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Introduction: Walking in adults relies on a small number of modules, reducing the 
number of degrees of freedom that needs to be regulated by the central nervous 
system (CNS). While walking in toddlers seems to also involve a small number 
of modules when considering averaged or single-step data, toddlers produce a 
high amount of variability across strides, and the extent to which this variability 
interacts with modularity remains unclear.

Methods: Electromyographic activity from 10 bilateral lower limb muscles was 
recorded in both adults (n  =  12) and toddlers (n  =  12) over 8 gait cycles. Toddlers 
were recorded while walking independently and while being supported by an 
adult. This condition was implemented to assess if motor variability persisted with 
reduced balance constraints, suggesting a potential central origin rather than 
reliance on peripheral regulations. We used non-negative matrix factorization to 
model the underlying modular command with the Space-by-Time Decomposition 
method, with or without averaging data, and compared the modular organization 
of toddlers and adults during multiple walking strides.

Results: Toddlers were more variable in both conditions (i.e. independent walking 
and supported by an adult) and required significantly more modules to account 
for their greater stride-by-stride variability. Activations of these modules varied 
more across strides and were less parsimonious compared to adults, even with 
diminished balance constraints.

Discussion: The findings suggest that modular control of locomotion evolves 
between toddlerhood and adulthood as the organism develops and practices. 
Adults seem to be able to generate several strides of walking with less modules 
than toddlers. The persistence of variability in toddlers when balance constraints 
were lowered suggests a link with the ability to explore rather than with corrective 
mechanisms. In conclusion, the capacity of new walkers to flexibly activate 
their motor command suggests a broader range of possible actions, though 
distinguishing between modular and non-modular inputs remains challenging.
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Introduction

Walking is easily performed by adult organisms despite the abundance of degrees of freedom 
(DOFs) that the central nervous system (CNS) has to deal with (Bernstein, 1967). However, 
complex motor behaviors such as walking are believed to be generated by the activation of a 
small number of “modules” stored in the CNS (Bizzi et al., 1991; Mussa-Ivaldi et al., 1994; 
d’Avella et al., 2003). A module, also called building block, motor primitive, or muscle synergy, 
is a neural structure in charge of producing a specific muscle pattern when activated by higher 
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centers (Bizzi et al., 2008). As such, modularity is believed to simplify 
the organization of behavior by reducing the effective number of 
DOFs controlled by the CNS (Bizzi and Cheung, 2013). While such 
neural structures were identified in animals (Bizzi et al., 1991; Hart 
and Giszter, 2010; Overduin et al., 2015), they could be modeled in 
humans thanks to the factorization of electromyographic (EMG) data 
(Dominici et al., 2011; Berger et al., 2013). In particular, the EMG 
activity of walking can be factorized into a few spatial and temporal 
computational modules that are suspected to correspond to actual 
physiological modules and to simplify the motor command of walking 
(Ivanenko et al., 2004; Chvatal and Ting, 2013).

This simplified modular control is concomitant with an optimized 
and adaptable gait (Alexander, 1991; Choi and Bastian, 2007; Neptune 
et al., 2009; Chvatal and Ting, 2012). However, the ease with which 
we move has developed over years and years of practice. Walking is 
indeed more difficult to handle in new walkers who fall on average 17 
times per hour (Adolph et al., 2013) and who do not yet own mature 
gait patterns (Sutherland, 1997; Lacquaniti et al., 2012a). Particularly, 
the walking patterns of toddlers differ from those of adults regarding 
the high variability of their muscle activity across steps (Chang et al., 
2006; Teulier et  al., 2012). This variability partly originates from 
feedback corrections to control body weight and balance challenges 
(Kerkman et al., 2022). Yet, toddlers’ motor patterns remain unstable 
and immature even with balance support, suggesting that stride-by-
stride variability does not specifically originate from balance-related 
processes (Ivanenko et al., 2005). Interestingly, a growing body of 
evidence suggests that this variability, or at least part of it, is 
purposively generated by the CNS during motor learning to allow 
exploration (Kao et al., 2008; Mandelblat-Cerf et al., 2009; Ziegler 
et al., 2010; Wu et al., 2014; Dhawale et al., 2017). However, how this 
variability interacts with modularity remains unclear.

Inferring modules from averaged or single-step data, researchers 
found that the number of modules increased from birth to toddlerhood 
and then stabilized until adulthood (Dominici et al., 2011; Sylos-labini 
et  al., 2020). Nevertheless, it was recently suggested that more 
individual muscle control was needed in toddlerhood compared to 
other stages of life to produce several steps (Hinnekens et al., 2023). 
However, as toddlers face important balance challenges when walking, 
one could argue that the EMG activity used in the analyses largely 
originated from peripheral regulations (i.e., feedback corrections), 
thereby adding noise into the identification of modules. To further 
investigate this matter, we thoroughly investigated the link between 
stride-by-stride variability of muscle activity and muscle modularity in 
toddlers and adults, with or without supporting toddlers in order to 
manipulate balance constraints. In particular, we  systematically 
analyzed the dimensionality of the inferred modular systems (i.e., 
number of modules) as well as the properties of their activations 
parameters (variability and selectivity of modules’ activations).

Methods

Experimental protocol

Twelve adults (7 females, 5 males, age 25.8 ± 4 years [mean ± SD]) 
and 12 toddlers (3 females, 9 males, age 15.5 ± 2 months) were 
recruited for this study. Toddler walking was recorded at a maternity 
while adults were tested in a laboratory at the university. Toddler 
experiments were planned one to 5 weeks after parents reported their 

ability to walk independently and unsupported as a main mode of 
locomotion. 11 parents were able to give us the exact day when their 
child was able to “cross an entire room of about 16 feet by walking.” 
Hence, toddlers’ walking experience when coming to the lab was 
19.3 ± 7.1 days (mean ± SD). The protocol was in accordance with the 
Helsinki Declaration and approved by the French Committee of 
People Protection. Parents of the children as well as adult participants 
gave written and informed consent before participation. Adults and 
toddlers were asked to walk barefoot at a comfortable speed for 
approximately 1 min. Toddlers had to walk back and forth along a 
two-meter exercise mat following a linear trajectory without any help 
from adults. About 8 steps could be recorded for a single straight 
walking path. Breaks were taken by toddlers when needed. In order to 
compare walking in toddlers with a control condition that would 
involve fewer balance constraints, 10 of the 12 toddlers underwent a 
control condition, during which they were held while stepping on a 
treadmill (see methods – control conditions).

Data recording

EMG recording
Ten bilateral muscles were recorded for this study, as previous 

investigations of toddlers’ modularity identified bilateral modules 
(Dominici et  al., 2011; Sylos-labini et  al., 2020). We  recorded the 
activity of muscles from the shanks, thighs, and buttocks: tibialis 
anterior, soleus, rectus femoris, biceps femoris, and gluteus medius. 
Another 6 muscles (involving the trunk and proximal upper limb 
regions) were recorded for the need of other studies. Electrodes were 
placed according to SENIAM recommendations (Surface EMG for 
Non-Invasive Assessment of Muscles, seniam.org). Surface EMG data 
were recorded with the Cometa system (Biometrics®) at 2000 Hz with 
bipolar electrodes (21×41 millimeters).

Motion capture
Motion was recorded in adults and toddlers in order to detect stride 

events. In adults, we used an eight-camera Qualysis® system, recording at 
100 Hz. Nineteen markers were placed on each individual, of which 
we used heel and toe (second metatarsal head) to determine gait events 
(O’Connor et al., 2007). The motion capture system was synchronized 
with the EMG systems thanks to a common trigger. In toddlers, we used 
two 2D cameras recording at 50 Hz. The same trigger as in adult recording 
was used to launch these cameras and the EMG systems. The toddler had 
to go back and forth along a two-meter exercise mat; thus, cameras were 
placed on each side of the mat in order to acquire a clear view of both 
sides of the body to detect gait events. Although a few motion capture 
markers appear in Figure 1, they were not used because event detection 
was made through video labeling in toddlers (see below).

Data processing and computed parameters

Identification of stride events
We identified the Foot Off and Foot Strike events in both 

populations. A stride was defined from a Foot Off event to another 
Foot Off event. In both populations, we  considered only right, 
alternated strides. Strides were analyzed only when the toddler was 
following a linear trajectory. The first and last steps of a crossing were 
never considered.

https://doi.org/10.3389/fncir.2023.1340298
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In adults, we  used the foot velocity algorithm described by 
O’Connor et al. (2007) to detect Foot Off and Foot Strike. These events 
are more often referred to as Toe Off and Heel Strike in adults but 
we  call them Foot Off and Foot Strike because toddlers do not 
necessarily start swing with the toe or end swing with the heel.

In toddlers, a trained coder screened all the videos and identified 
the Foot Off and Foot Strike events, as done in Teulier et al. (2012). 
The Foot Off event was defined as the last frame before the whole foot 
would stop touching the floor. The Foot Strike event was defined as 
the first frame where any part of the foot would touch the floor. The 
same coder waited a month after having done these identifications and 
identified again 50 strides from five different toddlers in order to 
compute an Intraclass Correlation Coefficient (ICC). This ICC was 
0.99 showing excellent reliability in gait events identification. Figure 1 
shows the view from one camera during a whole stride.

As our analysis focuses on intra-individual variability, it was 
important to analyze the same number of strides in each participant. 
For some toddlers, getting many straight steps was hard. Therefore, 
we constrained the analysis to 8 strides in order to consider a fixed 
number of strides in each participant. When more than 8 strides were 
available, a combination of 8 strides was randomly chosen among the 
available ones (in both toddlers and adults). From those 8 strides, 
we  computed three basic kinematic parameters: stride duration, 
standard deviation of stride duration, and proportion of swing and 
stance phases.

EMG processing
Filtering and interpolation of data were done as reported by 

Ivanenko et al. (2013). Data were high-passed filtered (40 Hz, zero lag 
fourth-order Butterworth filter), rectified, and low-pass filtered 
(10 Hz, zero lag fourth-order Butterworth filter). For each gait cycle, 
the signal was interpolated to 200 time points. The signal of each 
muscle was normalized by its maximum amplitude across 8 strides. In 
each participant, we obtained a (t × s) × m matrix where t = 200 the 
number of time points, s = 8 the number of strides, and m = 10 the 
number of muscles. Each entry took values between 0 and 1, 1 
representing the normalized maximum activity of the corresponding 
muscle. These matrices constituted the non-averaged EMG signals. 
Then we created other matrices from the latter ones by averaging 
across strides. These matrices were of the form t × m and constituted 
the averaged EMG signals. As no consensus exists regarding the 
temporal normalization of data proceeding non-negative matrix 
factorization, the results of the study were verified after having 

computed different variants (phase-interpolation rather than cycle-
interpolation, computing RMS rather than standard interpolation, or 
basing the interpolation on 20 time-points rather than 200).

From the non-averaged EMG signals, we computed an index of 
EMG variability, as was done in Hinnekens et al. (2020). This index 
was defined as the standard deviation computed point by point from 
the pre-processed EMG and across the 8 strides.

As cross-talk might be an issue when recording surface EMG data, 
we used the same criterion as Dominici et al. (2011) to report potential 
cross-talk (Pearson correlation coefficient > 0.2). We  computed 
Pearson correlation coefficients across four pairs of muscles on each 
side (rectus femoris and biceps femoris, tibialis anterior and soleus, 
gluteus medius and rectus femoris, gluteus medius and biceps femoris) 
on data after having applied the high-pass filter only. Thus, this 
analysis was made for 8 pairs of muscles, 8 strides and 12 subjects in 
both populations (i.e., 1,536 samples). 6% of samples had a correlation 
coefficient > 0.2. For these samples, we checked whole recordings and 
verified that different strides from one recording did not have the 
same correlation coefficient and were not all >0.2.

EMG factorization
We used the Space-by-Time Decomposition method in order to 

factorize the signal into spatial and temporal modules. This method, 
unifying previous approaches as described in Delis et al. (2014), is 
based on non-negative matrix factorization (NNMF). It allows to 
extract both spatial and temporal EMG invariants (modules) while 
retaining intra-individual variability in a low dimensional space 
(activation coefficients). Therefore, it allows to directly test the 
hypothesis that toddlers would benefit from the same low dimensional 
modular organization than adults while producing variability by 
generating differences within activation parameters of modules. 
Precisely, the EMG activity is factorized so that any muscle pattern 
ms t� �  of the stride s is considered as the following double linear 
combination of invariant spatial and temporal modules:

 
m w rs

i

P

j

N
i i j s j st w t a t� � � � � � � �

� �
��
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, ,

where P and N are the numbers of temporal and spatial modules 
respectively, w ti � � and w j  are the temporal and spatial modules 
respectively, ai j s, ,  is a scalar activation coefficient (function of the pair 
of modules it activates and stride s), and rs t� � is the residual 

FIGURE 1

Illustration of stride events taken by the toddler. Events identified by the coder are shown with a grey background.
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reconstruction error describing the difference between the original 
signal and the reconstructed one. In this method, a spatial module is 
defined as an invariant ensemble of muscles which are activated 
together with different proportions (a constant 10-D vector here), and 
a temporal module is defined as a waveform that describes the 
amplitude changes of any spatial module over a gait cycle, invariant in 
regards to the different strides but time-varying within one stride (a 
time-varying function represented by 200 points here). An activation 
coefficient is attributed at each stride to each possible pair of spatial 
and temporal modules and quantifies their concurrent activation: a 
low activation coefficient means that the corresponding spatial and 
temporal modules are not activated together while a high one reveals 
a concurrent activation. Scalar activation coefficients are free to vary 
for each stride when using non-averaged EMG data. The algorithm 
was run with a custom Matlab® code. It starts from random guesses 
of the solution (modules and activation coefficients) and modifies 
these quantities until the reconstruction error is minimal, using a 
convergence criterion. This process was repeated 50 times for each 
decomposition to minimize the probability of being stuck in a 
local minimum.

Code accessibility
The custom code underlying the computational analysis is 

available.1 See Delis et  al. (2014) for details about the code 
and algorithm.

Quality of reconstruction criteria
The quality of reconstruction criteria, called Variance Accounted 

For (VAF), was computed as the coefficient of determination between 
the initial matrix of data and the reconstructed one using the 
following formula:

 

VAF
r t

m t m
s s

s s
� �

� �
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�
�

1

2

2

where m is the mean level of muscle activity across all samples and 
⋅  represents the Frobenius norm.

The VAF quantifies how faithful the original pattern is described 
by the decomposition. As the purpose of the decomposition is to 
reduce dimensionality, the VAF is directly related to the number of 
modules that is extracted (the VAF increases when the number of 
modules increases). Hence the signals can be considered as resulting 
from a low-dimensional modular organization if they can be factorized 
into a small number of modules with a good-enough VAF, as this is 
the case in adults. Numerous studies indeed identified that extracting 
four spatial and temporal modules from walking in adults was 
sufficient to describe its EMG activity and resulted in biomechanically 
functional modules (Neptune et al., 2009; Clark et al., 2010; Lacquaniti 
et al., 2012b; Hinnekens et al., 2020). Therefore, we used here two 
complementary approaches to study the command of toddlers in 
comparison to the one of adults: by comparing the VAF resulting from 
the extraction of the same number of modules (variant I) and by 

1 http://hebergement.universite-paris-saclay.fr/berret/software/sNM3F.zip

comparing the necessary number of modules to get the same VAF 
value (variant II).

Variant I: extracting the same number of modules 
as in adults and comparing the resulting VAF

This approach directly tests the hypothesis that a low-dimensional 
modular command model could equally fit each dataset. Based on 
previous literature we considered 4 spatial and temporal modules to 
be an efficient low-dimensional modular command (Neptune et al., 
2009; Clark et al., 2010; Lacquaniti et al., 2012b; Hinnekens et al., 
2020). Thus, we extracted 4 modules from each dataset and compared 
the resulting VAF. Interestingly, this variant allows to quantify the 
extent to which a reduction of dimensionality can fit the data with a 
continuous variable (rather than only analyzing the discrete number 
of modules), which yields more precise data for the statistical analysis. 
This approach was applied to both averaged and non-averaged data in 
order to quantify the effects of intra-individual variability 
on modularity.

Variant II: computing the necessary number of 
modules to reach a threshold VAF and comparing 
features of modular organization

After having tested if a low-dimensional modularity hypothesis 
would fit toddlers’ data with variant I, this variant allowed to 
determine which dimensionality should be effectively considered in 
toddlers to allow a sufficient goodness of fit. We  only analyzed 
non-averaged data from this point forward. This approach has been 
more commonly used in previous studies, although no consensus 
exists about the threshold VAF for a good quality of reconstruction 
(Alessandro et al., 2013). Hence here again we based the analysis on 
the numerous studies that identified four spatial and temporal 
modules as sufficient to describe the EMG activity of adult walking 
(Neptune et  al., 2009; Clark et  al., 2010; Lacquaniti et  al., 2012b; 
Hinnekens et  al., 2020) and we  defined the threshold for a good 
quality of reconstruction as the averaged VAF (across individuals) 
obtained after extracting four modules from non-averaged data of 
adults walking (Hinnekens et al., 2020). The resulting threshold was 
0.75. Then we extracted enough modules in each toddler’s dataset to 
reach this threshold VAF. This led to the identification of a specific 
modular organization in each toddler from which we could study the 
features of modules activations. For this purpose, we defined two 
indexes to compare the characteristics of modules activations of both 
populations, namely the Index of Recruitment Variability (IRV) and 
the Index of Recruitment Selectivity (IRS).

The IRV is defined as the average standard deviations of activation 
coefficients across strides (the standard deviation of activation 
coefficients is computed for each possible pair of spatial and temporal 
modules, and we consider the averaged value across all possible pairs). 
It indicates how variable are the stride-dependent activations of pairs 
of temporal/spatial modules. When the IRV is lower, modules 
recruitment can be considered as more stable (Figure 2A), while it 
increases when modules recruitment is more variable across strides 
(Figure 2B).

The IRS is computed using a metric to assess the sparseness of 
activation coefficients (Hoyer, 2004). It quantifies the extent to which 
modules are selectively and parsimoniously recruited. Modularity 
underlying mature walking is indeed thought to involve only four 
specific pairs of spatial and temporal modules (Hinnekens et al., 2020) 
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where each spatial module is associated with a single temporal module 
(as in the example of Figure 2A with two pairs of spatial and temporal 
modules, which would correspond to a high IRS). In contrast, a lower 
IRS would correspond to a non-selective command exploiting the 
possible multiplexing of spatial and temporal modules and resulting 
in the concurrent activation of more pairs of modules (Figure 2C).

Supplementary analyses
Following those computations, we tested the robustness of our 

findings regarding several methodological choices, as different 
methods of EMG preprocessing and EMG factorization exist within 
the literature. Therefore, we repeated the analysis by extracting spatial 
modules only (Chvatal and Ting, 2013), temporal modules only 
(Dominici et al., 2011), and from different EMG preprocessing band-
pass filtering between 30 and 400 hz, time interpolation computed 
with root mean squares, and phase interpolation instead of cycle 
interpolation (Hinnekens et al., 2020).

Statistical analyses

Basic kinematic and EMG parameters
We compared basic kinematic and EMG parameters between the 

two populations: stride duration, standard deviation of stride duration, 
proportion of phases and index of EMG variability (described above). 
We used student t-tests on independent samples.

Comparison of the goodness of fit with fixed 
number of modules (variant I)

To compare the faithfulness of modeling with fixed number of 
modules we computed the VAF resulting from the extraction of four 
spatial and temporal modules in both populations. To quantify the 
effect of stride-to-stride variability on this modeling and how it 
interacts with age, the extraction was made both from averaged and 
non-averaged signals. As VAF is not normally distributed, 
we  transformed values using Fisher z-transformation before this 
statistical analysis. We compared the resulting transformed VAF with 
a mixed ANOVA, with one within-subjects factor (averaging or not) 
and one between-subjects factor (toddlers/adults). Student t-tests 

were performed as post-hocs and resulting p-values were multiplied 
by 4 to account for multiple comparisons (four post-hoc tests).

Comparison of the modular parameters with 
fixed goodness of fit (variant II)

To identify faithful modeling of data in toddlers, we incremented 
the number of modules until the threshold VAF would be reach, as 
described above. We obtained a specific modular organization with a 
specific number of modules in each toddler. IRV and IRS were computed 
from these specific modular organizations. Values for adults and 
toddlers were compared using a student t-test on independent samples.

To facilitate comparisons between adults and toddlers we reproduced 
these analyses for the modeling of toddler’s data with four spatial and 
temporal modules. As adult’s data are modeled with four spatial and 
temporal modules, this ensures that differences between modular 
parameters are not due to the difference in the number of modules.

Control conditions

We used two control conditions to verify that our results were not 
mainly due to non-physiological variability or to variable feedback 
regulations that would be associated with new balance constraints 
in toddlers.

The first control condition called “computational control” verifies 
the results of adults data. It was created from adult walking data in 
order to control the fact that gait events might be less easily recognizable 
in toddlers. As we coded event in toddler visually, and even if the 
intraclass reliability was excellent, we could expect that this coding 
could result in less precision than the adult algorithm. Hence to check 
the possible effects of an unintended shifting, we introduced random 
offset delay in the adult event detection from −2 to +2 frames of the 
real time event and repeated the analysis from adult data that were 
cut-off according to this randomly shifted-detection matrix instead of 
the original one (Figure 3A). Individual data for each index in both 
primary and control conditions are reported in  Supplementary Table S1.

The second control condition called “experimental control” 
verifies the results of toddlers’ data. As toddlers are new walkers, 
their EMG signals could be affected by noise or enhanced EMG 

FIGURE 2

Illustration of the analyzed properties of the modular organization. Depicted are modular organizations of two spatial and temporal modules. At the 
center of each figure 8 activation coefficients are depicted (one for each stride). The variation of these coefficients defines the properties of 
consistency and selectivity. (A) example of a consistent and selective modular organization (activation coefficients show low variability and are 
significantly higher for given pairs of spatial and temporal module). (B) example of a modular organization with a high IRV (activation coefficients show 
high variability across strides). (C) example of a modular organization with a low IRS (activation coefficients are equivalent for each possible pair of 
spatial and temporal modules).
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variability due to several factors that are not linked with the central 
command (e.g., walking speed variability, feedback regulations due 
to postural instability). To address this matter, 10 of the 12 toddlers 
of the study were recorded while stepping on a treadmill (Figure 3B) 
in addition to walking. During this recording, toddlers were bearing 
their weight but moving only their legs while being maintained 
under the armpits by the experimenter to reduce balance 
constraints. The speed of the belt (and as a result walking speed) 
was fixed to 17.24 cm/s. We repeated all analyses with those data. 
As this paper relies on a computational and modeling approach, 
we cannot draw conclusions regarding the central origin of motor 
modules. However this supplementary analysis controls for the 
possibility that the results would only originate from feedback 
regulations of peripheral origin. Individual data for each index in 
both primary and control conditions are reported in  
Supplementary Table S1 (note that no control values exist for 
toddlers 1 and 2 because they did not produce enough 
stepping cycles).

Each statistical analysis of the paper was first performed 
between primary conditions (adults vs. toddlers values) and was 
repeated separately for each control condition (i.e., i) replacing 
adults values with computational control values and comparing 
it with primary toddlers values, and (ii) replacing toddlers values 
with experimental control values and comparing it with primary 
adults values (see Tables 1, 2).

Results

Differences in basic kinematics and EMG 
parameters

Student t-tests on independent samples showed that walking 
was different between the two populations regarding kinematic 
parameters (Figure 4C). As reported by Ivanenko et al. (2013), 
stride duration was significantly higher in adults than in toddlers 

FIGURE 3

Control conditions. (A) Computational control. Raw adult signals are retrieved (this signal is a zoom from Figure 4) and step events are randomly 
shifted to verify that a difference between adults and toddlers is not due to difficulties to detect step events in toddlers. (B) Experimental control. 
Toddlers were recorded during stepping on a treadmill on the same day that they were recorded during walking in order to verify that variability in 
toddler was not mainly due to feedback regulations following new balance issues.
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walking (p < 0.001). However, stride duration was significantly 
higher in experimental control (toddlers stepping) than in adults 
walking (p < 0.001). Variability of stride duration was significantly 
higher in toddlers than in adults considering either walking 
(p < 0.001) or stepping (i.e., experimental control, p < 0.001). The 
proportion of phases was also significantly different, with adults 
presenting a shorter proportion of stance phase (63 ± 1.2%) than 
toddlers (73.3 ± 4.5%, p < 0.001), with an even bigger difference 
when compared to toddlers stepping (i.e., experimental control, 
79.4 ± 3.6%, p < 0.001).

The index of EMG variability (IEV) was significantly higher 
in toddlers than in adults (p < 0.001), indicating that 
pre-processed data were more variable across strides in toddlers. 
Raw EMG and corresponding pre-processed data are illustrated 
in Figures 4A,B for a representative adult and a representative 
toddler. Replacing primary adult data by the computational 
control condition (i.e., adult data with randomly shifted detection 
of gait events) or toddler data by the experimental control 

condition (i.e., toddler stepping) systematically confirmed this 
effect (p < 0.001; Figure 4C; Supplementary Table S1).

The low-dimensional model of adults 
modular control does not account for 
stride-by-stride variability in toddlers

As explained in the method section, we computed the VAF with two 
approaches: to compare the goodness of fit with a fixed number of 
modules (variant I), and to compare the modular organization for a 
fixed goodness of fit (variant II). The results of the first approach are 
depicted in Figure  5A. The mixed ANOVA showed a significant 
interaction effect between the signal processing (averaged or not) and 
the population (p < 0.001). This result was verified with other methods, 
extracting only spatial or temporal invariances, or pre-processing data 
differently (regarding filtering and time-interpolation). Student t-tests 
were performed as post-hocs and resulting p-values were multiplied by 

TABLE 1 Summary of statistical analyses associated with variant I.

Comparison between 
adults and toddlers

Computational control 
instead of adult values

Experimental control 
instead of toddlers values

Non-
averaged

Averaged
Non-

averaged
Averaged

Non-
averaged

Averaged

Adults
Mean VAF ± SD 0.74 ± 0.04 0.85 ± 0.05 0.73 ± 0.04 0.85 ± 0.05 0.74 ± 0.04 0.85 ± 0.05

Mean transf. VAF ± SD 1.30 ± 0.1 1.62 ± 0.18 1.29 ± 0.09 1.64 ± 0.18 1.30 ± 0.1 1.62 ± 0.18

Toddlers
Mean VAF ± SD 0.57 ± 0.06 0.90 ± 0.02 0.57 ± 0.06 0.90 ± 0.02 0.59 ± 0.05 0.94 ± 0.02

Mean transf. VAF ± SD 1.00 ± 0.1 1.85 ± 0.09 1.00 ± 0.1 1.85 ± 0.09 1.01 ± 0.09 2.09 ± 0.15

Mixed ANOVA interacting effect p < 0.001 p < 0.001 p < 0.001

Post-hoc t-test p values (adults vs. toddlers) p < 0.001 p = 0.003 p < 0.001 p = 0.007 p < 0.001 p < 0.001

Post-hoc t-test p values (averaged vs. non-

av.)

Adults: p < 0.001

Toddlers: p < 0.001

Adults: p < 0.001

/

/

Toddlers: p < 0.001

Each dataset was modeled with four spatial and temporal modules, starting from either averaged or non-averaged EMG data. The resulting VAF (i.e., goodness of fit) was transformed with a 
Fisher transformation. A mixed ANOVA was performed to characterize the interacting effect of age (adults vs. toddlers) and stride-to-stride variability (averaged vs. non-averaged data) on 
modularity. Following this ANOVA, Student t-tests were performed as post-hoc tests to characterize the difference of goodness of fit between adults and toddlers. Comparison between adults 
and toddlers (first column) is the primary analysis. Other columns report the same analysis with control conditions. Post-hoc p values were obtained from t-tests and then multiplied by 4 to 
account for multiple comparisons after the ANOVA (four post-hoc comparisons).

TABLE 2 Summary of statistical analyses associated with variant II.

Main analysis (with each individual’s 
number of modules)

Verification of results with 
4 modules

Number of 
modules

IRV IRS IRV IRS

Mean ± SD

Adults 4.7 ± 0.6 4.25 ± 0.93 0.61 ± 0.03 4.64 ± 0.95 0.61 ± 0.02

Computational control 4.7 ± 0.6 4.73 ± 1.04 0.60 ± 0.03 5.16 ± 1.07 0.61 ± 0.02

Toddlers 6.8 ± 0.8 7.27 ± 1.57 0.40 ± 0.04 17.28 ± 2.53 0.47 ± 0.06

Experimental control 7.1 ± 1.0 6.69 ± 2.69 0.40 ± 0.04 16.77 ± 2.05 0.40 ± 0.03

T-test p values

Adults vs. toddlers p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001

Computational control instead of adult values p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001

Experimental control instead of toddlers values p < 0.001 p = 0.01 p < 0.001 p < 0.001 p < 0.001

We extracted enough modules in each individual to model non-averaged data with a sufficient goodness of fit (i.e., to reach the threshold VAF of 0.75). The mean number of modules for each 
condition is reported in the table. Then we characterized variability (IRV index) and selectivity of modules activations (IRS index) within the corresponding modular organization. Student 
t-tests were perform to characterize differences between adults and toddlers. The main analysis is presented on the top line and left columns. To check reliability of results, we repeated the 
analysis with a fixed number of modules (verification of results with four modules, right columns). Every result was verified with control conditions instead of primary ones (see the two last 
lines).
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4 to account for multiple comparisons (four post-hoc tests). When 
extracting from an averaged signal across strides, the VAF was higher in 
toddlers compared to adults (0.90 ± 0.02 vs. 0.85 ± 0.05). On the contrary, 
when extracting from a non-averaged signal, the VAF was significantly 

lower in toddlers compared to adults (0.57 ± 0.06 vs. 0.74 ± 0.04, 
p < 0.001). These results show that toddler’s walking EMG signals cannot 
be decomposed into four spatial and temporal modules with the same 
goodness of fit as in adults when considering several cycles. Repeating 

FIGURE 4

EMG and basic kinematic parameters in adults and toddlers and for control conditions. (A) Raw EMG in a representative adult. Preprocessed EMG are 
depicted at the right of the figure, in blue for this representative adult and in red for the control condition (randomly shifted detection of gait event, see 
Figure 3A). The black lines represent the average signal of the corresponding muscle in this participant after preprocessing while colored lines 
represent the signal of the corresponding muscle in each stride for the same participant. (B) Raw EMG for a representative toddler. Preprocessed EMG 
are depicted at the right of the figure, in green for walking and in yellow for the control condition (stepping in the same participant, see Figure 3B). 
(C) Basic kinematic and EMG parameters. From left to right: Stride duration, Variability of stride duration, Proportion of phases across the gait cycle, and 
Index of EMG Variability. Squares and points are individual data (for adults and toddlers respectively, with one color for each subject). Stars show 
significant differences after post-hoc tests (*p  <  0.05; **p  <  0.01; ***p  <  0.001). Black stars are for the main analysis and color stars are for repeated 
analyses with control conditions.
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the analysis with both control conditions gave similar values than in 
primary ones and the ANOVA gave similar results (see Table 1;  
Supplementary Table S1).

Variability and selectivity of toddlers’ 
modules activation within their 
higher-dimensional command

The second purpose of our analysis (variant II) was to identify the 
dimensionality of the modular organization that would allow to reach 
the same goodness of fit in toddlers than in adults with four modules. 
The threshold VAF, precisely defined as the averaged VAF obtained in 
adults by extracting four modules from non-averaged data, was 
reached differently for each toddler, with on average 6.83 ± 0.80 
modules per individual. Applying the same rule for adults resulted in 
4.67 ± 0.62 modules per individual which is significantly lower 
(p < 0.001). As such, more modules are needed in toddlers to reach the 
same quality of reconstruction than in adults walking when 
considering stride-by-stride variability (Figures 5B,C). Nevertheless, 
the number of modules might not be the only interesting feature of a 
modular organization, as these modules can be activated differently 
across strides for a high or low number of pairs of spatial and temporal 
modules. Therefore, the indexes of recruitment variability and 
selectivity (IRV and IRS) were computed following the extraction of 
the specific number of modules of each individual. Even if extracting 
from the specific number of modules of each individual only gives a 
faithful modeling of EMG data, these indexes were also extracted with 
a fixed number of modules (i.e., following variant I) to verify that the 
effect was not due to methodological choices.

The IRV was significantly higher in toddlers than in adults, 
whether it was computed from 4 spatial and temporal modules or 
from the specific number of modules of each individual (i.e., from 
variant I  or variant II, Figures  6C, p < 0.001  in both cases). This 

indicates that the recruitment of modules occurring on each stride 
was much more variable in toddlers than in adults, as illustrated in 
Figure 6B by a large spread of activation coefficients across strides. 
Analyzing data from control conditions instead of primary conditions 
yielded similar results (Figure 6C; Table 2; Supplementary Table S1).

The IRS was significantly lower in toddlers, here again from 
variant I  or variant II (Figures  6C, p < 0.001  in both cases). The 
command seems to be  more selective in adults than in toddlers. 
Figure  6 illustrates this difference as it shows that adult modular 
organization involve four pairs of spatial and temporal modules, each 
spatial module being activated with one temporal module only 
(Figure 6A). However, toddler modular organization shows scattered 
activations, with spatial modules being activated with several temporal 
modules and vice versa (Figure 6B). Here again, analyzing data from 
control conditions yielded similar results (Figure  6C; Table 2;  
Supplementary Table S1).

Discussion

In this paper we aimed to compare the modular organization of 
toddlers and adults during several strides of walking. Our results 
showed that the stride-by-stride variability of toddlers’ muscle pattern 
cannot be  simplified in as few dimensions as in adults. From a 
computational perspective, variability of EMG signals in toddlers 
seems to involve a high number of computational modules whose 
degree of activation across steps itself varies, suggesting the plasticity 
of the motor command. From a neural perspective, these results could 
indicate the existence of a more complex modularity than in adults, 
but also the absence of an encoded modularity in toddlers, or the 
existence of a mixed command associated an adult-like modular 
organization with other sources of variability. Below we discuss these 
possible interpretations as well as the extent to which modularity 
could be involved in motor exploration early in development.

FIGURE 5

Quality of reconstruction index (VAF) and number of modules. Color code is the same as in Figure 4: Adults and Toddlers primary conditions are, 
respectively, depicted in blue and green whereas computational control is depicted in red and experimental control in yellow. Squares and points are 
individual data (for adults and toddlers respectively, with one color for each subject). (A) results from variant I. The plot shows the resulting VAF in adults 
and toddlers when EMG signals were preprocessed either averaged across strides or not and then factorized into four spatial and temporal modules. 
Stars show significant differences after post-hoc tests (*p  <  0.05; **p  <  0.01; ***p  <  0.001). Black stars are for the main analysis and color stars are for 
repeated analyses with control conditions. (B) results from variant II. 2 to 8 modules were extracted from non-averaged data. The plot shows the 
resulting VAF in adults and toddlers. The dotted line represents the threshold for a good quality of reconstruction (i.e., averaged VAF obtained in adults 
with four modules). More than 6 modules are necessary on average in toddlers to reach this threshold VAF. (C) Number of modules in primary and 
control conditions.
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FIGURE 6

Properties of the modular organization of adults and toddlers. (A) Result of the factorization in a representative adult. Adult factorization is depicted for 
four spatial and temporal modules based on literature. (B) Result of the factorization in a representative toddler. Toddler factorization is depicted for six 
spatial and temporal modules, which was the minimum number of modules in this individual to cross the threshold VAF. In each figure, spatial modules 
are displayed on the left, and muscle weighting are represented in the following order: rectus femoris (RF), tibialis anterior (TA), biceps femoris (BF), 
soleus (So) and gluteus medius (GM) for the right side then for the left side. Temporal modules are depicted on the top of each figure. They represent 
200 time points from the beginning of swing to the end of stance (considering phases of the right lower-limb). Activation coefficients are depicted in 
the center of each figure. Each bar represents the activation coefficient corresponding to one stride. An activation coefficient represents the 
concurrent activation of the corresponding pair of spatial and temporal modules during one stride. In each subplot, the y axis represents the amplitude 
of activation (arbitrary units). (C) Comparison of the modular organization properties in toddlers and adults. The Index of Recruitment Variability (top) 

(Continued)
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Variability appeared as a key feature of the motor control of 
toddlers at each level of motor organization recorded here: kinematic 
output (standard error of stride duration), muscular activity (IEV) and 
activation of modules (IRV). Important variability in muscular activity 
was already reported in toddlers walking (Chang et al., 2006), stepping 
(Teulier et  al., 2012), or even chewing (Green et  al., 1997). 
Nevertheless, it could have been explained by variable activations of a 
small number of modules that would be  equivalent to the one 
observed in adults, as it seems to be the case in infants (Hinnekens 
et al., 2023). Adults walking has indeed been described numerous 
times as controllable with 4 consistently activated modules (Neptune 
et  al., 2009; Clark et  al., 2010) with a strong consistency across 
individuals even when taking into account intra-individual variability 
(Hinnekens et al., 2020). Here, this 4-modules model fitted well when 
applied to toddlers’ averaged data, but applying it to toddlers’ 
non-averaged data resulted in a significantly lower VAF. This was the 
case when analyzing toddler walking, but also for the experimental 
control condition of stepping (even though it involved less balance 
challenge and a fixed speed). Thus, the modular activity of toddlers 
seems to result from a more spread-out and variable activation of a 
higher number of modules.

On this matter, the origin of the variability that is observed in 
non-averaged data is often discussed. In general, two types of 
variability can be distinguished: the one coming from the motor 
periphery and the one coming from central planning circuits. 
Peripheral feedback regulations involving reflex loops could play 
an important role on muscle activity. Here, toddler walking was 
investigated overground but also as the task of stepping on a 
treadmill with body weight support, which reduced the need for 
balance-related corrections but still led to a significant stride-by-
stride EMG variability in toddlers. An explanation for this 
phenomenon could be  the central origin of this variability. 
Centrally generated variability has been widely documented and 
has been assumed to drive learning-related, purposeful motor 
exploration (Dhawale et  al., 2017). In learning monkeys or 
songbirds, neurons from different areas of the forebrain seem to 
generate variability on purpose for motor exploration (Kao et al., 
2008; Mandelblat-Cerf et al., 2009). When such motor exploration 
is prevented by limiting the possible variability of movements, the 
learning potential at the spinal level is reduced (Ziegler et  al., 
2010). Similarly, in human adults performing a new task, trial-by-
trial variability predicts motor learning ability (Wu et al., 2014), 
and in human infants, the absence of variability can be considered 
a sign of motor disability (Hadders-Algra, 2008; Hadders-algra, 
2018). Although we cannot fully distinguish the influence of each 
type of variability on the motor patterns here, this suggests that 
feedback regulations are not the only explanation for the fact that 
multiple strides cannot be  factorized into as few modules in 
toddlers as in adults.

Modeling the motor command at the origin of several strides 
led to the identification of a higher number of computational 

modules in toddlers compared to adults. As such, the optimized 
modular structure that can be found in adults muscle output seems 
to be  shaped and optimized over a long period of time during 
development. Modules are indeed known to fraction in early life 
(Dominici et al., 2011; Sylos-labini et al., 2020; Hinnekens et al., 
2023), and the results reported here suggest that they could be also 
merged again at some point between childhood and adulthood. This 
is indeed coherent with recent studies that identified fewer motor 
synergies in walking and/or running in adults than in children 
(Cheung et al., 2020; Bach et al., 2021). Interestingly, recent data 
regarding the development of running showed that running started 
with a small set of computational modules that will first fraction 
with age and then merge with experience, which, respectively, 
corresponds to an increase and a decrease of the number of modules 
(Cheung et  al., 2020). From a computational perspective, the 
existence of more modules during a temporary state actually makes 
sense early in development as modularity is associated with a 
restriction of the possible options for the motor system (Valero-
Cuevas, 2009), while variability seems necessary for exploration of 
the space of possible options (Wu et al., 2014). This temporary state 
could furnish the possibility to test several muscle associations 
before choosing the optimized ones. In addition to owning more 
modules, toddlers seem to be able to flexibly activate those modules 
across steps, as observed through IRV and IRS indexes (Figure 6). 
As this leads to an even wider space of possible muscle 
coordination’s, exploration might be particularly boosted during 
this phase of development. Interestingly this plasticity coincides 
with an age when infants show a high capacity to shift across 
locomotor strategies (Ossmy and Adolph, 2020), suggesting an 
important plasticity of the motor system. It is important to 
acknowledge that several methodological biases inherently limit the 
interpretation of our findings. A significant challenge arises from 
the absence of a current consensus on the diverse methodologies 
applicable to the analysis of muscular synergies, particularly 
concerning the normalization processes of EMG data (both 
temporally and spatially, even though we verified our results with 
several methods here) and determining the optimal number of steps 
for robust data modeling. Here we  wanted to ensure both an 
adequate sample size of children for meaningful analysis and a 
reasonable and uniform number of steps in the analysis. It indeed 
seemed crucial to maintain consistency in the number of steps for 
comparability of variability. However, reproducing our approach 
with a bigger number of steps and a bigger sample size would enable 
the validation of our conclusions. Another limitation of this study 
lies in the fact that gait events were computed differently for 
toddlers and adults. However, we  addressed this matter by 
introducing the “computational control” condition, which shows 
that small offsets in gait event detections in adult data do not affect 
the results.

We should also mention that the results presented here are derived 
from modeling approaches, which might differ from the actual neural 

indicates how variables activation coefficients are across the 8 steps in each population and condition. The index of Recruitment Selectivity (bottom) 
indicates how selectively distributed are those activation coefficients (i.e., exclusively activated with a given spatial or temporal modules or distributed 
across several ones). Results were verified with a fixed number of modules (stripped bars) to ensure that the effect was not due to methodological 
choices. Stars show significant differences (*p  <  0.05; **p  <  0.01; ***p  <  0.001). Squares and points are individual data (for adults and toddlers 
respectively, with one color for each subject).

FIGURE 6 (Continued)
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command. As such, we  discuss below the different possible 
interpretations of our results at a neural level, as well as the different 
methodologies that can help in approaching the real sources of motor 
variability, and try to identify the challenges that could be addressed in 
future studies. From a neural perspective, different hypotheses could 
indeed be made. First, the high dimensionality identified here during 
several strides could correspond to actual modules that exist within the 
CNS, and that were fractioned and particularly plastic at this stage of 
development. However, our results could also originate from the 
absence of modular control at this temporary point of development. A 
non-modular control would indeed result in a high number of 
computational modules after NNMF because the method will always 
output some modules even if an efficient factorization cannot 
be established. In between these two extreme views, walking in toddlers 
might be the result of a mixed command associating modular inputs 
that still have to be selected and adequately activated, and non-modular 
inputs that will be stabilized before being integrated into modules with 
learning. Sylos-Labini et  al. (2022) recently tackled this issue by 
exploring the effect of adding non-modular noise into simulated data. 
They show that noise of non-modular origin significantly affects the 
VAF, which can lead to the identification of too many modules after 
NNMF (as the number of identified modules directly depends on the 
VAF). As such, toddlers could own the same number of modules as 
adults, which would suggest that the results presented in striped 
histograms (Figure 6C) would be more representative of reality. While 
we are not aware of any methodology allowing to distinguish modular 
and non-modular inputs before factorizing EMG data, we also tried to 
tackle the matter of the origin of variability by recording the EMG 
signals of toddlers after having experimentally removed several 
potential origins of motor noise. Indeed, by testing toddlers being held 
over a treadmill, we ensured that their walking speed would be steady 
and that toddlers would not be challenged by too many balance issues. 
Interestingly, this yielded very similar results, suggesting that although 
the noise affecting NNMF could be non-modular, it does not stem 
from peripheral regulations resulting from balance constraints only. 
Therefore, such non-modular noise could itself have a central origin. 
To further address this matter, future work could combine both 
methodologies and directly compare the effect of experimentally 
removing sources of noise in noisy data, with computationally adding 
noise in non-noisy data.

The idea that walking in toddlers results from a mixed command 
associating modular and non-modular inputs is coherent with the fact 
that mature behaviors are known to rely on task-specific modules but 
also on shared modules, in invertebrates (Jing et  al., 2004), frogs 
(d’Avella and Bizzi, 2005) and humans (Barroso et al., 2014; Nazifi 
et al., 2017; Hinnekens et al., 2020). Shared modules could be involved 
when adapting to a new task and facilitate learning while being 
associated with non-modular inputs, before the creation of task-
specific modules that could happen in the longer term (Berger et al., 
2013). As such, mature modules might be shaped through practice, as 
neurons that fire together wire together (Hebb, 1949), coherently with 
the particularly important plasticity that exists early in development 
involving mechanisms such as long-term potentiation that are 
activity-dependent (de Graaf-Peters and Hadders-Algra, 2006; An 
et al., 2012). Those modules might be tuned during infancy thanks to 
early spinal plasticity (Vinay et al., 2000; Brumley et al., 2015) which 
would allow them to remain plastic during toddlerhood. Later in life, 
mature modules might therefore reflect motor habits originating from 

coordination’s that would have been learned as optimal (de Rugy et al., 
2012; Berret et al., 2019). As stated before, it could be argued that the 
existence of modules at walking onset could limit motor exploration 
(Valero-Cuevas, 2009). However, limiting the available space of 
possible options to some extent might facilitate and guide learning, as 
described decades ago by (Bernstein, 1967) and observed nowadays 
in robotics (Lapeyre et al., 2011) or when using reinforcement learning 
algorithms, whose success precisely lies on a reduction of the 
dimensionality of the solution space (Dhawale et al., 2017). Fractioned 
modules that can still be flexibly activated at walking onset might 
constitute an ideal compromise of exploration and exploitation. In this 
vein, the plasticity of motor modules throughout life, associating 
phases of fractioning and merging of modules (Cheung et al., 2020; 
Sylos-labini et  al., 2020; Hinnekens et  al., 2023) might follow the 
development of other sources of constraints. For example in the 
womb, the limited space constrains possibilities for the kicking 
behavior (Piek, 2002) which leads to the emergence of a specific 
kicking pattern available at birth (Musselman and Yang, 2008; 
Robinson et al., 2008). In this context, modules could be used to store 
temporary solutions, creating new constraints at time points when 
external constraints are diminished. As such, development of 
modularity is likely to be a dynamic mechanism alternating phases of 
module shaping and phases of exploration within the resulting 
restricted space, as “in a modular controller, learning is partitioned 
into two processes: learning the modules and learning the parameters 
of the modules’ combination rules” (d’Avella and Pai, 2010). The 
modular system should continue to be tuned until the end of growth, 
as mature modules need to integrate biomechanical properties of the 
musculoskeletal system (Bizzi et al., 1991; Bizzi and Cheung, 2013) as 
well as each individual’s specificities (Torres-Oviedo and Ting, 2010; 
Bizzi and Cheung, 2013). Although descriptive and based on EMGs, 
our study suggests that the motor system is quite plastic around 
toddlerhood, coherently with current recommendations for the 
implementation of early therapies (Ulrich, 2010). Future studies need 
to better identify if critical periods of module acquisition exist during 
motor development.
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