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Abstract

An effective numerical algorithm is presented to analyse the fractional viscoelastic plate

in the time domain for the first time in this paper. The viscoelastic behaviour of the plate

is described with fractional Kelvin-Voigt (FKV) constitutive model in three-dimensional

space. A governing equation with three independent variables is established. Ternary

unknown function in the governing equation is solved by deriving integer and fractional

order differential operational matrices of the shifted Legendre polynomials. Error anal-

ysis and mathematical example are presented to verify the effectiveness and accuracy

of proposed algorithm. Finally, numerical analysis of the plate under different loading

conditions is carried out. Effects of the damping coefficient on vibration amplitude of

the viscoelastic plate are studied. The results obtained are consistent with the current

reference and actual situation. It shows that shifted Legendre polynomials algorithm is

suitable for numerical analysis of fractional viscoelastic plates.

Keywords: Viscoelastic plate, Fractional Kelvin-Voigt model, Governing equation,

Shifted Legendre polynomial, operational matrix, Numerical analysis

1. Introduction

Viscoelastic materials have attracted more and more attention due to their good vi-

bration damping properties, especially in the field of mechanical, aerospace and civil

engineering. Viscoelastic plates have been widely used as structural components due to

their light weight and high strength [1]. These plates are subjected to static, quasi-static

∗Corresponding author
Email address: chenym@ysu.edu.cn (Yiming Chen)

Preprint submitted to Mathematics and Computers in Simulation September 30, 2021

Shifted Legendre polynomials algorithm used for the numerical
analysis of viscoelastic plate with a fractional order model

Lin Suna, Yiming Chena,b,∗, Rongqi Danga, Gang Chengb, Jiaquan Xiec,d,e

aSchool of Science, Yanshan University, Qinhuangdao 066004, China
bINSA Centre Val de Loire, Univ. Tours, Univ. Orléans, LaMé, 3 rue de la chocolaterie, CS 23410, 

41034 Blois, France
cDepartment of Mathematics, Taiyuan Normal University, Jinzhong, China

dShanxi Provincial Department of Education, Key Laboratory for Engineering & Computational 
Science (Taiyuan Normal University), Jinzhong, China

eInstitute of Advanced Forming and Intelligent Equipment, Taiyuan University of Technology, 
Taiyuan, China

© 2021 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S037847542100358X
Manuscript_38dcf6aae09b5b6d5064f833e5941aaf

https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S037847542100358X


and dynamic loads. The system may exhibit great amplitude vibrations. With the devel-

opment of fractional calculus, the material constitutive models with fractional order are

widely used to describe their viscoelastic damping characteristics. A lot of research work

is concentrated in the dynamic analysis of viscoelastic plate by using the fractional order

constitutive models.

Nick et al. [2] used the Analog Equation Method to convert the three coupled nonlinear

partial fractional differential equations of the viscoelastic material plate into three uncou-

pled linear equations. Several kinds of plates under different harmonic loads and different

boundary conditions were analyzed, and the influence of the material’s viscoelastic prop-

erties was studied. Hedrih [3] used fractional order constitutive law to describe the creep

behavior of materials. The linear partial fractional differential equation was proposed

to analyse the lateral vibration of the plate under transverse excitation. Rossikhin and

Shitikova [4] proposed the Laplace integral transformation method to solve the transient

forced vibration problem of linear viscoelastic plate. The damping features of the plate

were characterised by fractional derivatives with respect to time. The effect of viscosity on

the numerical solution was analysed. Katsikadelis and Babouskos [5] analysed the post-

buckling response of a viscoelastic plate with all edges simply supported. The behavior

of viscoelastic materials was described by fractional generalized Kelvin-Voigt model. The

deflection and stress of planes under different linear loads were obtained, which demon-

strated the efficiency and accuracy of the proposed solution procedure. Rouzegar et al.

[6] used the fractional Voigt model to analyze the vibration of a fully simply supported

viscoelastic plate. An analytical solution of the derived linear governing equation of the

viscoelastic plate was proposed. The results were compared with the classical elastic and

viscoelastic plate in the literature. The above research consisted to calculate the displace-

ment of the viscoelastic plate by expanding the displacement function into infinite series.

This approach is complicated and difficult to obtain a unique numerical solution directly

in the time domain. In this paper, the governing equation of the viscoelastic plate under

harmonic and constant loading conditions is solved directly in the time domain, which

largely simplified the calculation procedure.

Orthogonal functions play an important role in finding numerical solutions of par-

tial fractional differential equations in the time domain, such as Bernstein polynomials

[7], Jacobi polynomials [8], Hybrid functions polynomials [9], Legendre polynomials [10],

Chebyshev polynomials [11], Chebyshev wavelets [12], Haar wavelets [13] etc. Among

them, shifted Legendre polynomials algorithm is easier to solve the partial fractional

differential equations with different physical mechanisms and practical meanings. Abbas-
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bandy et al. [14] proposed a Legendre polynomials algorithm to solve a time fractional

convection-diffusion equation which was widely used in the numerical simulation in engi-

neering and science. The use of the operational matrix of the fractional order Legendre

functions simplified the solution of the fractional differential equation. Hashemizadeh and

Ebrahimzadeh [15] solved the time fractional dissipative Klein-Gordon equations by using

the shifted Legendre polynomials. The approximated solutions were computed by substi-

tuting the partial fractional differential equations into a set of algebraic equations. Cao

et al. [16] used shifted Legendre polynomials algorithm to analyse the dynamic response

of viscoelastic beam under various loading conditions. The displacement of viscoelastic

PMMA beam was solved directly in time domain, which demonstrated the efficiency of

the proposed method. These numerical algorithms are used to obtain the solution of the

governing equations based on the two-dimensional viscoelastic material model. In this

paper, shifted Legendre polynomials algorithm is used for the first time to investigative

the governing equation of plate with three-dimensional fractional viscoelastic model in

the time domain.

This paper is organized as follows: In Section 2, viscoelastic plate’s partial differential

governing equation under FKV model is derived in three-dimensional space. In Section 3

the differential operational matrices based on shifted Legendre polynomials are obtained.

Error analysis of the proposed algorithm and a mathematical example are given in Section

4. In Section 5, transverse displacements of the viscoelastic plate are calculated and

compared under different loading conditions in the time domain. Section 6 presents the

conclusions.

2. Establishment of governing equation of viscoelastic plate with FKV model

Consider a viscoelastic plate with length of a, width of b and thickness of h as shown

in Fig. 1. The rectangular plate is simply-supported along the four edges. The transverse

distributed load applied on the top surface of the plate is expressed by F (x, y, t).

In this paper, the fractional model is used to describe the viscoelastic property of the

material. Shemermergor is one of the first researchers to introduce a modification to the

Kelvin-Voigt model of fractional derivative viscoelastic materials. The time derivative

of the Kelvin-Voigt model is replaced by the α-order fractional derivative [17], and the

following definition of the FKV model can be obtained.

σ = (E + ηDα
t ) ε (1)

where σ is stress, ε is strain. E represents Young’s modulus of the plate and η is damping
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(a) Coordinate system of the plate (b) Simply-supported boundary condition

Fig. 1. Configuration of simply-supported viscoelastic plate.

coefficient of the structure. Dα
t (·) is fractional derivative in the Caputo sense, which is

defined as follows

Dα
t f (t) =

 1
Γ(m−α)

∫ t
0

f(m)(τ)

(t−τ)α−m+1 dτ, α > 0,m− 1 ≤ α < m

dmf(t)
dtm , α = m,

(2)

wherem ∈ N+ (N+ denotes positive integer), Γ(∗) is Gamma function, Γ(∗) =
∫∞

0
e−tt∗−1dt.

α is fractional derivative order.

Based on the reference [3], the stress-strain component of the FKV model is expressed

in three-dimensional space and the partial fractional differential governing equation is

derived, the governing equation of the viscoelastic plate under the FKV model can be

rewritten as

D

(
∂4w(x, y, t)

∂x4
+ 2

∂4w(x, y, t)

∂x2∂y2
+
∂4w(x, y, t)

∂y4

)
+ ηDDα

t

(
∂4w(x, y, t)

∂x4
+2

∂4w(x, y, t)

∂x2∂y2
+
∂4w(x, y, t)

∂y4

)
+ ρh

∂2w(x, y, t)

∂t2
= F (x, y, t) (3)

where D = Eh3/12
(
1− ν2

)
, ν is Poisson’s ratio, ρ is plate’s density, w(x, y, t) is the

displacement in the z direction.

The simply-supported boundary conditions are determined by

w(x, y, t)|x=0,a = w(x, y, t)|y=0,b =
∂2w(x, y, t)

∂x2

∣∣∣∣
x=0,a

=
∂2w(x, y, t)

∂y2

∣∣∣∣
y=0,b

= 0 (4)
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3. Numerical algorithm

3.1. Shifted Legendre polynomials

Shifted Legendre polynomials ln(x) of degree n defined on [0, 1] as following [18]

ln(x) =

n∑
i=0

(−1)
n+i Γ(n+ i− 1)

Γ(n− i+ 1)(Γ(i+ 1))
2x

i (5)

where i = 0, 1, · · · , n.

The shifted Legendre polynomials satisfy the orthogonality property

∫ 1

0

li(x)lj(x)dx =

 0, i 6= j

1
2i+1 , i = j

(6)

where i, j = 0, 1, · · · , n.

Let ϕn(x) denotes a matrix formed by a series of shifted Legendre polynomials, it can

be expressed by

ϕn(x) = [li(x), 0 ≤ i ≤ n]
T

(7)

In equivalent form

ϕn(x) = AP (x) (8)

where P (x) = [1, x, · · · , xn]
T

,

A = [aij ]
n
i,j=0 , [aij ] =

 0, i < j

(−1)i+j Γ(i+j+1)
Γ(i−j+1)(Γ(i+1))2 , i ≥ j.

For practical application, the interval of shifted Legendre polynomials is extended to

[0, H]. The shifted Legendre polynomials of degree n1 can be obtained.

Ln1
(x) =

n1∑
i=0

(−1)n1+i Γ(n1 + i+ 1)

Γ(n1 − i+ 1)(Γ(i+ 1))2

( x
H

)i
=

n1∑
i=0

(−1)n1+i Γ(n1 + i+ 1)

Γ(n1 − i+ 1)(Γ(i+ 1))2

(
1

H

)i
xi

(9)

where x ∈ [0, H], i = 0, 1, · · · , n1.

ϕn1
(x) can be converted into the following matrix product

ϕn1(x) = MG(x) (10)

where G(x) = [1, x, · · · , xn1 ]
T

,

M = [mij ]
n1
i,j=0,[mij ] =

 0, i < j

(−1)i+j Γ(i+j+1)
Γ(i−j+1)(Γ(i+1))2

(
1
H

)i
, i ≥ j.
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Similarly, they can be obtained

ϕn2
(y) = RG(y) (11)

where y ∈ [0, S], G(y) = [1, y, · · · , yn2 ]
T

.

R = [rij ]
n2
i,j=0, [rij ] =

 0, i < j

(−1)i+j Γ(i+j+1)
Γ(i−j+1)(Γ(i+1))2

(
1
S

)i
, i ≥ j.

(12)

ϕn3
(t) = NG(t) (13)

where t ∈ [0,K], G(t) = [1, t, · · · , tn3 ]
T

.

N = [nij ]
n3
i,j=0, [nij ] =

 0, i < j

(−1)i+j Γ(i+j+1)
Γ(i−j+1)(Γ(i+1))2

(
1
K

)i
, i ≥ j.

(14)

3.2. Approximation of ternary function

The displacement with time can be considered as a separable function according to

the well-known vibration analysis procedure. The displacement function of Eq. (3) can

be separated into [6]

w (x, y, t) = w(x, y)w(t) (15)

where w (x, y) ∈ L2 ([0, H]× [0, S]) , w (t) ∈ L2 ([0,K]).

Any one-variable function w(t) ∈ L2([0,K]) can be approximated by the shifted Leg-

endre polynomials of finite terms.

w(t) ≈
n3∑
k=0

ckLk(t) = CTϕn3
(t) (16)

where n3 represents the number of terms of shifted Legendre polynomials, ck = 〈w (t) , Lk (t)〉

represents the coefficient of shifted Legendre polynomials, CT = [ck]
n3

i=0, and ϕn3
(t) =

[Lk(t), 0 ≤ k ≤ n3]
T

.

Two-variable function w(x, y) ∈ L2([0, H]× [0, S]) can be approximated as follows

w(x, y) ≈
n1∑
i=0

n2∑
j=0

wijLi(x)Lj(y) = ϕTn1
(x)Wϕn2

(y) (17)

where n1, n2 represent the number of terms of shifted Legendre polynomials, ϕn1(x) =

[Li(x), 0 ≤ i ≤ n1]
T
, ϕn2

(y) = [Lj(y), 0 ≤ j ≤ n2]
T

. wij = 〈w (x, y) , Li (x)Lj (y)〉 is co-
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efficient, W is the (n1 + 1)× (n2 + 1) coefficient matrix to be calculated, which is defined

as W =


w0,0 w0,1 · · · w0,n2

w1,0 w1,1 · · · w1,n2

...
...

. . .
...

wn1,0 wn1,1 · · · wn1,n2

.

By substituting Eq. (16) and Eq. (17) into Eq. (15), the following result can be

obtained

w (x, y, t) = w(x, y)w(t) ≈ ϕTn1
(x)Wϕn2(y)CTϕn3(t) (18)

3.3. Differential operational matrix

3.3.1. Integer order differential operational matrix

Definition 1 If a matrix Dm
x (m ∈ N+) such that ϕ

(m)
n1 (x) = Dm

x ϕn1
(x) exists, then Dm

x

is called a m-order differential operational matrix of shifted Legendre polynomials.

When m = 1, it can be obtained

ϕ′n1
(x) = (MG(x))′ = MG′(x) = M


1′

x′

...

(xn1)′

 = M


0

1
...

n1x
n1−1

 = MV1G(x) (19)

where V1 = [vij ]
n1
i,j=0, vij =

 0, i 6= j + 1

i, i = j + 1.

Eq. (19) can be rewritten according to Eq. (10)

ϕ′n1
(x) = Dxϕn1(x) = MV1M

−1ϕn1(x) (20)

where Dx = MV1M
−1 is a first-order differential operational matrix of the shifted Leg-

endre polynomials.

When m = 2, it can be obtained

ϕ′′n1
(x) = (ϕ′n1

(x))′ = MV1M
−1ϕ′n1

(x) = (MV1M
−1)2ϕn1

(x) = D2
xϕn1

(x) (21)

where D2
x = (MV1M

−1)2 is second-order differential operational matrix of the shifted

Legendre polynomials.

Above all, the m-order differential operational matrices of the shifted Legendre poly-

nomials can be derived.

ϕ(m)
n1

(x) = (MV1M
−1)mϕn1

(x) = Dm
x ϕn1

(x) (22)
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ϕ(m)
n2

(y) = (RV2R
−1)mϕn2(y) = Dm

y ϕn2(y) (23)

ϕ(m)
n3

(t) = (NV3N
−1)mϕn3

(t) = Dm
t ϕn3

(t) (24)

where V2 = [vij ]
n2
i,j=0, V3 = [vij ]

n3
i,j=0.

The partial differential equation terms in Eq. (3) can be written as

∂2w (x, y, t)

∂x2
≈
∂2
(
ϕTn1

(x)Wϕn2 (y)CTϕn3 (t)
)

∂x2
=
∂2ϕTn1

(x)

∂x2
Wϕn2

(y)CTϕn3
(t)

= ϕTn1
(x)
(
MV1M

−1
)2
Wϕn2 (y)CTϕn3 (t) (25)

∂4w (x, y, t)

∂x4
≈
∂4
(
ϕTn1

(x)Wϕn2 (y)CTϕn3 (t)
)

∂x4
=
∂4ϕTn1

(x)

∂x4
Wϕn2

(y)CTϕn3
(t)

= ϕTn1
(x)
(
MV1M

−1
)4
Wϕn2

(y)CTϕn3
(t) (26)

∂2w (x, y, t)

∂y2
≈
∂2
(
ϕTn1

(x)Wϕn2
(y)CTϕn3

(t)
)

∂y2
= ϕTn1

(x)W
∂2ϕn2 (y)

∂y2
CTϕn3

(t)

= ϕTn1
(x)W

(
RV2R

−1
)2
ϕn2

(y)CTϕn3
(t) (27)

∂4w (x, y, t)

∂y4
≈
∂4
(
ϕTn1

(x)Wϕn2
(y)CTϕn3

(t)
)

∂y4
= ϕTn1

(x)W
∂4ϕn2

(y)

∂y4
CTϕn3 (t)

= ϕTn1
(x)W

(
RV2R

−1
)4
ϕn2 (y)CTϕn3 (t) (28)

∂4w (x, y, t)

∂x2∂y2
≈
∂4
(
ϕTn1

(x)Wϕn2 (y)CTϕn3 (t)
)

∂x2∂y2

=
∂4
(
ϕTn1

(x)Wϕn2 (y)
)

∂x2∂y2
CTϕn3

(t)

= ϕTn1
(x)
(
MV1M

−1
)2
W
(
RV2R

−1
)2
ϕn2

(y)CTϕn3
(t) (29)

∂2w (x, y, t)

∂t2
≈
∂2
(
ϕTn1

(x)Wϕn2
(y)CTϕn3

(t)
)

∂t2

= ϕTn1
(x)Wϕn2 (y)CT

∂2ϕn3
(t)

∂t2

= ϕTn1
(x)Wϕn2

(y)CT
(
NV3N

−1
)2
ϕn3

(t) (30)
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3.3.2. Fractional order differential operational matrix

Definition 2 If a matrix Kt such that Dα
t ϕn3(t) = Ktϕn3(t) exists, then Kt is called a

fractional order operational matrix of shifted Legendre polynomials.

Because the fractional derivative of α order of tn3 can be expressed as

Dα
t t
n3 =

Γ(n3 + 1)

Γ(n3 + 1− α)
tn3−α (31)

The following results can be obtained

Dα
t ϕn3

(t) = Dα
t (NG(t)) = NDα

t G(t) = NDα
t


1

t
...

tn3



= N


0

Γ(2)
Γ(2−α) t

1−α

...

Γ(n3+1)
Γ(n3+1−α) t

n3−α

 = NQG(t) (32)

where Q = [qij ]
n3

i,j=0, qij =

 0, otherwise

Γ(i)
Γ(i+1−α) t

−α, i = j, i 6= 1.

Eq. (32) can be rewritten according to Eq. (13)

Dα
t ϕn3

(t) = Ktϕn3
(t) = NQN−1ϕn3

(t) (33)

where Kt=NQN
−1 is α order differential operational matrix of ϕn3 .

The terms with fractional derivative in Eq. (3) can be obtained

Dα
t

∂4w(x, y, t)

∂x4
≈ Dα

t

[
ϕTn1

(x)
(
MV1M

−1
)4
Wϕn2 (y)CTϕn3 (t)

]
= ϕTn1

(x)
(
MV1M

−1
)4
Wϕn2 (y)CTDα

t ϕn3 (t)

= ϕTn1
(x)
(
MV1M

−1
)4
Wϕn2

(y)CTNQN−1ϕn3
(t) (34)

Dα
t

∂4w(x, y, t)

∂y4
≈ Dα

t

[
ϕTn1

(x)W
(
RV2R

−1
)4
ϕn2

(y)CTϕn3
(t)
]

= ϕTn1
(x)W

(
RV2R

−1
)4
ϕn2

(y)CTDα
t ϕn3

(t)

= ϕTn1
(x)W

(
RV2R

−1
)4
ϕn2 (y)CTNQN−1ϕn3(t) (35)
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Dα
t

∂4w (x, y, t)

∂x2∂y2
≈ Dα

t

[
∂2
(
ϕTn1

(x)Wϕn2
(y)CTϕn3

(t)
)

∂x2∂y2

]
= ϕTn1

(x)
(
MV1M

−1
)2
W
(
RV2R

−1
)2
ϕn2 (y)CTDα

t ϕn3 (t)

= ϕTn1
(x)
(
MV1M

−1
)2
W
(
RV2R

−1
)2
ϕn2

(y)CTNQN−1ϕn3
(t) (36)

3.4. Transformation of the governing equation of viscoelastic plate

Integer order and fractional order differential operators are substituted into the initial

governing equation. Eq. (3) can be transformed into the following algebraic equation,

where W and C are unknown.

DϕTn1
(x)
(
MV1M

−1
)4
Wϕn2

(y)CTϕn3
(t) +DϕTn1

(x)W
(
RV2R

−1
)4
ϕn2

(y)CTϕn3
(t)

+ 2DϕTn1
(x)
(
MV1M

−1
)2
W
(
RV2R

−1
)2
ϕn2 (y)CTϕn3 (t)

+ ηDϕTn1
(x)
(
MV1M

−1
)4
Wϕn2

(y)CTNQN−1ϕn3
(t)

+ ηDϕTn1
(x)W

(
RV2R

−1
)4
ϕn2 (y)CTNQN−1ϕn3(t)

+ 2ηDϕTn1
(x)
(
MV1M

−1
)2
W
(
RV2R

−1
)2
ϕn2

(y)CTNQN−1ϕn3
(t)

+ ρhϕTn1
(x)Wϕn2

(y)CT
(
NV3N

−1
)2
ϕn3

(t) = F (x, y, t) (37)

The boundary conditions in Eq. (4) are rewritten as

w(0, y, t) ≈ ϕTn1
(0)Wϕn2

(y)CTϕn3
(t) = 0

w(a, y, t) ≈ ϕTn1
(a)Wϕn2 (y)CTϕn3 (t) = 0

w(x, 0, t) ≈ ϕTn1
(x)Wϕn2

(0)CTϕn3
(t) = 0

w(x, b, t) ≈ ϕTn1
(x)Wϕn2 (b)CTϕn3 (t) = 0

∂2w(0, y, t)

∂x2
≈ ϕTn1

(0)
(
MV1M

−1
)2
Wϕn2

(y)CTϕn3
(t) = 0

∂2w(a, y, t)

∂x2
≈ ϕTn1

(a)
(
MV1M

−1
)2
Wϕn2

(y)CTϕn3
(t) = 0

∂2w(x, 0, t)

∂y2
≈ ϕTn1

(x)W
(
RV2R

−1
)2
ϕn2 (0)CTϕn3 (t) = 0

∂2w(x, b, t)

∂y2
≈ ϕTn1

(x)W
(
RV2R

−1
)2
ϕn2

(b)CTϕn3
(t) = 0 (38)

Based on collection method, variable (x, t) is discretized into (xi, tj) by taking nodes.

Eq. (37) is transformed into a set of algebraic equations. Coefficient matrices W and

C are determinated by using the least square method. The numerical solutions of partial

fractional differential equations can be obtained in the time domain.
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4. Error analysis and mathematical example

In this section, error analysis and mathematical example are proposed to verify the

efficiency and accuracy of the shifted Legendre polynomials algorithm.

4.1. Error analysis

The efficiency of shifted Legendre polynomials is proved for the approximation of

ternary displacement function by following theorem. Lagrangian interpolation polynomial

combined with shifted Chebyshev interpolation points are used to prove the theorem.

The ternary function w(x, y, t) can be separated into w(x, y)w(t) by Eq. (15). Thus, the

approximation theorem of w(t) is given. The same method applies to the approximation

of w(x, y) with the proposed algorithm.

Theorem 1 Suppose w(t)(t ∈ [0,K]) is a smooth function, and wn(t) is the best approx-

imation of w(t) given in Eq. (16). Then, it follows that

‖w (t)− wn (t)‖∞ ≤ C1
(K/2)

n+1

(n+ 1)!2n
(39)

where C1 is a non-negative constant.

Proof Let w(t) is a sufficiently smooth function on Λ
n

. We assume that wn (t) ∈ Λ
n

is

the best approximation of w(t) in this discussion.

There is an integrable and measurable function un (t) ∈ Λ
n

, then according to the

definition of the best approximation, it can be obtained that

‖w (t)− wn (t)‖∞ ≤ ‖w (t)− un (t)‖∞ (40)

If un (t) is the Lagrange interpolation polynomial at node points tk (k = 0, 1, ..., n),

where tk are the roots of (n+1)-degree shifted Chebyshev polynomial in [0,K]. And un (t)

also satisfies the above inequality. Then through the Lagrange interpolation polynomial

formula and its error formula, we get

w(t)− un(t) =
w(n+1)(θ)

(n+ 1)!

n∏
k=0

(t− tk) (41)

where θ ∈ [0,K], and hence it can be obtained that

‖w(t)− un(t)‖∞ ≤ max
0≤t≤K

∣∣∣w(n+1)(θ)
∣∣∣
∥∥∥∥ n∏
k=0

(t− tk)

∥∥∥∥
∞

(n+ 1)!
(42)

11



where (n+ 1)! is a constant, w(t) is a smooth function on the interval [0,K], therefore,

there is a non-negative constant C1, such that

max
0≤t≤K

∣∣∣w(n+1)(θ)
∣∣∣ ≤ C1 (43)

By substituting Eq. (43) into Eq. (42) and considering the estimation of Chebyshev

interpolation nodes [19], we get

‖w(t)− un(t)‖∞ ≤ C1
(K/2)

n+1

(n+ 1)!2n
(44)

According to Eq. (40) and the above derivation, the following conclusion can be drawn

‖w (t)− wn (t)‖∞ ≤ ‖w(t)− un(t)‖∞ ≤ C1
(K/2)

n+1

(n+ 1)!2n
(45)

�

In summary, shifted Legendre polynomials algorithm is an effective algorithm for

approximating ternary unknown function.

4.2. Mathematical example

In this part, an abstract partial fractional differential equation is solved, which has

the same structure as the partial differential equation of plate’s motion. The objective is

to solve this abstract partial fractional differential equation with the proposed numerical

algorithm and compare it with its exact solution in order to verify the accuracy and

efficiency of the algorithm. F (x, y, t) is obtained from algebraic solution.

The form of the mathematical example is as follows

0.1

(
∂4w (x, y, t)

∂x4
+ 2

∂4w (x, y, t)

∂x2∂y2
+
∂4w (x, y, t)

∂y4

)
+ 0.1Dα

t

(
∂4w (x, y, t)

∂x4
+ 2

∂4w (x, y, t)

∂x2∂y2
+
∂4w (x, y, t)

∂y4

)
+ 5.4

∂2w

∂t2
= F (x, y, t) (46)

where α = 0.41, F (x, y, t) = 0.16π4 sin(πx) sin(πy)t2
(

1 + Γ(3)
Γ(3−α) t

2−α
)

+4.32 sin(πx) sin(πy).

The boundary conditions are expressed as follows

w(x, y, t)|x=0,1 = w(x, y, t)|y=0,1 =
∂2w(x, y, t)

∂x2

∣∣∣∣
x=0,1

=
∂2w(x, y, t)

∂y2

∣∣∣∣
y=0,1

= 0 (47)

The exact solution of Eq. (46) is w(x, y, t) = 0.4 sin (πx) sin (πy) t2.

12
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Fig. 2. Comparison of the exact and numerical solutions at different nodes when t = 1, (n1, n2, n3) =

(2, 2, 2).
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Fig. 3. Absolute error when t = 1, (n1, n2, n3) = (2, 2, 2).

The partial fractional differential equation is solved by shifted Legendre polyno-

mials algorithm when (n1, n2, n3) = (2, 2, 2). The numerical solution and exact so-

lution are denoted by wn(x, y, t) and w(x, y, t), respectively. It is obvious from the

color maps as shown in Fig. 2 that the match between the numerical solution and

the exact solution is excellent when t = 1. The absolute error e(x, y, t) is represented

by e(x, y, t) = |wn(x, y, t)− w(x, y, t)|. Absolute error is shown in Fig. 3(a) when

y = 0.45, 0.5, 0.55, x ∈ [0.4, 0.6]. And the absolute error is shown in Fig. 3(b) when

x = 0.45, 0.5, 0.55, y ∈ [0.4, 0.6]. As observed, the maximum absolute error value is

almost less than 3 × 10−3 in all cases. The minimum absolute error value can reach

9.436 × 10−5. The efficiency of the shifted Legendre polynomials algorithm for solving

partial fractional differential equations of viscoelastic plates is verified.
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5. Numerical results and discussions

In this part, numerical analysis of the viscoelastic plate is carried out based on the

proposed algorithm. The viscoelastic plate under different loading conditions is studied,

and the influence of damping coefficient on vibration amplitude of the plate is also studied.

Geometric and material properties of the plate considered in the numerical computations

are shown in Table. 1.

The boundary conditions are

w(x, y, t)|x=0,1 = w(x, y, t)|y=0,1 =
∂2w(x, y, t)

∂x2

∣∣∣∣
x=0,1

=
∂2w(x, y, t)

∂y2

∣∣∣∣
y=0,1

= 0 (48)

Table 1: Geometrical and material properties of the plate considered in the numerical computations [20].

Physical quantity Symbol Value Unit

Length a 1 m

Width b 1 m

Thickness h 0.002 m

Young′s Modulus E 2.1× 105 MPa

Density ρ 7850 kg/m3

Damping coefficient η 1050 Pa · sα

Poisson′s ratio ν 0.3 −

Fractional derivative order α 0.25 −

5.1. Effect of loading time on the displacement of the plate

The response of viscoelastic plate under transverse simple harmonic load is first stud-

ied. The simple harmonic load form is F = 0.0001kcos($t), where k is the amplitude

parameter and $ is the excitation frequency [2]. When k = 1 m and $ = 1 rad/s,

the numerical solutions of the plate displacement are solved based on shifted Legendre

polynomials algorithm at different time as shown in Fig. 4.

It can be seen from the figures that the plate has a certain deformation and produces

transverse displacement. The displacement reaches the maximum at the center position of

the plate (x = 0.5 m, y = 0.5 m). The displacement of the plate is symmetrical about the

center of the plate. The displacement of the four edges of the viscoelastic plate is always

zero and is not affected by time, which is consistent with the boundary conditions. In

other positions, the transverse displacement of the viscoelastic plate increases with time.
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Fig. 4. Transverse displacements of viscoelastic plate under different time.

Through the computation of the proposed algorithm, numerical solutions of transverse

displacements at different time can be directly obtained in the time domain. When t = 1

s, the maximum displacement of the viscoelastic plate is 4.744×10−10 m, and when t = 4

s, the maximum value reaches 7.648× 10−6 m.

5.2. Effect of different loads on the displacement of the plate

When a constant transverse load is applied to the viscoelastic plate, the plate will

deform and generate transverse displacements. Fig. 5 shows the transverse displacements

of the plate at different positions under the same loading time under four loads: 0.25, 0.5,

0.75 and 1 N. It can be seen from the figures that the viscoelastic plate’s displacement

gradually increases with the increase of the applied transverse load, and the maximum

value is obtained when F = 1 N.

By using the proposed numerical algorithm, the time domain displacement solutions

of the viscoelastic plate under different loads are obtained successfully. The material

properties shown by the calculated results are consistent with the actual material prop-
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erties, which reflects the high accuracy of this algorithm. The algorithm can provide a

theoretical basis for the development and performance prediction of viscoelastic material

plates.
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Fig. 5. Transverse displacements of viscoelastic plate under different loads.

5.3. Effects of vibration amplitude

The proposed algorithm is used to calculate and study vibration amplitude of the

viscoelastic plate in this subsetion. Vibration amplitude of the plate are calculated for a

point located at x = 0.5 m and y = 0.5 m from the left corner of the plate when t = 1

s. In numerical computations, the fractional order derivative α is taken as 0.25. When

the damping coefficient takes different values, the vibration amplitude of the viscoelastic

plate under different loads (F = 0.25 N and F = 0.5 N) is shown in the Fig. 6.
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Fig. 6. The effect of damping coefficient on vibration amplitude under different loads.

As observed, increasing the damping coefficient reduces the vibration amplitude of

the plate. The stiffness of the plate increases with the increase of η, thus reducing the

amplitude of vibration. The conclusions obtained are consistent with the conclusions of

the Ref. [21]. The Galerkin method is used in Ref. [21] to solve the partial fractional

differential governing equation of the plate. The algorithm proposed in this paper provides

a new idea for this research. Shifted Legendre polynomials algorithm can be used to solve

and study vibration amplitudes of viscoelastic plate in the time domain.

6. Conclusions

In this paper, FKV constitutive model is applied to establish the viscoelastic plate’s

governing equation in three-dimensional space. Shifted Legendre polynomials algorithm

is proposed to solve directly the equation in the time domain. The numerical analysis

of viscoelastic plate is effectuated with different loading conditions. The influence of

damping coefficient on vibration amplitude is investigated in the time domain. The results

show that the algorithm has high accuracy and certain practical value. The results are

as follows

1. FKV model reduces the number of physical parameters and describes the damping

characteristics of viscoelastic plates well in three dimensional space.

2. Shifted Legendre polynomials algorithm can accurately solve ternary displacement

functions of viscoelastic plates in the time domain.

3. Numerical solutions of viscoelastic plate’s displacement under different loading

conditions are compared and analyzed.

4. When the fractional derivative order is fixed, increasing the damping coefficient will

increase the damping properties of the plate, resulting in reduced vibration amplitude.
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