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(Received 9 November 2011; revised 1 February 2012; in final form 23 February 2012)

Abstract—Bone fragility depends not only on bone mass but also on bone quality (structure and material). To
accurately evaluate fracture risk or propose therapeutic treatment, clinicians need a criterion, which reflects
the determinants of bone strength: geometry, structure and material. In human long bone, the changes due
to aging, accentuated by osteoporosis are often revealed through the trabecularization of cortical bone, i.e.,
increased porosity of endosteal bone inducing a thinning of the cortex. Consequently, the intracortical porosity
gradient corresponding to the spatial variation in porosity across the cortical thickness is representative of loss
of mass, changes in geometry (thinning) and variations in structure (porosity). This article examines the
gradient of material properties and its age-related evolution as a relevant parameter to assess bone geometry,
structure and material. By applying a homogenization process, cortical bone can be considered as an aniso-
tropic functionally graded material with variations in material properties. A semi-analytical method based
on the sextic Stroh formalism is proposed to solve the wave equation in an anisotropic functionally graded
waveguide for two geometries, a plate and a tube, without using a multilayered model to represent the struc-
ture. This method provides an analytical solution called the matricant and explicitly expressed under the Peano
series expansion form. Our findings indicate that ultrasonic guided waves are sensitive to the age-related evolu-
tion of realistic gradients in human bone properties across the cortical thickness and have their place in a multi-
modal clinical protocol. (E-mail: cecile.baron@univ-amu.fr) � 2012 World Federation for Ultrasound in
Medicine & Biology.

Key Words: Cortical bone, Porosity gradient, Elastic wave propagation, Stroh formalism, Waveguide.

INTRODUCTION

It is now widely accepted that bone strength relies on two
main factors: bone density and bone quality. Thus, accu-
rate information is needed on the quantity of bone, the
way it is organized and the mechanical quality of its
constituent materials (elastic properties) to accurately
evaluate fracture risk, to optimize treatment (time and
dosage) and to reduce adverse effects. Nowadays, bone
densitometry as determined by dual-energy X-ray ab-
sorptiometry (DXA) is the gold standard technique used
to diagnose osteoporosis and to decide on treatment. It
provides a value for bone mineral density (BMD), which
is compared with that of a reference population to assess
whether the patient is ‘‘normal,’’ presents with osteopenia
or presents with osteoporosis.

One of the fundamental challenges in bone charac-
terization is to identify the relevant parameters, which
have to be correlated to the pathology and accessible
through clinical measurements. Moreover, as with all
technological developments for biomedical applications,
it is essential to respect certain criteria: techniques should
be nondestructive, noninvasive and nonradiating. Quanti-
tative ultrasound techniques are good candidates on all
these conditions. Yet, they continue to struggle for accep-
tance against the gold standard of DXA analysis, partly
because no single physical parameter has been identified
to represent the ‘‘structure, geometry, material’’ triangle.
For a long time now, it has been recognized that bone
mass alone (bone mineral density) is insufficient to
predict risk of fracture (Faulkner 2000; Robbins et al.
2005). It has been reported that BMD alone explains
less than half the risk of hip fractures (Marshall et al.
1996). Several studies have revealed cases where the
effect of BMD on risk of fracture is atypical. Postmeno-
pausal Chinese women, for example, have significantly
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lower hip bone mineral density than white women and are
classified at higher risk but in fact they have fewer frac-
tures (Tobias et al. 1994; Xiaoge et al. 2000).

It would appear, then, that bone quantity alone is not
sufficient to evaluate bone fragility and that bone geometry
and quality are key factors which significantly affect bone
strength (Augat et al. 1996; Ammann and Rizzoli, 2003;
Moilanen et al. 2007; Gregory and Aspden 2008).

Moreover, even though BMD combines cortical and
trabecular bone mass, the majority of what is measured
by DXA is trabecular bone. As a consequence, osteopo-
rosis treatments focus primarily on trabecular bone. Yet,
while both bone compartments contribute to bone strength
(Manske et al. 2009), several recent studies point out that
cortical bone is a critical component in determining
fracture resistance at the femoral neck (Augat and
Schorlemmer, 2006;Holzer et al. 2009;Treece et al. 2010).

At the same time, as imaging techniques become
more and more accurate, a newly visible characteristic
of bone is emerging: intracortical porosity changes grad-
ually across the thickness of long bones (Bousson et al.
2001; Tatarinov et al. 2005; Ha€ıat et al. 2009; Grimal
et al. 2011). When homogenization methods are applied
to cortical bone, it can be viewed as a functionally graded
material at mesoscopic scale.

Among the changes in cortical bone due to aging,
there is a joint process accentuated by osteoporosis: tra-
becularization of the endosteal part leading to thinning
of the cortex. Therefore, the gradient (spatial variation)
of intracortical porosity is a parameter representative of
increased variation in porosity across a reduced thick-
ness and should be relevant to evaluate the combined
effect of thinning and trabecularization. This gradient
of intracortical porosity induces gradients of material
properties (mass density and stiffness coefficients).
Thus, characterizing the gradient of the bone properties
across the cortical thickness, will provide information
on structure (porosity), geometry (thickness) and mate-
rial (stiffness).

In this study, we consider the diaphysis of long bone,
in particular cortical bone. We model cortical bone as
a one-phase material with varying mechanical properties
(mass density and stiffness coefficients). Modeling how
porosity changes across the cortical thickness and trans-
lating this variation in a microscopic property to meso-
scopic level are complex tasks. We base ourselves on
two studies (Bousson et al. 2000; Grimal et al. 2011)
and define a mesoscopic functionally graded material
(FGM) model. A semi-analytical method is proposed to
solve the wave equation in an FGM waveguide. This
method, based on the Stroh formalism, allows us to avoid
a multilayered media approximation and to consider
a cylindrical geometry in association with an anisotropic
material. According to numerous experimental studies

(Reilly and Burnstein 1974; Dong and Guo 2004;
Lakshmanan et al. 2007), human cortical bone is assumed
to be a transversely isotropic material. Here cortical bone
is represented by a transversely isotropic plate or tube in
vacuum. The dispersion curves of the guided waves are
explored to evaluate the sensitivity of these waves to
a realistic variation in intracortical porosity.

MATERIALS AND METHODS

Cortical bone as an anisotropic functionally graded
material waveguide

The model takes into account the anisotropy and the
heterogeneity of cortical bone: it is considered as trans-
versely isotropic with linearly varying material proper-
ties. Moreover, two geometries are investigated for long
bone modeled as a plate or as a tube with realistic
dimensions.

Functionally graded material properties
Here, every attempt was made to model realistic

variation in porosity across the cortical thickness. Based
on previous work reported on femoral cortical bone
samples from skeletons (Bousson et al. 2000, 2001), we
focus on a solely female population (86 subjects) aged
from 11 to 96. We use these authors’ 3-point measure-
ment of porosity (periosteal, midcortical and endosteal
regions) to infer the evolution of porosity across the
cortical thickness.

Then, the evolution of intracortical porosity
(microscopic scale) is translated into a variation in the
elastic properties of the bone at the mesoscopic level
by using the regression models (size of the mesodomain
L5 0:5 mm) proposed by Grimal and colleagues
(Grimal et al. 2011). Thereby, the Young’s and shear
moduli and the Poisson ratios are expressed as a function
of porosity.

Porosity varies with position across the thickness of
the bone and, consequently, the Young’s and shear moduli
and Poisson ratios are also dependent on the spatial var-
iable across the thickness (x - variable for the plate and
r - variable for the tube), except for nTL, which is assumed
to be constant at 0.3.

Then, we deduce the five independent stiffness coef-
ficients as five spatially-dependent functions from the
following equations:

c11 5
ETð12nTLnLTÞ

D
; c12 5

ETðnTT1nTLnLTÞ
D

;

c13 5
ETðnLT1nTTnLTÞ

D
; c33 5

ELð12nTTnTTÞ
D

;

c44 5GLT ;

(1)

with D5 n2TT12nLTnTL12nLTnTLnTT :
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Note the correspondence 1/T ; 2/T ; 3/L where
L and T are longitudinal and transverse, respectively.

The degree of porosity (from 0% to 30%) does not
disturb the crystallographic symmetry of the material at
the mesoscopic scale (Baron et al. 2007): the thermody-
namic conditions are still valid.

Figure 1 shows that the stiffness coefficients can be
supposed to linearly vary according to porosity across the
cortical thickness for each age group. A linear regression
provides an affine function representing the evolution of

the stiffness coefficients across the cortical thickness.
Thus, the elastic properties vary from a maximum value
in the periosteal region to a minimum value in the endos-
teal region (Table 1).

A classical mixture law is used to obtain mass
density as a function of spatial variable x, where x5 x
for the plate and x5 r for the tube. We assume that the
pores are filled with water Q2, which is considered to be
a perfect fluid:

rðxÞ5 rboneð12pðxÞÞ1rwaterpðxÞ; (2)

with p the porosity, rbone 5 1:9 g/cm3 and rwater 5 1 g/
cm3.

Choice of waveguide geometry
It was essential to set realistic parameters for the

geometry of the model. For a first approximation, long
bone can be modeled as a plate, ignoring the curvature
effect on guided wave propagation (Lefebvre et al.
2002; Bossy et al. 2004; Protopappas et al. 2006;
Baron 2011). However, a more realistic shape for long
bone is a tube (Protopappas et al. 2007) and here both
geometries were investigated. For the plate, the set of
parameters was reduced to the thickness, taken as
decreasing with age (Bousson et al. 2001) (Table 2).
For the tube, one of the parameters known to influence
guided wave propagation is the ratio of thickness over
outer radius (Nishino et al. 2001; Baron 2011). Here
too, thickness was taken from (Bousson et al. 2001).
Previous findings (Carter et al. 1996; Feik et al. 2005)
have established that the outer diameter remains the
same after 30 years; in this study, it is fixed at 24 mm
and the thinning of the cortical wall with age is repre-
sented by an increase in the inner diameter to reach the
thickness measured by Bousson and colleagues
(Bousson et al. 2001).

Ultrasonic guided waves
We consider an elastic waveguide (plate or tube) of

thickness t placed in vacuum. The coordinate systems

Fig. 1.EQ1 Variation in stiffness coefficients over porosity:
c11 5 c22ð>Þ, c12ð,Þ, c13 5 c23ðDÞ, c33ð3Þ, c44 5 c55ð�Þ,

c66ð�Þ.

Table 1. Elastic properties of cortical bone at the
periosteal boundary (per.) and at the endosteal boundary

(end.)

c11
(GPa)

c12
(GPa)

c13
(GPa)

c33
(GPa)

c44
(GPa)

c66
(GPa)

r
(g/cm3)

[10–19]Q6

per. 26.33 10.73 11.25 34.17 8.30 7.80 1.88
end. 25.05 10.22 10.80 32.72 7.83 7.41 1.84

[20–29]
per. 26.30 10.72 11.23 34.13 8.29 7.79 1.88
end. 24.61 10.05 10.64 32.22 7.67 7.28 1.83

[30–39]
per. 26.10 10.64 11.16 33.90 8.22 7.73 1.87
end. 24.40 9.97 10.57 31.99 7.60 7.22 1.83

[40–49]
per. 25.08 10.23 10.81 32.76 7.84 7.42 1.85
end. 22.91 9.38 10.06 30.32 7.05 6.76 1.79

[50–59]
per. 25.08 10.23 10.81 32.76 7.84 7.42 1.85
end. 22.06 9.04 9.76 29.36 6.74 6.51 1.77

[60–69]
per. 25.69 10.48 11.02 33.44 8.07 7.61 1.86
end. 22.03 9.03 9.75 29.32 6.73 6.49 1.76

[70–79]
per. 25.05 10.22 10.80 32.72 7.83 7.41 1.84
end. 20.09 8.27 9.08 27.15 6.02 5.91 1.71

[80–99]
per. 25.15 10.26 10.83 32.83 7.87 7.44 1.85
end. 18.06 7.47 8.37 24.86 5.28 5.29 1.66

Table 2. Age-related regional evolution in intracortical
porosity and gradient

t (mm)
p% per.
(%)

p% mid.
(%)

p% end.
(%)

grad
(%/mm)

[10–19] 3.804 2.4 3.7 6.2 0.999
[20–29] 4.166 2.5 3.75 7.5 1.200
[30–39] 4.368 3.1 4.4 8.1 1.145
[40–49] 4.354 6.1 7.4 12.5 1.470
[50–59] 3.762 6.1 8 15 2.366
[60–69] 3.104 4.3 11.5 15.1 3.479
[70–79] 3.46 6.2 11.3 20.8 4.220
[80–99] 2.502 5.9 17.5 26.8 8.353
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ðx; y; zÞ for the plate and ðr; q; zÞ for the tube are defined
with the z-axis corresponding to the axis of the long
bone and x and r representing the spatial variables along
the cortical thickness.

The variable x describes the thickness of the plate
from 0 to t. The radius of the tube r varies from a0
to aq, the inner and outer radius of the tube (Fig. 2),
respectively. To simplify the notation, we use the variable
x where x5 x; r.

The elastic waveguide is considered to be aniso-
tropic and is liable to present continuously varying
properties across its thickness (ex-axis or er-axis). These
mechanical properties are represented by the stiffness
tensor C5CðxÞ and the mass density r5 rðxÞ.

System equations
The momentum conservation equation associated

with the constitutive law of linear elasticity (Hooke’s
law) gives the following equations:

8
><
>:

div s5 r
v2u

vt2
;

s5
1

2
ℂ ðgrad u1gradT uÞ;

(3)

where u is the displacement vector and s the stress
tensor.

� For the plate

We assume that the structure is two-dimensional (2-
D) and that the guided waves travel in the plane y5 0; in
the following, this coordinate is implicit and is omitted in
themathematical expressions. Solutions are sought for the
vectors of displacement (u) and traction ðsx 5s : exÞ
expressed in the Cartesian coordinates ðx; zÞwith the basis
fex; ezg:

uðx; z; tÞ5UðxÞexp ıðkzz2utÞ;
sxðx; z; tÞ5TðxÞexp ıðkzz2utÞ; (4)

with kz the axial wavenumber. The modes propagating in
such a structure are called Lamb modes. We distinguish
two types of Lamb modes: symmetrical (S-modes) and
anti-symmetrical branches (A-modes) (Lamb 1917).

� For the tube

We seek to solve the wave equation for displacement
vector (u) and radial traction vector ðsr 5s:erÞ ex-
pressed in the cylindrical coordinates ðr; q; zÞ with the
basis fer; eq; ezg:

u
�
r; q; z; t

�
5UðnÞ�r

�
exp ıðnq1kzz2utÞ;

sr

�
r; q; z; t

�
5TðnÞ�r

�
exp ıðnq1kzz2utÞ; (5)

with kz the axial wavenumber and n the circumferential
wavenumber.

We distinguish two types of waves propagating in
a cylindrical waveguide: circumferential waves and axial
waves. Circumferential waves are waves traveling in
planes perpendicular to the axis direction. They corre-
spond to uz ðrÞ5 0 ðcrÞ, kz 5 0 and n5 kq aq. Axial
waves are waves traveling along the axis direction, the
circumferential wavenumber is an integer n5 0; 1; 2;..
Among the axial waves, we distinguish three types of
modes numbered with two parameters ðn;mÞ representing
the circumferential wavenumber and the order of the
branches: longitudinal (L), flexural (F) and torsional (T)
modes. The longitudinal and torsional modes are axially
symmetric (n5 0) and denoted L ð0;mÞ and T ð0;mÞ.
The flexural modes are non-axially symmetric (n$ 1)
and are denoted F ðn;mÞ (Gazis 1959). In this article, we
focus on longitudinal and first flexural modes (n5 1).

A closed-form solution: the matricant
Introducing the expression (system equations Q3or

system equations) into the equation (3), we obtain the
wave equation in the form of a second-order differential
equation with nonconstant coefficients. In the general
case, there is no analytical solution to the problem thus
formulated. Most current methods of solving the wave
equation in unidirectionally heterogeneous media are
derived from the Thomson-Haskell method (Thomson
1950; Haskell 1953). These methods are appropriate for
multilayered structures (Kenneth 1982; L�evesque and
Pich�e 1992; Wang and Rokhlin 2001; Hosten and
Castaings 2003). However, for continuously varying
media, these techniques replace the continuous profiles
of properties by step-wise functions, thereby making

Fig. 2. Geometrical configuration of the waveguides.
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the problem approximate, even before the resolution step.
The accuracy of the solution, like its validity domain, are
thus hard to evaluate. Moreover, a multilayered model of
functionally graded waveguides creates ‘‘virtual’’ inter-
faces likely to induce artifacts. Lastly, for generally
anisotropic cylinders, the solutions cannot be expressed
analytically, even for homogeneous layers (Mirsky
1964; Nelson et al. 1971; Soldatos and Jianqiao 1994).

To solve the exact problem, that is, to maintain the
continuity of the variation in properties, and to take into
account the anisotropy of cylindrical waveguides, we write
the wave equation under the sextic Stroh formalism (Stroh
1962) in the form of an ordinary differential equations
system with nonconstant coefficients for which an ana-
lytical solution exists: the matricant (Pease 1965; Baron
2005).

Hamiltonian form of the wave equation. In the
Fourier domain, the wave equation can be written as:

� For the plate

d

dx
hðxÞ5QðxÞhðxÞ; (6)

� For the tube

d

dr
hðrÞ5 1

r
QðrÞhðrÞ: (7)

The components of the state-vector h ðxÞ are the
components of the displacement vector u and the
components of the traction vector sx. As for the matrix
Q ðxÞ, it contains all the information about heteroge-
neity: it is expressed from the stiffness coefficients of
the waveguide in the appropriate system of coordinates
(Cartesian for the plate and cylindrical for the tube) and
from two acoustical parameters (wavenumbers, angular
frequency, horizontal slowness). Detailed expressions of
Q ðxÞ are given in Appendix A for the case of a material
with hexagonal crystallographic symmetry; but it can
be expressed for any type of anisotropy (Shuvalov
2003).

Explicit solution: the Peano expansion of the
matricant. The wave equation, thus, formulated has
an analytical solution expressed between a reference
point x0 and some point along the cortical thickness
direction x. This solution is called the matricant and
is explicitly written in the form of the Peano series
expansion:

Mðx; x0Þ5 I 1

ðx

x0

Qð2Þd21
ðx

x0

Qð2Þ
ð2

x0

Qð21Þd21d2 1.;

(8)

where I is the identity matrix of dimension ð6; 6Þ. If the
matrixQ ðxÞ is bounded in the study interval, these series
are always convergent (Baron 2005). The components of
the matrix Q are continuous in x and the study interval is
bounded (thickness of the waveguide), consequently the
hypothesis is always borne out. The matricant verifies
the propagator property (Baron 2005):

hðxÞ5Mðx; x0Þhðx0Þ: (9)

Free boundary conditions. The waveguide is
considered to be in vacuum, so the traction vector sx

defined in (4 and 5) is null at both interfaces. Using the
propagator property of the matricant through the thic-
kness of the structure, eqn (7) is written as
hðx0 1 tÞ5Mðx01 t; x0Þhðx0Þ with x0 5 0 for the plate
and x0 5 a0 for the tube. Factorizing the matricant
M ðx0 1 t; x0Þ under four block matrices of dimension
ð3; 3Þ, eqn (7) becomes:

�
uðx5 x01tÞ

0

�
5

�
M1 M2

M3 M4

��
uðx5 x0Þ

0

�
: (10)

Equation (10) has non-trivial solutions for
det M3 5 0. As detailed in Appendix A for a transversely
isotropic material and from eqn (8), the components of
M3 are bivariate polynomials in ðsz;uÞ or ðkz;uÞ. Conse-
quently, seeking the zeros of det M3 amounts to seeking
the pairs of values ðsz;uÞ or ðkz;uÞ, which describe the
dispersion curves of guided waves propagating in a plate
or a tube respectively.

RESULTS

Gradient of porosity
The variation in porosity across the cortical thick-

ness and its age-related evolution are presented in
Table 2. Figure 3 shows that a linear profile is a good

Fig. 3. Variation in porosity across the cortical thickness: linear
regression for each age range (R2 $ 0:9).
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approximation to model porosity changes. For every age
range, p%5 a x1b, where x is the spatial variable along
the cortical thickness, ða; bÞ˛<2.

The porosity gradient (%/mm) is deduced from an
estimation of the slope a for each age class (Table 2).

Figure 3 clearly shows that porosity sharply
increases with age in the endosteal region, whereas it
remains fairly stable in the periosteal region. Moreover,
cortical thickness greatly decreases with age, from adult-
hood to old age. These two processes identified by Bous-
son (Bousson et al. 2000, 2001) are linked under the name
trabecularization of the endosteal region.

The age-related evolution of the porosity gradient
represented on Figure 4 reveals an inverse trend
compared with the evolution of BMD (Melton III et al.
2000): it remains almost constant up to the 4th decade
and then it increases with advancing age. The regression
is exponential, similar to the evolution of the risk of frac-
turewith age reported in the literature (Hui et al. 1988; De
Laet et al. 1997; Kanis et al. 2008).

Sensitivity of guided waves to the gradient of
material properties

The effect of a realistic intracortical porosity
gradient on guided wave propagation was investigated
to determine how sensitive the guided waves are to the
age-related evolution of long bone strength; in particular,

whether they are sensitive both to thinning of the cortex
and to increased endosteal porosity during aging. We
compared the ultrasonic guided waves’ interaction with
three planar waveguides and three tubular waveguides
modeling the diaphysis of the femur at three different
age ranges: [30–39], [60–69] and [80–99] (Bousson
et al. 2001). Waveguides dimensions are reported in
Table 3. The dispersion curves are plotted as functions
of the frequency-thickness product in the usual range
for the study of ultrasonic waves in long bones (Bossy
et al. 2004; Muller et al. 2005; Tatarinov et al. 2005;
Protopappas et al. 2006). For guided waves in long bones,
the typical frequency range is between 50 kHz to 350
MHz (Moilanen et al. 2008) to generate wavelengths
greater than the cortical thickness (Bossy et al. 2004).
Consequently, the frequency-thickness product to be
considered is roughly [0.2, 1.5] MHz.mm for [30–39],
[0.15, 1.1] MHz.mm for [60–69] and [0.125, 0.875]
MHz.mm for [80–99].

The dispersion curves of Lamb modes propagating
in plates show measurable differences throughout aging
(Fig. 5). The discrepancy between the dispersion spectra
obtained for each age range grows with the frequency-
thickness product. For example, at 1 MHz.mm, the phase
velocity of the S0 mode for the [80–99] age group is 6%
lower than for the [30–39] age group, the phase velocity
of the A2 mode for the [60–69] age group is 5% higher
than for the [80–99] age group and 10% lower than for
the [30–39] age group. All these differences correspond
to several thousand meters per second, which are experi-
mentally measurable quantities.

The same trends can be seen from the dispersion
curves of the longitudinal and flexural modes propagating
in the tubes (Fig. 6). Thecut-off frequencies of all themodes
are distinct for the three age ranges considered (Table 4).

Fig. 4. Age-related evolution of the porosity gradient: exponen-
tial regression (R2 5 0:93).

Table 3. Geometry of the waveguides for three age
ranges

Thickness (plate or tube) Tube dimensions

t=aqt (mm) a0 (mm) aq (mm)

[30–39] 4.368 7.64 12 0.36
[60–69] 3.104 8.9 12 0.26
[80–99] 2.502 9.5 12 0.21

Fig. 5. Dispersion curves of Lambmodes propagating in a trans-
versely isotropic plate, for three age ranges: [30–39] straight

line, [60–69] dots and [80–99] dotted line. Q5
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The phase velocities are also significantly different: for
instance, the discrepancy between the F ð1; 3Þ-mode phase
velocity for [80–99] and the F ð1; 3Þ-mode phase velocity
for [30–39] is about 420 m/s.

One of the critical parameters of long bone strength
is cortical thickness. To evaluate cortical thickness, Moi-
lanen and his team showed the relevance of considering
the F ð1; 1Þ mode instead of the A0 mode (Moilanen
et al. 2007). This is confirmed by our results on the group
velocity of these two modes calculated for the three age
ranges (Fig. 7).

It is clearly shown that around the frequency of
200 kHz used by Moilanen and colleagues, the group
velocity of A0 mode is consistently different from the

group velocity of the F ð1; 1Þ mode and it appears that
the group velocity of the F ð1; 1Þ mode is very sensitive
to the porosity gradient in the frequency range
considered.

DISCUSSION

The Stroh formalism used in this study has several
advantages. First, it allows ultrasound propagation to be
investigated in a continuously varying medium (FGM)
instead of approximating it by a multilayered medium,
thus, avoiding potential round-off errors and artifacts
that cannot be estimated. It provides an exact solution
to the exact problem and the degree of round-off error
is manageable (Baron 2005). Furthermore, this formalism
is numerically stable and is applicable to planar and
tubular geometries whatever the degree of anisotropy of
the material. The conventional methods used to solve
the wave equation are unable to deal with cylindrical
coordinates coupled with general anisotropy. The Stroh
formalism is one of the only ways to provide an analytical
solution (Peano expansion of the matricant) to the wave
equation in a cylindrical structure whatever the aniso-
tropy of the material (Shuvalov 2003). Moreover, fluid-
loading of the waveguide here can be treated as in the
case of the plate (Baron and Naili 2010). The advantages
of this formalism in the context of bone characterization
are clear, since long bone can be realistically modeled as
an FGM orthotropic tube surrounded by blood and full of
marrow. In addition, because this method takes into
account actual variations in material properties of long
bones, it could prove useful as a reference to validate
models which do not allow for the gradient of material
properties, confirming the range of validity (frequency
domain, thickness range, order of the modes) of the
results yielded by such simplified models.

Bone fragility has long been known to be related to
the quantity of material (bone density), its quality

Fig. 6. Dispersion curves of the eight first longitudinal modes
(in black) and the ten first flexural (in grey) modes propagating
in a transversely isotropic tube, for three age ranges: [30–39]

straight line, [60–69] dots and [80–99] dotted line.

Table 4. Variations in cut-off frequencies for
longitudinal and flexural modes with aging

L(0,2) L(0,3) F(1,2) F(1,3) F(1,4) F(1,5)

D f30=60 (kHz) 4.9 88.3 2.9 4.5 87.2 80.8
D f60=80 (kHz) 3.4 60.3 2.2 4 60.1 59.7
D f30=80 (kHz) 8.3 148.6 5.1 8.4 147.3 140.5

Fig. 7. Group velocity of A0 mode (in black) and F ð1; 1Þ mode
(in grey) propagating in a transversely isotropic plate and tube
respectively, for three age ranges: [30–39] straight line, [60–69]

dots and [80–99] dotted line.
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(stiffness) and its organization (geometry and micro-
architecture). An accurate evaluation of fracture risk
has to assess these three parameters together. As cortical
bone ages, endosteal trabecularization induces thinning
of the cortex. Thus, the spatial variation in porosity across
the cortical thickness revealed during aging can be taken
as the ‘‘missing’’ parameter to represent bone quality.
This is confirmed by Figure 4, which illustrates an evolu-
tion in porosity gradient with age similar to the evolution
in risk of fracture reported in the literature for the vertebra
(Cooper et al. 1992) and for the hip (De Laet et al. 1997).
As previously pointed out, the gradient of material prop-
erties (density and stiffness coefficients) reflects the
spatial distribution of the quantity and quality of bone
across the cortical thickness. Looking at the dispersion
curves obtained here for the plate and for the tube, this
discrepancy between the different age ranges appears to
be experimentally measurable. Thus, this study indicates
that the gradient of homogenized material properties can
be evaluated from measured ultrasound velocities.

Solving the inverse problem, however, will be tricky,
and further work will be required before this can be
achieved. An accurate evaluation of the various factors
influencing bone strength would require a wider range
of measurements (other ultrasound frequencies, other
imaging modalities).

Our work demonstrates the sensitivity of guided
waves to realistic variations in the intrinsic properties of
human cortical bone: porosity, density, stiffness, as re-
vealed by the gradient inmaterial properties.Nevertheless,
it remains difficult to establish a reliable criterion to apply
in a clinical protocol. Careful consideration needs to be
given to choosing appropriate anatomical sites for ultra-
sonic evaluation. To avoid too much ultrasound absorp-
tion, the most suitable sites are the phalanx, the radius
and the tibia (Njeh et al. 2001). These sites are long bones
for which the question of the influence of the curvature on
wave propagation needs to be addressed (Baron 2011). The
choice of geometric model (plate or tube) is particularly
important in pediatrics since the thickness over outer
radius ratio (t=aq) of growing bone is greater than 0.5.
Thus, ultrasound evaluation is a promising alternative
technique in pediatrics.

Our model could usefully be extended. Several real-
istic characteristics can easily be added to the formalism
we use. First, how soft tissue affects wave propagation
can be modeled by fluid-loading, as examined in a recent
paper (Baron and Naili 2010). Second, the gradual varia-
tion in the intrinsic properties of the bone matrix
described in Lakshmanan et al. (2007) can be included
in the homogenization step and would contribute to the
mesoscopic gradient of bone properties.

Furthermore, it would be relevant to consider not
only the variation in ‘‘global’’ intracortical porosity (the

ratio of the volume of pores over the total volume) but
also the distribution of pore sizes and of the number of
pores across the cortical thickness. In Bousson et al.
(2001), it was noted that increased endosteal porosity
arises from an increase in the size of pores rather than
from an increase in the number of pores; this difference
in the organization of the microstructure may affect the
mechanical behavior of the bone.

CONCLUSION

The gradient of material properties appears here to
be relevant to evaluating age-related changes in cortical
bone, particularly in the context of osteoporosis and ther-
apeutic follow-up. This article describes an original
method applied to bone characterization able to take
into account the heterogeneity (porosity gradient) and
the anisotropy (orthotropy) of the material as well as
the tubular geometry of the structure, even under in vivo
conditions (soft tissue).

Ultrasound evaluation appears to be a good candi-
date to characterize long bone (structure, geometry and
material); however, the potential of in vivo techniques
that take into account the influence of soft tissue and
marrow needs to be further explored.

The results we obtained are promising but themethod
should be extended, in particular,with a view to solving the
inverse problem. An in vitro experimental program would
validate the feasibility of the ultrasound measurements on
bone samples of different ages. It could also evaluate the
relevance of using an in vivo characterization of the
gradient of properties across the cortical thickness to deter-
mine bone strength and the risk of fracture.
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APPENDIX AQ4
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Formalism for tube. Expression of the vector hðrÞ
and of the matrixQðrÞ for a material with hexagonal crys-

tallographic symmetry (5 independent stiffness coeffi-
cients). The symbol :̂ represents the quantities in the
Fourier domain.
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