

x (), where x
denotes a random seed. PRFsn

x () is required to be collision resistant.
– Commitment scheme COMx(), where x denotes a random seed.
– Zk-SNARK 5, protocol in which, given a program P and an output y, a Prover

produces a short proof π convincing a Verifier that he knows an input x such
that P(x) = y, without revealing any information about x to the Verifier.
We will sometimes use the more general term ”Zero-Knowledge Proof” in-
stead of the more specific one ”Zk-SNARK”.

– Common reference string CRS, public parameter used to compute Zk-SNARK
proofs and verify them.

5 Zero-knowledge Succint Non-interactive Argument of Knowledge

4 Victor Languille1,2, David Menga1, and Gerard Memmi2

We refer to [Gol01] for the precise definition of pseudo-random function fam-
ilies and commitment scheme, and to [BCCT12] for the precise definition of
zk-SNARKs.

As in Zerocash, and even as in Bitcoin, allowing different users to manage
their asset without any necessity to delegate it to a trusted central authority
implies that, as trade-off, each user has to manage a kind of secret information
linked to his public identity.

Setup: Each user u generates at least one pair of public/private addresses
(apku, asku).

The private address asku is generated by the user by sampling a random
number whose size depends on the security parameter λ.

The public address apku is derived from this private address via a pseudo-
random function PRFadd: u computes his public address from his private one
applying apku = PRFadd

asku
(0) such that no one can retrieve asku from the knowl-

edge of apku.
6

The user u provides his public address to any other users likely to interact
with him, and he keeps his private address secret.

A user can generate as many addresses as he wants, if he wants to appear
under different identities with regard to the different users with whom he inter-
acts or the nature of its interactions.

To a public address of a user, will be bound some units of data representing
the states of processes he can manipulate via is private address.

2.3 Records

Ownership of state of processes is embodied by data sets called records. Among
the data constituting a record, some are private, and some other will appear on
the public ledger at some point. Each user u owns records containing certain
states of processes and a specification of the rules by which this state have been
attained, and the ones by which that it can change.

Change of state and transfer of ownership from a user u to a user u′ is done
by spending records, thanks to the knowledge of private data of this record and
of the private address asku, and creating a new record for u′, thanks to his public
address apk′u, as we will explain for the next session. For now, let us specify more
precisely what are the data constituting a record.

A record r = (payload, apku, ρ, s, cm, sn) consists in the list of the following
data:

– A payload : payload representing the state of a certain process
– A birth predicate: Φb which has to be satisfied when the record is created

6 Note a first difference with Bitcoin here. User doesn’t have couple of public/private
signature keys, but only a couple of public/private addresses.

Title Suppressed Due to Excessive Length 5

– A death predicate: Φd which has to be satisfied when the record is consumed

– The public address of its owner u: apku
– A secret random generator nonce: ρ

– A randomness number used in commitment scheme: s

– A commitment : cm computed at the creation of the record, and binding
together the different information constituting the records

– A serial number : sn computed at the consumption of the record, and only
computable with the knowledge of the secret address asku of the record’s
owner.

Fig. 1. ZEXE: record commitment constitution, from [BCG+20]

Among these data, only the commitment cm and the serial number sn will
appear on the ledger at some point ; payload, owner address, randomness number
s and secret generator will be kept private. As mentioned, the commitment cm
is added when the record is created, and the serial number sn is added when the
record is spent. Thus, the ledger maintains both the list of all added commit-
ments, that we will write ComList, and a list of all added serial numbers SpentList.

For efficiency reasons, the list ComList is maintained as a Merkle tree using
a collision resistant hash function. The leaves of the tree are constituted with
the added commitments. We note rt(ComList) the root of this Merkle tree. The
depth dtree of the Merkle tree is hardcoded and corresponds to the maximum
number of records supported by the ledger.

6 Victor Languille1,2, David Menga1, and Gerard Memmi2

As shown in Figure 1, cm and sn are computed from the private data of
the record applying the commitment scheme COMx() and the Pseudo-Random
Functions PRFsn

x () respectively in the following way:
sn = PRFsn

asku
(ρ)

cm = COMs(payload||Φb||Φd||apku||ρ)
As we can see, sn and cm of a same record are linked by the fact that they are

both computed from the same seed ρ. However, this not directly visible from the
reading of the ledger. Moreover, note that computing the commitment cm only
requires a public address apku, while computing the serial number sn requires
the corresponding private address asku. This allows one participant u to create
a record for another participant u′, such that u′ will be able to spend it but not u.

Those change of owner’s state, as well as the transition between states is
done through transactions.

2.4 Transactions

A transaction betweenm not necessarily distinct (and in practice often identical)
senders [ui]

m
1 and n not necessarily distinct (and in practice often identical)

receivers [u′
j]
n
1 consists in the data list tx = ([snoldi]m1 , [cmnew

j]m1 , π) where

– The m serial numbers snoldi corresponds to m old consumed records roldi

owned by ui

– The n commitments cmnew
j corresponds to n new created records rnewj owned

by u′
j .

– π is a Zero-Knowledge Proof that the records are actually well computed, and
that the respective death predicates of each roldi records and birth predicates
of each rnewj records are verified. Such birth and death predicates are Boolean
valued functions taking in argument the transaction’s local data constituted
by all the records attributes (i.e., payload, Φb, Φd, apku, cm, sn) present in
the transaction, and optionally auxiliary inputs.

More precisely, π is a zero-knowledge proof of the NP -statement with the
following form:

Instance: I = (ComList, [snoldi]m1 , [cmnew
j]n1)

Witness: ([roldi]m1 , [askoldu,i]
m
1)

Statement: 1)Records are well formed, and the spent ones corresponds to
previously added ones actually spent by their owners:

∀i ∈ [1,m]
cmold

i ∈ ComList
∧ snoldi = PRFsn

askoldu,1
(ρi)

∧ cmold
i = COMroldi

(payloadoldi ||Φold
b,i ||Φold

d,i ||apkoldu,i ||ρoldi)

Title Suppressed Due to Excessive Length 7

∧ apkoldu,i = PRFadd
askoldu,i

(0)

∧ cmnew
j = COMrnewj

(payloadnewj ||Φnew
b,j ||Φnew

d,j ||apknewu,j ||ρnewj)

2) Death predicates of consumed records and birth predicates of created ones
are verified:
∀i ∈ [1,m],∀j ∈ [1, n], Φd,i = Φb,j = 1

Remark: As specified in the ZEXE original paper, transaction’s local data
does not contains the records’ randomness generator s nor random serial number
generator ρ, so they are not taken in argument by records birth and death pred-
icates. We will explain in later section why it is useful to includes those date in
the predicates arguments to avoid some attacks threatening the weak− liveness
property of certain exchange protocols.

The Ledger maintainer(s) accepts the transaction tx and append it to the
ledger if the following conditions are met:

– The proof π is valid.
– There are no duplicate serial number, both within the transaction itself, that

is snoldi ̸= snoldj for all i ̸= j, and regarding the current serial number list,

that is snoldi /∈ SpentList.

As we can see, a transaction is almost completely anonymous. Reading the
register does not allow to determine either its senders or its receivers; nor does
it allow to determine the type(s) of processes whose state has been changed.
However, since the lists [cmold

i]n1 and [snnewj]m1 are part of the transaction, the
number of records created and consumed are revealed. To counter this, we add
the possibility of including dummy records in transactions, which do not con-
tain a payload and which can be created and consumed from scratch. This gives
users some control over the size of the transaction which they can then make
arbitrarily large, if not arbitrarily small.

The general ZEXE framework can be used in particular to implement anony-
mous Payment Scheme, e.g anonymous cryptocurrencies.

2.5 User-Defined Token Payment Scheme

On the same ledger, several anonymous cryptocurrencies can coexist, represented
by different tokens. ZEXE allows any user u to create one or more cryptocur-
rencies, and to use those created by others, by representing in records owned by
u the tokens held by him. More precisely, we can use the following architecture,
presented in the original ZEXE paper:

The payload payload = (id,V, v, aux) of a record r of a user u specifies is
constituted by the identifier id of the type of token contained in the record, the
maximum value of the number of tokens id initially created on the ledger, v
the number of tokens id that the record r contains, and, if necessary, auxiliary

8 Victor Languille1,2, David Menga1, and Gerard Memmi2

information aux.

The record has for birth predicate Φb “Mint or Conserve” (MoC) described
Figure 2 from [BCG+20], which can be used either in the mint mode to create
a new type of token, or in the conserve mode to transfer one of the tokens of an
already existing type.

“When invoked in mint mode, MoC creates the initial supply V of the asset in,
say, a single output record, by deterministically deriving a fresh unique identifier
id for the asset (see below for how), and storing the tuple (id,V, v,⊥) in the
record’s payload. The predicate MoC also ensures that the given transaction
contains no input records or other output records (dummy records are allowed).
If MoC is invoked in mint mode in other transactions, a different identifier id is
created, ensuring that multiple assets can be distinguished even though anyone
can use MoC as the birth predicate of a record.

When invoked in conserve mode, MoC inspects all records in a transaction
whose birth predicates all equal MoC (i.e., all the transaction’s user-defined
assets) and whose asset identifiers all equal to the identifier of the current record.
For these records it ensures that no new value is created: that is, the sum of the
value across all output records is less than or equal to the sum of the value in
all input records.”

Fig. 2. ZEXE: algorithm performed by the ledger maintainers receiving a transaction,
from [BCG+20]

“Most of the lines above are self-explanatory, but for the line that derives a
fresh unique identifier in the “mint” case (Step 2c), which deserves an explana-
tion. Informally, the idea is to derive the identifier from the (globally unique)
serial numbers of records consumed in the minting transaction. In more detail,
we set the identifier to be a commitment to the serial numbers of consumed
input records”

Title Suppressed Due to Excessive Length 9

The point of deriving the identifier in this way rather than letting the user
choose it is to prevent a user from recreating tokens for an already existing iden-
tifier from scratch.

We notice, in this scheme , that all the tokens of a certain type are available
from the creation and initially all owned by their creator. In particular, there
is no mining, which is in contrast to most existing cryptocurrencies. That said,
adding some form of mining can be done by modifying the birth predicate in an
appropriate way.

Non Fungible Token (NFT) [ESES08]: A token whose initial unit value
is 1 corresponds to an NFT.

This user defined payment scheme can serve as basis to implement several
exchange protocols such as a purchase and sale agreement presented hereunder.

3 Purchase and Sale Agreement (PSA)

Property acquisition can be a complex set of transactions that requires a number
of conditions, provisions, or duties to be checked and verified before the closing
of the purchase and sale. These conditions are to be listed in a document called
Purchase and Sale Agreement (PSA) 7. In France, they are to be listed in a
similar document called “compromis de vente” 8.

3.1 Informal use case description

The transactions happen between two participants: the “buyer” and the “seller”.
In this use case for the sake of simplicity, we won’t consider other possible roles
such as a “notary”.

More specifically, let us suppose we have the following situation.
Alice owns a piece of real estate asset which she wants to sell to Bob for a

fixed price of 100, 000ν, ν being a unit of a given currency.
Under French law, Bob will have ten days to retract himself without any

penalty. Let’s call δ this delay.
Once the purchase and sale agreement is concluded and the sale contract has

been signed, Alice must reserve her property for Bob, who in turn, must put at
least a percentage of the price of the estate into escrow. Bob then has a time
limit δ during which he can choose to take back his funds and cancel the whole
transaction with no penalty. Once this time has passed, the exchange cannot
be cancelled without penalties described in the purchase and agreement and a
reversal is only possible by making another transaction by mutual agreement
between the two parties.

7 http www.bakermckenzie.comfilesUploadsDocumentsGlobal%20EMIar emi
purchasesaleagreement jul12.pdf

8 https://www.majordhom.fr/downloads/Vendeur/Modele-de-compromis-de-vente-
majordhom.pdf

10 Victor Languille1,2, David Menga1, and Gerard Memmi2

3.2 Protocol implemented with ZEXE

The architecture proposed by ZEXE makes it possible to take into account such
kind of exchanges9 either by including a smartcontract overlay of the Hash Time
Locked Contracts (HTLC) type 10 , or by simply passing an auxiliary time as
an argument to the predicates governing record creation and consumption. We’ll
be choosing this second method.

We assume that the ledger has a well-defined time stamping mechanism. For
example, we can imagine that in case where the ledger is maintained in the form
of a blockchain, the current block time stamp can be used to deliver a date.

Alice’s asset is represented as the payload of some record rA of serial num-
ber snA. Similarly, Bob’s 100, 000 tokens are represented as the payload of some
record rB of serial number snB. More precisely, we will use the User-Defined
Token Payment Scheme, based on the MoC predicate presented in Section 1.
Thus the records rA and rB have respectively for payload (idA, 1, 1,⊥) and
(ν,V, 100, 000,⊥), for birth predicate MoC, and an empty death predicate. Here
ν represents the monetary unit in which the transaction will be carried out, V
the total number of tokens of this currency available on the whole register (de-
fined at the time of the creation of this one), and idA the NFT corresponding to
Alice’s property. It is not relevant to discuss here how Bob can ensure that this
randomly generated identifier idA indeed represents Alice’s property. For exam-
ple, we can assume that there is a trusted authority that unequivocally links real
assets to their identifiers. Furthermore, since the initial value of the number of
idA tokens is 1, Bob is at least sure that there are no other copies on the register.

It is possible to implement a private purchase and sale agreement on public
ledger using only ZEXE without any additional overlay, save for the definition
and management of a global time t. To do this, we need to customize the user-
defined token payment scheme by imposing conditions on the death predicates
of the created records, as proposed in the original paper presenting ZEXE, and
by using a temporary address common to the contractors and created by them.

Let us also assume that Alice and Bob have a secure communication channel.
One of the possible protocols is the following Protocol:

1 Setup 1 Alice creates a new private address - public address pair (askC , apkC) and
sends it to Bob. Bob checks that the public address apkC is correctly
computed from the private askC . Alice and Bob thus share a common
address pair that they can both control.

2 Setup 2 Bob randomly generates an integer rand and sends the hash h = H(rand)
to Alice.
All records created afterwards share the same birth predicate MoC.

9 In fact, for the sake of simplicity, we will not consider penalties in the following, but
their is no obstacle to do so if necessary.

10 For a definition of this mechanism, see for instance:
https://corporatefinanceinstitute.com/resources/cryptocurrency/hashed-

timelock-contract-htlc/

Title Suppressed Due to Excessive Length 11

3 Record 1 Alice creates a first transaction tx1 = (snA, cmC, π1) by spending her
record rA, and by creating a new record rC , for the public address
apkC , of identical payload (idA, 1, 1,⊥), and whose death predicate ΦLock

d

stipulates that rC can be spent either by being returned to Alice, or
by being consumed in a transaction creating two records rassetC,lock and

r100000C,lock , where:

– rassetC,lock has for owner apkC , for payload (idA, 1, 1,⊥), and for death

predicate ΦExchange
d , stipulating that the record rassetC,lock must be spent

in a transaction where:
1. Either a record r′A, of null death predicate, be created for Al-

ice with whose payload is (ν,V, 100000,⊥) and a record r′B is
created for Bob whose payload is (idA, 1, 1,⊥) (exchange con-
firmed) ; or a record r′A, of death predicate null, is created for
Alice with whose payload is (idA, 1, 1,⊥) and a record r′B is
created for Bob whose payload is (ν,V, 100000,⊥) (cancelled
exchange).

2. Either the time t is greater than delta, or an rand such that
h = H(rand) is revealed.

– r100000C,lock has for owner apkC , for payload (ν,V, 100000,⊥), and for

death predicate the same ΦExchange
d

Having imposed the nullity of the death predicate of the record r′A
intended for Alice in the death predicate ΦExchange

d serves to prevent
Bob from imposing another death predicate on r′A that would allow
him to control its spending.

4 Record 1 Alice sends rC to Bob.
5 Record 2,3 Bob, after receiving rC , spends it with his record rB in a transaction

tx2 = (snC , snB , cm
asset
lock , cm100000

lock , π2), creating two records rassetC,lock and

r100000C,lock

6 Record 2,3 Bob sends rassetC,lock and r100000C,lock to Alice.

7 Record 4,5 Bob then has a time t to complete the exchange (or on the con-
trary break the exchange) by adding to the ledger a transaction
tx3 = (snasset

lock , sn100000
lock , cm′

A, cm
′
B , π3), consuming rassetC,lock and r100000C,lock ,

and creating two new records r′A and r′B , respectively for Alice and him-
self, and containing respectively 100, 000ν and asset if he has confirmed
the exchange, or conversely if he has broken the exchange.
After the same time t, Alice also gets this possibility. 11

8 If Bob (resp. Alice) is the first to have confirmed or broken the exchange,
he (she) sends the record r′A (resp r′B) to Alice (resp. Bob).

11 Modifying slightly the death predicate ΦExchange
d of rassetC,lock and r100000C,lock , we can also

impose that Alice can only confirm the transaction at the end of a time t and not
break it.

12 Victor Languille1,2, David Menga1, and Gerard Memmi2

Communication complexity:In all, in a normal execution, the exchange
requires:

– The transmission of 5 messages between Alice and Bob. 2 messages from
Alice to Bob and 3 from Bob to Alice.

– The creation of 5 records (rC , r
100000
C,lock , r

asset
C,lock, r

′
A, r

′
B). The record rC is created

by Alice, the four records r⋆C , r
dagger
C are created by Bob.

– The addition of 3 transactions to the public register. One by Alice, one by
Bob, and the last one by either one of them.

Remark:This PSA protocol works promise to sell. Symmetrically, it also can
work as a promise to purchase protocol, simply by having the seller choose rand
and and transmit H(rand) to the buyer.

Flaws: This protocol does not satisfy the weak− liveness property as define
in [HLS19], i.e. it is possible for Alice to honestly follow the protocol and to
find out that funds are indefinitely not available. This is fundamentally due to
the fact that the protocol is not indivisible (also let’s remember that roll back
are not possible in a blockchain). Indeed, Bob can attack the protocol in the
following way:

When Alice has performed her first transaction tx1 = (snA, cmC, π1), and has
sent the record rC to Bob, Bob performs the transaction tx2 = (snC, snB, cm

asset
lock , cm

100000
lock , π2)

by spending rC and rB . The protocol then requires Bob to send Alice the r100000lock

and rassetlock records thus created. However, Bob may choose not to follow the pro-
tocol from this point on, and never send r100000lock or rassetlock to Alice, thus keeping
his own funds and Alice’s property permanently locked up.

Indeed, even if the death predicates of r100000lock and rassetlock authorize Alice to
spend the records after a certain time t, and that she possesses the secret key
askC showing that she is indeed the owner of these records, and that she knows
the payloads and the birth and death predicates of the records, this is not suf-
ficient to be able to spend them in practice. In fact, it still lacks the two serials
numbers ρ100000lock , ρassetlock and the two randoms s100000lock , sassetlock generated by Bob
to compute the corresponding commitments cmasset

lock , cm
100000
lock , so that the serial

numbers snassetlock , sn
100000
lock can be computed to spend them.

Exactly the same problem arises for the final record r′A. If it is Bob who
validates/cancels the transaction, he may choose not to send it to Alice, thus
preventing her from getting her property back or accessing it if Bob has broken
the exchange (or accessing her funds if Bob has confirmed it).

But here the symmetric problem also arises. If it is Alice who validates/cancels
the transaction, she may not send r′B to Bob and prevent him from accessing his
funds.

Countermeasure:A countermeasure would be to let Alice choose the se-
rial numbers ρ100000lock , ρassetlock and the randoms s100000lock , sassetlock to build the records
r100000lock , rassetlock , so that she is sure to have control over them, and a serial number

Title Suppressed Due to Excessive Length 13

ρ′A and a random s′A to be sure to have control over the final r′A. Similarly, we
should let Bob choose the ρ′B and s′B , in case Alice creates the tx3 transaction.

Specifically, the changes to be made are as follows:

1 Setup 1 In her first message, Alice sends to Bob the serial numbers and randoms
ρ100000lock , ρassetlock , s100000lock , sassetlock , ρ′A, s

′
A, in addition to the pair (apkC , askC).

2 Setup 2 In his first message, Bob sends Alice the serial number and random ρ′B
and s′B , in addition to the random rand.

When rC is created, the previously created serial numbers and randoms ap-
pear as auxiliary data in the payload. The death predicate r100000C,lock , r

asset
C,lock, in addi-

tion to forcing the death predicates of the records r100000C,lock , r
asset
C,lock to equal rC,lock,

specifies that their respective serials numbers and random are ρ100000lock , s100000lock

and ρassetlock , sassetlock .

The death predicate ΦExchange
d

′
itself modified takes up the death predicate

ΦExchange
d , in addition to imposing that the serial numbers and the random of r′A

(resp r′B) be ρ′A, s
′
A (resp ρ′B , s

′
B).

Such a countermeasure cannot be directly implemented in the current ZEXE
protocol, because in the current implementation of the ZEXE protocol, the birth
and death predicates of the records take as arguments only the payloads, the
death and birth predicates, and the public keys of the records created and con-
sumed in a transaction.

3.3 Modification of ZEXE protocol

We propose a slight alteration of the ZEXE protocol.
First, we propose to remove the condition which imposes that, in a trans-

action tx = ([sni]
m
1 , [cmj]

n
1 , π), the serial number nonces of created records are

derived from serial numbers of spent nonces as ρj = CH(ppCM||j||sn1||...||snm)
12. We proposed instead that users simply randomly generated them when they
create new records.

For each transaction tx = ([snoldi]m1 , [cmnew
j]m1 , π), recall that the local data

taken in argument by the birth and death predicates of each records currently
consist in:

– Owners public keys [apkoldi]m1 , [apknewj]n1
– Birth predicates [Φold

b,i]
n
1 , [Φ

new
b,j]

m
1

– Death predicates [Φold
d,i]

n
1 , [Φ

new
d,j]

m
1

– Payloads [payloadoldi]n1 , [payload
new
j]m1

– Commitments [cmold
i]m1 , [cmnew

j]n1
– Serial numbers [snnewj]n1

12 here ppCM is a public parameter, and j a the position of the record corresponding to
ρj in the transaction

14 Victor Languille1,2, David Menga1, and Gerard Memmi2

We propose to add to this list the others records private data, namely:

– Serial number nonces [ρoldi]m1 , [ρnewj]n1
– Commitment randomness [soldi]m1 , [snewj]n1

In fact, a similar modification seems to be proposed in the remark 6.1 of the
updated ZEXE paper [BCG+20]:

“Remark 6.1 (preventing a denial-of-funds attack). In the [Decentralised Ex-
change protocol we proposed], the maker M could refuse to provide the taker
T with information about its output record, thus denying T the ability to con-
sume 35 its exchanged record. A simple approach to prevent this is to modify the
exchange-or-cancel predicate to additionally enforce that the memorandum field
of the created transaction contains an encryption of the output record informa-
tion under a public key specified by T.”

But this modification is not mentioned in the general protocol’s presentation.
Another point is that the method proposed by the ZEXE paper, given the

slight modification we propose is used in a different way that we mention to
overcome weak− liveness issue trading the use of transaction memorandum for
less offchain communication.

So our method have some advantage and drawback in comparison:

Advantage: A slight privacy issue is that, in case where the ledger supports
only a small number of different processes, a transaction memorandum, by its
size, can contribute to identify the undergoing process of a transaction. From
the performances point of view, it is likely that the proof π of a transaction is
harder to generate if it proves encryption for a particular public key than if it
proves computation of hash function for a certain input. Abandoning the serial
number nonce generation condition also simplifies the statement which must be
proven for each transaction, also saving computation time.

Drawback: The drawback of our proposed modification regarding the ZEXE’s
one is that it requires more offchain communications, which could potentially
lead to attacks. Abandoning the serial number nonce derivation from transac-
tion inputs could also potentially lead to attacks by reusing several time the
same nonce.

4 Fairness-Privacy Vulnerability

Let consider a simpler case where Alice and Bob wants only to do a direct ex-
change between the Alice’s good asset, represented in a records rA with payload
(idA, 1, 1,⊥) birth predicate MoC and null death predicate, and Bob’s 100000ν
represented in a record rB with payload (ν,V, 100000,⊥) and same predicates
as rA.

A way to do it is to follow the ZEXE indications, creating a shared common
address between Alice and Bob, sending a first transaction with, say, the Alice’s

Title Suppressed Due to Excessive Length 15

asset to it, in a record rC with the additional condition that rC can be spent in
a second transaction, either being re-transmitted to Alice if the transaction is
cancelled, or being transmitted to Bob at the condition that 100000ν is sent to
Alice if the transaction is confirmed.

The potential weak − liveness issue due to the fact that Bob can confirm
the transaction without sending the final record to Alice can be circumvent by
one of the two methods described in the preceding section.

Instead of using this method, we can imagine that Alice and Bob use secure
multi-party computation to compute together a transaction exchange Alice’s
asset and Bob’s 100000ν. Suppose we have apply the slight modification of the
preceding section so that the serial number nonces can be derived by simple sam-
pling random numbers, and that records’ predicates take in input commitments’
randomness and serial number nonces. The protocol to follow would simply be
the following:

Protocol:
1 Record Alice computes a record r′B (including its commitment cm′

B) with pay-
load (idA, 1, 1,⊥), birth predicate MoC, death predicate null, serial
number nonce ρ′B and commitment’s randomness s′B . She sends rB′ to
Bob.

2 Record Bob computes a record r′A (including its commitment cm′
A) with pay-

load (ν,V, 100000,⊥), birth predicate MoC, death predicate null, serial
number nonce ρ′A and commitment’s randomness s′A. He sends rA′ to
Alice.

3 MPC Alice and Bob engage in a multi-party computation protocol to com-
pute together the proof π attesting the validity of the transaction
tx = (snA, snB, cm

′
A, cm

′
B, π)., using their respective private inputs

ρA, sA and ρB , sB corresponding to input’s records, where cm′
Aand

cm′
B are the respective commitments of r′A and r′B , and snA, snB the

serial numbers of the original records rA, rB .
4 Share Alice send her snA to Bob.
5 Transaction Bob, now disposing of all the data needed, appends the transaction tx

to the ledger.

Flaw: If Bob is dishonest, he can abort the protocol at the moment he re-
ceives snA from Alice, never sending the full transaction tx = (snA, snB, cm

′
A, cm

′
B, π)

to the ledger, (nor his own snB to Alice, which would allows her to send herself
the transaction tx to the ledger).

The interest of Bob of doing so is limited. Indeed, he cannot use the snA
sent by Alice in any other transaction tx′ because he wont be able to compute
the corresponding Zero-Knowledge Proof, which requires the knowledge of the
whole private information of rA in addition to the private address askA of Alice.
However, he can now de-anonymize the records rA of Alice, knowing exactly
when she spent it by simply scrutinizing the pubic list SpentList to see when snA

16 Victor Languille1,2, David Menga1, and Gerard Memmi2

is append to it (and potentially share this knowledge to any other parties). We
call this issue a fairness-privacy vulnerability.

An easy way to circumvent this is simply that Alice and Bob, after doing
multi-party computation of the proof π, simply send π with their respective
serial numbers to a trusted third party13 which append full the transaction
tx = (snA, snB , cm

′
A, cm

′
B, π) after reception of both snA and snB . However, we

doesn’t want to suppose the presence of such trusted third party, and so we
proposed other possible counter-measures.

4.1 Countermeasure 1

The most obvious and easy way to counter the attack is simply for Alice to
resend to herself the assets asset. Passed a certain amount of time after sending
snA to Bob without any publication of the full transaction tx on the ledger (or at
least a communication by Bob of snB), she considers the transaction is aborted
and she can use her serial number snA in a new transaction, creating a new
record r†A to her own public address embodying the property of asset, whose

serial number sn†A will be unknown to Bob.
However, to do so for a particular record r, note that it is necessary that its

birth and death predicates allows such manipulation, which is not guaranteed a
priori. Moreover, it is not possible to enforce that at the level of the ledger14,
because those birth and death predicates are completely unknown to it, so this
countermeasure have to be taken at each user level.

We didn’t found concrete case were adding the possibility for a user to re-
anonymize his asset by re-sending it to himself would be infeasible. However
it could be desirable to have another type of countermeasure in case such case
arises.

4.2 Countermeasure 2

The vulnerability one which is based the fairness-privacy attack is the public
character of the list of SpentList. Let us reminds that the public character of
this spending list itself serves to avoid double spending : receiving a new serial
number, the ledger verifies that it does not appears in SpentList, if it doesn’t
the ledger accepts the transaction an adds it the spending list. In particular,
theoretically, this not absolutely mandatory that the spending list appears in
clear on the ledger, we just need a way to ensure that serial number have not
been use several times, a thing that we could do if we dispose the following
primitive.

13 The ”trust” put in such third party would be quite limited, it can know nothing
about the content of the transaction.

14 Excepts if we enforce each transaction’s proof to prove that each created record
it involves has birth/death predicates allowing the cut-and-paste operation, which
would be tedious

Title Suppressed Due to Excessive Length 17

Cryptographic Waste Basket with Collision Detection (CWBCD) A
CWBCD is a cryptographic scheme allowing several mutually distrustful partic-
ipants to share an obfuscated list of elements such that every participant can
add element to the list, but no one can extract the list of added elements from
the obfuscated one, and no one can add an element already present in the list.

Definition: A CWBCD consists in a tuple of polynomial time algorithms
Π = (Setup,Add,Verify)

Linit ← Setup(λ) takes as input a security parameter λ and output an initial
state Linit of a CWBCD, containing no value at all.

Li+1 ← Add(Li, v) takes as input a CWBCD at state i and a value v, and
output a CWBCD at state i+ 1 containing the value of Li plus the value v.

b ← Verify(Li) takes as input a CWBCD at state i, and output 1 if Li is a
valid state, in particular containing no repetition and 0 elsewhere.

Security: A CWBCD is secure if, for all real-world adversary A, there exist
an efficient ideal-world simulator SA such that, for every efficient environment
E , the outputs of E interacting with the adversary A in real-world execution and
the outputs of E interacting with the simulator SA are indistinguishable.

Ideal Functionality : The ideal functionality FCWBCD that a CWBCD is de-
signed to simulate is given by the following protocol:

– Receive an input x.
– If x /∈ FuncList then add x to FuncList, and send the message input added to

all the parties.

– Else send the message input rejected to all the parties.

Tracks for the CWBCD Based on the discrete logarithm problem and pair-
ing, it is possible to design dynamical accumulator with proof of non repetition
[DT08]. We can try to draw inspiration from these methods, but we must keep
in mind that our problem is quite different. Indeed, in the case of an accumula-
tor, the prover knows the whole list of accumulated values, while in our case, a
participant didn’t know any accumulated value except the ones he added himself.

The general idea would be to associate to any serial number ei a unique
prime number pi, select a group where the discrete logarithm problem is hard
and one base point g (or several base points (g1, g2, .., gn)) then consider a CW-
BCD of the form gp1p2...pm (or (gp1p2...pm

1 , gp1p2...pm

2 , ..., gp1p2...pm
n). Addition of a

new element pi would simply be given by exponentiation of the previous state by
pi. However, such protocol would need a detection of square in exponent which
we don’t currently know how to do 15. Another difficulty to face is the fact that
during an addition procedure, it would potentially be easy for the adder to delete

15 Wouldn’t having an oracle that, given gx, answers whether or not there is a square
in the factorization of x allowing solving the discrete logarithm problem?

18 Victor Languille1,2, David Menga1, and Gerard Memmi2

a previously appended value pold, exponentiating by 1
pold

.

A variant would be to use a trusted set up [gs
i

]N1 (or ([gs
i

1]N1 , [gs
i

2]N1 ,, [gs
i

n]N1)
where s is a secret exponent, and to associate to each ei not a prime number pi,
but a monomial (s− ei).

The element g(s−ei) can then simply be computed by a participant as gs

gei
.

The CWBCD would then take the form g(s−e1)(s−e2)...(s−ei) and detecting a
square (s− ej)

2 in the exponent might be easier, though we don’t know how to
do that either.

Moreover, several problems would arise: the first one being that we would
have to find a way to add (s−ei) to the CWBCD, and that simply exponentiating
the previous state is impossible since the value (s − ei) is not itself known by
the adder. The second is that the trusted setup should have a very large size N ,
equal to the maximum number of elements that can be added to the list (and
thus, for the application we are interested in, to the number of records supported
by the system, which is itself greater than or equal to the number of possible
transactions).

5 Conclusion

In the use-case of purchase and sale agreement, slight modifications of the ZEXE
protocol can be applied to guarantee weak− liveness properties. There is alter-
native to the one presented in the ZEXE paper which are less costly in compu-
tation time and can improve function privacy, but is potentially less secure since
it requires more offchain communications and random nonces.

We have shown that the use of MPC together with the ZEXE protocol to
build transaction with distinct senders can lead to fairness-privacy issue, in case
on of the party aborts the protocol. To circumvent this, either we need additional
specifications to ensure that a user can always copy a state for himself, or we need
a new specific cryptographic primitive, yet to be invented, allowing mutually
distrustful parties to share an obfuscated append-only list with no repetition.

References

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From
extractable collision resistance to succinct non-interactive arguments of
knowledge, and back again. In Proceedings of the 3rd Innovations in Theo-
retical Computer Science Conference, ITCS ’12, page 326–349, New York,
NY, USA, 2012. Association for Computing Machinery.

[BCG+20] S. Bowe, A. Chiesa, M. Green, I. Miers, P. Mishra, and H. Wu. ZEXE:
Enabling Decentralized Private Computation. In 2020 IEEE Symp. on
Security and Privacy (SP), pages 947–964, San Francisco, CA, USA, May
2020. IEEE.

[BSCG+14] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer,
and M. Virza. Zerocash: Decentralized Anonymous Payments from Bitcoin.
Cryptology ePrint Archive, Paper 2014/349, 2014.

Title Suppressed Due to Excessive Length 19

[DDJ+21] S. Dalmas, P. Duvaut, G. Jacovetti, S. Tucci, A. Lanusse, G. Gonthier, and
G. Memmi. Les verrous technologiques des blockchains. Direction générale
des Entreprises, Numéro du rapport: 978-2-11-162212-8, 2021.

[DT08] Ivan Damg̊ard and Nikos Triandopoulos. Supporting non-membership
proofs with bilinear-map accumulators. IACR Cryptology ePrint Archive,
2008:538, 01 2008.

[ESES08] W. Entriken, D. Shirley, J. Evans, and N. Sachs. Erc-721 non-fungible
token standard., 2108.

[GMR89] S. Goldwasser, S. Micali, and C. Rackoff. The Knowledge Complexity of
Interactive Proof Systems. SIAM J. Comput., 18(1):186–208, 1989.

[Gol01] Oded Goldreich. Foundations of Cryptography, volume 1. Cambridge Uni-
versity Press, 2001.

[HBHW22] D. Hopwwod, S. Bowe, T. Hornby, and N. Wilcox. Zcash Protocol Specifi-
cation. Electric Coin Co, 2022.

[HLS19] Maurice Herlihy, Barbara Liskov, and Liuba Shrira. Cross-chain deals and
adversarial commerce. Proc. VLDB Endow., 13(2):100–113, oct 2019.

[KYMM18] G. Kappos, H. Yousaf, M. Maller, and S. Meiklejohn. An Empirical Analy-
sis of Anonymity in Zcash. In 27th USENIX Security Symposium (USENIX
Security 18), pages 463–477, Baltimore, MD, August 2018. USENIX Asso-
ciation.

[Nak08] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.
[SJZG18] Alan T. Sherman, Farid Javani, Haibin Zhang, and Enis Golaszewski.

On the origins and variations of blockchain technologies. CoRR,
abs/1810.06130, 2018.

