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Abstract—In the cloud computing context, several applications
run concurrently over the same underlying physical infrastruc-
ture. Phase-based algorithms are key building blocks for many
distributed applications such as DBMS or transaction validation
services. Indeed, these applications rely on consensus or atomic
validation solved by phase-based algorithms (Paxos, ZAB, two-
phase commit . . . ). In each phase, at least one participant
broadcasts a message and waits for the responses from a subset
of the recipients before starting the next phase. For a given
phase-based algorithm, it is then possible to predict future
communications for each node. Based on this observation, we
propose a generic and low-intrusive solution to save network
bandwidth in a cloud context by aggregating messages sent by
applications in an opportunistic way. We propose a new API to
easily apply our mechanism with applications using phase-based
algorithms. The core of this API is the overloading of the send
primitive where the users can define a trade-off between message
saving and latency degradation. We evaluate our mechanisms
using multiple instances of the same algorithm (3 variants of the
Paxos consensus and the Zookeeper Atomic Broadcast algorithm)
running concurrently. Our results show that a good tuning of the
new send primitive saves a large amount of bandwidth with little
latency degradation.

Index Terms—phase-based distributed algorithms, message
aggregation, experimental evaluation, Paxos

I. INTRODUCTION

In a the cloud context, applications are deployed on a
large-scale distributed infrastructure. Thanks to virtualization,
many parallel applications run concurrently on the same shared
physical support. Several articles reveal a high proportion of
small messages in data centers, with a significant portion
of bandwidth dedicated to message headers [1], [2], [3].
Indeed, Benson et al. [2] show that 50% of packets are
less than 300 bytes. Furthermore, studies highlight network
bandwidth as one of the primary bottlenecks for the core
network infrastructure of data centers [4].

To address this issue, aggregation mechanisms can be acti-
vated in the lower layers of the network stack. The principle
is to multiplex several messages addressed to the same des-
tination. However, this strategy is application agnostic, which
prevents smart message aggregation. Indeed, the network layer
does not know if the sending of a message is blocking and
critical for the liveness of the application or if it can be delayed
without performance degradation.

Many distributed applications use phase-based algorithms,
especially in data management. These algorithms execute a se-

quence of steps, where the step i+1 starts after the completion
of all or a part of the step i. Consensus (Paxos [5]), atomic
validation protocols (Zookeeper Atomic Broadcast usually
named as ZAB [6], or two-phase commit [7]) are widely used
protocols that rely on phase-based algorithms. Although these
algorithms are essential for many applications (DBMS, Google
Spanner [8]), they have nonetheless a high message complexity
implying a non-negligible degradation of the bandwidth. For
instance, the Paxos algorithm [5], one of the most implemented
consensus algorithms [9], relies on a set of broadcasts to all
participants where each step is synchronized by the waiting for
a quorum in response messages. There are many versions of
the Paxos protocol [10][11][12][13] but, in its most widespread
version, the message complexity is quadratic with the number
of participants.

In phase-based algorithms, the steps are known in advance.
Thus, it is possible to know if a node will communicate
with another in the near future, regardless of the application.
Considering this knowledge, we are able to determine whether
it is relevant to buffer a message and thus delay it sending.
Based on this observation, we have developed a generic,
opportunistic and non-intrusive message buffering mechanism
which is applicable in a context where several applications
run concurrently and independently on the same infrastructure.
Our mechanism can significantly reduce message complexity
and network bandwidth while limiting latency degradation.
It provides an intermediate layer between applications and
the network stack, overloading the traditional communication
API. The core of this new API is the specification of a new
"send" primitive that offers users the ability to tune a trade-off
between bandwidth saving and latency degradation according
to their needs.

We evaluated our solution with multiple instances of 4
phase-based algorithms (3 variants of Paxos consensus and
the ZAB commit protocol). We show that a good tuning of
our mechanism saves up to 30% percent of bandwidth with as
little as 5% latency degradation.

The paper is organized as follows. Section II outlines-related
work, in Section III we present our aggregation mechanism,
and Section IV describes our experimental evaluation. Finally,
Section V concludes the paper and introduces some future
research directions.



II. RELATED WORK AND BACKGROUND

This section presents existing aggregation mechanisms and
gives an overview of the Paxos protocol as an example of
phase-based algorithm. The Paxos protocol will be used in
Section III-D to illustrate a use case of our mechanism and in
Section IV for the experimental study. 1.

A. Messages aggregation at network layers

Traditional network aggregation techniques are based on
message piggybacking. The TCP protocol provides an ag-
gregation mechanism based on the Nagle algorithm [14]
which is enabled by default in most TCP implementations.
Since TCP/IP packets have a 40-byte header, sending a large
number of small messages can lead to network overhead and
congestion. The main idea behind Nagle’s algorithm is to
buffer data until the acknowledgement is received or the buffer
is full.

Badrinath and Sudame introduce another aggregation mech-
anism called Gathercast [15]. Acknowledgment is often used
in reliable communications to ensure that any message has
been delivered correctly to the recipient. Since acknowledg-
ments cause communication overhead, many protocols aggre-
gate them into a single packet [16]. Gathercast aggregates
small control packets (as TCP ACK messages) addressed to
the same host in a similar way to the TCP Nagle’s algorithm.
Packets are delayed until a timer expiration.

However, at the network layer, applications are isolated
from each other by using different ports. It is then impossible
to aggregate messages from different applications. Moreover,
all these mechanisms are application agnostic which leads to
negative effects on time-sensitive applications (e.g. real-time
applications such as chat, streaming, etc.) that do not tolerate
message delaying.

B. Messages aggregation in application layers

Another way to aggregate messages is to take into account
the application’s protocol. For instance HotStuff [17], a leader-
based Byzantine fault-tolerant replication protocol,saves mes-
sages by piggybacking phases of consecutive consensus in-
stances. The message aggregation mechanism is only applied
to a single application instance. To the best of our knowledge,
we are not able to find an aggregation mechanism which can
be activated opportunistically and which multiplexes messages
of any running application.

C. Paxos algorithm

The Paxos algorithm [5] is a leader-based, fault-tolerant
algorithm that solves the consensus problem where correct
processes must agree on some proposed values. It assumes
asynchronous (i.e., no bounds on the transmission delay) and
unreliable communications. The set of participants is statically
fixed and tolerates f participant crashes.

A Paxos instance begins when the leader starts a new ballot.
An instance execution is divided into three phases:

1ZAB and 2 other Paxos variants are studied too but not described here
due to lack of space

• Preparation phase: the leader sends a prepare message
with a new ballot number b to all participants. When a
participant p receives a prepare message, it agrees to join
the ballot b if and only if b is greater than the most recent
ballot number in which p has already participated. An ack
message is then sent to the leader.

• Acceptance phase: when the leader learns that a quorum
of f + 1 participants has accepted to join its ballot,
it sends an accept message to all participants. When a
participant receives an accept message, it broadcasts to
all participants an accepted message only if it does not
take part in another more recent ballot.

• Decision phase: when a participant receives a quorum of
accepted messages for the same ballot number, then it
decides the definitive value.

III. AGGREGATION MECHANISM

This section presents Omaha, our contribution to aggregate
opportunistically messages sent by applications using phase-
based algorithms. We assume that each node and application
have a unique identifier.

In order to achieve any aggregation mechanism, we assume
that each node maintains for each destination a message buffer.
Such a mechanism must then answer two questions:

• Should a new application message be buffered (and
therefore delayed) or sent immediately?

• When should buffered messages be sent over the net-
work?

In Omaha, the answer to the first question depends on the
criticality of the message for the liveness of the application
algorithm. To answer the second question, we leverage the
phase-based protocol to delay messages without slowing down
the application. Anyway, the buffering time must be bounded
to ensure that messages will be sent eventually.

We first describe a time-based approach which will be our
baseline comparison in the experimental study (Section IV).
Next, we present our opportunistic approach by applying it to
the Paxos protocol. Finally, we detail our new API.

A. The classic time-based approach

The time-based approach systematically aggregates mes-
sages for a static period of time or until the buffer is full.
Therefore, the answer to the first question is to always buffer
messages. The answer to the second question is an arbitrary
choice of buffering time. This approach is simple to implement
and saves bandwidth by significantly reducing the number
of messages sent. However, it is application agnostic and
therefore delays all application messages. As a result, it does
not take into account the criticality of messages, which can
lead to some blocking messages being buffered and application
latency being severely degraded. Furthermore, it does not take
the system load into account. Thus, it is possible to buffer
(and delay) a message even if no future sending to the same
recipient is planned, which is useless.



B. Our opportunistic approach

The idea behind our approach is to exploit the knowledge
of future message sending for smart buffering. Thus, we are
able to find a good trade-off between latency degradation and
bandwidth gain for any load.

Figure 1 illustrates the principle of our approach by applying
it to the Paxos protocol [5] in a multiple application context.
Each application is independent of another one and runs on
its own set of physical nodes. However, we assume that these
sets intersect.

(a) With no aggregation mechanism

(b) With the opportunistic aggregation mechanism

Fig. 1. Beginning of two Paxos instances

In this example, we consider two sets of nodes (each one
represents a running application). The blue set and the red set
are composed of nodes 1, 2, 3 and 2, 3, 4 respectively. Each
set, according to its needs, can launch instances of the Paxos
algorithm over time. Here, nodes 2 and 3 are the leaders
of the blue and red set respectively. Figure 1(a) shows an
execution without aggregation mechanism and where each set
runs independently. Node 2 first runs a Paxos instance for the
blue set, and then node 3 runs an instance for the red set.

To apply our opportunistic mechanism, it is first necessary
to know when it is relevant to delay a message. We observe
that once node 2 broadcasts a prepare message to the blue
set (beginning of the phase 1), it will soon broadcast an

accept message as soon as it receives a quorum of ack
messages (beginning of the phase 2). The protocol ensures
that any participant which sends a prepare message will
contact the same set of recipients in a short term (once
the quorum is reached). It is therefore possible to exploit
this knowledge to buffer messages from another application
addressed to the nodes belonging to the first set of recipients.
We call this mechanism a pledge: a node can buffer and delay
a message if it commits to sending it eventually. In Figure
1(b), we can see that node 2 intersects the two sets. Then, the
pledge mechanism detects that it is possible to buffer the ack
message of red set addressed to node 3 and aggregates it with
the accept message of the blue set at the beginning of its
phase 2.

To summarize, we are able to predict when a node A will
send a message to a node B thanks to knowledge of the
algorithm’s phases. So, for a given instance, during the waiting
time to start the next phase, it is possible to aggregate any
message from A to B issued from any other application. As
this waiting time is inherent to the algorithm, it is possible to
overlap this mandatory latency with message aggregation.

C. A new network API

Omaha can be used as a library. To improve performance,
Omaha can be deployed in the kernel or at hypervisor level. In
this way, we avoid the bottleneck associated with a potential
middleware layer. The pseudo-code of the pledge mechanism
is given in Algorithm 1 which can be applied to any phase-
based algorithms. We overload the network API by adding to
the send (msg, dests) primitive three new arguments (line 21):

• probaBuf: the probability to aggregate the message.
Zero means that the message will be sent immediately
(as in the original send) while 1 (100%) means that
the message will be delayed and buffered. Considering
a probability rather than a boolean value allows to take
into account more precisely the criticality of the message.
This parameter therefore controls the latency degradation.
The higher this value is, the more likely it is to buffer
messages and thus increase latency.

• timeout (denoted t in pseudo-code): the maximum
time that the message will remain in the buffer. This
ensures that a delayed message following a pledge will
eventually be sent, thus ensuring the safety and liveness
properties of the application’s algorithm.

• app: the id of the application.
During a waiting period (e.g., quorum waiting), the node

is in "pledge period". Two primitives allow the application to
declare the beginning and the end of a pledge period in its
algorithm:

• beginPledge(app, futureDests): this primi-
tive declares the beginning of a pledge period for the
application app (line 6). futureDests is the set of
nodes that will be contacted at the end of the pledge
period. It is then possible to buffer any message addressed
to these nodes.



• pledgedSend(msg,dests,probaBuf,
timeout, app) : indicates the end of a pledge
period for the application app (line 16) and the sending
of the msg message. This message follows the same
sending rules as the others by calling the overloaded
send primitive.

These primitives specify an API for a new intermediate layer
between the network and the application layers. In this layer,
each node maintains a buffer for each recipient node (line 4).
Each buffer has a deadline indicating when the buffer will be
flushed to send messages to the destination node. This deadline
is computed according to the timeout defined for each message
(lines 28 and 29). When the send primitive is called, two cases
occur:

• if probaBuf = 0 then the message must be sent di-
rectly. Therefore, if the buffer associated with the recip-
ients is not empty, then the message is aggregated with
the other ones included in the buffer (line 25) and the
whole is sent immediately (lines 36 and 13).

• if probaBuf > 0 then the decision to buffer the
message or not depends on the probaBuf value and if
the sending node is in "pledge period" for the recipients
(line 26). Thus :

– if there is no pledge period for a recipient r, then
the message is sent immediately to r ((lines 36 and
13)) .

– otherwise with probability probaBuf the message
is added to the buffers of each destination and their
associated deadlines are updated (lines 25 to 30). In
other words, the message and those already buffered
are sent immediately with probability 1-probaBuf.

Finally, when a deadline of a buffer is met, all its messages
are sent as a single network message.

D. An example applying the pledge mechanism to Paxos
This section shows how to link our Omaha layer to an

application. Calls to the pledge API must be integrated
into the application’s algorithm by identifying the start and
end of a pledge period, then using beginPledge and
pledgedSend functions, respectively.

We illustrate this with the example of Paxos algorithm. For
the sake of simplicity, we focus on the preparation phase up
to the beginning of the acceptance phase of Algorithm 2. We
assume that the application id is known (line 6) and that each
message type is associated with a maximum buffering time
(line 7) and a buffering probability (line 8).

As explained in Section II and illustrated in Figure 1(a),
when the leader starts a new instance of Paxos (line 9), it
sends a prepare message (line 12) to all participants of this
application. Then, to initiate the next phase, the leader must
wait for a majority of ack messages. This is notified to the
Omaha layer by calling the beginPledge function (line 13).
When the leader receives a majority of ack messages (line 22),
it stops waiting and sends the accept message that notifies
the Omaha layer of the end of the pledge period by calling
pledgeSend function (line 29).

Algorithm 1: The pledge mechanism algorithm
1 Local variables :
2 begin
3 curP ledges : Map of (app: application id, nodes:Set of

node ids)
/* map associating an application id with a

set of node ids for which we know they
will be contacted in a near future */

4 bufs : Map of (nodeid,(msgs : Set of Message,
deadline))

/* map associating a recipient id with the
list of buffered messages that are
intended for it and the associated
deadline of sending */

5 end

6 Primitive beginPledge(app, futureDests) :
7 begin
8 put(app,futureDests) in curP ledges
9 end

10 Primitive sendBuff(buff_dest, dest):
11 begin
12 cancel any scheduling related to buff_dest
13 networkSend(buff_dest.msgs) to dest
14 clear buff_dest
15 end

16 Primitive pledgedSend(msg, dests, probaBuf , t, app):
17 begin
18 removeEntry(app) in curP ledges
19 send(msg, dests, probaBuf , t, app)
20 end

21 Primitive send(msg, dests, probaBuf , t, app):
22 begin
23 for all d ∈ dests do
24 flushing ← true
25 add msg to bufs[d].msgs
26 if ∃(app′, nodes) ∈ curP ledges where d ∈ nodes and

app 6= app′ then
27 if random() < probaBuf then
28 if bufs[d].deadline does not exist or

bufs[d].deadline > now + t then
29 bufs[d].deadline← now + t
30 schedule sendBuff(bufs[d], d) at

bufs[d].deadline
31 end
32 flushing ← false
33 end
34 end
35 if flushing == true then
36 sendBuff(bufs[d], d)
37 end
38 end
39 end

IV. EXPERIMENTAL STUDY

A. Experimental testbed and configuration

This section describes our experiment set up environment.

1) Infrastructure settings: To ease the analysis, the exper-
iments were first carried out with Peersim [18], a discrete
events simulator (Sections IV-B to IV-F ). To validate our
results in a real infrastructure, we then test Omaha on the
Grid’5000 platform (a.k.a. g5k) [19] (Section IV-G). In both
platforms, we deployed 15 nodes. In g5k platform, each node



Algorithm 2: Preparation phase of the Paxos algorithm
for a participant pi

1 Original local variables to Paxos :
2 ballot : (numBallot, pk) initially (0,⊥)
3 acceptBal initially ⊥
4 acceptV al initially ⊥
5 Additional local information required to use the Omaha layer
6 app_id
7 timeout : Map of (message type, timestamp)
8 probaBuf : Map of (message type, probability)

9 Upon Propose (new_val) :
10 begin
11 ballot← Ballot(ballot.numBallot++, pi )
12 send(<Prepare, ballot >, setk , probaBuf [Prepare],

timeout[Prepare], app_id)
13 beginPledge(app_id, all participants of app_id)
14 end

15 Upon reception of message Prepare(bal) from pj :
16 begin
17 if ballot ≤ bal then
18 ballot← bal
19 send(< Ack, bal, acceptBal, acceptV al > , {pj},

probaBuf [Ack], timeout[Ack], app_id)
20 end
21 end

22 Upon reception of message Ack (bal, acceptBal, acceptV al)
from a majority of participants :

23 begin
24 if all acceptV al = ⊥ then
25 val← new_val
26 else
27 val← the value associated with the biggest bal for all

acceptBal
28 end
29 pledgedSend(< Accept, ballot, val > , all participants of

app_id, probaBuf [Accept], timeout[Accept], app_id)
30 end

is deployed on a dedicated physical host 2. We consider an av-
erage round-trip time (denoted RTT below) of 60 milliseconds
that follows a normal distribution with a standard deviation of
10%. In g5k, network latency has been injected to obtain the
same setting. We consider a complete communication graph
where any node is able to communicate with any other. In
g5k, nodes communicate using TCP/IP sockets.

Although Paxos is compatible with an unreliable environ-
ment, we first assume, in Sections IV-B, IV-C, IV-D and IV-E,
a reliable system (all nodes never crash and execute the proto-
cols correctly, there is no loss nor duplication of messages) in
order to ease the analysis of the results by focusing only on the
impact of the aggregation mechanism. Next, in Section IV-F,
we study the impact of an unreliable network with different
rates of message loss. Indeed, as our mechanism aggregates
several application messages into a single network message,
it may be more sensitive to information loss.

2) Considered application phase-based algorithms: We
consider four application phase-based algorithms: three vari-
ants of the Paxos algorithm and the Zookeeper Atomic Broad-

2Configuration of a g5k physical host : 2 CPUs Intel Xeon E5-2660 8
cores/CPU, 64GB RAM, 1863GB HDD, 1 x 10Gb Ethernet, running Linux
5.10.0-16-amd64 with Java 11

cast algorithm (ZAB). Their characteristics are summarized in
Table I.

Classical
Paxos[5]

Fast
Paxos[11]

Fast
Byzantine
Paxos (FBP)
[20]

ZAB [6]

Steps 4 2 4 3
Nodes 2f + 1 3f + 1 5f + 1 2f + 1
Quorum size f + 1 2f + 1 3f + 1

or 4f + 1
(according
to phases)

f + 1

Number of
pledges periods

1 1 3 1

TABLE I
SUMMARY OF THE PROTOCOLS FOR A SYSTEM WITH f FAULTY NODES

3) Aggregation mechanisms and parameters: We compare
Omaha to the original algorithm without any aggregation
mechanism, and the time-based aggregation mechanism (cf.
III-A) which systematically buffers messages.

The impact of the two following parameters are investigated:

• The timeout parameter which defines the maximum time
a message can spend in a buffer before being sent. It
applies to both Omaha and the time-based approach.

• The probaBuf parameter which defines the probability
that a message is buffered by the Omaha mechanism if a
pledge can be applicable.

Note that these two parameters can be set by the user for
each message (using the overloading of the send primitive,
Section III-C). In all experiments, we consider that these
two parameters are statically set and never change during the
experiment execution. In Sections IV-B, IV-C, IV-D, and IV-F,
we consider that these parameters are constant whatever the
phase and whatever the message type. However, in Section
IV-E we consider different values of probaBuf depending on
the criticality of the message type.

4) Workload: The performance of the aggregation mech-
anisms is directly related to the network load and therefore
to the number of application algorithm instances running
simultaneously. In the following experiments, we evaluate each
mechanism with three load patterns: low, medium, and high.
Each pattern corresponds to an average of 2, 5 and 10 con-
current running instances of the same algorithm, respectively.
All 15 nodes participate in each instance. The concurrent
instances are not synchronized, i.e., one instance can start
running the protocol independently of the state of the other
running instances. They are therefore not all in the same phase
at the same time. Moreover, for each instance, we arbitrarily
choose its leader node before running the Paxos protocol.

5) Metrics: To compare the efficiency of each aggregation
mechanism, we define the following two metrics:

• The average latency to run an instance of an algorithm,
i.e., the time between the moment when a node initiates
the protocol and the moment when a quorum of nodes is
reached (i.e., nodes agree on a value in the case of Paxos



consensus algorithms, or a transaction commitment in the
case of ZAB)

• The bandwidth consumption which is the total amount
of data produced by the network layer (IP) during the
whole experiment execution.

Each experiment ends when the 3000th instance of the
algorithm is completed. The first 100 instances are discarded
from the measurements in order to consider a stationary and
stable load value. Note that in the following tables and plots,
the values are not absolute but relative to the performance of
a system without an aggregation mechanism. Thus, these two
metrics are expressed respectively in terms of latency degrada-
tion (the lower value, the better) and bandwidth consumption
saving (the higher value, the better).

We observed little variation of the latency between each
instance, with the highest standard deviation (3 for a mean
latency of 130.1 ) measured in high load configuration when
probaBuf has a value of 100.

B. Impact of the probabuf parameter

Tables II and III present the impact of Omaha on classical
Paxos instances by varying workload and probaBuf parame-
ters while keeping a constant timeout parameter equal to one
RTT.

In Table II, we observe that the bandwidth saving increases
linearly with the pledge probability, whatever the load of the
system. This was quite predictable since the probability value
is the same for all types of messages.

Depending on the load, the bandwidth saving varies: in
a high load pattern, we observe that the bandwidth saving
is higher. In this case, many instances of Paxos are running
concurrently and more pledges can be combined. Conversely,
when the load is low, few Paxos instances are running concur-
rently and Omaha is unable to predict future communications,
so the bandwidth saving is lower.

Table III shows the effect of the Omaha mechanism on
the latency of the algorithm. We can see that the impact
of the probability is not the same for different loads. As
explained previously, when the load is high, many pledges
can combined. This can lead to additional delays in message
transmission. Nevertheless, bandwidth saving of up to 30.2%
can be achieved with only a slight degradation in latency
(5.4%).

C. Impact of the timeout parameter

We now study the impact of the timeout parameter on the
classical Paxos algorithm and show the results in Tables V
and IV. We vary the value of the timeout with a constant
buffering probability equal to 90%.

In Table IV, we can see that the bandwidth saving follows
broadly the same evolution for all load values. First, between
RTT/4 and RTT , the bandwidth gain increases. Then, the
gain slows down and stabilizes. Indeed, since the duration of
a phase is one RTT on average, a timeout value greater than
one RTT will never expire because message sending is mainly
due to the pledge mechanism.

In Table V, we observe very little latency degradation,
especially in the low load pattern where few messages can
be aggregated. At higher loads, more messages can be saved,
so the latency degradation is greater.

D. Study of the trade-off between messages and latency

In this section, we study the trade-off between bandwidth
saving and latency degradation with different settings of the
two parameters. We consider only the high load pattern, since
in the other cases, our mechanism has less impact on latency
and the trade-off is easier to find. Figure 2 shows the results.

For one simulation, the overall bandwidth consumption
values for Paxos, Fast Paxos, Fast Byzantine Paxos and ZAB
without aggregation mechanism are 123.525 Mo, 105.12 Mo,
302.22 Mo, and 22,04 Mo respectively.

The x-axis and the y-axis correspond to bandwidth saving
and latency degradation, respectively. The shape of dots rep-
resents a given timeout value while the color represents the
value of probaBuf . Note that the black color is dedicated to
the time-based aggregation mechanism as a baseline.

First, there is no linear correlation between the two metrics.
We can observe a positive correlation, with points very close
to a Pareto front. We also note the absence of outliers. This
absence is explained by low standard deviation values. On
average, a Paxos takes 120 ms, with a worst-case standard de-
viation of 1.8 ms. This, shows the stability of the aggregation
mechanisms despite the jitter injected into the experiment.

Second, whatever the Paxos variant, latency degradation is
limited as long as the bandwidth saving remains below 50%.
We could think, in a first quick analysis, that this phenomenon
is due to the size of the quorums. For example, if only
50% of responses are expected, it is possible to aggregate
(and therefore potentially delay) 50% of the messages without
degrading latency. Following this reasoning, a degradation
should appear later for Fast Byzantine Paxos whose quorum
size is larger (see Table I).

However, it should be noted that each type of message can
be delayed, as the probaBuf is the same for all messages.
This means that messages essential to the progress of the
algorithm will also be delayed, resulting in a degradation of
the latency.

Even if the quorum size for Fast Byzantine Paxos is larger
than that of Paxos, Fast Byzantine Paxos has more phases and
therefore more quorums to collect, allowing more pledges to
be made (and thus a greater bandwidth gain). While the size
of the quorum has an impact on the mechanism, the efficiency
of Omaha is due more to the presence of pledges and their
fulfillment.

We can see the effect of the distribution of pledges by
comparing the scatterplots of Figures 2(a) and 2(b), where we
can see that Omaha is more efficient with FBP than Paxos.
This can be explained by the centralized aspect of the original
Paxos algorithm: most phases are executed by the leader, who
centralizes the pledges. Inn FBP, on the other hand, all nodes
can make pledges. The aggregation power is therefore well
distributed between nodes.



Buffering probability
Load

10 20 30 40 50 60 70 80 90 100

Low 0.6% 1.2% 1.8% 2.3% 2.9% 3.5% 4.0% 4.5% 5.1% 5.6%
Medium 1.6% 3.1% 4.6% 6.1% 7.6% 9.1% 10.5% 12.0% 13.4% 14.7%
High 3.4% 6.4% 9.5% 12.6% 15.9% 18.9% 22.2% 25.3% 28.1% 30.2%

TABLE II
IMPACT OF THE probabuf PARAMETER ON THE CLASSICAL PAXOS ALGORITHM: BANDWIDTH SAVING

Buffering probability
Load

10 20 30 40 50 60 70 80 90 100

Low 0.0% 0.0% 0.0% 0.1% 0.1% 0.2% 0.2% 0.3% 0.3% 0.3%
Medium 0.1% 0.3% 0.4% 0.5% 0.7% 0.8% 1.0% 1.2% 1.4% 1.6%
High 0.2% 0.4% 0.7% 1.0% 1.4% 1.8% 2.4% 3.2% 4.2% 5.4%

TABLE III
IMPACT OF THE probabuf PARAMETER ON THE CLASSICAL PAXOS ALGORITHM: LATENCY DEGRADATION

(a) Classical Paxos algorithm (b) Fast Byzantine Paxos algorithm

(c) Fast Paxos algorithm (d) ZAB algorithm

Fig. 2. Pareto considering a high load

Similarly, ZAB is also a centralized algorithm but very few
messages are sent. Unlike Paxos, the leader initially proposes
a transaction to only a quorum of nodes (and not to all nodes).
After receiving an ack from all nodes of the initial quorum,

the leader sends a commit messages to each node. Delaying
any messages sent by a ZAB quorum node would result in a
significant degradation in latency, visible in Figure 2(d). By
modifying the settings of Omaha, it is possible to improve



Timeout - Load RTT/4 RTT/2 RTT 1.2RTT
Low 1.3% 3.7% 5.1% 5.2%
Medium 5.6% 9.9% 13.4% 13.8%
High 18.7% 24.9% 28.1% 29.2%

TABLE IV
IMPACT OF THE TIMEOUT PARAMETER ON THE CLASSICAL PAXOS

ALGORITHM: BANDWIDTH SAVING

Timeout - Load RTT/4 RTT/2 RTT 1.2RTT
Low 0.4% 0.3% 0.3% 0.2%
Medium 1.4% 1.3% 1.4% 1.3%
High 3.2% 3.8% 4.2% 4.1%

TABLE V
IMPACT OF THE TIMEOUT PARAMETER ON THE CLASSICAL PAXOS

ALGORITHM: LATENCY DEGRADATION

performance (see Section IV-E).
In conclusion, we have shown that Omaha achieves a good

bandwidth gain while keeping a reasonable latency degra-
dation. Its efficiency depends on the phase patterns of the
algorithm and a good parameter setting.

E. Parameter settings

Users must define the parameters of the send primitive. As
a hint, we decided to set the buffering probability based on
the importance of the messages.

Some messages are essential to the progress of the algo-
rithm, and delaying them can lead to a significant degradation
in latency. In the Paxos protocol, this is the case for the
prepare and accept messages sent by the leader. On the
other hand, some messages can be delayed without impacting
the algorithm when nodes are trying to reach a quorum of
responses. In the Paxos protocol, this is the case for the ack
and accepted response messages sent by participants. Any
additional message received after the quorum has been reached
is useless because it has no impact on the liveness of the
algorithm.

Response messages must have a probability close to 1 −
size(quorum)

#nodes to ensure enough message receiving. Thus, for
a large quorum, e.g 2/3 of the nodes, the response messages
will have a low probability of being delayed, e.g., 33%.

Figures 3, 4, and 5 show the results when we adapt the
buffering probability for the Paxos, FBP and ZAB algorithms,
respectively, considering 3 load patterns.

In Paxos (Fig. 3), we choose a value of 45% for response
messages. This value is slightly lower than the quorum size
(50% of nodes). For the critical messages, we assign the
buffering probability to 25%. We observe that adapting the
buffering probability increases the bandwidth saving with
almost the same latency degradation.

Since Fast Byzantine Paxos has larger quorums (60% and
80% according to the phases), we choose a buffering proba-
bility of 35% for response messages and 15% for critical mes-
sages. Using this setting, we observe in Figure 4 a significant
decrease of the latency for a larger gain in bandwidth.

As explained previously, the setting is crucial for ZAB.
Before committing a transaction to every node, the leader
only addresses a quorum. These messages cannot be delayed
without significantly degrading the latency as seen in Figure
2(d). Thus, we decide not to buffer the critical message and
to buffer the other messages with a probability of 40%. With
this setting, we observe in Figure 5 a high reduction in the
latency degradation but a limited bandwidth saving.

F. Unreliable network

Since we aggregate multiple application messages into
single network messages, we study the impact of message
losses on Omaha when running several instances of the Paxos
algorithm.

Each time a prepare or accept message is sent, Paxos arms
its own timeout to detect possible losses. When this timeout
expires, the messages are resent. To avoid false detections,
we set the Paxos timer to RTT + 2 ∗ timeout. The RTT
corresponds to the duration of the phase and the timeout is
the parameter of the send primitive.

In Figure 6, we present Pareto fronts considering different
message loss rates. We can observe that message loss has a
limited impact on Omaha performance.

There is no significant degradation of latency for a loss
rate of 1%. When the loss rate increases, we observe a
significant increase in latency proportional to the bandwidth
saving. Indeed, a high bandwidth saving induces an increase in
the number of buffered messages sent by multiple instances
of Paxos. The more likely loss of a single message of the
physical network can then slow down several applications.

G. Experiment on Grid’5000 platform

This section presents results of experiments conducted on
the g5k platform (see section IV-A1 for the platform settings).

For this experiment, we mix the same number of instances
of the Paxos, ZAB, Fast Paxos and Fast Byzantine Paxos
protocols. When an instance starts, the protocol is chosen
randomly with a uniform distribution.

Figure 7 shows Pareto of each protocol running concurrently
on the same infrastructure.

In the Figure 2(d), we observed that Omaha was less effi-
cient for ZAB compared to the other protocols. As explained
in Section IV-D, ZAB generates few pledge periods. However,
this new experiment shows that ZAB is able to exploit pledge
periods from other protocols to greatly decrease its bandwidth
cost. Among all the protocols, ZAB achieves the best trade-off
between bandwidth saving and latency degradation.

If we compare ZAB behavior in Figures 7 and 2(d), the
results are very different. For the same configuration (probaBuf
of 40%, one RTT timeout, black triangle in Figure 7 and
yellow circle in Figure 2(d)), we observe that the bandwidth
saving increases from 12.7% to 28.5% whereas latency degra-
dation is reduced from 29.1% to 6.5%.

This last result is encouraging and shows that Omaha could
benefit all phase-based applications currently running in the
system.



(a) Paxos high load latency degradation (b) Paxos high load bandwidth saving

Fig. 3. Paxos adaptation of buffering probabilities

(a) FBP low load latency degradation (b) FBP low load Bandwidth saving

Fig. 4. Fast Byzantine Paxos adaptation of buffering probabilities

(a) ZAB medium load latency degradation (b) ZAB medium load Bandwidth saving

Fig. 5. ZAB adaptation of buffering probabilities

V. CONCLUSION AND FUTURE WORKS

This paper proposes Omaha an opportunistic message ag-
gregation mechanism allowing to find a trade-off between



Fig. 6. Impact of messages loss on Paxos

Fig. 7. Pareto for executions mixing different concurrent protocols on the
g5k platform

latency degradation and bandwidth saving for parallel ap-
plications. We compared our mechanism with a time-based
solution that buffers all messages and sends them periodically.
Our mechanism exploits the knowledge of underlying phase-
based algorithms to anticipate future message exchanges be-
tween application nodes. Omaha provides an API for a new
intermediate layer between the network and the applications
in order to be low intrusive and thus limit modifications
of the algorithm specifications. We applied the aggregation
mechanism to four widely used phase-based algorithms: three
variants of the Paxos algorithm and the Zookeeper Atomic

Broadcast algorithm. Omaha allows to reduce the number of
messages exchanged while limiting the latency degradation.
Its efficiency depends on the characteristics of the algorithm
(number of phases, quorum size, type of message . . . ) which
must be known in order to have a good setting of the
parameters of the API.

We will consider an extension of Omaha as a future work.
Currently, the probabuf parameter is static, which implies
that the programmer has to set it manually for each type of
message. By considering a dynamic and automatic setting, it
will be possible to adapt the aggregation to the current state
of the system in order to respect the constraints defined by the
Service Level Agreements.
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