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Abstract
This paper is about a “number [which] has been a mystery ever since it was discovered more

than fifty years ago, and all good theoretical physicists put this number up on their wall and worry
about it.” [R. P. Feynman, QED: The strange theory of light and matter, Princeton 1985]. This
number —Sommerfeld’s fine-structure constant α = e2/~c ∼ 1/137 — appears quite unexpectedly
in the nonlinear mean-field Schrödinger-Poisson (SP) description of a non-relativistic quantum
system; namely, quantum-dot helium constituted by a pair of 2D parabolically-confined opposite-
spin electrons entangled in the same singlet state. We show by iteration provided by a quickly
convergent series of SP nonlinear eigenstates that the non-orthogonality (or inner product) of the
two lowest “s” orbitals approaches asymptotically, within less than 0.5% error, the QED (quantum-
electrodynamics) electronic amplitude eiπ

√
α for photon emission or absorption. The appearance

of α in the non-relativistic SP system is explained by the role of virtual photons generated by the
nonlinearity of the system.
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In quantum electrodynamics (QED), the fine-structure constant α = e2/~c ∼ 1/137 is
used as a small parameter for perturbative corrections in the calculation of field-matter
interactions. With the use of Feynman diagrams, the contribution of a given perturbative
term to the total probability amplitude is a vertex scaled by

√
α. Therefore, in terms of

probabilities, these calculations are typically expressed as a quickly convergent series in terms
of powers of α [1]. The pioneering example is the anomaly of the electron magnetic moment
that paved the way to QED [2]. Rather amusingly, Schwinger’s first-order QED correction
α/2π can be re-written as the mere ratio of Coulomb classical electrostatic energy of a couple
of electrons separated by distance λ to Planck quantum energy of that very photon whose
wavelength is λ. In [3], it is suggested that α is the ratio of a new elementary quantum
of action —namely, e2/c as the least possible Coulomb interaction — to ~. The former in
conjunction with the latter provides a fundamental basis for understanding the quantum Hall
effect, both integral and fractional. In [4], an empirical non-relativistic connection between
the electronic polarizability of atoms and α is proposed. The fine-structure constant becomes
the ratio between the effective volume of an atom and the volume of a sphere surrounding
this atom such that the cloud of virtual photons induced by the presence of matter has
its polarizability equal to the atomic polarizability. The virtual photons surrounding the
corresponding atom change locally the field properties [5]. In [6] [7], the 97.7% visual
transparency of graphene –a two-dimensional material with carbon atoms in a honeycomb
lattice— is determined solely by πα. The significant 2.3% absorption of incident white light
despite the graphene being only one atom layer thick is a consequence of graphene’s unique
electronic structure [8].

These examples show that the appearance of the fine-structure constant α in non-
relativistic quantum-mechanics is not an unlikely phenomenon. Within this framework,
this letter points out a peculiar relationship between α and a non-relativistic quantum sys-
tem where nonlinearity plays the major role [9] [10] [11] [12]. The resulting physics could be
dubbed “nonlinear quantum mechanics”. It may appear as an oxymoron since there is no
doubt whatsoever that quantum mechanics is linear. So why this provocative expression?
Because there is a famous precedent within the framework of a possible dual linear/nonlinear
complementarity in wave physics: namely, the hydrodynamic solitary-wave example. Since
its discovery [13] and its description half a century later by use of the Korteweg-de Vries
strongly nonlinear partial differential equation [14], no one suspected a dual linear/nonlinear
nature of the solution until the numerical discovery of the “soliton” phenomenon by Zabusky
and Kruskal seventy years later [15] —solitons pass through one another without loosing
their identity. Three years later, Lax discovered the theoretical explanation by associating
nonlinear evolution equations with linear operators so that the eigenvalues of these latter
are integrals of the former [16]. This means that the structural properties building the wave
coherence are nonlinear while their spectral properties are linear.

This nonlinear-linear wave complementarity echoes a specific nonlinear property of a sta-
tionary and separable quantum system which leads to the demonstration of the Born pos-
tulate in terms of classical position probability distributions and to the discovery of a new
action quantization rule [17]. Transforming Schrödinger’s linear and stationary eigenvalue
equation into the strongly nonlinear Ermakov wave equation by use of the Madelung-Bohm
theory yields an inhomogeneous phase of the wave function which allows the definition of the
discrete spectral eigenvalues in terms of phase quantization [18]. Another striking quantum
example concerns the canonical transformation of a spin ½ into a classical nonlinear Hamil-
tonian dynamical system by use of its geometric —or Berry [19]— phase [20]. Contrary to
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common sense, this spin ½ global phase becomes an observable property. It defines the 4π
symmetry of spinor wave functions (i.e. the sign reversal of the wave function under a 2π
rotation [20]) that has been already predicted by Dirac [21] and experimentally observed
in both division-of-amplitude [22][23] and division-of-wave-front [24] neutron interferometry
experiments (see also [25]). Moreover, this Hamiltonian canonical transformation allows
the physical definition, in terms of very-high-frequency oscillations usually discarded in the
rotating-wave approximation, of the energy variance of the system [26] whose standard de-
viation explains the occurence of experimentally observed quantum Zeno jumps [27] [28]
[29] [30]. Therefore, like the soliton case in classical physics, these quantum examples dis-
play a mathematical nonlinear-vs-linear duality that provides a remarkable and exact —i.e.
distinct from any semiclassical approximation— new link between classical and quantum
physics as well as yielding unexpected observable properties.

There is another type of nonlinear quantum approach that, contrary to the above, does
not lead to a strict (i.e. mathematically exact) equivalence with linear quantum mechan-
ics. It concerns many-particle Schrödinger description of an interacting quantum system
(e.g. via electron electrostatic interaction like in the present work). Because this latter
is numerically untractable, it is made computationally reachable by transforming it into a
mean-field single-particle model at the cost of making it nonlinear, but numerically solvable
[31]. The Hartree, Hartree-Fock and density-functional Kohn-Sham [32] descriptions are
approximative mean-field single-particle nonlinear approximations of the originally linear
many-particle interacting quantum system (though respectively more and more accurate
with increasing particle numbers). However the way nonlinearity is, so to speak, “erased” in
order to recover linearity is a bit subtle. Indeed these descriptions are conventionally solved
by an iteration scheme where, in each iteration, the mean-field potential is constructed with
information about the charge distribution and/or the wave functions from former iterations.
Then the resulting Schrödinger equation is considered linear within each iteration step and
solved by means of standard methods from linear algebra supplying an orthonormal set of
eigenfunctions and corresponding eigenvalues. Therefore the original mean-field nonlinear-
ity is rubbed out by use of a (hopefully converging) infinite series of linear Schrödinger
descriptions, each being different and characteristic of the iteration step.

There is a more fundamental way to cope with the intrinsic nonlinearity of the mean-
field description. It consists in making use of a series of standard iterations like above,
but explicitely keeping nonlinearity within each iteration of the process; i.e. making use
of nonlinear (thus non-orthogonal) eigenstates and of their corresponding eigenvalues at
each step of the iteration series. This is the procedure we will use in the present paper. It
yields specific physical effects that are not predicted by a standard mean-field approximation
defined by its Euler-Lagrange variational solutions. It has indeed been shown [33] that, due
to non-orthogonality (or eigenstate overlap defined by their Hilbertian inner product), the
ground state defined by a nonlinear single-particle mean-field description is not a pure orbital
eigenstate like in standard linear quantum theory, but a mixed state allowing a small part of
the electrons to populate simultaneously higher nonlinear excited energy levels. Therefore
eigenstate non-orthogonality leads to quantum correlations defined as usually by the off-
diagonal terms of the corresponding density matrix [29] and thus to interferences. Explicit
parameters have been provided for the experimental detection of such an interference effect in
the case of a GaAs two-level system [33]. It is crucial to detect it in order to pave the way for
a better understanding of the role of nonlinearity in quantum physics. The reason why such
an interference effect has not been predicted by standard Hartree-Fock linear descriptions

3



might well be that people took it for granted that the Hermiticity of the Hartree-Fock
potential operator WHF yields a complete set of mutually orthogonal eigenfunctions ϕi [34]
[35]. This is not strictly true because the eigenvalue equation derived from WHF ≡ WHF (ϕi)
and defining the ϕi’s is actually nonlinear.

Quantum-dots can be viewed as artificially structured atoms in heterojunctions or metal-
oxide-semiconductor devices where few electrons are confined to a length comparable to
the mesoscopic effective Bohr radius aB (aB ∼ 10−2 µm in the case of GaAs). Though
the confinement can a priori occur in all three directions, some types of experimentally
realized quantum-dots display an extension in the x − y plane which is much larger than
in the growth direction z of the underlying semiconductor structure [36–38]. Therefore,
these quantum-dots are usually regarded as artificial atoms with a disk-like shape. Since
electron numbers as low as one or two per dot have already been realized [36, 38], quantum-
dot helium consisting of two electrons trapped in the two-dimensional (2d) axisymmetrical
harmonic potential V (r) = 1

2
mω2r2, where r2 = x2 + y2 and m is the effective electron

mass, is actually the simplest realistic model for an interacting quantum system [39, 40].
As itself or amongst other such few-electron systems, it has been extensively studied in the
relationship with the development of nanotechnologies [37] [41].

The present paper provides a nonlinear mean-field integro-differential model for a couple
of opposite-spin electrons entangled in the same state and harmonically confined in a 2D
quantum-dot helium system [40]. We restrict its spectrum to the two lowest “s” states (no
angular momentum). This model is the simplest —and probably the most accurate— non-
linear mean-field approximation of the original two-particle interacting linear Schrödinger
equation for the seven following reasons:

1. In a parabolically-confined electron gas, the center-of-mass and the internal degrees of
freedom are completely decoupled, due to the generalized Kohn theorem [42, 43]. Since
we are only interested in the internal structure of the two-particle wave function, the
parabolic confinement ensures that there will not be any perturbation of this internal
state by some external “frozen” center-of-mass degree of freedom.

2. The parabolic confinement is mathematically equivalent to plasma oscillations of an
electron gas over a continuum of positive charges uniformly distributed in space
(“jelium”). This jelium background provides charge neutrality of the system in its
Thomas-Fermi limit [12]. Such a property can be of interest in the investigation of the
nature of High-Tc superconductor Cooper pair “glue” [44].

3. The paper considers “s” (zero-angular-momentum) orbital eigenstates in order to dis-
card any parasite spin-orbit coupling. Therefore the eigenstates have radial symmetry.

4. The coupling of the Poisson equation with the 2d Schrödinger equation is mathemat-
ically consistent only if the fomer is appropriately modified to comply with Gauss’
asymptotic electrostatic potential created by the 2d electron gas. The present paper
provides this modification by introducing an ad-hoc specific r−1 factor in the source
term of the Poisson equation.

5. A pair of confined electrons constitutes the simplest and most accurate mean-field
model for bounded interacting quantum systems. Due to the use of Koopmans’ theo-
rem for the determination of its energy levels [45], one does not need to average over
several surrounding electrons in order to define the effective mean-field that yields
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the density of charges [46]. The 2nd fellow-electron’s potential alone actually is this
effective mean field.

6. A S = 0 singlet-spin (or opposite-spin) electron pair allows to consider those eigen-
states where the two particles lie both in the same “s” orbital state in agreement with
the Pauli exclusion principle. So they are entangled and constitute a pair of “orbital
bosons” defined by the same wavefunction [47]. In this configuration, there is neither
exchange energy nor, like already mentioned above, spin-orbit coupling.

7. A two-state model is a reasonable choice, due to the absence of spectral dispersion
[48]. This choice is also consistent with the Wigner-Weisskopf approximation for the
Schrödinger equation in the interaction representation [49].

Consider the 2D radial-symmetrical quantum-dot helium described by its real-valued
dimensionless mean-field orbital state u(X) where X is the radius. The two opposite-spin
electrons are entangled in the same “s” —zero angular momentum— orbital state u(X) [50].
We call m the effective particle mass (possibly taking into account quasiparticle effects)
and Ω the angular frequency of the external harmonic trap. In appropriate units where
the parabolic confinement becomes X2/4, the corresponding nonlinear integro-differential
stationary Schrödinger equation with eigenvalue µ and electron charge e reads:

d2

dX2
u+

1

X

d

dX
u+

[
µ− Φ− 1

4
X2

]
u = 0, (1)

where energy is given in units of ~Ω and the electrostatic interaction energy Φ is defined as:

Φ(X) =

∫ ∞

0

[
u(X ′)

]2
G(X,X ′)X ′dX ′, (2)

by use of its Green function:

G(X,X ′) =
1

π

∫ π

0

[
X2 − 2XX ′ cosϕ+X ′2]−1/2

dϕ. (3)

The system of Eqs. (1-3) will be solved by the following iterative procedure where Φ(n) is a
functional of u(n−1):

d2

dX2
u(n) +

1

X

d

dX
u(n) +

[
µ(n) − Φ(n) − 1

4
X2

]
u(n) = 0, (4)

Φ(n)(X) =

∫ ∞

0

[
u(n−1)(X ′)

]2
G(X,X ′)X ′dX ′. (5)

The initial/boundary conditions that define a regular even “s” eigensolution are:

[u(n)(X)]X=0 = u
(n)
0 ;

[ d

dX
u(n)(X)

]
X=0

= 0, (6)

and
lim

X→∞
u(n)(X) = 0. (7)
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FIG. 1: The two lowest s eigenstates u1 (continuous blue) and u3 (dashed green) of the nonlinear
differential system (8-13) versus their corresponding actual wavefunctions Ψ1 and Ψ3 defined by
(15) and normalized to unity. Their common nonlinearity parameter (14) increases from 0.01 to 8
and so do the l.h.s.profiles. To the contrary, the r.h.s. amplitude of Ψ1,3 decreases with increasing
N .
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FIG. 2: The respective trajectories of the inital conditions of eigenstates u1 (lower blue plot) and
u3 (upper red plot) defined by (10-11) when their common nonlinearity parameter N defined by
(14) increases from the quasilinear value 0.01 —hence C1,3 ∼ µ1,3 ∼ 1, 3 in agreement with (17)—
to 8. The circles correspond to the minimum inner product displayed by Fig. 3
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FIG. 3: The inner product (20) corresponding to Fig. 1 when the nonlinearity parameter N —see
definition (14)— increases from 0.01 to 8. The circle displays the minimum ⟨u1|u3⟩min = −0.0682

at N = 3.747.

The initial profile u(n−1)(X) = u(0)(X) corresponding to n = 1 in Eq. (5) can be defined
by any of the discrete eigensolutions ui of the following Schrödinger-Poisson (SP) nonlinear
differential system (we drop superscript (0) for the sake of clarity):

d2

dX2
ui(X) +

1

X

d

dX
ui(X) +

[
Ci(X)− 1

4
X2

]
ui(X) = 0, (8)

and
d2

dX2
Ci(X) +

2

X

d

dX
Ci(X) =

[ui(X)]2

X
. (9)

It is solved by use of the initial conditions at X = 0:

[ui(X)]X=0 = ai ;
[ d

dX
ui(X)

]
X=0

= 0, (10)

[Ci(X)]X=0 = bi ;
[ d

dX
Ci(X)

]
X=0

=
1

2
ai

2, (11)

where ai and bi are the two real-number free parameters that define the nonlinear eigenso-
lution {ui(X) , Ci(X)} of differential system (8-9). They are chosen in agreement with the
two following eigenstate constraints for all discrete nonlinear eigenstates i:
1) Regularity:

lim
X→∞

ui(X) = 0 ∀i, (12)

2) Normalization for all discrete nonlinear eigenstates ui(X):∫ ∞

0

[
ui(X)

]2
XdX = N ∀i, (13)
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FIG. 4: The two lowest s eigenstates, namely ground state u1 (continuous) and excited state u3
(dashed), defined by the nonlinear differential system (8-13) at the minimum of inner product
⟨u1|u3⟩ = −0.0682 when N = 3.747 (circle in Fig. 3)
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FIG. 5: The ground-state Coulomb interaction Φ1(X) (continuous black plot) as the nonlinear
solution of Eqs (8-13) and (16-18) at N = 3.747 (circle in Fig. 3), compared with the blue dotted
next-step Coulomb interactions Φ

(1)
1 (X) defined by Eq. (5) for n = 1. Both Coulomb interactions

do agree with Gauss’ asymptotic behaviour N/X = 3.747/X defined by Eq. (19) and displayed by
the red point-dashed plot.
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FIG. 6: The same as in Fig. 5 for the excited state |3⟩.
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FIG. 7: The inner product (21) obtained about N = 3.747 (circle in Fig. 3) by the iteration
process (4-7) til n = 17 shown at two different vertical scales. The horizontal line displays the
QED amplitude eiπ

√
α for photon emission or absorption by an electron that is defined by the

fine-structure constant α = 1/137.035999....

where the dimensionless parameter
N =

e2/L

~Ω
(14)

is given by the experimental conditions of the quantum dot; namely, the harmonic length
L =

√
~/2mΩ of its confining parabolic potential V (r) = 1

2
mΩ2r2 which becomes 1

4
X2 when

9



5 10 15 20
n 

3.55

3.6

3.65

3.7

3.75

3.8

ci
rc

le
s 

: N
(n

) 1
   

   
   

   
cr

os
se

s 
: N

(n
) 3

5 10 15 20
n 

-0.086

-0.0855

-0.085

-0.0845

-0.084

-0.0835

-0.083

-0.0825

-0.082

( 
1 

| 3
 )

FIG. 8: The respective norms N
(n)
1,3 which define the solution u

(n)
1,3 of Eq. (4) for n ≤ 21 (left),

displayed opposite the corresponding inner product (21).

X = r/L and all energies are given in units of ~Ω (e and m being respectively the charge
and the mass of the electron including if necessary quasiparticle effects). Then Eqs (13-14)
yield the expected 2D normalization of the electron-pair wavefunction Ψi:

Ψi(r) =
1

L
√
2πN

ui[X(r)] →
∫ ∞

0

Ψ2
i (r)2πrdr = 1. (15)

Note that N defined by Eq. (14) should be regarded as the nonlinear order parameter
of the system since it compares the classical electrostatic energy e2/L between the two
confined electrons with the harmonic quantum gap ~Ω defining the parabolic confinement.
Therefore it yields a quantitative description of the quantum-classical transition from the
highly quantum regime e2/L ∼ ~Ω when N ∼ 1 [50] —the quantum dot has a quasilinear
behaviour with negligible particle-particle interaction when N → 0— to the classical case à
la Thomas-Fermi in the opposite strongly nonlinear case N ≫ 1 [12].

Once any discrete eigensolution ui(X) of the nonlinear differential system (8-9) is obtained
by the appropriate choice of ai and bi in accordance with Eqs (10-13), its corresponding
chemical potential (or nonlinear eigenvalue) µi is given by:

µi = Ci(X) + Φi(X), (16)

(cf. Eq. (4)) where Φi(X) is defined as the functional of [ui(X)]2 by Eq. (2). In particular,
at X = 0:

µi = bi + φi, (17)
where

φi = Φi(0) =

∫ ∞

0

[
ui(X

′)
]2 1

X ′X
′dX ′ =

∫ ∞

0

[
ui(X

′)
]2
dX ′ (18)

by use of Eq. (2) together with its Green function (3).

10



The discrete regular eigensolutions ui(X) of the nonlinear differential system (8-13) are
the n = 1 zeroth approximation of the iterative solution defined by Eqs (4-7). The present
letter considers the two lowest “s” eigenstates u1 and u3. They are displayed by Fig. 1,
using (as for all numerical results given in the present paper) the MATLAB R 2018b routine
(options = odeset(’RelTol’,1e-10)) for integration. It shows u1(X) (continuous blue) and
u3(X) (dashed green) when their common nonlinearity parameter N defined by Eq. (14)
increases from 0.01 to 8. These normalized eigenstates are labelled in agreement with their
respective energies 1 and 3 (in units of ~Ω) in the linear limit N → 0: see Fig. 2 which
shows the respective trajectories of their inital conditions (10-11) as N varies. These latter
go clockwise when N increases and eventually reach their second-order phase transition
which describes the wavefunction change from the constant-width piling-up regime to the
constant-amplitude spreading-out one [50]).

The X−1 factor in the source term of the r.h.s. of Poisson equation (9) is due to Gauss’
theorem. Indeed, when X → ∞, the electrostatic interaction Φ defined by Eqs (9) and (16)
yields as expected:

lim
X→∞

Φ(X) =
N

X
, (19)

since N defines the total charge of the 2D reduced electron density in accordance with Eq.
(13): see Figs 5-6. In contrast, droping the X−1 factor in the r.h.s. of Eq. (9) would yield
the 3D electron density integral limX→∞Φ(X) = X−1

∫∞
0
[u(X ′)]2X ′2dX ′ which is obviously

electrostatically incorrect for the 2D electron density u2: compare with the expected 2D one
in (19), namely, X−1

∫∞
0
[u(X ′)]2X ′dX ′ = N/X.

The 2D eigenstate non-orthogonality ⟨u1|u3⟩ ̸= 0 is given by the following inner product:

P1 = ⟨u1|u3⟩ =
1√

N1N3

∫ ∞

0

u1u3XdX, (20)

for the two nonlinear eigenstates u1,3 are displayed by Fig. 1. Their common norms
N1 = N3 = N is defined by Eqs (13-14): see Fig. 3 which shows their (weak) non-
orthogonality. At the minimum ⟨u1|u3⟩min = −0.0682 reached for N = 3.747 (circle in
Fig. 3), the corresponding eigenstate profiles are displayed by Fig. 4 while their respective
Coulomb interactions Φ1(X) and Φ3(X) defined by Eqs (16-18) are shown by the continuous
black plots in Figs 5 and 6. Like emphasized above in (19), these figures also show that both
Coulomb interactions do agree with Gauss’ asymptotic behaviour N/X = 3.747/X as they
should. The next-step Coulomb interactions Φ

(1)
1,3(X) are defined by Eq. (5) for n = 1 from

the zeroth-order eigenstate profiles u1 and u3 shown in Fig. 4. They are respectively dis-
played by the dotted blue plots in Figs 5 and 6. Then the iteration process described by Eqs
(4-5) with initial & boundary conditions (6-7) goes on until a quasi-stationary asymptotic
regime apparently occurs for the nth (say, 8 ≤ n ≤ 21) inner product:

Pn = ⟨u(n)
1 |u(n)

3 ⟩8≤n≤21 = eiπ
√
α + ϵ ; ϵ ∼ 5 10−4. (21)

The corresponding values are shown by the blue circles as a function of the iteration rank
n in Figs. 7 and 8. The relative error defined by ϵ is ∼ 0.5% with respect to the horizontal
line eiπ

√
α = −0.08542... that displays in amplitude and phase the QED photon emission or

absorption process by an electron [1]. The asymptotic eigenstate overlap (21) illustrated by
Figs. 7 and 8 numerically demonstrates that α’s numerical value ∼ 1/137 can indeed be de-
fined with a precision of ∼ 99% about the minimum ⟨1|3⟩min of eigenstate overlap amplitude
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(20) by a mathematical solution solely based on the nonlinear properties of the dimensionless
integro-differential system (1-3). Let me stress the profound underlying signification of this
result and list the physical arguments that support it.

1. The iteration described by Eqs (4-5) with initial/boundary conditions (6-7) yields
eigenstate renormalization at each step n of the process. Indeed the two nth solutions
u
(n)
1,3 are each confined in their own potential 1

4
X2+Φ

(n)
1,3 (this latter being respectively

defined by u
(n−1)
1,3 ). Therefore these two potentials are different and change after each

iteration. So will consequently do their respective norms N
(n)
1,3 defined by Eq. (13),

yielding N
(n)
1 ̸= N

(n)
3 for n ≥ 1 as shown by Fig. 8.

2. The limit displayed by the horizontal line in Figs. 7 and 8 equals eiπ
√
α that defines

the QED amplitude for photon emission or absorption by an electron [1].

3. This finding is not accidental and does not belong to numerology. Indeed the two first
nonlinear eigenstates of quantum-dot helium interfere, due to the following theorem
related to the Hermitian properties of the Laplacian operator [33]:

⟨u1|u3⟩ =
Φ1

13

µ1 − µ3

+
Φ3

31

µ3 − µ1

. (22)

The subscripts in Φi
jk define the matrix elements of the particle-particle interaction

Φi corresponding to eigenstate |ui⟩: see Eq. (16).

4. By extrapolation from first-order time-independent perturbation theory in quantum
mechanics [51] (actually related to Fermi’s golden rule), the first term in the r.h.s.
of Eq. (22) defines an absorption-like transition; namely, the probability amplitude
for the system being in the nonlinear ground eigenstate |u1⟩ to populate the nonlinear
excited eigenstate |u3⟩, due to interaction Φ1 defined by the probability density |u1|2 =
u2
1, while the second term defines the reverse process induced by interaction Φ3 defined

by u2
3; namely, the probability amplitude for the system being in the excited eigenstate

|u3⟩ to populate the ground state |u1⟩ through an emission-like transition. These two
|u1⟩ ↔ |u3⟩ emission-absorption amplitudes interfere in the build-up of the inner
product ⟨u1|u3⟩ as shown by Eq. (22).

5. The amplitudes are in phase and add up resonantly at any extremum of the inner
product. This occurs at the minimum N = 3.747 displayed by the circle in Fig. 3.
According to QED, this simultaneous resonant emission-absorption process can be
performed by a virtual photon mediating in the electrostatic field. It is defined in
its Feynman diagram by a first-order amplitude closed loop ∝

√
α that describes this

particular photon-electron interaction [52]. This is precisely that very limit ∝
√
α

which is displayed by the horizontal line in Figs. 7 and 8.

As the conclusion of this letter, let me stress that the present work claims 99% of the
solution of “one of the greatest damn mysteries in physics” according to Feynman [1]; namely,
the numerical value ∼ 1/137 of the fine-structure constant α = e2/~c. The 1% missing is
likely due to the approximative mean-field stationary Hartree description of a parabolically-
confined opposite-spin interacting electron pair entangled in the same low-energy orbital
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state (quantum-dot helium). Despite this rather severe approximation, the resulting ninety-
nine percent conclusion that this numerical value ∼ 1/137 is of transcendental mathematical
origin (say, like π or e) and hence stable is of interest (e.g., in astrophysics [53, 54]).

Specific nonlinear quantum properties have been emphasized in this work. i) Quantum
nonlinearity defines eigenstate overlap that leads to QED’s virtual photon generation. ii)
These photons stimulate in turn transitions between nonlinear eigenstates with probability
proportional to α. iii) Comparing these virtual photon transitions with maximum eigenstate
overlap yields the 99% accurate numerical value of α.

These pivotal advances might influence the research of others to converge towards the
experimental value α = 7.297... 10−3 by using in the present model a more accurate nonlinear
mean-field description of, e.g., the density-functional theory type [31, 32], combined with
higher-order QED terms [52]. Indeed, the numerical value of α “has been a mystery ever
since it was discovered ... and all good theoretical physicists put this number up on their
wall and worry about it.” [1].
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