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Abstract In this paper, a kinetic equation of Euler-Bernoulli beam is estab-
lished with variable order fractional viscoelastic model. An effective numerical
algorithm is proposed. This method uses a combination of shifted Bernstein
polynomial and Legendre polynomial to approximate the numerical solution.
The effectiveness of the algorithm is tested and verified by mathematical ex-
amples. The dynamic behavior of viscoelastic beams made of two materials
under various loading conditions is studied.

Keywords Euler-Bernoulli beam · Variable order fractional model · Collo-
cation method · Shifted Bernstein function · Shifted Legendre polynomial ·
Dynamic behavior

1 Introduction

Viscoelastic materials exhibit both elastic and viscous deformation under
external loading conditions. They are considered as special damping mate-
rials, which play an important part in the vibration and noise reduction of
equipment. Polyurea and Polyethylene terephthalate polymer (PET) are two
of these viscoelastic materials. Polyurea has good abrasion resistance and ther-
mal stability [1,2]. PET has good stability, low abrasion and high hardness,
which is the greatest toughness among thermoplastics. It is mainly used for
fibers, and a small amount is used for engineering plastics. This paper analyzes
the mechanical behavior of these two viscoelastic materials.
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Viscoelastic models have been mainly used to describe material behavior in
beam vibration research in recent years. The development of the constitutive
viscoelastic models has attracted widely attention of scientific researchers.
These models include differential constitutive relations [3–6]. Oskouie et al.
[7] studied the vibrations of fractional viscoelastic Timoshenko nanobeams
based on the Gurtin-Murdoch model. The effects of viscoelasticity coefficient
and fractional order on the frequency and damping of vibrations of the beams
were investigated. A variational finite difference method was proposed to solve
the nonlocal vibrations of Euler-Bernoulli nanobeams within the framework
of fractional calculus [8]. A fractional variational method was proposed to
solve the governing equation of Bernoulli-Euler beam [9]. The influences of
fractional order on the nonlinear bending and postbuckling responses with
various boundary conditions were investigated. However, integer order mod-
els cannot describe dynamic viscoelastic behavior well. Therefore, fractional
order was introduced into the viscoelastic constitutive model because it can
accurately describe the characteristics of viscoelastic materials. Xu et al. [10]
established a fractional order equation of a viscoelastic beam, and analyzed
the dynamic behaviors and steady-state response of viscoelastic beam by wave
method. Freundlich [11] studied the transient vibration of Euler-Bernoulli can-
tilever beam at both ends under fractional Kelvin Voigt model. Martin [12]
developed an improved variational iterative method to analyze the simply
supported viscoelastic beams with a fractional order Zener model. Fractional
order models are proved to be more comprehensively for the description of
the materials’ viscoelastic behavior [13], especially for their time dependent
mechanical properties. In variable fractional order models, the fractional or-
der can be considered as a function of time, which makes the models more
efficient to capture the dynamic response of the materials [14,15].

However, in the analysis process, a small change will cause great changes
in this system. Fractional order constitutive model unable accurately describe
the dynamic behavior of viscoelastic materials in most cases. Variable order
fractional operators show more sensitivity and accuracy in the numerical mod-
elling in mechanical engineering [16]. Sun and Chen [17] numerically analyzed
the viscoelastic columns under a variable order fractional model. Huang et
al. [18] established a viscoelastic plastic model based on fractional calculus
theory. The experimental data showed that the fractional order model can
accurately describe the creep characteristics of initial damaged coal sample.
Meng et al. [19] provided an innovative variable order fractional model. Com-
pared with the experimental stress-strain data, the model can well study the
strain hardening behavior of amorphous glassy polymers.

Euler-Bernoulli beam is widely used in mechanical and manufacturing en-
gineering. The fractional viscoelastic models are used to establish the kinetic
equations of Euler-Bernoulli beams. Various methods have been proposed in
order to solve kinetic equations. Rahimi et al. [20] described the mechanical
deformation of materials with a fractional nonlocal model. The nonlinear ki-
netic equation of Euler Bernoulli beam is solved by Galerkin weighted residual
method. Ali et al. [21] applied the finite difference method to study the in-



Title Suppressed Due to Excessive Length 3

hibitory effect of fractional order on Euler-Bernoulli cantilever beam. Oskouie
et al. [22] solved the fractional order nonlinear vibration equation of viscoelas-
tic Euler-Bernoulli nanobeam by using Galerkin scheme. Yu et al. [23] solved
the fractional order constitutive equation of Euler-Bernoulli beam by using
Quasi-Legendre polynomials. The dynamic analysis was carried out with two
different viscoelastic materials. Wang et al. [24] solved the polymeric viscoelas-
tic Euler-Bernoulli beam based on Chebyshev polynomials algorithm. It was
proved that polynomials algorithm is a valid method for solving fractional
beam kinetic equations. An effective algorithm on account of the collocation
of shifted Bernstein-Legendre polynomial is applied to numerically solve the
viscoelastic Euler-Bernoulli beam in this paper.

Many advanced models have been proposed to investigate the vibration
and buckling of different beam structures under compression. Augello et al.
[25] built a finite elements method in the framework of the Carrera Unified
Formulation (CUF) to evaluate the displacements of the thin walled beams
with complex geometric shapes. Zhao et al. [26] proposed a generalized model
to study Timoshenko double-beam systems under compressive axial loads. The
proposed model was efficient for the forced vibration analysis of the systems.
A novel beam theory based on CUF was introduced to discuss the vibration
behavior of curved metallic and composite beams [27]. The improved numerical
algorithm was used to describe the cross-sectional deformation. Yang et al. [28]
developed a refined finite element method based on CUF to investigate the
virtual vibration correlation technique for highly flexible thin-walled composite
beams.

An accurate and effective numerical algorithm is required to solve the ki-
netic equations of viscoelastic beams based on variable order fractional model.
Polynomial algorithm can directly solve these kinetic equations in time do-
main. Chen et al. [29] applied generalized fractional Legendre function to solve
a fractional differential equation with variable coefficients. They proposed a
numerical method to solve a class of variable order nonlinear fractional differ-
ential equations based on Legendre wavelet [30]. Hassani et al. [31] proposed
a generalized polynomial optimization method for solving variable order frac-
tional nonlinear Klein-Gordon equation.

Bernstein and Legendre polynomials are extensively used to find the solu-
tions of fractional order equations. Among them, Bernstein polynomials have
good approximation and stability. Maleknejad et al. [32] used Bernstein poly-
nomials to solve nonlinear Volterra Fredholm Hammerstein integral equation.
A type of multi-order fractional differential equations was solved by using
Bernstein polynomials method in [33]. The weight function of Legendre poly-
nomials is simpler than other polynomials such as Chebyshev polynomials [34]
and Bernoulli polynomials [35]. They have great orthogonality. In this paper,
shifted Bernstein polynomials and shifted Legendre polynomials are used to
approximate the deflection function of Euler Bernoulli beams.

The paper is organized as follows: Section 2 presents some basic knowl-
edge of variable order fractional differential operators. The kinetic equation of
a Euler-Bernoulli beam is established under variable order fractional model.
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Section 3 introduces Shifted Bernstein-Legendre polynomial collocation algo-
rithm. In Section 4, numerical examples are given to verify the effectiveness
and practicability of the algorithm. Dynamic analysis of viscoelastic beams
under different materials and loading conditions is investigated in Section 5.
Section 6 gives the conclusions.

2 Preliminaries

This section introduces the definition of variable order fractional differen-
tial operators. The kinetic equation of viscoelastic beam is established with
variable order fractional model.

2.1 Variable order fractional differential operators

Definition1: Variable order fractional differential operator in Caputo sense
(CD

α(t)
t ), is defined as follows [36–38]:

CD
α(t)
t f(t) =

1

Γ (1− α(t))

∫ t

0+

(t− τ)
−α(t)

f ′(τ)dτ (1)

where 0 < α(t) ≤ 1 is variable order, f(t) is a continuous function. Γ (∗) =∫∞
0

e−tt∗−1dt is Gamma function.
According to Eq. (1), when f (t) = xmtn, it can be gotten:

CD
α(t)
t (xmtn) =

{
0, n = 0

Γ (n+1)
Γ (n+1−α(t)) t

n−α(t)xm, n = 1, 2, · · · (2)

when xm in Eq. (2) takes 1, the following can be obtained:

CD
α(t)
t (tn) =

{
0, n = 0

Γ (n+1)
Γ (n+1−α(t)) t

n−α(t), n = 1, 2, · · · (3)

2.2 Establishment of kinetic equation with variable order fractional model

The variable order fractional kinetic equation of Euler-Bernoulli beam is
established. Lateral load exerted on the surface of the beam causes it to bend
and deform. The bending deformation is restored to an equilibrium state due to
the viscoelasticity of the material, which causes the vertical vibration. Consider
a viscoelastic beam with fixed supports at both ends with length of l, width
of b and height of h. The configuration of the beam is shown in Fig.1. The
deformation of the beam under the distributed load f(x, t).

Kinetic equation of the beam is as follows: [12]:

ρS
∂2w(x, t)

∂t2
+

∂2M(x, t)

∂x2
= f(x, t) (4)



Title Suppressed Due to Excessive Length 5

Fig. 1 Configuration of the Euler-Bernoulli beam.

where ρ is density of the viscoelastic beam, S is cross-sectional area. M(x, t)
is bending moment. Lateral deflection of the beam is w(x, t).

Bending moment M(x, t) can be expressed as:

M(x, t) =

∫
S

zσ(x, t)dz (5)

where σ(x, t) represents stress, z represents transverse coordinate. The variable
order fractional model is proposed by [39]:

σ(x, t) = Eθα(t)
C
D

α(t)
t ε(x, t) (6)

where ε(t) is strain, σ(t) is stress. E is Young’s modulus, θ represents the
relaxation time and CD

α(t)
t (·) is defined by Eq. (2), α(t) is variable order.

Stress-deflection relationship of viscoelastic beam can be expressed as:

ε(x, t) = z
∂2w(x, t)

∂x2
(7)

Substitute Eq. (5) Eq. (6) and Eq. (7) into Eq. (4), the kinetic equation of
Euler-Bernoulli beam is obtained:

ρS
∂2w(x, t)

∂t2
+ IEθα(t)

C
D

α(t)
t

∂4w(x, t)

∂x4
= f(x, t) (8)

where I is inertia.
The fixed boundary conditions at both ends are determined by the follow-

ing formula:

w(0, t) =
∂w(0, t)

∂x
= w(l, t) =

∂w(l, t)

∂x
= 0 (9)

The initial condition is written as:

w(x, 0) =
∂w(x, 0)

∂t
= 0 (10)
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3 Bernstein-Legendre polynomial collocation algorithm

The Bernstein Legendre polynomial collocation algorithm will be described
in detail to solve the two-dimensional deflection function of the beam. Bern-
stein polynomial and Legendre polynomial are used for the purpose of approx-
imation basis functions for x and t, respectively. The definition interval of
deflection is [0, R]× [0,H]. The main idea is to employ the shifted polynomial
as a basic function to precisely approach the unknown deflection function. Ma-
trix items are used to represent the derivative function. The kinetic equation
is converted into a matrix product form which is simple to solve.

3.1 Polynomial theory

Definition2: The Bernstein polynomial of n− th is defined as follows [40]:

bn,i(x) =

n−i∑
k=0

(−1)
k

(
n
i

)(
n− i
k

)
xi+k (11)

where x ∈ [0, 1], i = 0, 1, 2, 3, · · · , n.
The n− th shifted Bernstein polynomial is used to expand the scope of x

in [0, R] as:

Bn,i(x) =

n−i∑
k=0

(−1)
k

(
n
i

)(
n− i
k

)
1

Ri+k
xi+k (12)

A shifted Bernstein polynomials matrix Φ(x) in [0, R] is expressed as:

Φ(x) = [Bn,0(x), Bn,1(x), · · · , Bn,n(x)]
T (13)

Eq. (13) is expressed by the following matrix product:

Φ(x) = AMTn(x) (14)

where

A = [ai,j ]
n
i,j=0 , ai,j =


(−1)

j−i

(
n
i

)(
n− i
j − i

)
, j ≥ i

0, j < i

(15)

M = [mi,j ]
n
i,j=0,mi,j =

{
1
Rj .j ≥ i
0, j < i

(16)

Tn(x) = [1, x, · · · , xn]T (17)
A and M are called coefficient matrices of shifted Bernstein polynomials.

Tn(x) can be obtained by:

Tn(x) = (AM)−1Φ(x) (18)
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Definition3: The n− th Legendre polynomial is defined by [41,42]:

ln,i(t) =

n∑
i=0

(−1)
n+i Γ (n+ i+ 1)

Γ (n− i+ 1)(Γ (i+ 1))
2 t

i (19)

where t ∈ [0, 1], i = 0, 1, 2, 3, · · · , n. Shifted Legendre polynomial of order n is
used to expand the scope of t in [0,H] as:

Ln,i(t) =

n∑
i=0

(−1)
n+i Γ (n+ i+ 1)

Γ (n− i+ 1)(Γ (i+ 1))
2 (

1

H
)iti (20)

A shifted Legendre polynomials matrix Θ(t) in [0,H] is expressed as:

Θ(t) = [Ln,0(t), Ln,1(t), · · · , Ln,n(t)]
T (21)

Eq. (21) can be indicated by the following matrix product:

Θ(t) = PNTn(t) (22)

where

P = [Λi,j ]
n
i,j=0, Λi,j =

{
0, j > i

(−1)
i+j Γ (i+j+1)

Γ (i−j+1)(Γ (j+1))2
, j ≤ i

(23)

N =

{
0, j ̸= i
1
Hi , j = i

(24)

Tn(t) = [1, t, · · · , tn]T (25)
Tn can be rewritten as:

Tn(t) = (PN)−1Θ(t) (26)

3.2 Approximation of unknown function

A continuous function w(x), x ∈ [0, R] is approximated by shifted Bernstein
polynomial as:

w(x) = lim
n→∞

n∑
i=0

ciBn,i(x)

≈
n∑

i=0

ciBn,i(x)

= CTΦ(x) (27)

where CT = [c0, c1, · · · , cn].
The calculation is as following:

< w(x), ΦT (x) > = CT < Φ(x), ΦT (x) >

= CTQ (28)
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where Q =< Φ(x), ΦT (x) >= [qi,j ]
n
i,j=0, qi,j =

∫ R

0
Bn,i(x)Bn,j(x)dx, CT =<

w(x), ΦT (x) > Q−1.
Similarly, w(t), t ∈ [0,H] can be approximated by shifted Legendre poly-

nomial as:

w(t) = lim
n→∞

n∑
i=0

kiLn,i(t)

≈
n∑

i=0

kiLn,i(t)

= KTΘ(t) (29)

where KT = [k0, k1, · · · , kn].
Similarly, the following results is obtained:

< w(t), ΘT (t) > = KT < Θ(t), ΘT (t) >

= KTY (30)

where Y =< Θ(t), ΘT (t) >= [yi,j ]
n
i,j=0, yi,j =

∫H

0
Ln,i(t)Ln,j(t)dt and so

KT =< w(t), ΘT (t) > Y −1.
Binary function w(x, t) ∈ L2([0, R]× [0,H]) is approximated to the follow-

ing form [43]:

w(x, t) = lim
n→∞

n∑
j=0

(

n∑
i=0

ciBn,i(x))kjLn,j(t)

≈
n∑

j=0

n∑
i=0

Bn,i(x)cikjLn,j(t)

= ΦT (x)WΘ(t) (31)

where W = [wi,j ]
n
i,j=0, wi,j = cikj .

3.3 Integer order differential operational matrix

Definition4: G is called first-order shifted Bernstein differential operational
matrix if G satisfies Φ′(x) = GΦ(x).

Φ′(x) =
dAMTn(x)

dx
= AM

dTn(x)

dx

= AMV Tn(x) = AMV (AM)−1Φ(x)

= GΦ(x) (32)

where
V = [vi,j ]

n
i,j=0 , vi,j =

{
i, i = j + 1
0, i ̸= j + 1

(33)
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G = AMV (AM)−1 is first-order differential operational matrix. Finding n−th
derivative in Eq. (34) as the following formula:

Φ(n)(x) = GnΦ(x) (34)

According to Eq. (31) and Eq. (34), the following equations are obtained:

∂nw(x, t)

∂xn
≈ ∂n(ΦT (x)WΘ(t))

∂xn
= (

∂nΦ(x)

∂xn
)TWΘ(t) = ΦT (x)(GT )nWΘ(t)

(35)
Definition5: If there is the matrix Ω satisfying Θ′(t) = ΩΘ(t), Ω is called
the first-order shifted Legendre differential operational matrix.

Θ′(t) =
dPNTn(t)

dt
= PN

dTn(t)

dt

= PNV Tn(t) = PNV (PN)−1Θ(t)

= ΩΘ(t) (36)

where Ω = PNV (PN)−1 is a first-order differential operational matrix. The
following formula is obtained:

Θ(n)(t) = ΩnΘ(t) (37)

Above all, the following formula is obtained:

∂nw(x, t)

∂tn
≈ ∂n(ΦT (x)WΘ(t))

∂tn
= ΦT (x)W (

∂nΘ(t)

∂tn
) = ΦT (x)WΩnΘ(t) (38)

3.4 Variable order fractional differential operational matrix

Definition6: If there is the matrix ϕ satisfying CD
α(t)
t Θ(t) = ϕΘ(t), ϕ is

called variable order fractional differential operational matrix.

CD
α(t)
t Θ(t) = CD

α(t)
t (PNTn(t)) = PNCD

α(t)
t (Tn(t))

= PNFTn(t)=PNF (PN)−1Θ(t)

= ϕΘ(t) (39)

where

F = [fi,j ]
n
i,j=0, fi,j =

{
Γ (i+1)

Γ (i+1−α(t)) t
−α(t), i = j ̸= 0

0, else
(40)

ϕ=PNFPN−1 (41)

On the basis of Eq. (35) and Eq. (39), the following equations can be
obtained:
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CD
α(t)
t

∂nw(x, t)

∂xn
≈ CD

α(t)
t

∂n(ΦT (x)WΘ(t))

∂xn

= (
∂nΦ(x)

∂xn
)TWCD

α(t)
t Θ(t)

= ΦT (x)(GT )nWϕΘ(t) (42)

Substituting Eq. (38) and Eq. (42) into Eq. (8), the following formula can
be obtained:

ρSΦT (x)WΩ2Θ(t) + IEθr(t)ΦT (x)(GT )4WϕΘ(t) = f(x, t) (43)

The initial conditions in Eq. (9) and boundary conditions in Eq. (10) can
be rewritten as:

ΦT (0)WΘ(t) = ΦT (0)GWΘ(t) = 0

ΦT (l)WΘ(t) = ΦT (l)GWΘ(t) = 0

ΦT (x)WΘ(0) = ΦT (x)WΩΘ(0) = 0 (44)

Variable (x, t) is discretized into (xi, tj), according to the collection method.
Eq. (43) is transformed into a set of algebraic equations by selecting nodes. wi,j

can be obtained through mathematical software. Ultimately, the time-domain
numerical solutions of variable order fractional partial differential equations
are obtained.

4 Numerical analysis

In this part, a general mathematical example is given to demonstrate the
effectiveness of the algorithm. Then, the proposed algorithm is applied to solve
the kinetic equation of HDPE beam, and compared with the solution based on
fractional order model. It shows that the proposed algorithm can simplify the
iteration steps. The variable order fractional model exhibits fewer material
parameters and a wider range of applications than the constant fractional
model.

4.1 Mathematical example

A mathematical in the same structure as the kinetic equation with variable
order fractional mode is proposed in this part. The effectiveness of the method
is verified by a mathematical example of the analytical solution.

∂2w(x, t)

∂t2
+ CD

α(t)
t

∂4w(x, t)

∂x4
= f(x, t) (45)

w(0, t) =
∂w(0, t)

∂x
= 0, w(1, t) =

∂w(1, t)

∂x
= 0 (46)
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w(x, 0) = 0,
∂w(x, 0)

∂t
= 0 (47)

where α(t) = −0.1t + 1, t ∈ [0, 1]. f(x, t) = 2x2(1− x)2 + 24 Γ (3)
Γ (3−r(t)) t

2−α(t).
The analytical solution is w(x, t) = x2(1− x)2t2.

0 0.5 1
x(m)

0

0.01

0.02

0.03

0.04

w
(x

,t
)(

m
)

w(x,t) t=0.2s

w
n
(x,t) t=0.2s

w(x,t) t=0.4s

w
n
(x,t) t=0.4s

w(x,t) t=0.6s

w
n
(x,t) t=0.6s

w(x,t) t=0.8s

w
n
(x,t) t=0.8s

(a)

0 0.5 1
t(s)

0

0.02

0.04

0.06

w
(x

,t
)(

m
)

w(x,t) x=0.25m

w
n
(x,t) x=0.25m

w(x,t) x=0.5m

w
n
(x,t) x=0.5m

w(x,t) x=0.6m

w
n
(x,t) x=0.6m

w(x,t) x=0.8m

w
n
(x,t) x=0.8m

(b)

Fig. 2 Comparison of wn(x, t) and w(x, t): (a) for different values of t (b) for different values
of x.

Using the shifted Bernstein-Legendre polynomial collocation algorithm, the
numerical solution wn(x, t) with the number of items of 4 is obtained. The
numerical solutions at various t and x are obtained, as shown in Fig. 2. The
effectiveness of this algorithm is verified by comparison with the analytical
solution.

e
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,t
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×10-14

1

t(s)
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(a)

0
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1

e
n
(x

,t
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×10-10

4

t(s)

0.5

x(m)

6

0.5
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1

1.5

2
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3

3.5

4

×10-10

(b)

Fig. 3 (a) The absolute error e(x, t) and (b) the relative error en(x, t).

Fig. 3 shows e(x, t) and en(x, t) at some points when n = 4. where

e(x, t) = |wn(x, t)− w(x, t)| (48)

en(x, t) =
|wn(x, t)− w(x, t)|

w(x, t)
(49)
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The absolute error can reach 10−14 in Fig. 3(a), which presents the high
accuracy of the proposed algorithm. The relative error is explained in order to
better reflect the reliability of the calculation results. The relative error can
reach 10−10 in Fig. 3(b), which confirms the high efficiency of the proposed
algorithm.

4.2 Deflection solution of viscoelastic high density polyethylene (HDPE)
beam

Wang and Chen [43] used Chebyshev polynomial approximation theory to
calculate the bending vibration equation of viscoelastic beams with fractional
order model. Fractional order is replaced by a function of t in this part. The
bending vibration equation of HDPE beams is generalized as a variable order
fractional equation. The shifted Bernstein-Legendre polynomial collocation
algorithm is used to calculate the deflection of HDPE beam. The parameters
in the bending vibration equation of HDPE beam are involved in Table 1 [43].

Material ρ1 A1 E1 I1 Ω1

HDPE 960 kg/m3 0.04m2 3.341× 105 Pa 0.0016/12m4 π/2

Table 1 Material properties of the beam considered in numerical computation.

HDPE beam bending vibration equation is given by:

ρ1A1
∂2w(x, t)

∂t2
+ E1I1

CD
α(t)
t

∂4w(x, t)

∂x4
−ρ1A1Ω

2
1x

∂2w(x, t)

∂x2
= f(x, t) (50)


w(0, t) = ∂w(0,t)

∂x = 0
∂2w(l,t)

∂x2 = ∂3w(l,t)
∂x3 = 0

w(x, 0) = 0, ∂w(x,0)
∂t = 0

(51)

where variable fraction order α(t) = −0.1t+1, t ∈ [0, 1], ρ1 is density of HDPE,
A1 is cross-sectional area of rotating beam, E1 is parameter, I1 is the moment,
Ω1 is the rotation speed of the beam, w(x, t) is deflection and f(x, t) is load.

Shifted Bernstein-Legendre polynomial collocation algorithm can be used
to find the numerical solution of deflection under f(x, t) = 10N/m, f(x, t) =
10π sin tN/m and f(x, t) = (10 + 2x)N/m.

According to Fig. 4, Lateral deflection of viscoelastic HDPE beam is calcu-
lated by the proposed algorithm. The variable order values from 0 to 1 reflect
the behavior of materials from pure elasticity to pure viscosity. The value of
the variable order does not change with the position x. Therefore, a linear
function of t is proposed for the variable order. Meng et al. presented variable
order fractional and fractional order models to describe the stress evolution
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(a) (b) (c)

Fig. 4 Deflection of HDPE beam under three types of loading conditions: (a) f(x, t) =
10N/m (b) f(x, t) = 10π sin tN/m (c) f(x, t) = (10 + 2x)N/m.

of viscoelastic materials [19]. It showed that variable order fractional model
can better describe the dynamic response under large strain. The numerical
solution of the mathematical example is obtained. The absolute error of the
example can reach 10−14, which presents the high accuracy of the algorithm.
Compared with reference [43], the deflection increases gradually with the de-
crease of variable order. It indicates that the variable order affects the dynamic
response of the viscoelastic materials. Viscoelastic model with variable order
fractional is more sensitive compared with the viscoelastic model with constant
fractional order.

5 Dynamic analysis of viscoelastic Euler-Bernoulli beam

The dynamic response of viscoelastic beams under different loading condi-
tions is analyzed numerically. It is worth noting that the numerical algorithm
in this section selects n as 4. The deflection w(x, t), strain ε(x, t) and stress
σ(x, t) of the viscoelastic beam are calculated.

Meng et al. [39] analysed the stress-strain response of the polymers under
large deformation by using variable order fractional viscoelastic model. Ma-
terial parameters determined in the polyurea and PET models are shown in
Table 2.

In Table 2, the function α(t) was proposed by Meng et al. [19], which was
selected according to the viscoelasticity of the material. It is proved that the
time-varying linear variable order fractional function is suitable to describe
the strain hardening behavior of polymers.

Beam E ρ α(t) θ
Polyurea 1.2× 108 Pa 1060 kg/m3 −0.1t+ 1 0.0012 s

PET 3× 107 Pa 1380 kg/m3 −0.1t+ 1 0.35 s

Table 2 Material properties of polyuria and PET.
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5.1 Dynamic analysis of polyurea beam

The geometrical parameters of the beam are represented in Table 3. The pa-
rameters of polyurea and beam are substituted into Eqs. (8)-(10). The solution
of the kinetic equation is solved by Bernstein-Legendre polynomial collocation
algorithm.

l b h I S
5m 0.1m 0.1m 0.14/12m4 0.01m2

Table 3 Geometrical parameters of the beam.
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Fig. 5 Deflection of polyurea beam under various loads: (a) f(x, t) = 10N/m (b) f(x, t) =
(10 + x)N/m (c) f(x, t) = 10 sin tN/m.

Fig. 5 shows the change of the deflection of the polyurea beam under
uniform load, linear load and harmonic load. Lateral deflection increases with
the value of x and t. The maximum deflection value can be reached at the
midpoint of beam. The deflection is symmetrical with respect to x = 2.5m.
As shown in Fig. 5 (a), the deflection of the beam shows the same trend under
different loading conditions. Similar results are observed in Fig. 5(b) and 5(c).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Fig. 6 Deflection of polyurea beam under uniform loads.
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The sensitivity of the loading parameters on the deflection of the viscoelas-
tic is studied in this part. The uniform load with various load values is applied
on the beam. Fig. 6 shows the deflection variation under different uniformly
distributed load values. The deflection of the beam is symmetrical about the
middle for each uniform load value. The deflection increases as the uniform
load value increases.

Fig. 7 Maximum deflection of polyurea beam under different parameter k of linear loads.

Linear loads of different slopes are applied to the beam. Fig. 7 represents
the maximum deflection of the beam at x = 2.5m with different slope k of
linear load f(x, t) = (10 + kx)N/m. It can be observed from the figure that
the deflection of the beam increases linearly with the increase of slope k.

(a) (b)

Fig. 8 (a) Strain and (b) Stress of the viscoelastic beam under uniform load f(x, t) =
10N/m.

Three-dimensional curves of stress and strain values of viscoelastic beam
with time and position under uniform load is shown in Fig. 8. The initial and
boundary conditions are well respected in the numerical results. The stress
and strain reach the maximum value at x = 2.5m, which is consistent with
the previously observed beam deflection.
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Fig. 9 Maximum deflection of polyurea beam under f(x, t) = 10N/m with integer order,
constant and variable fractional order.

Fig. 9 shows the evolution of the maximum deflection of viscoelastic polyurea
beam in function of time with different values of order: including integer or-
der α = 1, constant fractional order α = 0.9 and variable fractional order
α = −0.1t + 1. The same uniformly distributed load f(x, t) = 10N/m is ap-
plied on the beam. The deflection of the beam is compared with different
orders. For all the three orders, the deflection of the beam increases with time.
The deflection of the beam with variable fractional order is smaller than those
with integer order and constant fractional order.
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0.15
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0.25

Fig. 10 Maximum deflection of polyurea beam of different length with the variable frac-
tional order under f(x, t) = 10N/m.

Fig. 10 shows the evolution of the maximum deflection of viscoelastic
polyurea beams of different length in function of time. The variable fractional
order viscoelastic model is applied on the beams, which are under uniformly
distributed load. It indicates that the maximum deflection of the beam in-
creases with its length.

The deflection of the beam with length 1m under the same uniformly dis-
tributed load f(x, t) = 10N/m with different variable fractional order is shown
in Fig. 11. The difference of the variable fractional order is the coefficient in
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front of t and loading time. It confirms that the deflection of the beam with
the same loading time is coherent with different variable fractional order. The
deflection of the beam increases with the loading time.

(a) (b) (c)

Fig. 11 Deflection of polyurea beam under different types of variable order fractional model
with different loading time : (a) α(t) = −0.1t + 1, t ∈ [0, 1] (b) α(t) = −0.05t + 1, t ∈ [0, 2]
(c) α(t) = −0.02t+ 1, t ∈ [0, 5].

5.2 Comparison with different materials

In the study, two kinds of polymer materials are used to study the effect
of material properties on the deflection of viscoelastic beams. The material
parameters of polyurea and PET are summarized in Table 2. These parameters
are applied into Eqs. (8)-(10) to obtain the kinetic equations. The proposed
algorithm is used to calculate the deflection.

(a) (b) (c)

Fig. 12 Comparison of deflection between polyurea and PET beam: (a) f(x, t) = 10N/m
(b) f(x, t) = (10 + x)N/m (c) f(x, t) = 10 sin tN/m.

The deflection changes of polyurea and PET beams under different loads
are shown in Fig. 12. Under the same load, the deflection of PET beam is less
than that of polyurea beam. The PET beam exhibits better flexural properties
than polyurea beam. The results obtained are consistent with the mechanical
properties of the material. The conclusion is conformed to the actual situation,
which indicates the precision of the algorithm.
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6 Conclusions and perspectives

An accurate numerical algorithm for solving kinetic equations of viscoelas-
tic Euler-Bernoulli beams is proposed with variable order fractional model.
The algorithm is developed with shifted Bernstein and Legendre polynomial
and it can be used to obtain directly the numerical solution in time domain.
Among the results, the main finding can be summarized as follows:

(1) Variable order fractional model reduces the number of physical param-
eters and better describes the damping characteristics of viscoelastic beams.

(2) Effectiveness and practicability of the algorithm are verified by math-
ematical examples.

(3) Viscoelastic model with variable order fractional exhibits better sensi-
tivity compared to the viscoelastic model with fractional order model.

(4) The deflection numerical solution of polyurea beam under different
loads is investigated. The maximum deflection is found in the middle of the
beam.

(5) PET beams have better flexural properties than polyurea beams.
The effectiveness of the proposed polynomial algorithm is validated for

Euler-Bernoulli beams with linear load conditions. The nonlinear vibrations
of the beams with viscoelastic model will be effectuated in the future. Other
nonlinear viscoelastic models will be used to describe the complex mechanical
behaviors of the materials.
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Table 4 Nomenclature

Symbol Explanation
CD

r(t)
t Variable fraction differential operator

r(t) variable order fractional
Γ (·) Gamma function
l Length of fixed beam at both ends
b Width
h Height
z Transverse coordinate
M(x, t) Bending moment
S Cross-sectional area
ρ Density of the viscoelastic material
σ(x, t) Stress
ε(x, t) Strain
x Position
t Time
E Young’s modulus
θ Parameters of viscoelastic materials
η Viscosity of the material
I Area moment of inertia
bn,i(x), ln,i(t) Basis function
Bn,i(x), Ln,i(t) Shifted basis function
A,M Coefficient matrices of shifted Bernstein polynomials
P,N Coefficient matrices of shifted Legendre polynomials
C Coefficient vector of shifted Bernstein polynomials approximation to w(x)
K Coefficient vector of shifted Legendre polynomials approximation to w(t)
W Coefficient vector of shifted Bernstein-Legendre polynomials approximation to w(x, t)
Φ(x), Θ(t) Family of shifted polynomials
n Polynomial degree
G First order operational matrix with respect to x
Ω First order operational matrix with respect to t
ϕ variable order fractional operational matrix
w(x, t) Analytical solution
wn(x, t) Numerical solution
e(x, t) Absolute error
en(x, t) Relative error
HDPE High density polyethylene
ρ1 Density of HDPE
A1 Cross-sectional area of HDPE beam
E1 Parameter of HDPE beam
I1 Inertia of HDPE beam
Ω1 Rotation speed of HDPE beam
f(x, t) Distributed load




