

Continuous low-level dietary exposure to glyphosate elicits dose and sex-dependent synaptic and microglial adaptations in the rodent brain.

Noemie Cresto, Margot Courret, Athénaïs Génin, Céline Marie Pauline Martin, Julie Bourret, Sophie Sakkaki, Frederic de Bock, Alicia Janvier, Arnaud Polizzi, Laurence Payrastre, et al.

▶ To cite this version:

Noemie Cresto, Margot Courret, Athénaïs Génin, Céline Marie Pauline Martin, Julie Bourret, et al.. Continuous low-level dietary exposure to glyphosate elicits dose and sex-dependent synaptic and microglial adaptations in the rodent brain.. Environmental Pollution, 2024, 345, pp.123477. 10.1016/j.envpol.2024.123477. hal-04444827

HAL Id: hal-04444827 https://hal.science/hal-04444827v1

Submitted on 12 Nov 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Continuous low-level dietary exposure to glyphosate
2	elicits dose and sex-dependent synaptic and microglial
3	adaptations in the rodent brain.
4 5 6 7	Noemie Cresto ¹ , Margot Courret ¹ , Athénaïs Génin ¹ , Céline Marie Pauline Martin ² , Julie Bourret ¹ , Sophie Sakkaki ¹ , Frederic de Bock ¹ , Alicia Janvier ¹ , Arnaud Polizzi ² , Laurence Payrastre ² , Sandrine Ellero-Simatos ² , Etienne Audinat ¹ , Julie Perroy ¹ , Nicola Marchi ¹ .
8 9 10	¹ Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France. ² Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
11 12	Running title: Neuro-glial cell adjustments to dietary glyphosate.
13 14	Keywords: glyphosate, NOAEL, ADI, perinatal exposure, post-natal exposure, neuronal transmission, neuroglia.
15 16 17 18 19 20 21 22 23 24	Number of text pages: 37 Number of words: 3842 Number of figures: 5 Number of Supplemental Figures: 3 Number of Supplemental Tables: 1
25 26 27 28 29 30 31 32	Corresponding Authors: Dr. Nicola Marchi, Cerebrovascular and Glia Research, Institut de Génomique Fonctionnelle (University of Montpellier, CNRS, INSERM), 141 rue de la Cardonille, 34094 Montpellier, Cedex 5, France. Email: <u>nicola.marchi@igf.cnrs.fr</u> . Dr. Julie Perroy, Pathophysiology of synaptic transmission. Institut de Génomique Fonctionnelle (University of Montpellier, CNRS, INSERM), 141 rue de la Cardonille, 34094 Montpellier, Cedex 5, France. Email: <u>julie.perroy@igf.cnrs.fr</u>
33 34 35 36 37 38	Acknowledgment: This work was supported by ANR-Glyflore to LGP, SES, JP, and NM, ANR-Hepatobrain to NM, EnviroDisorders to JP, ANR-CEST-Focus, ANR-EpiCatcher to NM, ANR Microsenso to EA
39 40	ORCID Nicola Marchi: https://orcid.org/0000-0001-9124-0226
41	
42	

43 Abstract

44

Prolonged exposure to low levels of dietary contaminants is a context in modern life that could alter organ physiology gradually. Here, our objective was to investigate the impact of continuous exposure to acceptable daily intake (ADI) and non-observable adverse effect level (NOAEL) of glyphosate from gestation to adulthood using C57BL/6J mice and incorporating these levels into their food pellets. From adulthood, we analyzed neurophysiological and neuro-glia cellular adaptations in male and female animals.

52

53 Using ex-vivo hippocampal slice electrophysiology, we found a reduced efficacy of Schaffer collateral-to-CA1 excitatory synapses in glyphosate-exposed dietary 54 conditions, with ADI and NOAEL dose-dependent effects. Short-term facilitation of 55 excitatory synaptic transmission was specifically increased in NOAEL conditions, with 56 a predominant influence in males, suggesting a reduced probability of neurotransmitter 57 release. Long-term synaptic potentiation (LTP) was decreased in NOAEL-exposed 58 mice. Next, we explore whether these neurophysiological modifications are associated 59 with neuro-glia changes in the somatosensory cortex and hippocampus. High-60 61 resolution confocal microscopy analyses unveil a dose-dependent increased density of excitatory Volut1⁺ Homer1⁺ synapses. Microglial Iba1⁺ cells displayed a shortening 62 of their ramifications, a sign of cellular reactivity that was more pronounced in males at 63 NOAEL levels. The morphology of GFAP⁺ astrocytes was not modified. Finally, we 64 asked whether mouse-specific cross-correlations exist among all data sets generated. 65 This examination included the novel object recognition (NOR) test from an open-field 66 screening to which all mice were exposed before ex vivo functional and 67 immunohistochemical examinations. We report a negative linear regression between 68

the number of synapses and NOR or LTP maintenance when plotting ADI and NOAELdatasets.

These results outline synaptic and microglial cell adaptations resulting from prenatal and continuous dietary low levels of glyphosate, discernible in, but not limited to, adult males exposed to the NOAEL. We discuss the significance of these findings to real-world consumer situations and long-term brain resilience.

94	Highlights
95	1) Dietary exposure to low glyphosate levels from prenatal to adulthood prompts
96	neuro-glial adjustments.
97	2) In adults, synaptic function and number are modified mainly at NOAEL glyphosate
98	compared to ADI.
99	3) Reduced microglial cell ramifications hint at activation, mainly at NOAEL dose.
100	4) These results hint at a dose-dependent vulnerability in the adult brain caused by
101	dietary glyphosate.
102	
103	
104	
105	
106	
107	
108	
109	
110	
111	
112	
113	
114	
115	
116	
117	
118	

119 Introduction

120

The possibility that environmental contaminants may pose risks to consumers' health is increasingly debated ¹. Given its extensive usage, glyphosate is under scrutiny due to its presence in numerous matrices, including human biofluids, making it a primary focus of investigation ^{2–4}. Regulatory bodies worldwide have granted glyphosate's approval for use; however, concerns regarding its impact on humans and the environment steadily mount ⁵.

127

128 Glyphosate was originally employed as an inhibitor of 5-enolpyruvylshikimate-3-phosphate synthase in plants ⁶. From this initial framework, glyphosate was shown 129 to impact bacteria, including within the microbiota⁷, and other physiological functions, 130 such as at the brain level⁸. Epidemiological studies have suggested a potential 131 association between exposure to environmental contaminants, such as glyphosate, 132 and neurodevelopmental risks⁸, although controversy exists⁹. The hypothesis exists 133 that glyphosate, as an aminophosphonic analog of the natural amino acid glycine, may 134 directly influence synaptic transmission. Experimentally, screenings for neurological 135 136 adaptations have been performed in settings where high glyphosate or glyphosatebased herbicides are administered and tested or over short periods ⁸ ^{10–19}. More 137 recently, a paradigm shift has emerged, involving consumer-relevant modalities for 138 exposure to contaminants ²⁰. The latter involves testing, at a multi-organ level, the 139 acceptable daily intake (ADI) or non-observable adverse effect level (NOAEL) of 140 contaminants over extended periods ^{21–23}. 141

To advance our understanding of this complex subject, and to specifically examine the impact of low-levels dietary glyphosate on the brain, we designed a protocol in which groups of C57BL/6J male and female mice were continuously exposed to glyphosate levels equivalent to ADI (0.5 mg/Kg body weight/day) and NOAEL (50 mg/Kg body weight/day) standards from the pre-natal to post-natal stages and compared to a control diet. We tested the hypothesis that dietary exposure to glyphosate could alter synaptic transmission in the mouse central nervous system. The selected read-outs represent fundamental biomarkers indicative of proper neuronal connectivity. Next, we used synaptic density and glial cell high-resolution imaging to study the existence of structural modifications. Finally, we correlate functional and histological read-outs with behavioral testing. Our results show the dose-dependent impacts induced by dietary exposure to glyphosate, particularly in male mice, where adaptations in synaptic transmission and density, as well as morphological changes in microglia, occurred. Whether these adjustments may determine a frail condition or impact brain resilience during adulthood is discussed.

168 Methods

169

170 Animals

171

All procedures were conducted by the Directive of the Council of the European 172 Communities, supervised by the local animal welfare units, and approved by the 173 French Ministry of Research (APAFIS # 16136 and APAFIS # 2020021914472552 # 174 24578 v3 at INRAE-Toxalim and IGF). Eight-week-old female and male C57BL/6J mice 175 were purchased from Charles Rivers laboratories, allowed to acclimatize for one week, 176 177 and fed a standard chow diet. Mice were housed in facilities under a 12 h light/12 h dark cycle (room temperature: 22±1°C), with ad libitum access to food and water. At 178 Toxalim, nine male and eighteen female mice were randomly divided into 3 groups and 179 180 fed control, ADI, or NOAEL diets for one week before mating. At mating, mice were housed 3 per cage (one male and two females) and fed the same diets as previously. 181 After a mating period of 5 days (observation of a vaginal plug), the males were removed 182 from the cages. At weaning, F1 males and females were separated and housed with 183 3-4 mice per cage according to their experimental group as detailed: n=12 control 184 185 (CTR) males in 3 cages, n=12 ADI males in 3 cages, n=9 NOAEL males in 3 cages, n=8 CTR females in 2 cages, n=11 ADI females in 3 cages, n=16 NOAEL females in 186 5 cages. F1 mice were continuously fed the same diet as their parents. Body weight, 187 188 general well-being, food, and water consumption were daily monitored. Tests (F1 from PN60, at IGF) were performed during the daily portion of the circadian rhythm (9 a.m. 189 - 2 p.m.). To conform to the 3R rules, animals were used for consecutive exams (non-190 invasive behavioral explorations, ex-vivo hippocampal slice recording, and brain tissue 191 histology; see Figure legends for specific numbers). 192

193 *Glyphosate-containing pellets, dosage, and exposure protocol.*

194

195 Glyphosate (Sigma-Aldrich) was solubilized in a mixture of methanol and acetone at a volume ratio of 9:1 (v/v). The glyphosate solution was evenly distributed 196 onto the vitamin powder (PV 200, Scientific Animal Food Engineering; SAFE, Augy, 197 France) and subsequently homogenized using a rotavapor (Laborota 4000™; BUCHI 198 Switzerland). The homogenization process involved 30 minutes at 45 °C to evaporate 199 the solvents, followed by an additional 50 minutes at room temperature. The control 200 feed was prepared using the same procedure as described above, with the vitamin 201 powder treated with a 9:1 mixture of methanol:acetone, excluding the addition of 202 203 glyphosate. The vitamin powder, whether enriched with glyphosate or not, was sent to the Animal and Food Science Unit (SAAJ, Jouy en Josas, France) at the National 204 Research Institute for Agriculture, Food and Environment (INRAE). They prepared 205 control and glyphosate-enriched pellets by combining control or glyphosate-enriched 206 vitamin powders (1%) with mineral supplements (7%) and other dietary constituents 207 208 (63% carbohydrate, 5% fat, 22% protein, and 2% cellulose). Glyphosate quantification in the pellets was conducted by Eurofins (Nantes, France) using gas-chromatography-209 tandem mass spectrometry and liquid-chromatography-tandem mass spectrometry 210 211 (ADI 1.7 mg/kg and NOAEL 170 mg/kg of pellet). Exposure levels were calculated based on the weekly annotations of food consumption and animal body weights 212 (Supplemental Figure 1). 213

214

215

We conducted a non-invasive open field (OF) assessment to measure 219 locomotion (distance covered), time spent in the center arena (indicative of anxiety-like 220 traits), and novel object recognition (working memory; NOR). Specifically, the animals 221 were placed within a 50 cm x 45 cm open field (OF) arena. Locomotor activity in this 222 setting provides both qualitative and quantitative biomarker indications of the animals' 223 well-being and exploratory skills. The activity was captured and recorded over 10 224 minutes using the EthoVision XT15 video tracking system (Noldus in Wageningen, 225 226 Netherlands). Following a 24-hour interval, mice underwent NOR testing, which serves as a quantitative measure of working memory. Initially, the mice were placed in the 227 testing arena for 10 minutes, with two identical objects (transparent cylindrical; A and 228 A'). The re-test trial occurred 24 hours later, during which object A was reintroduced 229 alongside a new object B (opaque cubic), both positioned within the arena. The time 230 (tA and tB) spent exploring the two objects was recorded. A recognition index (RI) was 231 calculated as RI = tB / (tA + tB). 232

233

234	Ex-vivo	electrop	hvsiolo	gical re	ecordings.
				9	

235

After rapid cervical dislocation, the right hippocampus was isolated and sectioned into 300 µm-thick slices in an ice-cold solution of artificial cerebrospinal fluid containing sucrose (aCSF sucrose composed in mM of 87 NaCl, 25 NaHCO3, 75 sucrose, 10 D-glucose, 2. 5 KCl, 1 NaH2PO4, 7 MgCl2 and oxygenated with carbogen (95% oxygen (O2) and 5% carbon dioxide (CO2)) using a vibratome (VT1200S, Leica, Bannockburn, IL, USA). The slices were stored at room temperature in a chamber

containing the cutting solution for 15 minutes before being transferred to a second
chamber containing normal aCSF (119 NaCl, 26.2 NaHCO3, 11 D-glucose, 2.5 KCl, 1
NaH2PO4, 1.3 MgSO47H2O in mM and saturated with carbogen) heated to 34°C, for
at least one hour before the first recording.

246

Slices were transferred to an immersed chamber mounted on a BX61 Olympus 247 microscope to record extracellular field potentials. The slices were perfused with aCSF 248 containing picrotoxin (100 µM) at 30-32°C at a flow rate of 1.5 ml/min by a peristaltic 249 pump. A cut between CA3 and CA1 was made to avoid epileptiform activity. Glass 250 251 pipettes, drawn with a horizontal puller (Sutter Instrument, Novato, CA, USA) and filled with aCSF, were used to stimulate the Schaffer collaterals of CA1. They were placed 252 approximately 200 µm from the area where the evoked field excitatory postsynaptic 253 potentials (fEPSPs) were recorded by a second glass pipette filled with aCSF and 254 connected to the recording system. The fEPSPs were recorded and filtered (low-pass 255 at 1 kHz) with an Axopatch 200 A amplifier (Axon Instruments, Union City, CA, USA), 256 digitized at 10 kHz with an A/D converter (Digidata 1322 A, Axon Instruments), then 257 stored and analyzed on a computer using Pclamp9 software (Molecular Devices, San 258 259 Jose, CA, USA). Baseline evoked responses were monitored for 10 minutes, and only slices with stable fEPSP amplitudes were included. Input-output (I-O) relationships for 260 fEPSPs were measured at the start of each experiment by applying a series of stimuli 261 262 of increasing intensity to Schaffer's collaterals and plotting the initial slope of the fEPSP against the amplitude of the fiber volley. Paired-pulse facilitation (PPF) was evoked by 263 administering two stimuli at a 40 ms interval and was measured by dividing the 264 maximum amplitude of the second response by that of the first. Long-term potentiation 265

(LTP) was induced by tetanic stimulation of Schaffer collaterals (two trains of 100 Hzfor 1 s, 20 s apart).

268

269 Synapse and glial cell analyses.

270

After brain isolation, the left hemisphere was placed in a 4% paraformaldehyde (PFA) solution for tissue fixation for 24 hours at 4°C. The following day, the PFA was replaced with phosphate-buffered saline (PBS) containing 30% sucrose for cryoprotection for 24 hours at 4°C. The left hemisphere was cut into 20 µm-thick slices using a cryostat (Leica, Germany). Slices were stored in cryoprotection buffer (30% water, ethylene glycol, glycerol, and 10% 1M tris buffer) at -20°C.

277

After three washes in PBS, the slices were blocked with a PBS-horse serum-278 Triton solution (PBS with 20% horse serum and 0.25% Triton) for 1h at room 279 temperature, then incubated overnight at 4°C with the primary antibodies in the 280 blocking solution. Antibodies against the glial acidic fibrillary protein (chicken GFAP 281 antibody ab4674) and ionized calcium-bound adaptor molecule 1 (rabbit antibody IBA1 282 Wako 019-19741) were used to label astrocytes and microglia, respectively, for 283 morphological analysis ²⁴. Antibodies against vesicular transporter 1 (Vglut1) and 284 Homer protein homolog 1 (Homer1) were used to label pre- and post-synapses, 285 286 respectively. The following day, slices were washed three times with PBS, incubated for 2h with secondary antibodies in blocking solution, and washed three times with PBS 287 before mounting with Fluoromount containing DAPI (Invitrogen). For morphological 288 analysis of microglia and astrocytes, z-stack images were acquired using an 289 automated imaging system (Axioscan, Zeiss, Plateforme Montpellier Ressources 290

Imagerie) for morphological analysis at 20X. Astrocytes were selected based on GFAP 291 292 and microglia on IBA1 labeling. After cell isolation, the 8-bit images were first filtered (unsharp mask process set to 2.0 radius and 0.9 mask weight) and adjusted using 293 Triangle thresholding (min = 175 and max = 255). The ImageJ 'Sholl analysis' plugin 294 was then used to assess cell branching ²⁵. It consists of applying concentric circles 295 from the center of the cell soma spaced 5 µm apart. Each intersection between the 296 GFAP labeling for astrocytes or IBA1 for microglia and the circle is counted to assess 297 the amount of cell extension. For synapse analyses, images were acquired with a 298 confocal microscope (Zeiss Airyscan, Plateforme Montpellier Ressources Imagerie) 299 300 using a 63X oil immersion objective (image size: 103.10 x 103.10 µm, Resolution x,y: 140 nm; z: 450 nm). Two regions of interest in two sections were acquired per animal. 301 For each section, in both channels (488 nm and 633 nm), we imaged serial optical 302 sections at 0.17 µm intervals over a total of 5 µm for 30 optical sections. For image 303 analysis, automated quantification was performed using the Distance Analysis plugin 304 (DiAna)²⁶. The plugin performs automated object-based co-localization and distance 305 analysis in 3D. As the first step, we used the global intensity thresholding (median) to 306 select dots in each channel corresponding to Vglut1 and Homer1. This step created a 307 308 new image for each channel representing each dot. Then, the plugin evaluates the colocalization between the dots of each channel. Co-localized signals were considered 309 synapses, and the number of synapses was automatically calculated. Results were 310 311 expressed in the number of synapses per 100 μ m³.

312

313

314

315

GraphPad Prism (La Jolla, California) was used. The normality of all the data was tested using the Shapiro-Wilk test. The one-factor or two-factor ANOVA mean comparison test was then performed for data that followed a normal distribution, and the Kruskal-Wallis test for data that did not follow a normal distribution. Multiple comparisons were computed using the Bonferonni posthoc test for ANOVAs and Dunn's posthoc test for Kruskal-Wallis. A group T-test was performed on the object recognition test data to check that the scores differed from the theoretical value, i.e., a discrimination ratio 0.5 corresponding to an identical exploration of the two objects. Multiple correlations and graphical representations were generated using R software. Symbols indicate statistical significance (* p<0.05; ** p<0.01; *** p<0.001; **** p<0.0001); *: CTR vs NOAEL; \$: ADI vs NOAEL; #: CTR vs ADI; ns: not significant. Supplemental Table 1 provides details of statistical analyses computed for all experiments.

341 **Results**

342

343 Dietary glyphosate is associated with adaptations in synaptic transmission and long-344 term potentiation during adulthood.

345

In our experimental settings, mice did not exhibit significant differences in food 346 consumption, except for isolated time points in males fed NOAEL glyphosate 347 (Supplemental Figure 2C-D). Body weight was reduced (~10%) long-term in male mice 348 fed with NOAEL glyphosate pellets (Supplemental Figure 2A-B). In these groups, and 349 350 following behavioral testing (see below), we investigated whether synaptic-level modifications ensue due to dietary glyphosate. First, to interrogate synaptic strength, 351 we evaluated basal evoked synaptic transmission at CA1 Schaffer collateral synapses 352 353 in acute hippocampal slices from adult mice (Figure 1A). We confirm that non-exposed mice had normal excitatory synaptic transmission by comparing the amplitude of the 354 presynaptic fiber volley (input) to the slope of the excitatory field potential (fEPSP; 355 output) ²⁷. In contrast, in the glyphosate-exposed groups, the excitatory synaptic 356 efficacy decreased significantly by ~50% and ~30% in the NOAEL and ADI conditions, 357 358 respectively, and compared to control (Figure 1C). We segregated females (Figure 1D) and males (Figure 1E), confirming the effects of NOAEL glyphosate on both sexes. We 359 further investigated the presence of presynaptic alterations by assessing paired-pulse 360 facilitation (PPF), a form of short-term plasticity sensitive to changes in presynaptic 361 release probability (Figure 1B). Consistent with the intact basal synaptic transmission, 362 we found a paired-pulse ratio (PPR) approaching 1.5 in non-exposed mice. In ADI-363 exposed mice, the PPR was similar to the control, while it increased in NOAEL 364 conditions (Figure 1F), suggesting a reduced probability of release at schaffer 365

collateral terminals. Figure 1G-H shows the patterns of sex-specific modifications, with
 effects significant in males.

368

Because glyphosate exposure reduces the efficacy of CA1 Schaffer collateral 369 synapses in adult mice, we next investigated its impact on long-term synaptic plasticity 370 (Figure 2A). We found that the magnitude of LTP, induced by brief tetanic stimulation 371 of Schaffer collaterals, was reduced by ~30% in NOAEL-exposed mice (Figure 2B and 372 2E) compared to non-exposed condition. The ADI exposition did not alter the LTP. 373 Figure 2C-D and Figure 2F-G show the patterns of sex-specific modifications. Male 374 375 mice generally presented the most significant modifications (Figures 1 and 2). See Supplemental Table 1 for complete statistical analyses. Together, these results 376 indicate the existence of synaptic defects, particularly in male mice continuously 377 exposed to dietary NOAEL glyphosate. 378

379

380 Dietary glyphosate is associated with increased synaptic density.

381

Next, we evaluate whether an alteration in the number of synapses 382 383 accompanies the observed electrophysiological modifications. Using high-resolution imaging, we quantified the number of excitatory synapses in the hippocampus of adult 384 mice exposed to glyphosate. Synapses were labeled with pre- and post-synaptic 385 markers, Vglut1 and Homer1 (Figure 3A). The co-localization between Vglut1 and 386 Homer1 was measured, with two co-localized dots indicating one synapse. The density 387 of excitatory synapses increased in the glyphosate-exposed groups (Figure 3B). Sex-388 dependent data are shown in Figure 3C-D. Taken together, these data indicate that 389

continuous glyphosate exposure leads to functional and histological synapse
 modifications in a dose and sex-dependent manner.

392

³⁹³ Impact of glyphosate exposure on the morphology of astrocytes and microglial cells.

394

Accumulating evidence indicates the participation of glial cells in synaptic 395 maturation and remodeling in health and disease ²⁸. Previous evidence showed that, 396 in mice, glyphosate ingestion triggers neuroinflammatory changes, although evidence 397 refers to high-level exposures ^{29,30}. Here, we examined the microglia and astrocyte 398 399 histological alterations possibly associated with ADI and NOAEL glyphosate in males and females. We utilized Sholl's analysis and found that exposure to NOAEL-400 glyphosate was associated with decreased ramifications of Iba1+ microglia in the 401 402 somatosensory parietal cortex and hippocampus (Figure 4C-D). This modification, observed in female and male mice (Figure 4F-G and I-J), hints at cellular activation. 403 ADI-glyphosate had a negligible impact on microglial cells (Figure 4F-G and I-J). The 404 analysis of GFAP+ astrocytes (Figure 4B) did not reveal significant morphological 405 modifications associated with glyphosate exposure (Figure 4E-H), except for moderate 406 407 cell remodeling in male mice under ADI conditions (Figure 4K). See Supplemental Table 1 for complete statistical analyses. 408

409

410 Cross-correlations between individual-specific read-outs.

411

Because functional synaptic and histological examinations were performed in a mouse-specific manner, we tested whether correlations exist among the data sets. In this analysis, we also integrated mouse-specific results from OF and NOR tests

conducted before the electrophysiological assessments. With this specific behavioral test setting, male and female mice did not show locomotor deficits (Supplemental Figure 3A-D) or anxiety-like traits (Supplemental Figure 3E-G) as the time spent at the center of the OM was unchanged after dietary glyphosate exposure. Mice exposed to NOAEL glyphosate exhibited a significant decrease in discrimination ratio (Figure 5A-D), a biomarker of spatial memory changes. When cross-correlating all results, we found a negative linear regression between the number of synapses and NOR or LTP maintenance in ADI and NOAEL-exposed animals (Figure 5E-F). These results suggest the presence of an increased number of non-fully functional synapses under NOAEL conditions. Furthermore, a trend correlation existed between NOR score and basal synaptic transmission in NOAEL-exposed animals (Figure 5G), although two outliers were present. A correlation matrix summarises trends and significant correlations between histological and functional hippocampal-associated read-outs obtained in a mouse-specific manner (Figure 5H).

- .

440 **Discussion**

441

There is considerable debate regarding whether glyphosate adversely affects 442 brain health and physiological function. Our findings indicate that continuous dietary 443 exposure to low-level glyphosate levels from prenatal stages through adulthood can 444 adjust synaptic transmission performance in a mouse model. At the cellular level, the 445 increased synaptic density and histological indicators of microglial cell reactivity were 446 concomitant to the electrophysiological changes. The NOAEL dose elicited most 447 adaptations, predominantly in, but not limited to, adult males. The effect of ADI levels 448 449 was more constrained, albeit discernable for selected read-outs. Taken together, these data may imply the potential for brain vulnerability associated with persistent low-level 450 glyphosate exposure ²³. We should further investigate the functional relevance of the 451 452 observed neuronal and microglial changes, especially considering their potential role across brain diseases. ^{31–33}. 453

454

455 *Glyphosate dosages and exposure duration: existing evidence.*

456

457 The majority of existing experimental evidence is based on exposure protocols involving high doses of glyphosate and its commercially available formulations, such 458 as glyphosate-based herbicides (GBH). Because GBH contain polyethylene tallow 459 amine (POEA)-based surfactants and heavy metals, a current question is whether 460 glyphosate alone or in combinations with adjuvants display similar or diverse patterns 461 of toxicity ³⁴. In rodents, GBH negatively impacted neuronal transmission and 462 behavioral outputs ^{14,35}. Maternal exposure to GBH at high levels induced autistic-like 463 deficiencies in male offspring ³⁶. Glyphosate or GBH exposure has been reported to 464

cause perturbations in neurodevelopmental processes, leading to long-term 465 neurophysiological changes in animal models ^{37–40}. At doses of 250 or 500 mg/kg GBH, 466 offspring showed behavioral changes ¹². Both glyphosate and GBH were shown to 467 cause disruption of neurogenesis accompanied by compensatory responses, 468 modifying synaptic plasticity in the hippocampus ⁴⁰. Exposure to GBH leads to 469 glutamate excitotoxicity, oxidative damage, and astrocyte dysfunction in offspring 470 hippocampus ¹⁴. TNF-alpha increased brain levels were reported in mice pre-natally 471 exposed to GBH 0.3 mg/Kg ³⁰. 472

473

Recent studies have started unveiling the impact of low-level dietary glyphosate 474 on neurophysiological functions. At NOAEL levels, varying anxiety-like outcomes were 475 reported ^{21,23}. We did not find changes in the time spent in the center of an OF arena, 476 while others reported anxiety-like traits in females with NOAEL continuous exposure 477 478 ²³. Sex-dependent modifications in social preference were found to result from NOAEL dietary exposure²¹. Assessing memory using novel object recognition, we previously 479 found that male mice are not affected by NOAEL glyphosate exposure ⁴¹. For this 480 present study, we changed the experimental paradigm by increasing the time before 481 each test session, thus exploring long-term memory. Here, a negative correlation 482 existed between the number of synapses and NOR or LTP maintenance in NOAEL 483 glyphosate-exposed animals (Fig. 5E-F), suggesting synaptic dysfunction. In 484 accordance with our results, NOAEL glyphosate exposure during a critical period of 485 neurodevelopment negatively impacted synaptic organization in the hippocampus with 486 learning and memory deficits ¹². 487

488

How can glyphosate impact the brain?

490

Varying glyphosate levels can be found in human body fluids, such as urine or amniotic fluids ⁴², and high-exposure intoxications can occur ^{43,44}. Glyphosate was reported to cross the placental and blood-brain barrier, events that could favor neurodevelopmental modifications ^{45–47}. Perinatal glyphosate exposure was linked with a risk of developing attention deficit and hyperactivity disorders in children, with a possible negative impact if parents were previously exposed ^{48 49}.

497

498 As working hypotheses, exposure to glyphosate could trigger peripherallymediated (e.g., immune responses ⁴⁵ or modified microbiota within a gut-brain axis 499 ^{50,51}) or direct damage to the brain borders and cerebrovascular permeability ²². 500 501 Importantly, microbiota adaptations were reported in mice continuously exposed to NOAEL and ADI dietary glyphosate, suggesting a scenario of a dysregulated gut-brain 502 axis²³. Our results revealed cellular adjustments in the brain, although we did not delve 503 into specific mechanisms ^{5,8}. We identify microglial cells as sensitive to glyphosate, 504 showing histological signs of cell reactivity in adults, along with an increased density 505 506 and decreased efficacy of excitatory synapses. It is essential to understand the causal relationship between these multi-cellular events, including tracking how these changes 507 may unfold. Microglial cells contribute to brain synapse remodeling during 508 development, health, and disease ^{52–55}. Their function is fundamental for synaptic 509 maturation and establishing functional circuits ⁵⁶. Our data, including the observed sex-510 dependent effects of glyphosate exposure, align with this framework. Future studies 511 should test the hypothesis that microglia reactivity due to glyphosate exposure drives 512 abnormal trajectories of synapse development. 513

Here, it is important to highlight that the majority of adaptations were observed 516 in males subjected to continuous, daily exposure to NOAEL glyphosate levels, a 517 scenario that exaggerates most consumer settings. Importantly, at ADI glyphosate 518 levels, we observed some alterations in specific synaptic transmission measures and 519 520 density. Drawing precise conclusions about the actual pathological significance of these changes presents a challenge. We suggest the hypothesis of a vulnerable, frail 521 brain condition associated with this contaminant. This notion may gain significance in 522 523 the context of pre-existing or acute pathological settings, such as genetic brain disorders or head trauma, leading to a dual-hit framework. Furthermore, the presented 524 study leaves several unanswered questions and the possibility for further investigation. 525 526 For instance, regional and temporal transcript analyses could unveil signatures indicating a frail condition, supported by the notion that glial cells critically contribute to 527 controlling neuronal transmission in health and disease ²⁸. Similar reasoning applies 528 to neurons, as we found synaptic adaptations using ex-vivo electrophysiology. 529 Importantly, glyphosate and its major metabolite, aminomethylphosphonic acid 530 531 (AMPA), have structural similarities to glycine and glutamate, respectively. The possibility exists for glyphosate to bind to the glycine or glutamate NMDA receptor 532 binding pockets, impacting learning and memory controlled by this receptor. 533 Glyphosate could reduce glutamate uptake and metabolism from glial cells ¹³ and 534 modify brain monoaminergic neurotransmitter levels in rodents ¹⁹. These scenarios 535 need to be investigated. Next, in vivo electrophysiology should be performed primarily 536 based on the ex-vivo analysis and modifications presented herein ⁵⁷. Finally, we 537 examined only a limited number of behavioral parameters. This choice was dictated by 538

539 the high number of groups and the subsequence performance of *ex-vivo* 540 neurophysiology and cell examinations on the same mice.

In summary, low-level glyphosate, when delivered through the diet and daily from pre-natal stages to adulthood, modifies distinct parameters of synaptic transmission and neuro-microglial cell structures. These adjustments support the notion of a frail, sex-specific condition that may unfavorably impact brain resilience over time 22 ³⁸.

Declaration of interests

550 The authors declare that they have no known competing financial interests or personal 551 relationships that could have appeared to influence the work reported in this paper.

565 **Bibliography**

- 1. Kim, K.-H., Kabir, E. & Jahan, S. A. Exposure to pesticides and the associated human health effects. *Sci. Total Environ.* **575**, 525–535 (2017).
- Myers, J. P. *et al.* Concerns over use of glyphosate-based herbicides and risks
 associated with exposures: a consensus statement. *Environ. Health Glob. Access Sci. Source* 15, 19 (2016).
- Niemann, L., Sieke, C., Pfeil, R. & Solecki, R. A critical review of glyphosate
 findings in human urine samples and comparison with the exposure of operators
 and consumers. *J. Für Verbraucherschutz Leb.* **10**, 3–12 (2015).
- 4. Van Bruggen, A. H. C. *et al.* Environmental and health effects of the herbicide glyphosate. *Sci. Total Environ.* **616–617**, 255–268 (2018).
- 576 5. Madani, N. A. & Carpenter, D. O. Effects of glyphosate and glyphosate-based
 577 herbicides like Roundup[™] on the mammalian nervous system: A review. *Environ.*578 *Res.* 214, 113933 (2022).
- 579 6. Schönbrunn, E. *et al.* Interaction of the herbicide glyphosate with its target
 580 enzyme 5-enolpyruvylshikimate 3-phosphate synthase in atomic detail. *Proc.*581 *Natl. Acad. Sci. U. S. A.* 98, 1376–1380 (2001).
- 582 7. Mao, Q. *et al.* The Ramazzini Institute 13-week pilot study on glyphosate and
 583 Roundup administered at human-equivalent dose to Sprague Dawley rats: effects
 584 on the microbiome. *Environ. Health* **17**, 50 (2018).
- 8. Costas-Ferreira, C., Durán, R. & Faro, L. R. F. Toxic Effects of Glyphosate on the Nervous System: A Systematic Review. *Int. J. Mol. Sci.* **23**, 4605 (2022).
- S87
 Shang, E. T., Odo, N. U. & Acquavella, J. F. Systematic literature review of the epidemiology of glyphosate and neurological outcomes. *Int. Arch. Occup. Environ. Health* **96**, 1–26 (2023).
- 10. Bali, Y. A., Kaikai, N.-E., Ba-M'hamed, S. & Bennis, M. Learning and memory
 impairments associated to acetylcholinesterase inhibition and oxidative stress
 following glyphosate based-herbicide exposure in mice. *Toxicology* 415, 18–25
 (2019).
- 594 11. Ait Bali, Y., Ba-Mhamed, S. & Bennis, M. Behavioral and Immunohistochemical
 595 Study of the Effects of Subchronic and Chronic Exposure to Glyphosate in Mice.
 596 *Front. Behav. Neurosci.* 11, 146 (2017).
- 597 12. Ait-Bali, Y. *et al.* Pre- and postnatal exposure to glyphosate-based herbicide
 598 causes behavioral and cognitive impairments in adult mice: evidence of cortical
 599 ad hippocampal dysfunction. *Arch. Toxicol.* **94**, 1703–1723 (2020).
- 13. Cattani, D. *et al.* Mechanisms underlying the neurotoxicity induced by glyphosate based herbicide in immature rat hippocampus: involvement of glutamate
 excitotoxicity. *Toxicology* 320, 34–45 (2014).
- 14. Cattani, D. *et al.* Developmental exposure to glyphosate-based herbicide and
 depressive-like behavior in adult offspring: Implication of glutamate excitotoxicity
 and oxidative stress. *Toxicology* 387, 67–80 (2017).
- 15. Coullery, R., Pacchioni, A. M. & Rosso, S. B. Exposure to glyphosate during
 pregnancy induces neurobehavioral alterations and downregulation of Wnt5a CaMKII pathway. *Reprod. Toxicol. Elmsford N* 96, 390–398 (2020).
- 16. Hernández-Plata, I., Giordano, M., Díaz-Muñoz, M. & Rodríguez, V. M. The
 herbicide glyphosate causes behavioral changes and alterations in dopaminergic
 markers in male Sprague-Dawley rat. *Neurotoxicology* 46, 79–91 (2015).
- 17. Ji, H., Xu, L., Wang, Z., Fan, X. & Wu, L. Differential microRNA expression in the
 prefrontal cortex of mouse offspring induced by glyphosate exposure during
 pregnancy and lactation. *Exp. Ther. Med.* **15**, 2457–2467 (2018).

- 18. Luna, S., Neila, L. P., Vena, R., Borgatello, C. & Rosso, S. B. Glyphosate
 exposure induces synaptic impairment in hippocampal neurons and cognitive
 deficits in developing rats. *Arch. Toxicol.* **95**, 2137–2150 (2021).
- 19. Martínez, M.-A. *et al.* Neurotransmitter changes in rat brain regions following glyphosate exposure. *Environ. Res.* **161**, 212–219 (2018).
- 20. Bicca, D. F., Spiazzi, C. C., Ramalho, J. B., Soares, M. B. & Cibin, F. W. S. A
 subchronic low-dose exposure of a glyphosate-based herbicide induces
 depressive and anxious-like behavior in mice: quercetin therapeutic approach. *Environ. Sci. Pollut. Res. Int.* 28, 67394–67403 (2021).
- 21. Del Castilo, I. *et al.* Lifelong Exposure to a Low-Dose of the Glyphosate-Based
 Herbicide RoundUp® Causes Intestinal Damage, Gut Dysbiosis, and Behavioral
 Changes in Mice. *Int. J. Mol. Sci.* 23, 5583 (2022).
- Cresto, N. *et al.* Pesticides at brain borders: Impact on the blood-brain barrier,
 neuroinflammation, and neurological risk trajectories. *Chemosphere* **324**, 138251
 (2023).
- Buchenauer, L. *et al.* Maternal exposure of mice to glyphosate induces
 depression- and anxiety-like behavior in the offspring via alterations of the gut brain axis. *Sci. Total Environ.* **905**, 167034 (2023).
- 633 24. Dincã, D. M. *et al.* Myotonic dystrophy RNA toxicity alters morphology, adhesion 634 and migration of mouse and human astrocytes. *Nat. Commun.* **13**, 3841 (2022).
- 635 25. Ferreira, T. A. *et al.* Neuronal morphometry directly from bitmap images. *Nat.* 636 *Methods* 11, 982–984 (2014).
- 637 26. Gilles, J.-F., Dos Santos, M., Boudier, T., Bolte, S. & Heck, N. DiAna, an ImageJ
 638 tool for object-based 3D co-localization and distance analysis. *Methods San*639 *Diego Calif* **115**, 55–64 (2017).
- 27. Cresto, N. *et al.* Hippocampal Excitatory Synaptic Transmission and Plasticity Are
 Differentially Altered during Postnatal Development by Loss of the X-Linked
 Intellectual Disability Protein Oligophrenin-1. *Cells* **11**, 1545 (2022).
- 28. Rasband, M. N. Glial Contributions to Neural Function and Disease *. *Mol. Cell. Proteomics* 15, 355–361 (2016).
- Winstone, J. K. *et al.* Glyphosate infiltrates the brain and increases pro inflammatory cytokine TNFα: implications for neurodegenerative disorders. *J. Neuroinflammation* **19**, 193 (2022).
- 30. de Castro Vieira Carneiro, C. L. *et al.* Behavioral and neuroinflammatory changes
 caused by glyphosate: Base herbicide in mice offspring. *Birth Defects Res.* 115,
 488–497 (2023).
- 31. Muzio, L., Viotti, A. & Martino, G. Microglia in Neuroinflammation and
 Neurodegeneration: From Understanding to Therapy. *Front. Neurosci.* 15, (2021).
- 32. Klement, W. *et al.* Seizure progression and inflammatory mediators promote
 pericytosis and pericyte-microglia clustering at the cerebrovasculature. *Neurobiol. Dis.* **113**, 70–81 (2018).
- 33. Di Nunzio, M. *et al.* Microglia proliferation plays distinct roles in acquired epilepsy
 depending on disease stages. *Epilepsia* 62, 1931–1945 (2021).
- 34. Mesnage, R., Bernay, B. & Séralini, G.-E. Ethoxylated adjuvants of glyphosatebased herbicides are active principles of human cell toxicity. *Toxicology* 313,
 122–128 (2013).
- 35. Gallegos, C. E. *et al.* Exposure to a glyphosate-based herbicide during pregnancy
 and lactation induces neurobehavioral alterations in rat offspring. *Neurotoxicology* 53, 20–28 (2016).

- 36. Pu, Y. *et al.* Glyphosate exposure exacerbates the dopaminergic neurotoxicity in
 the mouse brain after repeated administration of MPTP. *Neurosci. Lett.* **730**,
 135032 (2020).
- 37. Ruuskanen, S., Rainio, M. J., Uusitalo, M., Saikkonen, K. & Helander, M. Effects
 of parental exposure to glyphosate-based herbicides on embryonic development
 and oxidative status: a long-term experiment in a bird model. *Sci. Rep.* **10**, 6349
 (2020).
- 38. Forner-Piquer, I. *et al.* Differential impact of dose-range glyphosate on locomotor
 behavior, neuronal activity, glio-cerebrovascular structures, and transcript
 regulations in zebrafish larvae. *Chemosphere* 267, 128986 (2021).
- 39. de Oliveira, M. A. L. *et al.* Perinatal exposure to glyphosate-based herbicides
 induced neurodevelopmental behaviors impairments and increased oxidative
 stress in the prefrontal cortex and hippocampus in offspring. *Int. J. Dev. Neurosci. Off. J. Int. Soc. Dev. Neurosci.* 82, 528–538 (2022).
- 40. Ojiro, R. *et al.* Comparison of the effect of glyphosate and glyphosate-based
 herbicide on hippocampal neurogenesis after developmental exposure in rats.
 Toxicology 483, 153369 (2023).
- 41. Sakkaki, S. *et al.* Dual-Hit: Glyphosate exposure at NOAEL level negatively
 impacts birth and glia-behavioural measures in heterozygous shank3 mutants. *Environ. Int.* **180**, 108201 (2023).
- 42. Ongono, J. S., Béranger, R., Baghdadli, A. & Mortamais, M. Pesticides used in
 Europe and autism spectrum disorder risk: can novel exposure hypotheses be
 formulated beyond organophosphates, organochlorines, pyrethroids and
 carbamates? A systematic review. *Environ. Res.* 187, 109646 (2020).
- 43. Gillezeau, C. *et al.* The evidence of human exposure to glyphosate: a review.
 Environ. Health Glob. Access Sci. Source 18, 2 (2019).
- 44. Soukup, S. T. *et al.* Glyphosate and AMPA levels in human urine samples and
 their correlation with food consumption: results of the cross-sectional KarMeN
 study in Germany. *Arch. Toxicol.* **94**, 1575–1584 (2020).
- 45. von Ehrenstein, O. S. *et al.* Prenatal and infant exposure to ambient pesticides
 and autism spectrum disorder in children: population based case-control study. *BMJ* 364, 1962 (2019).
- 46. Martinez, A. & Al-Ahmad, A. J. Effects of glyphosate and aminomethylphosphonic
 acid on an isogeneic model of the human blood-brain barrier. *Toxicol. Lett.* **304**,
 39–49 (2019).
- 47. Poulsen, M. S., Rytting, E., Mose, T. & Knudsen, L. E. Modeling placental
 transport: correlation of in vitro BeWo cell permeability and ex vivo human
 placental perfusion. *Toxicol. Vitro Int. J. Publ. Assoc. BIBRA* 23, 1380–1386
 (2009).
- 48. de Araujo, J. S. A., Delgado, I. F. & Paumgartten, F. J. R. Glyphosate and
 adverse pregnancy outcomes, a systematic review of observational studies. *BMC Public Health* 16, 472 (2016).
- 49. Arcury, T. A. *et al.* Pesticide Exposure among Latinx Children in Rural
 Farmworker and Urban Non-Farmworker Communities: Associations with Locality
 and Season. *Int. J. Environ. Res. Public. Health* **20**, 5647 (2023).
- 50. Rueda-Ruzafa, L., Cruz, F., Roman, P. & Cardona, D. Gut microbiota and neurological effects of glyphosate. *Neurotoxicology* **75**, 1–8 (2019).
- 51. Walsh, L., Hill, C. & Ross, R. P. Impact of glyphosate (RoundupTM) on the
- composition and functionality of the gut microbiome. *Gut Microbes* **15**, 2263935.

- 52. Kettenmann, H., Kirchhoff, F. & Verkhratsky, A. Microglia: New Roles for the Synaptic Stripper. *Neuron* **77**, 10–18 (2013).
- 53. Frost, J. L. & Schafer, D. P. Microglia: Architects of the Developing Nervous
 System. *Trends Cell Biol.* 26, 587–597 (2016).
- 54. Mosser, C.-A., Baptista, S., Arnoux, I. & Audinat, E. Microglia in CNS
- development: Shaping the brain for the future. *Prog. Neurobiol.* 149–150, 1–20 (2017).
- 55. Thion, M. S. & Garel, S. Microglial ontogeny, diversity and neurodevelopmental
 functions. *Curr. Opin. Genet. Dev.* 65, 186–194 (2020).
- 56. Thion, M. S. *et al.* Microbiome Influences Prenatal and Adult Microglia in a Sex Specific Manner. *Cell* **172**, 500-516.e16 (2018).
- 57. Forner-Piquer, I. *et al.* Varying modalities of perinatal exposure to a pesticide
 cocktail elicit neurological adaptations in mice and zebrafish. *Environ. Pollut.* 278,
 116755 (2021).
- 727
- 728
- 729
- 730
- 731

Figure 1. Basal excitatory synaptic transmission is reduced in the adult brain of ADI and 733 NOAEL glyphosate-exposed mice. (A, C to E) The input/output curve shows that basal 734 excitatory synaptic transmission at CA1 Schaffer collateral synapses is reduced in glyphosate-735 treated groups, males and females pooled (C). Males CTR, n=14; ADI, n=11; NOAEL, n=6; 736 Females CTR, n=6; ADI, n=8; NOAEL, n=13. Two-way ANOVA test (Males: p<0.0001; 737 Females: p<0.0001; Males and Females: p<0.0001). (B, F to H) Paired-pulse facilitation (PPF) 738 is increased in NOAEL glyphosate-treated mice, males, and females pooled (F), females (G), 739 and males (H). Males CTR, n=12; ADI, n=11; NOAEL, n=6; Females CTR, n=7; ADI, n=9; 740 NOAEL, n=16. One-way ANOVA test (Males: p=0.0236; Females: p=0.0985; Males and 741 Females: p=0.0033). Asterisks indicate statistical significance (* p < 0.05; ** p < 0.01; *** p < 742 743 0.001; **** p < 0.0001) ; *: CTR vs NOAEL ; \$: ADI vs NOAEL ; #: CTR vs ADI ; ns: non-744 significative. 745

Figure 2. Long-term potentiation in the adult brain is reduced in NOAEL glyphosate 748 exposure conditions. In all mice groups, LTP was measured by field potential recordings 749 (fEPSPs) at CA1 Schaffer collateral synapses. The light gray box highlights the last 10 min of 750 the recording used to calculate the LTP maintenance (50-60 min). (A-D). Average fEPSPs 751 after the tetanus were normalized to baseline values before high-frequency stimulation. 752 753 Reduced LTP was observed in the NOAEL-exposed group. (E-G) The histograms represent the mean normalized fEPSP slope measured during the last 10 min of the recording, as 754 indicated by the light gray box in B. LTP was affected in NOAEL groups compared to non-755 exposed mice. Males CTR, n=10 slices from 10 mice; ADI, n=10 slices from 10 mice; NOAEL, 756 n=7 slices from 6 mice; Females CTR, n=7 slices from 5 mice; ADI, n=8 slices from 8 mice; 757 NOAEL, n=10 slices from 9 mice. Kruskal-Wallis test (Males: p=0.0109); One-way ANOVA 758 (Females: p=0.1657) and Kruskal wallis test (Males and Females: p=0.0003). Sample traces 759 represent averaged field potentials before (light blue and light red) and 50-60 min after 760 761 tetanization (dark blue and dark red). Asterisks indicate statistical significance (* p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001) ; *: CTR vs NOAEL ; \$: ADI vs NOAEL ; #: CTR vs ADI 762 : ns: non-significative. 763

765

Figure 3. NOAEL exposure induces an increase in excitatory synapses in adult mice. (A) Representative images (males) of excitatory synapses labeled with Vglut1 (yellow) and Homer1 (magenta), co-localized dots (white, marked with arrows) identified one synapse. (B) Synaptic density, (C) synaptic density in females, and (D) in males (CTR: n = 22 ROI from n =6 mice, DJA: n = 24 ROI from n = 6 mice, NOAEL: n = 24 ROI from n = 6). Asterisks indicate statistical significance (** p < 0.01).

772

Figure 4. NOAEL glyphosate exposure associates with histological microglia modifications in the adult brain. (A) Representative images showing IBA1 immunofluorescence in the parietal cortex in female and male mice. (B) Representative images showing GFAP immunofluorescence in the hippocampus in female and male mice. The morphology of microglia (IBA1 staining and ImageJ threshold) was assessed using Sholl analysis in the parietal cortex and the hippocampus of CTR, ADI, and NOAEL groups.

Quantification of the sholl analysis in the parietal cortex (C, F, and I) and the hippocampus (D, G, and J) of CTR, ADI, and NOAEL females and males. Cortex: Males CTR, n=105 cells from 7 mice; ADI, n=120 cells from 8 mice; NOAEL, n=120 cells from 8 mice; Females CTR, n=120 cells from 8 mice; ADI, n=117 cells from 8 mice; NOAEL, n=120 cells from 8 mice. Two-way ANOVA (Males: p<0.0001; Females: p<0.0001; Males and Females: p<0.0001). Hippocampus: Males CTR, n=90 cells from 6 mice; ADI, n=119 cells from 8 mice; NOAEL, n=115 cells from 8 mice; Females CTR, n=120 cells from 8 mice; ADI, n=113 cells from 8 mice; NOAEL, n=120 cells from 8 mice. Two-way ANOVA (Males: p<0.0001; Females: p<0.0001; Males and Females: p<0.0001). The morphology of astrocytes (GFAP staining and ImageJ threshold) was assessed using Sholl analysis in the hippocampus of CTR, ADI, and NOAEL groups. Quantification of the sholl analysis in the hippocampus (E) of CTR, ADI, and NOAEL females (H) and males (K). Hippocampus: Males CTR, n=75 cells from 4 mice: ADI, n=90 cells from 5 mice; NOAEL, n=90 cells from 5 mice; Females CTR, n=93 cells from 5 mice; ADI, n=113 cells from 6 mice; NOAEL, n=94 cells from 5 mice. Two-way ANOVA (Males: p<0.0001; Females: p=0.0022; Males and Females: p<0.0001). Asterisks indicate statistical significance (* p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001); *: CTR vs NOAEL; \$: ADI vs NOAEL; #: CTR vs ADI; ns: non-significative. Statistical significance was reported between genotype comparisons under each graphic.

.....

816 Figure 5. Mouse-specific cross-correlation of neurophysiological and histological data 817 set. (A-D) 24 hours after the open field test, mice were exposed to two similar objects in the 818 arena, and 24 hours later, one familiar object was replaced by a new one. The discrimination 819 ratio was calculated, revealing a decrease in performance. Males CTR, n=12; ADI, n=12; 820 NOAEL, n=9; Females CTR, n=8; ADI, N=11; NOAEL, n=16. One-way ANOVA test 821 (Discrimination ratio Males: p=0.3232; Females: p=0.1502; Males + Females: p=0.041). 822 Asterisks indicate statistical significance (* p < 0.05), and purple + symbols indicate statistical 823 significance regarding the discrimination ratio value fixed at 0.5 (One sample t-test). (E) The 824 number of synapses was correlated with the discrimination ratio obtained using the novel 825 826 object recognition test. (F) The number of synapses was correlated with LTP maintenance. (G) 827 The synaptic transmission was correlated with the discrimination ratio obtained using the novel object recognition test for female and male NOAEL. Pink simple linear regression showed non-828 significant R² and P values. Black simple linear regression was calculated by removing the two 829 pink values from the analysis. (H) Correlation coefficients were calculated using the Pearson 830 coefficients and considered statistically significant with *: R2>0.35, P<0.01; **: R2>0.4, 831 P<0.001; ***: R2>0.5, P<0.00001. The areas of circles or squares show the absolute value of 832

corresponding correlation coefficients; the colors of circles show both the sign and the absolutevalue of the correlation coefficients.

Supplemental Figure 1. Exposure of F0 dams (A) and F1 females (B) and males (C) was
 evaluated. The NOAEL dose corresponds to 100 times the ADI level.

842 Supplemental Figure 2. Weight gain, food, and water intake monitoring. (A-B) Pups' weight gain (grams), food (C-D), and water intakes (E-F) expressed as g or ml/gram of body 843 844 weight (gBW)/day(d) were monitored from weaning. Males CTR, n=12 ; ADI, n=12 ; NOAEL, n=9 ; Females CTR, n=8 ; ADI, n=11; NOAEL, n=16. Males: Two-way ANOVA test (weight 845 gain: p<0.0001; food intake: p=0.0009; water intake: p<0.0001); Females: Kruskal-Wallis 846 test (weight gain: p=0.7546) and two-way ANOVA test (food intake: p=0.0719; water intake: 847 p=0.2042). Asterisks indicate statistical significance (* p < 0.05; ** p < 0.01; *** p < 0.001; **** 848 849 p < 0.0001); *: CTR vs NOAEL; \$: ADI vs NOAEL; #: CTR vs ADI; ns: non-significant. Statistical significance was reported between genotype comparisons under each graphic. 850 851

Suplemental Figure 3. Pre- and post-natal continuous glyphosate exposure and adulthood behavior screening. Mice were tested for the OF (A). The total distance traveled (B-D) and time spent in the center zone (E-G) were measured over 10 minutes. Males CTR, n=12; ADI, n=12; NOAEL, n=9; Females CTR, n=8; ADI, n=11; NOAEL, n=16. Males: One way ANOVA test (Distance: p=0.2085; Time spent in the center zone: p=0.5171); Females: One way ANOVA test (Distance: p=0.8771) and Kruskal-Wallis test (Time spent in the center zone: p=0.8258); Males and Females: One way ANOVA test (Distance: p=0.5969) and Kruskal-Wallis test (Time spent in the center zone: p=0.524).

- 0, 1

		WT CTR		WT ADI		WT NOAEL		P value
		Mean	SEM of	Mean	SEM of	Mean	SEM of	
NEUROTRANSMISSION	Input/output test M		uiscreparicy		uiscreparicy		uiscrepancy	
Fig. 1	Shapiro-Wilk normality test M	yes		yes		yes		
	Two-way ANOVA (group effect) M							0,2748
	Shapiro-Wilk normality test F	yes		yes		yes		
	Two-way ANOVA (group effect) F							0,1929
	Shapiro-Wilk normality test M+F	yes		yes		yes		
	Two-way ANOVA (group effect) M+F							0,0074 **
	Paired pulse facilitation test M	1,582 (N=12)	0,03019	1,498 (N=11)	0,03605	1,764 (N=6)	0,1372	
	Ordinary one-way ANOVA M+F	yes		yes		yes		0,0236 *
	Paired pulse facilitation test F	1,549 (N=7)	0,04379	1,539 (N=9)	0,0525	1,662 (N=16)	0,03939	
	Shapiro-Wilk normality test F Ordinary one-way ANOVA F	yes		yes		yes		0.0985
	Paired pulse facilitation test M+F	1,57 (N=19)		1,516 (N=20)		1,69 (N=22)		
	Shapiro-Wilk normality test M+F	yes		yes		yes		0.0000.00
NEURONAL PLASTICITY	Long-term potentiation maintenance test M	178.2 (N=10)	14.77	170.0 (N=10)	12.2	119.0 (N=7)	13.45	0,0033 **
Fig. 2	Shapiro-Wilk normality test M	no		yes		yes		
	Kruskall-Wallis test M	146 7 (N-7)	12.0	151 0 (N-9)	6 112	127.9 (N-10)	9.405	0,0109 *
	Shapiro-Wilk normality test F	yes	12,5	yes	0,112	yes	0,455	
	Ordinary one-way ANOVA F							0,1657
	Long-term potentiation maintenance test M+F Shapiro-Wilk normality test M+F	162,0 (N=17)	9,933	164,3 (N=17)	7,555	121,8 (N=16)	7,424	
	Kruskall-Wallis test M+F	110		110		,		0,0003 ***
SYNAPTIC DENSITY	synaptic density M Shaniro-Wilk normality test M	4058 (N=6)	618,9	4868 (N=6)	444,4	5709 (N=6)	570,7	
	Kruskall-Wallis test M	,						0,0964
	Synaptic density F	4808 (N=6)	573,6	5214 (N=6)	572,9	6324 (N=6)	594,9	
	Shapiro-Wilk normality test F Ordinary one-way ANOVA F	yes		yes		yës		0,1692
	Synaptic density M+F	4467(N=6)	419,7	5034(N=6)	355,8	6003 (N=6)	409,8	-,
	Shapiro-Wilk normality test M+F	no		yes		yes		
	Kruskall-Wallis test M+F							0,0243 *
NEUROINFLAMMATION MICROGLIA CORTEX	Sholl analysis M	(N=105)		(N=120)		(N=120)		
Fig. 4	Two-way ANOVA (group effect) M	(N=120)		(81-117)		(N=120)		<0,0001 ****
	Two-way ANOVA (group effect) F	(14-120)		(11-117)		(14-120)		<0,0001 ****
	Sholl analysis M+F	(N=225)		(N=117)		(N=120)		
NEUROINELAMMATION MICROGUA HIPPOCAMPUS	Two-way ANOVA (group effect) M+F Sholl analysis M	(N=90)		(N=119)		(N=115)		<0,0001 ****
Fig. 4	Two-way ANOVA (group effect) M	(14=50)		(14=115)		(14=115)		<0,0001 ****
	Sholl analysis F	(N=120)		(N=113)		(N=120)		
	Two-way ANOVA (group effect) F Sholl analysis M+F	(N=168)		(N=203)		(N=184)		<0,0001 ****
	Two-way ANOVA (group effect) M+F	(((<0,0001 ****
NEUROINFLAMMATION ASTROCYTE HIPPOCAMPUS	Sholl analysis M	(N=75)		(N=90)		(N=90)		
NEUROINFLAMMATION ASTROCYTE HIPPOCAMPUS Fig. 4	Sholl analysis M Two-way ANOVA (group effect) M Sholl analysis F	(N=75) (N=93)		(N=90) (N=113)		(N=90) (N=94)		<0,0001 ****
NEUROINFLAMMATION ASTROCYTE HIPPOCAMPUS Fig. 4	Sholl analysis M Two-way ANOVA (group effect) M Sholl analysis F Two-way ANOVA (group effect) F	(N=75) (N=93)		(N=90) (N=113)		(N=90) (N=94)		<0,0001 ****
NEUROINFLAMMATION ASTROCYTE HIPPOCAMPUS Fig. 4	Sholl analysis M Two-way ANOVA (group effect) M Sholl analysis F Two-way ANOVA (group effect) F Sholl analysis M+F	(N=75) (N=93) (N=168)		(N=90) (N=113) (N=203)		(N=90) (N=94) (N=184)		<0,0001 ****
NEURDINFLAMMATION ASTROCYTE HIPPOCAMPUS Fig. 4 BEHAVIOR	Sholl analysis M Two-wary ANOVA (group effect) M Sholl analysis F Two-wary ANOVA (group effect) F Sholl analysis M+F Two-wary ANOVA (group effect) M+F Open field distance (cm) M	(N=75) (N=93) (N=168) 3537 (N=12)	160.7	(N=90) (N=113) (N=203) 3921 (N=12)	134.4	(N=90) (N=94) (N=184) 2639 (N=9)	227.9	<0,0001 **** 0,0022 ** <0,0001 ****
NEUROINFLAMMATION ASTROCYTE HIPPOCAMPUS Fig. 4 BEHAVIOR Fig. 5 and supplemental figure 3	Sholl analysis M Two-way ANOVA (group effect) M Sholl analysis F Two-way ANOVA (group effect) F Sholl analysis M+F Two-way ANOVA (group effect) M+F Open field distance (cm) M Shopiro-Wik normality test M	(N=75) (N=93) (N=168) 3537 (N=12) yes	160,7	(N=90) (N=113) (N=203) 3921 (N=12) yes	134,4	(N=90) (N=94) (N=184) 2639 (N=9) yes	227,9	<0,0001 **** 0,0022 ** <0,0001 ****
NEUROINFLAMMATION ASTROCYTE HIPPOCAMPUS Fig. 4 BEHAVIOR Fig. 5 and supplemental figure 3	Sholl analysis M Two-way ANOVA (group effect) M Sholl analysis F Two-way ANOVA (group effect) F Sholl analysis M+F Two-way ANOVA (group effect) M+F Open field distance (cm) M Shapiro-Wik normility test M Ordinary ane-way ANOVA M	(N=75) (N=93) (N=168) 3537 (N=12) yes	160,7	(N=90) (N=113) (N=203) 3921 (N=12) yes	134,4	(N=90) (N=94) (N=184) 2639 (N=9) yes	227,9	<0,0001 **** 0,0022 ** <0,0001 **** 0,2085
NEURDINFLAMMATION ASTROCYTE HIPPOCAMPUS Fig. 4 BEHAVIOR Fig. 5 and supplemental figure 3	Sholl analysis M Two-way ANOVA (group effect) M Sholl analysis F Two-way ANOVA (group effect) F Sholl analysis MHF Two-way ANOVA (group effect) M+F Open field distance (cm) M Shopiro-Wik normality test M Open field distance (cm) F Shopiro-Wik normality test F	(N=75) (N=93) (N=168) 3537 (N=12) yes 3154 (N=8) yes	160,7	(N=90) (N=113) (N=203) 3921 (N=12) yes 3139 (N=11) yes	134,4	(N=90) (N=94) (N=184) 2639 (N=9) yes 2492 (N=16) ves	227,9 165,6	<0,0001 ***** 0,0022 ** <0,0001 ***** 0,2085
NEURDINFLAMMATION ASTROCYTE HIPPOCAMPUS Fig. 4 BEHAVIOR Fig. 5 and supplemental figure 3	Sholl analysis M Two-way ANOVA (group effect) M Sholl analysis F Two-way ANOVA (group effect) F Sholl analysis M+F Two-way ANOVA (group effect) M+F Open field distance (cm) M Shapiro-Wik normality test M Open field distance (cm) F Shapiro-Wik normality test F Ordinary one-way ANOVA	(N=75) (N=93) (N=168) 3537 (N=12) yes 3154 (N=8) yes	160,7	(N=90) (N=113) (N=203) 3921 (N=12) yes 3139 (N=11) yes	134,4 104	(N=90) (N=94) (N=184) 2639 (N=9) yes 2492 (N=16) yes	227,9	<0,0001 ***** 0,0022 ** <0,0001 ***** 0,2085 0,8771
NEURDINFLAMMATION ASTROCYTE HIPPOCAMPUS Fig. 4 BEHAVIOR Fig. 5 and supplemental figure 3	Sholl analysis M Two-wary ANOVA (group effect) M Sholl analysis F Two-wary ANOVA (group effect) F Sholl analysis M+F Two-wary ANOVA (group effect) M+F Open field distance (cm) M Shapiro-Wilk normality test M Ordinary one-wary ANOVA M Open field distance (cm) F Shapiro-Wilk inormality test F Ordinary one-wary ANOVA Open field distance (cm) M+F	(N=75) (N=93) (N=168) 3537 (N=12) yes 3154 (N=8) yes 3154 (N=8)	160,7 191,9 121,9	(N=90) (N=113) (N=203) 3921 (N=12) yes 3139 (N=11) yes 3784 (N=23)	134,4 104 89,37	(N=90) (N=94) (N=184) 2639 (N=9) yes 2492 (N=16) yes 3681 (N=25)	227,9 165,6 132,2	<0,0001 ***** 0,0022 ** <0,0001 ***** 0,2085 0,8771
NEUROINFLAMMATION ASTROCYTE HIPPOCAMPUS Fig. 4 BEHAVIOR Fig. 5 and supplemental figure 3	Sholl analysis M Two-wary ANOVA (group effect) M Sholl analysis F Two-wary ANOVA (group effect) F Sholl analysis M+F Two-wary ANOVA (group effect) M+F Open field distance (cm) M Shopiro-Wik normality test M Open field distance (m) F Shapiro-Wik normality test F Ordinary one-way ANOVA Open field distance (cm) M+F Shapiro-Wik normality test M+F Ordinary one-way ANOVA	(N=75) (N=93) (N=168) 3537 (N=12) yes 3154 (N=8) yes 3613 (N=20) yes	160,7 191,9 121,9	(N=90) (N=113) (N=203) 3921 (N=12) yes 3139 (N=11) yes 3784 (N=23) yes	134,4 104 <i>89,37</i>	(N=90) (N=94) (N=184) 2639 (N=9) yes 2492 (N=16) yes 3681 (N=25) yes	227,9 165,6 132,2	<0,0001 ***** 0,0022 ** <0,0001 ***** 0,2085 0,8771 0,5969
NEURDINFLAMMATION ASTROCYTE HIPPOCAMPUS Fig. 4 BEHAVIOR Fig. 5 and supplemental figure 3	Sholl analysis M Two-wary ANOVA (group effect) M Sholl analysis MF Two-wary ANOVA (group effect) F Sholl analysis MF Two-wary ANOVA (group effect) MF Open field distance (cm) M Shopiro-Wik normality test M Open field distance (cm) F Shopiro-Wik normality test F Ordinary one-wary ANOVA Open field distance (cm) MF Shopiro-Wik normality test MAF Ordinary one-wary ANOVA Open field distance (cm) MF	(N=75) (N=93) (N=168) 3537 (N=12) yes 3613 (N=20) yes 25,47 (N=12)	160,7 191,9 121,9 3,373	(N=90) (N=113) (N=203) 3921 (N=12) yes 3139 (N=11) yes 3784 (N=23) yes 28,49 (N=12)	134,4 104 <i>89,37</i> 3,672	(N=90) (N=94) (N=184) 2639 (N=9) ycs 2492 (N=16) ycs 3681 (N=25) ycs 22,44 (N=9)	227,9 165,6 132,2 3,607	<0,0001 ***** 0,0022 ** 0,0001 **** 0,2085 0,8771 0,5969
NEURDINFLAMMATION ASTROCYTE HIPPOCAMPUS Fig. 4 BEHAVIOR Fig. 5 and supplemental figure 3	Sholl analysis M Two-way ANOVA (group effect) M Sholl analysis F Two-way ANOVA (group effect) F Sholl analysis M+F Two-way ANOVA (group effect) M+F Open field distance (cm) M Shapiro-Wik normality test M Ordinary ane-way ANOVA Open field distance (cm) F Shapiro-Wik normality test F Ordinary ane-way ANOVA Open field distance (cm) M+F Shapiro-Wik normality test M+F Ordinary ane-way ANOVA Open field distance (st M+F Ordinary ane-way ANOVA	(N=75) (N=93) (N=168) 3537 (N=12) yes 3154 (N=8) yes 3154 (N=8) yes 25,47 (N=20) yes	160,7 191,9 <i>121,9</i> 3,373	(N=90) (N=113) (N=203) 3921 (N=12) yes 3139 (N=11) yes 3784 (N=23) yes 28,49 (N=12) yes	134,4 104 <i>89,37</i> 3,672	(N=90) (N=94) (N=184) 2639 (N=9) yes 2492 (N=16) yes 3681 (N=25) yes 22,44 (N=9) yes	227,9 165,6 <i>132,2</i> 3,607	<0,0001 **** 0,0022 ** 0,2085 0,2085 0,8771 0,5969
NEURDINFLAMMATION ASTROCYTE HIPPOCAMPUS Fig. 4 BEHAVIOR Fig. 5 and supplemental figure 3	Sholl analysis M Two-way ANOVA (group effect) M Sholl analysis F Two-way ANOVA (group effect) F Sholl analysis M+F Two-way ANOVA (group effect) M+F Open field distance (cm) M Shapiro-Wik normality test M Open field distance (cm) F Shapiro-Wik normality test F Ordinary one-way ANOVA Open field distance (cm) M+F Shapiro-Wik normality test M+F Ordinary one-way ANOVA Open field time in center (s) M Shapiro-Wik normality test M Ordinary one-way ANOVA	(N=75) (N=33) (N=168) 3537 (N=12) yes 3154 (N=8) yes 3613 (N=20) yes 25,47 (N=12) yes 23,99 (N=8)	160,7 191,9 <i>121,9</i> 3,373 3,039	(N=90) (N=113) (N=203) 3921 (N=12) yes 3139 (N=11) yes 3784 (N=23) yes 28,49 (N=12) yes 27,48 (N=11)	134,4 104 89,37 3,672 3,311	(N=90) (N=94) (N=184) 2639 (N=9) yes 2492 (N=16) yes 3681 (N=25) yes 22,44 (N=9) yes 28,41 (N=16)	227,9 165,6 132,2 3,607 4,462	<0,0001 **** 0,0022 ** <0,0001 **** 0,2085 0,8771 0,5969 0,5171
NEUROINFLAMMATION ASTROCYTE HIPPOCAMPUS Fig. 4 BEHAVIOR Fig. 5 and supplemental figure 3	Sholl analysis M Two-wary ANOVA (group effect) M Sholl analysis F Two-wary ANOVA (group effect) F Sholl analysis M+F Two-wary ANOVA (group effect) M+F Open field distance (cm) M Shopiro-Wik normality test M Ordinary one-wary ANOVA M Open field distance (cm) F Shopiro-Wik normality test F Ordinary one-wary ANOVA Open field distance (cm) M+F Shopiro-Wik normality test M+F Ordinary one-wary ANOVA Open field distance (cm) M+F Shopiro-Wik normality test M Ordinary one-wary ANOVA Open field distance (cm) M+F Shopiro-Wik normality test M+F Ordinary one-wary ANOVA Open field distance (cm) M+F Shopiro-Wik normality test M	(N=75) (N=93) (N=168) 3537 (N=12) ycs 3513 (N=8) ycs 3513 (N=8) ycs 25,47 (N=12) ycs 23,99 (N=8) ycs	160,7 191,9 121,9 3,373 3,039	(N=90) (N=113) (N=203) 3921 (N=12) yes 3139 (N=11) yes 3784 (N=23) yes 28,49 (N=12) yes 27,48 (N=11) yes	134,4 104 89,37 3,672 3,311	(N=90) (N=94) (N=184) 2639 (N=9) yes 2492 (N=16) yes 3681 (N=25) yes 22,44 (N=9) yes 28,41 (N=16) no	227,9 165,6 132,2 3,607 4,462	<0,0001 **** 0,0022 ** <0,0001 **** 0,2085 0,8771 0,5969 0,5171
NEUROINFLAMMATION ASTROCYTE HIPPOCAMPUS Fig. 4 BEHAVIOR Fig. 5 and supplemental figure 3	Sholl analysis M Two-way ANOVA (group effect) M Sholl analysis F Two-way ANOVA (group effect) F Sholl analysis MF Two-way ANOVA (group effect) MF Open Field distance (cm) M Shopiro-Wik normality test M Open field distance (m) F Shopiro-Wik normality test F Ordinary one-way ANOVA Open field distance (cm) MF Shopiro-Wik normality test M Open field dista in center (s) M Shopiro-Wik normality test F Kraskai-Wallis test F Kraskai-Wallis test F Kraskai-Wallis test F	(N=75) (N=93) (N=168) 3537 (N=12) yes 3154 (N=8) yes 3613 (N=20) yes 25,47 (N=12) yes 23,99 (N=8) yes 24,88 (N=20)	160,7 191,9 121,9 3,373 3,039 2,311	(N=90) (N=113) (N=203) 3921 (N=12) yes 3139 (N=11) yes 28,49 (N=12) yes 22,48 (N=11) yes 22,48 (N=11) yes 28,01 (N=23)	134,4 104 89,37 3,672 3,311 2,432	(N=90) (N=94) (N=184) 2639 (N=9) yes 2492 (N=16) yes 3681 (N=25) yes 22,44 (N=9) yes 28,41 (N=16) no 26,26 (N=75)	227,9 165,6 132,2 3,607 4,462 3,141	<0,0001 **** 0,0022 ** 0,2085 0,2085 0,8771 0,5969 0,5171 0,8258
NEUROINFLAMMATION ASTROCYTE HIPPOCAMPUS Fig. 4 BEHAVIOR Fig. 5 and supplemental figure 3	Sholl analysis M Two-way ANOVA (group effect) M Sholl analysis F Two-way ANOVA (group effect) F Sholl analysis MF Two-way ANOVA (group effect) MFF Open field distance (cm) M Shopiro-Wilk normality test M Open field distance (cm) F Shopiro-Wilk normality test F Ordinary one-way ANOVA Open field distance (cm) MFF Shopiro-Wilk normality test M Ordinary one-way ANOVA Open field distance (the field distance) Ordinary one-way ANOVA Open field distance (the field distance) (the field distance) Shopiro-Wilk normality test M Ordinary one-way ANOVA Open field time in center (5) M Shopiro-Wilk normality test M Open field time in center F Shopiro-Wilk normality test F Krassaol-Walkins test F Open field time in center F Shopiro-Wilk normality test M Open field time in center F Shopiro-Wilk normality test F Krassaol-Walkins test F Open field time in center f Shopiro-Wilk normality test M F	(N=75) (N=93) (N=168) 3537 (N=12) yes 3154 (N=8) yes 3154 (N=8) yes 25,47 (N=12) yes 23,99 (N=8) yes 24,88 (N=20) yes	160,7 191,9 121,9 3,373 3,039 2,311	(N=90) (N=113) (N=203) 3921 (N=12) yes 3139 (N=12) yes 27,84 (N=12) yes 27,84 (N=12) yes 22,801 (N=22) yes	134,4 104 89,37 3,672 3,311 2,432	(N=90) (N=94) (N=184) 2639 (N=9) yes 2682 (N=5) yes 2682 (N=5) yes 22,44 (N=9) yes 28,41 (N=16) no 26,56 (N=25) no	227,9 165,6 132,2 3,607 4,462 3,141	<0,0001 **** 0,0022 ** 0,2001 **** 0,2085 0,8771 0,5969 0,5171 0,8258
NEURDINFLAMMATION ASTROCYTE HIPPOCAMPUS Fig. 4 BEHAVIOR Fig. 5 and supplemental figure 3	Sholl analysis M Two-way ANOVA (group effect) M Sholl analysis F Two-way ANOVA (group effect) F Sholl analysis M+F Two-way ANOVA (group effect) M+F Open field distance (cm) M Shapiro-Wik normality test M Ordinary ane-way ANOVA Open field distance (cm) F+ Shapiro-Wik normality test F Ordinary ane-way ANOVA Open field distance (cm) M+F Shapiro-Wik normality test M+F Ordinary ane-way ANOVA Open field distance (cm) M+F Shapiro-Wik normality test M+F Ordinary ane-way ANOVA Open field distance (cm) M+F Shapiro-Wik normality test M+F Ordinary ane-way ANOVA Open field distance (cm) M+F Shapiro-Wik normality test F Kruskal-Wollk test F Open field dist in center F Shapiro-Wik normality test M+F Openfield dist in center F Shapiro-Wik Normality test M+F Kruskal-Wollk test M+F Kruskal-Wollk test M+F	(N=75) (N=33) (N=168) 3537 (N=12) yes 3154 (N=8) yes 3154 (N=8) yes 25,47 (N=12) yes 23,99 (N=8) yes 24,88 (N=20) yes 24,88 (N=20)	160,7 191,9 121,9 3,373 3,039 2,311	(N=90) (N=113) (N=203) 3921 (N=12) yes 3139 (N=11) yes 28,49 (N=23) yes 27,48 (N=11) yes 28,01 (N=23) yes	134,4 104 89,37 3,672 3,311 2,432	(N=90) (N=94) (N=184) 2639 (N=9) yes 2492 (N=16) yes 22,44 (N=9) yes 22,44 (N=9) no 26,26 (N=25) no	227,9 165,6 132,2 3,607 4,462 3,141	<0,0001 0,0022 ** <0,0001 0,2085 0,8771 0,5969 0,5171 0,8258 0,8258
NEUROINFLAMMATION ASTROCYTE HIPPOCAMPUS Fig. 4 BEHAVIOR Fig. 5 and supplemental figure 3	Sholl analysis M Two-way ANOVA (group effect) M Sholl analysis F Two-way ANOVA (group effect) F Sholl analysis MF Two-way ANOVA (group effect) MF Open field distance (cm) M Shopiro-Wik normality test M Ordinary one-way ANOVA Open field distance (m) F Shopiro-Wik normality test F Ordinary one-way ANOVA Open field distance (cm) MF Shopiro-Wik normality test M Ordinary one-way ANOVA Open field distance (cm) MF Shopiro-Wik normality test M Ordinary one-way ANOVA Open field distance (cm) MF Shopiro-Wik normality test M Ordinary one-way ANOVA Open field time in center F Shopiro-Wik normality test F Copen field time in center F Shopiro-Wik normality test F Kraskol-Walis test F Shopiro-Wik normality test M+F Shopiro-Wik normality test M+F Shopiro-Wik normality test M+F Biscrimination ratio M	(N=75) (N=93) (N=168) 3537 (N=12) yes 3537 (N=12) yes 3537 (N=12) yes 3537 (N=12) yes 23,937 (N=12) yes 23,937 (N=12) yes 23,99 (N=8) yes 23,99 (N=8) yes 24,88 (N=20) yes 24,88 (N=20) yes	160,7 191,9 121,9 3,373 3,039 2,311 0,02573	(N=90) (N=113) (N=203) 3921 (N=12) yes 3339 (N=12) yes 3736 (N=23) yes 28,49 (N=12) yes 28,48 (N=11) yes 28,01 (N=23) yes 28,01 (N=23) yes	134,4 104 89,37 3,672 3,311 2,432 0,02257	(N=30) (N=34) (N=184) 2639 (N=9) yes 2492 (N=16) yes 28,41 (N=16) no 26,26 (N=25) no 26,26 (N=25) yes	227,9 165,6 132,2 3,607 4,462 3,141 0,06177	<0,0001 **** 0,0022 ** <0,0001 **** 0,2085 0,8771 0,5969 0,5171 0,8258 0,524
NEUROINFLAMMATION ASTROCYTE HIPPOCAMPUS Fig. 4 BEHAVIOR Fig. 5 and supplemental figure 3	Sholl analysis M Two-way ANOVA (group effect) M Sholl analysis F Two-way ANOVA (group effect) F Sholl analysis MrF Two-way ANOVA (group effect) MrF Open Field distance (cm) M Shopiro-Wik normality test M Open field distance (cm) F Shopiro-Wik normality test F Ordinary one-way ANOVA Open field distance (cm) MrF Shopiro-Wik normality test MrF Ordinary one-way ANOVA Open field distance (cm) MrF Shopiro-Wik normality test MrF Ordinary one-way ANOVA Open field distance (cm) MrF Shopiro-Wik normality test M Ordinary one-way ANOVA Open field time in center F Shopiro-Wik normality test F Kraskali-Wallis test F Kraskali-Wallis test MrF Shopiro-Wik normality test M Shopiro-Wik normality test M Shopiro-Wik normality test M Shopiro-Wik normality test F Kraskali-Wallis test MrF Biscrimiation ratio M Shopiro-Wik normality test M	(N=75) (N=93) (N=168) 3537 (N=12) yes 3154 (N=8) yes 3613 (N=20) yes 25,47 (N=12) yes 24,88 (N=20) yes 0,7286 (N=12) yes	160,7 191,9 121,9 3,373 3,039 2,311 0,02573	(N=90) (N=113) (N=203) 3921 (N=12) yes 3139 (N=12) yes 28,49 (N=12) yes 28,49 (N=12) yes 28,01 (N=23) yes 0,692 (N=12) yes	134,4 104 89,37 3,672 3,311 2,432 0,02257	(N=30) (N=34) (N=184) 2639 (N=9) yes 2429 (N=16) yes 2631 (N=25) yes 28,41 (N=16) no 26,26 (N=25) no 0,6479 (N=9) yes	227,9 165,6 132,2 3,607 4,462 3,141 0,06177	<0,0001
NEURDINFLAMMATION ASTROCYTE HIPPOCAMPUS Fig. 4 BEHAVIOR Fig. 5 and supplemental figure 3	Sholl analysis M Two-way ANOVA (group effect) M Sholl analysis F Two-way ANOVA (group effect) F Sholl analysis MF Two-way ANOVA (group effect) MFF Open field distance (cm) M Shopiro-Wilk normality test M Open field distance (cm) F Shopiro-Wilk normality test F Ordinary one-way ANOVA Open field distance (cm) MFF Shopiro-Wilk normality test M Ordinary one-way ANOVA Open field distance (cm) MFF Shopiro-Wilk normality test M Ordinary one-way ANOVA Open field distance (cm) MFF Shopiro-Wilk normality test M Ordinary one-way ANOVA Open field time in center (S) M Shopiro-Wilk normality test M Open field time in center F Shopiro-Wilk normality test M Open field time in center F Shopiro-Wilk normality test M Shopiro-Wilk normality test M	(N=75) (N=33) (N=168) 3537 (N=12) yes 3154 (N=8) yes 3154 (N=8) yes 25,47 (N=12) yes 23,99 (N=8) yes 24,88 (N=20) yes 0,7286 (N=12) yes	160,7 191,9 121,9 3,373 3,039 2,311 0,02573 0,04032	(N=90) (N=113) (N=203) 3921 (N=12) yes 3139 (N=12) yes 27,84 (N=12) yes 27,84 (N=12) yes 28,01 (N=23) yes 0,692 (N=12) yes 0,7214 (N=11)	134,4 104 89,37 3,672 3,311 2,432 0,02257 0,04381	(N=90) (N=94) (N=184) 2639 (N=9) yes 2682 (N=5) yes 2682 (N=5) no 26,262 (N=9) yes 26,41 (N=16) no 0,6479 (N=9) yes	227,9 165,6 132,2 3,607 4,462 3,141 0,06177 0,04318	<0,0001 **** 0,0022 ** <0,0001 **** 0,2085 0,8771 0,5969 0,5171 0,8258 0,524 0,524
NEURDINFLAMMATION ASTROCYTE HIPPOCAMPUS Fig. 4 BEHAVIOR Fig. 5 and supplemental figure 3	Sholl analysis M Two-way ANOVA (group effect) M Sholl analysis F Two-way ANOVA (group effect) F Sholl analysis MF Two-way ANOVA (group effect) MFF Open field distance (cm) M Shapiro-Wik normality test M Ordinary ane-way ANOVA Open field distance (cm) FF Shapiro-Wik normality test F Ordinary ane-way ANOVA Open field distance (cm) MFF Shapiro-Wik normality test MFF Ordinary ane-way ANOVA Open field dime in center F Shapiro-Wik normality test F Ordinary ane-way ANOVA Open field time in center F Shapiro-Wik normality test M Shapiro-Wik normality test M Shapiro-Wik normality test F Ordinary ane-way ANOVA M Ordinary ane-way ANOVA M Discrimination ratio F Shapiro-Wik normality test F	(N=75) (N=33) (N=168) 3537 (N=12) yes 3154 (N=8) yes 3154 (N=8) yes 25,47 (N=12) yes 23,99 (N=8) yes 24,88 (N=20) yes 0,7286 (N=12) yes 0,7322 (N=8) yes	160,7 191,9 121,9 3,373 3,039 2,311 0,02573 0,04032	(N=90) (N=113) (N=203) 3921 (N=12) yes 3139 (N=11) yes 28,49 (N=12) yes 27,48 (N=12) yes 28,01 (N=23) yes 0,692 (N=12) yes 0,692 (N=12) yes	134,4 104 89,37 3,672 3,311 2,432 0,02257 0,04381	(N=30) (N=34) (N=184) 2639 (N=9) yes 2492 (N=16) yes 3631 (N=25) yes 22,44 (N=39) yes 28,41 (N=16) no 26,26 (N=25) no 0,647 (N=3) yes	227,9 165,6 132,2 3,607 4,462 3,141 0,06177 0,04318	<0,0001 **** 0,0022 ** <0,0001 **** 0,2085 0,8771 0,5969 0,5171 0,8258 0,524 0,3232 0,1502
NEUROINFLAMMATION ASTROCYTE HIPPOCAMPUS Fig. 4 BEHAVIOR Fig. 5 and supplemental figure 3	Sholl analysis M Two-wary ANOVA (group effect) M Sholl analysis F Two-wary ANOVA (group effect) F Sholl analysis MH Two-wary ANOVA (group effect) MF Two-wary ANOVA (group effect) MF Open Field distance (cm) M Shopiro-Wik normality test M Open field distance (cm) F Shapiro-Wik normality test F Ordinary one-wary ANOVA Open field distance (cm) MF Shapiro-Wik normality test M Ordinary one-wary ANOVA Open field distance (cm) MF Shapiro-Wik normality test M Open field distance (cm) MF Shapiro-Wik normality test M Open field time in center F Shapiro-Wik normality test F Open field time in center F Shapiro-Wik normality test F Open field time in center F Shapiro-Wik normality test M Shapiro-Wik normality test F Ordinary one-wary ANOVA M Discrimination ratio M Discrimination ratio MF	(N=75) (N=93) (N=168) 3537 (N=12) ycs 3537 (N=12) ycs 3613 (N=20) ycs 25,47 (N=12) ycs 24,88 (N=20) ycs 24,88 (N=20) ycs 0,7286 (N=20) ycs	160,7 191,9 121,9 3,373 3,039 2,311 0,02573 0,04032 0,02167	(N=90) (N=113) (N=203) 3921 (N=12) yes 3139 (N=12) yes 28,49 (N=23) yes 28,49 (N=23) yes 28,49 (N=12) yes 28,601 (N=23) 0,7214 (N=11) yes 0,7261 (N=23)	134,4 104 89,37 3,672 3,311 2,432 0,02257 0,04381 0,02366	(N=30) (N=34) (N=34) 2639 (N=9) yes 2492 (N=6) yes 3631 (N=25) yes 22,44 (N=9) yes 22,44 (N=9) yes 0,625 (N=16) yes 0,625 (N=16) yes	227,9 165,6 132,2 3,607 4,462 3,141 0,06177 0,04318 0,03478	<0,0001 **** 0,0022 *** 0,0001 **** 0,2085 0,8771 0,8759 0,5171 0,8258 0,524 0,3232 0,1502
NEUROINFLAMMATION ASTROCYTE HIPPOCAMPUS Fig. 4 BEHAVIOR Fig. 5 and supplemental figure 3	Sholl analysis M Two-way ANOVA (group effect) M Sholl analysis F Two-way ANOVA (group effect) F Sholl analysis MF Two-way ANOVA (group effect) MF Open Field distance (cm) M Shopiro-Wik normality test M Open field distance (cm) F Shopiro-Wik normality test F Ordinary one-way ANOVA Open field distance (cm) MF Shopiro-Wik normality test F Ordinary one-way ANOVA Open field distance (cm) MF Shopiro-Wik normality test F Ordinary one-way ANOVA Open field distance (cm) MF Shopiro-Wik normality test M Ordinary one-way ANOVA Open field time in center Shopiro-Wik normality test M Open field time in center F Shopiro-Wik Normality test F Kruskali-Wallis test F Kruskali-Wallis test MFF Discrimination ratio M Shopiro-Wik normality test M Ordinary one-way ANOVA M Discrimination ratio F Shopiro-Wik normality test M Ordinary one-way ANOVA M Discrimination ratio F Shopiro-Wik normality test F Ordinary one-way ANOVA M Discrimination ratio F Shopiro-Wik normality test M Ordinary one-way ANOVA M	(N=75) (N=93) (N=168) 3537 (N=12) yes 3154 (N=8) yes 3613 (N=20) yes 25,47 (N=12) yes 23,99 (N=8) yes 0,7286 (N=20) yes 0,7322 (N=8) yes 0,732 (N=8) yes	160,7 191,9 121,9 3,373 3,039 2,311 0,02573 0,04032 0,02167	(N=90) (N=113) (N=203) 3921 (N=12) yes 3339 (N=12) yes 28,49 (N=12) yes 28,49 (N=12) yes 28,01 (N=23) yes 0,692 (N=12) yes 0,7214 (N=11) yes 0,724 (N=11) yes	134,4 104 89,37 3,672 3,311 2,432 0,02257 0,04381 0,02366	(N=30) (N=34) (N=34) 2639 (N=9) yes 2420 (N=16) yes 3681 (N=25) yes 22,44 (N=9) yes 22,44 (N=9) no 26,26 (N=42) yes 0,622 (N=49) yes 0,625 (N=4) yes	227,9 165,6 132,2 3,607 4,462 3,141 0,06177 0,04318 0,03478	<0,0001 **** 0,0022 *** 0,2085 0,8771 0,5969 0,5171 0,8258 0,524 0,524 0,1502 0,021 *
NEUROINFLAMMATION ASTROCYTE HIPPOCAMPUS Fig. 4 BEHAVIOR Fig. 5 and supplemental figure 3	Sholl analysis M Two-way ANOVA (group effect) M Sholl analysis F Two-way ANOVA (group effect) F Sholl analysis MF Two-way ANOVA (group effect) MFF Open Field distance (cm) M Shopiro-Wik normality test M Ordinary one-way ANOVA M Open field distance (cm) F Shopiro-Wik normality test F Ordinary one-way ANOVA Open field distance (cm) MFF Shopiro-Wik normality test M Ordinary one-way ANOVA Open field distance (cm) MFF Shopiro-Wik normality test M Ordinary one-way ANOVA Open field dist in center 161 M Shopiro-Wik normality test M Open field time in center F Shopiro-Wik normality test F Kruskol-Wallis test FF Shopiro-Wik normality test M Open field time in center F Shopiro-Wik normality test M Shopiro-Wik normality test M Ordinary one-way ANOVA M Discrimination ratio F Shopiro-Wik normality test M Ordinary one-way ANOVA M Discrimination ratio MF Shopiro-Wik normality test M Shopiro-Wik normality test M Ordinary one-way ANOVA K Discrimination ratio MF Shopiro-Wik normality test M Shopiro-Wik normality test M Ordinary one-way ANOVA MF	(N=75) (N=33) (N=168) 3537 (N=12) yes 3154 (N=8) yes 3151 (N=20) yes 23,99 (N=8) yes 24,88 (N=20) yes 0,7322 (N=8) yes 0,7322 (N=8) yes 0,735 (N=20) yes	160,7 191,9 121,9 3,373 3,039 2,311 0,02573 0,04032 0,02167	(N=90) (N=113) (N=203) 3921 (N=12) yes 3739 (N=12) yes 27,84 (N=12) yes 27,84 (N=12) yes 28,01 (N=23) yes 0,692 (N=12) yes 0,7214 (N=11) yes	134,4 104 83,37 3,672 3,311 2,432 0,02257 0,04381 0,02366	(N=30) (N=34) (N=184) 2633 (N=9) yes 2642 (N=16) yes 2656 (N=25) yes 28,41 (N=16) no 26,526 (N=25) no 0,6479 (N=3) yes 0,6225 (N=16) yes	227,9 165,6 132,2 3,607 4,462 3,141 0,06177 0,04318 0,03478	<0,0001 **** 0,0022 *** 0,0001 **** 0,2085 0,8771 0,8759 0,5171 0,8258 0,524 0,3232 0,1502 0,041 *
NEUROINFLAMMATION ASTROCYTE HIPPOCAMPUS Fig. 4 BEHAVIOR Fig. 5 and supplemental/fgure 3	Sholl analysis M Two-wary ANOVA (group effect) M Sholl analysis E Two-wary ANOVA (group effect) F Sholl analysis M+ Two-wary ANOVA (group effect) M+F Open field distance (cm) M Shopiro-Wik normality test M Ordinary one-wary ANOVA M Open field distance (cm) F Shopiro-Wik normality test F Ordinary one-wary ANOVA Open field distance (cm) M+F Shopiro-Wik normality test F Ordinary one-wary ANOVA Open field distance (cm) M+F Shopiro-Wik normality test F Ordinary one-wary ANOVA Open field distance (cm) M+F Shopiro-Wik normality test F Ordinary one-wary ANOVA Open field time in center F Shopiro-Wik normality test F Open field time in center F Shopiro-Wik normality test F Discrimination ratio M Shopiro-Wik normality test F Ordinary one-wary ANOVA M Ordinary one-wary ANOVA M Ordinary one-wary ANOVA M Discrimination ratio M Shopiro-Wik normality test F Ordinary one-wary ANOVA M Discrimination ratio F Shopiro-Wik normality test F Ordinary one-wary ANOVA M+F Discrimination ratio M+ Shopiro-Wik normality test F Ordinary one-wary ANOVA M+ Discrimination ratio M+ Shopiro-Wik normality test F Ordinary one-wary ANOVA M+ Discrimination ratio M+ Shopiro-Wik normality test F Ordinary one-wary ANOVA M+ Discrimination ratio M+ Shopiro-Wik normality test F Ordinary one-wary ANOVA M+	(N=75) (N=93) (N=168) 3537 (N=12) ycs 3513 (N=8) ycs 3613 (N=20) ycs 25,47 (N=12) ycs 23,99 (N=8) ycs 24,88 (N=20) ycs 0,7286 (N=12) ycs 0,7332 (N=8) ycs 0,7335 (N=20) ycs	160,7 191,9 121,9 3,373 3,039 2,311 0,02573 0,04032 0,02167	(N=90) (N=113) (N=023) 3921 (N=12) yes 3734 (N=23) yes 28,49 (N=12) yes 28,49 (N=12) yes 28,61 (N=23) yes 0,7214 (N=13) yes 0,7214 (N=13)	134,4 104 89,37 3,672 3,311 2,432 0,02257 0,04381 0,02366	(N=30) (N=34) (N=184) 2639 (N=9) yes 2492 (N=16) yes 3651 (N=25) yes 28,41 (N=16) no 28,626 (N=25) no 0,6479 (N=9) yes 0,6472 (N=16) yes	227,9 165,6 132,2 3,607 4,462 3,141 0,06177 0,04318 0,03478	<0,0001 **** 0,0002 *** 0,2085 0,8771 0,5969 0,5171 0,8258 0,524 0,524 0,3232 0,1502
NEUROINFLAMMATION ASTROCYTE HIPPOCAMPUS Fig. 4 BEHAVIOR Fig. 5 and supplemental/fgure 3 Fig. 5 and supplemental/fgure 3	Sholl analysis M Two-wary ANOVA (group effect) M Sholl analysis M File Analysis M Sholl analysis M Two-wary ANOVA (group effect) FF Sholl analysis M Open Field distance (cm) M Shopiro-Wik normality test M Open field distance (cm) FF Shopiro-Wik normality test F Ordinary one-wary ANOVA Open field distance (cm) MF Shopiro-Wik normality test F Ordinary one-wary ANOVA Open field distance (cm) MF Shopiro-Wik normality test F Ordinary one-wary ANOVA Open field distance (cm) MF Shopiro-Wik normality test F Open field time in center (s) M Shopiro-Wik normality test F Open field time in center F Shopiro-Wik normality test F Open field time in center F Shopiro-Wik normality test F Neuskoli-Wollis test F Open field time in center F Shopiro-Wik normality test M Shopiro-Wik normality test F Ordinary one-wary ANOVA M Ordinary one-wary ANOVA M Ordinary one-wary ANOVA M Discrimination ratio M Shopiro-Wik normality test F Ordinary one-wary ANOVA M Discrimination ratio MF Shopiro-Wik normality test F Ordinary one-wary ANOVA MF Discrimination ratio MF Shopiro-Wik normality test F Ordinary one-wary ANOVA MF Discrimination ratio MF Shopiro-Wik normality test F Ordinary one-wary ANOVA MF Discrimination ratio MF Shopiro-Wik normality test F Ordinary one-wary ANOVA MF	(N=75) (N=93) (N=168) 3537 (N=12) ycs 3513 (N=8) ycs 3513 (N=20) ycs 25,47 (N=12) ycs 25,47 (N=12) ycs 24,88 (N=20) ycs 0,7365 (N=20) ycs 0,7365 (N=20) ycs	160,7 191,9 121,9 3,373 3,039 2,311 0,02573 0,04032 0,02167	(N=90) (N=113) (N=203) 3921 (N=12) yes 3339 (N=12) yes 28,49 (N=12) yes 28,49 (N=12) yes 28,60 (N=23) yes 0,622 (N=12) yes 0,7214 (N=11) yes	134,4 104 89,37 3,672 3,311 2,432 0,02257 0,04381 0,02366	(N=30) (N=34) (N=34) 2639 (N=9) yes 2492 (N=6) yes 3631 (N=25) yes 22,44 (N=9) yes 22,44 (N=9) yes 0,625 (N=25) no 0,625 (N=36) yes 0,625 (N=36) yes	227,9 165,6 132,2 3,607 4,462 3,141 0,06177 0,04318 0,03478	<0,0001 **** 0,0022 *** 0,0001 **** 0,2085 0,8771 0,5969 0,5171 0,8258 0,524 0,3232 0,1502 0,041 * 0,0192 *
REURDINFLAMMATION ASTROCYTE HIPPOCAMPUS Fig. 4 BEHAVIOR Fig. 5 and supplemental figure 3 Fig. 5 and supplemental figure 3 PHYSIO PARAMETERS Supplemental figure 2	Sholl analysis M Two-way ANOVA (group effect) M Sholl analysis F Two-way ANOVA (group effect) F Sholl analysis MF Two-way ANOVA (group effect) MF Open field distance (cm) M Shopiro-Wik normality test M Open field distance (cm) F Shopiro-Wik normality test F Ordinary one-way ANOVA Open field distance (cm) MF Shopiro-Wik normality test F Ordinary one-way ANOVA Open field distance (cm) MF Shopiro-Wik normality test F Ordinary one-way ANOVA Open field distance (cm) MF Shopiro-Wik normality test F Ordinary one-way ANOVA Open field time in center Shopiro-Wik normality test F Kraskali-Wallik test F Open field time in center F Shopiro-Wik normality test F Kraskali-Wallik test MF Biscrimination ratio M Shopiro-Wik normality test M Ordinary one-way ANOVA M Discrimination ratio F Shopiro-Wik normality test MF Shopiro-Wik normality test MF Shopiro-Wik normality test F Ordinary one-way ANOVA M Discrimination ratio F Shopiro-Wik normality test MF Shopiro-Wik normality test M Shopiro-Wik normality test M Shopiro	(N=75) (N=93) (N=168) 3537 (N=12) yes 3154 (N=8) yes 3613 (N=20) yes 25,47 (N=12) yes 23,99 (N=8) yes 24,88 (N=20) yes 0,7286 (N=12) yes 0,7392 (N=8) yes 0,7392 (N=20) yes 0,7392 (N=20) yes	160,7 191,9 121,9 3,373 3,039 2,311 0,02573 0,04032 0,02167	(N=90) (N=113) (N=203) 3921 (N=12) yes 3738 (N=12) yes 28,49 (N=12) yes 28,49 (N=12) yes 28,40 (N=12) yes 0,692 (N=12) yes 0,7214 (N=23) yes 0,7214 (N=23) yes 0,7214 (N=23) yes	134,4 104 89,37 3,672 3,311 2,432 0,02257 0,04381 0,02366	(N=30) (N=34) (N=34) 2639 (N=9) yes 2420 (N=16) yes 3631 (N=25) yes 22,44 (N=9) yes 22,44 (N=9) yes 22,44 (N=9) yes 0,625 (N=30) yes 0,632 (N=30) yes yes	227,9 165,6 132,2 3,607 4,462 3,141 0,06177 0,04318 0,03478	<0,0001 **** 0,0022 *** 0,0001 **** 0,2085 0,8771 0,8759 0,5121 0,8258 0,524 0,3232 0,1502 0,0182 *
NEURDINFLAMMATION ASTROCYTE HIPPOCAMPUS Fig. 4 BEHAVIOR Fig. 5 and supplemental figure 3 Fig. 5 and supplemental figure 3	Sholl analysis M Two-way ANOVA (group effect) M Sholl analysis F Two-way ANOVA (group effect) F Sholl analysis MF Two-way ANOVA (group effect) MFF Open Field distance (cm) M Shopiro-Wik normality test M Ordinary one-way ANOVA Open field distance (cm) F Shopiro-Wik normality test F Ordinary one-way ANOVA Open field distance (cm) MFF Shopiro-Wik normality test M Ordinary one-way ANOVA Open field distance (cm) MFF Shopiro-Wik normality test M Ordinary one-way ANOVA Open field dist in center 161 M Shopiro-Wik normality test M Open field time in center F Shopiro-Wik normality test F Shopiro-Wik normality test F Shopiro-Wik normality test M Ordinary one-way ANOVA Open field time in center F Shopiro-Wik normality test M Shopiro-Wik normality test M Ordinary one-way ANOVA M Open field time in center F Shopiro-Wik normality test M Shopiro-Wik normality test M	(N=75) (N=33) (N=68) 3537 (N=12) yes 3154 (N=8) yes 3613 (N=20) yes 25,47 (N=12) yes 23,99 (N=8) yes 24,88 (N=20) yes 0,7325 (N=2) yes 0,7325 (N=2) yes 0,7355 (N=20) yes 0,7355 (N=20) yes 0,7355 (N=20) yes	160,7 191,9 121,9 3,373 3,039 2,311 0,02573 0,04032 0,02167	(N=90) (N=113) (N=203) 3921 (N=12) yes 3739 (N=12) yes 27,84 (N=12) yes 27,84 (N=12) yes 28,01 (N=23) yes 0,692 (N=12) yes 0,7214 (N=11) yes 0,705 (N=23) yes no	134,4 104 89,37 3,672 3,311 2,432 0,02257 0,04381 0,02366	(N=30) (N=34) (N=184) 2639 (N=9) yes 2642 (N=6) yes 3531 (N=25) yes 22,44 (N=3) yes 28,44 (N=16) no 26,26 (N=26) yes 0,6475 (N=16) yes 0,6316 (N=25) yes yes	227,9 165,6 132,2 3,607 4,462 3,141 0,06177 0,04318 0,03478	<0,0001 **** 0,0022 *** <0,0001 **** 0,2085 0,8771 0,85969 0,5171 0,8258 0,524 0,3232 0,1502 0,0182 * 0,0182 *
RURDINFLAMMATION ASTROCYTE HIPPOCAMPUS Fig. 4 BEHAVIOR Fig. 5 and supplemental figure 3	Sholl analysis M Two-wary ANOVA (group offect) M Sholl analysis F Two-wary ANOVA (group offect) F Sholl analysis MF Two-wary ANOVA (group offect) MF Open field distance (cm) M Shopiro-Wik normality test M Ordinary one-wary ANOVA M Open field distance (cm) F Shopiro-Wik normality test F Ordinary one-wary ANOVA Open field distance (cm) MF Shopiro-Wik normality test F Ordinary one-wary ANOVA Open field distance (cm) MF Shopiro-Wik normality test F Ordinary one-wary ANOVA Open field distance (cm) MF Shopiro-Wik normality test F Ordinary one-wary ANOVA Open field time in center (s) M Shopiro-Wik normality test F Ordinary one-wary ANOVA M Open field time in center F Shopiro-Wik normality test F Neusial-Walls test FF Discrimination ratio M Shopiro-Wik normality test F Ordinary one-wary ANOVA M Ordinary one-wary ANOVA M Discrimination ratio MF Shopiro-Wik normality test F Ordinary one-wary ANOVA MF Discrimination ratio MF Shopiro-Wik normality test F Neusial-Walls (raupe offect) M Weight gain (%) F Shopiro-Wik normality test F Food Intagle (risk test MF	(N=75) (N=93) (N=168) 3537 (N=12) ycs 3537 (N=12) ycs 3632 (N=8) ycs 25,47 (N=12) ycs 23,99 (N=8) ycs 23,99 (N=8) ycs 0,7382 (N=8) ycs 0,7382 (N=8) ycs 0,7395 (N=20) ycs 1,7395 (N=20) 1,7395 (N=20) 1,7305 (N=20)	160,7 191,9 121,9 3,373 3,039 2,311 0,02573 0,04032 0,02167	(N=90) (N=113) (N=023) 3921 (N=12) yes 3736 (N=23) yes 28,49 (N=12) yes 27,48 (N=12) yes 28,01 (N=23) yes 0,7021 (N=12) yes 0,7021 (N=12) yes 0,7021 (N=12) yes 0,7021 (N=12) yes 0,7021 (N=12) yes	134,4 104 89,37 3,672 3,311 2,432 0,02257 0,04381 0,02366	(N=30) (N=34) (N=184) 2639 (N=9) yes 2492 (N=16) yes 22,44 (N=9) yes 22,44 (N=9) yes 22,44 (N=9) no 26,25 (N=25) no 0,6479 (N=9) yes 0,6225 (N=16) yes 0,625 (N=16) yes 0,625 (N=16) yes 0,625 (N=16) yes	227,9 165,6 132,2 3,607 4,462 3,141 0,06177 0,04318 0,03478	<0,0001 0,0022 ** 0,0001 0,2085 0,8771 0,5969 0,5171 0,8258 0,524 0,524 0,3232 0,1502 0,1502 0,041 *
NEUROINFLAMMATION ASTROCYTE HIPPOCAMPUS Fig. 4 BEHAVIOR Fig. 5 and supplemental/joure 3 Fig. 5 and supplemental/joure 3 Supplemental/joure 2	Sholl analysis M Two-wary ANOVA (group effect) M Sholl analysis MF Two-wary ANOVA (group effect) F Sholl analysis MF Two-wary ANOVA (group effect) MF Open Field distance (cm) M Shopiro-Wik normality test F Ordinary one-wary ANOVA Open field distance (cm) F Shopiro-Wik normality test F Ordinary one-wary ANOVA Open field distance (cm) MF Shopiro-Wik normality test F Ordinary one-wary ANOVA Open field distance (cm) MF Shopiro-Wik normality test F Ordinary one-wary ANOVA Open field distance (cm) MF Shopiro-Wik normality test F Ordinary one-wary ANOVA Open field time in center (SM Shopiro-Wik normality test F Navisal-Wollis test F Open field time in center F Shopiro-Wik normality test F Navisal-Wollis test F Open field time in center F Shopiro-Wik normality test M Ordinary one-wary ANOVA M Ordinary one-wary ANOVA M Discrimination ratio M Shopiro-Wik normality test MF Ordinary one-wary ANOVA MF Discrimination ratio MF Shopiro-Wik normality test F Ordinary one-wary ANOVA MF Discrimination ratio MF Shopiro-Wik normality test F Ordinary one-wary ANOVA MF Discrimination ratio MF Shopiro-Wik normality test F Ordinary one-wary ANOVA MF Shopiro-Wik normality test F Ordinary one-wary ANOVA MF Shopiro-Wik normality test F Food intake (J' Rg bw/d) M Shopiro-Wik normality test F	(N=75) (N=93) (N=168) 3537 (N=12) ycs 3154 (N=8) ycs 3613 (N=20) ycs 25,47 (N=12) ycs 24,88 (N=20) ycs 0,7286 (N=20) ycs 0,7325 (N=8) ycs 0,7305 (N=20) ycs 0,7305 (N=20) ycs 0,7305 (N=20) ycs	160,7 191,9 221,9 3,373 3,039 2,311 0,02573 0,04032 0,02167	(N=90) (N=113) (N=203) 3921 (N=12) yes 3338 (N=12) yes 28,49 (N=23) yes 27,48 (N=12) yes 28,801 (N=23) yes 0,692 (N=12) yes 0,7214 (N=11) yes 0,7214 (N=11) yes 0,7261 (N=23) yes no	134,4 104 83,37 3,672 3,311 2,432 0,02257 0,04381 0,02366	(N=30) (N=34) (N=34) 2639 (N=9) yes 2492 (N=6) yes 3631 (N=25) yes 22,44 (N=9) yes 22,44 (N=9) yes 0,625 (N=6) yes 0,625 (N=25) yes 0,625 (N=26) yes 0,625 (N=26) yes 0,625 (N=26) yes	227,9 165,6 132,2 3,607 4,462 3,141 0,06177 0,04318 0,03478	<0,0001 **** 0,0022 *** 0,2085 0,8771 0,5969 0,5171 0,8258 0,524 0,3232 0,1502 0,0182 * 0,07546
NEUROINFLAMMATION ASTROCYTE HIPPOCAMPUS Fig. 4 BEHAVIOR Fig. 5 and supplemental figure 3 Fig. 5 and supplemental figure 3 Supplemental figure 3	Sholl analysis M Two-way ANOVA (group effect) M Sholl analysis F Two-way ANOVA (group effect) F Sholl analysis MF Two-way ANOVA (group effect) MF Open field distance (cm) M Shopiro-Wik normality test M Ordinary one-way ANOVA Open field distance (cm) F Shopiro-Wik normality test F Ordinary one-way ANOVA Open field distance (cm) MF Shopiro-Wik normality test MF Ordinary one-way ANOVA Open field distance (cm) MF Shopiro-Wik normality test F Ordinary one-way ANOVA Open field distance (cm) MF Shopiro-Wik normality test F Kuskali-Wallis test F Open field time in center F Shopiro-Wik normality test F Kuskali-Wallis test F Open field time in center F Shopiro-Wik normality test F Kuskali-Wallis test MF Biscrimination ratio M Shopiro-Wik normality test M Ordinary one-way ANOVA M Discrimination ratio F Shopiro-Wik normality test F Ordinary one-way ANOVA MF Discrimination ratio F Shopiro-Wik normality test MF Shopiro-Wik normality test F Ordinary one-way ANOVA MF Discrimination ratio M Shopiro-Wik normality test MF Shopiro-Wik normality test F Ordinary one-way ANOVA MF Discrimination ratio MF Shopiro-Wik normality test F Ordinary one-way ANOVA MF Weight gain (%) M Shopiro-Wik normality test F Food intake (g/ kg bw/ d) M Shopiro-Wik normality test F	(N=75) (N=33) (N=68) 3537 (N=12) yes 3154 (N=8) yes 3151 (N=20) yes 25,47 (N=12) yes 23,99 (N=8) yes 24,88 (N=20) yes 0,7286 (N=12) yes 0,7332 (N=8) yes 0,7332 (N=8) yes 0,7332 (N=8) yes 0,7332 (N=20) yes 0,7332 (N=12) yes 0,7332 (N=12) yes	160,7 191,9 121,9 3,373 3,039 2,311 0,02573 0,04032	(N=90) (N=113) (N=203) 3921 (N=12) yes 3738 (N=23) yes 28,49 (N=12) yes 28,49 (N=12) yes 28,01 (N=23) yes 0,692 (N=12) yes 0,721 (N=23) yes 0,721 (N=23) yes 0,721 (N=23) yes 0,721 (N=23) yes 0,721 (N=23) yes	134,4 104 89,37 3,672 3,311 2,432 0,02257 0,04381 0,02366	(N=30) (N=34) (N=34) 2232 (N=6) yes 2242 (N=6) yes 2242 (N=6) yes 22,44 (N=9) yes 22,44 (N=9) no 22,62 (N=6) yes 0,622 (N=6) yes 0,625 (N=6) yes yes	227,9 165,6 132,2 3,607 4,462 3,141 0,06177 0,04318 0,03478	<0,0001 **** 0,0022 *** 0,0001 **** 0,2085 0,8771 0,8759 0,5121 0,8258 0,524 0,524 0,1502 0,0182 * 0,7546 0,1705
INEUROINFLAMMATION ASTROCYTE HIPPOCAMPUS Fig. 4 BEHAVIOR Fig. 5 and supplemental/fgure 3 Fig. 5 and supplemental/fgure 3 Supplemental/fgure 2	Sholl analysis M Two-wary ANOVA (group effect) M Sholl analysis F Two-wary ANOVA (group effect) F Sholl analysis M+F Two-wary ANOVA (group effect) M+F Open field distance (cm) M Shopiro-Wik normality test M Ordinary one-wary ANOVA M Open field distance (cm) F Shopiro-Wik normality test F Ordinary one-wary ANOVA Open field distance (cm) M+F Shopiro-Wik normality test F Ordinary one-wary ANOVA Open field distance (cm) M+F Shopiro-Wik normality test F Ordinary one-wary ANOVA Open field distance (cm) M+F Shopiro-Wik normality test F Ordinary one-wary ANOVA Open field distance (cm) M+F Shopiro-Wik normality test F Ordinary one-wary ANOVA M Shopiro-Wik normality test F Ordinary one-wary ANOVA M Shopiro-Wik normality test F Ordinary one-wary ANOVA M Discrimination ratio M Shopiro-Wik normality test F Ordinary one-wary ANOVA F Discrimination ratio F Shopiro-Wik normality test F Ordinary one-wary ANOVA F Discrimination ratio F Shopiro-Wik normality test F Ordinary one-wary ANOVA M+F Weight gain (%) F Shopiro-Wik normality test F Food intake (g/k bw/d) M Shopiro-Wik normality test F Food intake (g/k bw/d) M Shopiro-Wik normality test F Food intake (g/k bw/d) M Shopiro-Wik normality test F Food intake (g/k bw/d) F Shopiro-Wik normality test M	(N=75) (N=93) (N=93) (N=168) 3537 (N=12) yes 3513 (N=8) yes 3613 (N=20) yes 25,47 (N=12) yes 23,99 (N=8) yes 23,99 (N=8) yes 0,7365 (N=20) yes 0,7365 (N=20) yes 0,7352 (N=8) yes 0,7352 (N=8) yes 0,7352 (N=8) yes	160,7 191,9 121,9 3,373 3,039 2,311 0,02573 0,04032 0,02167	(N=90) (N=113) (N=033) 3921 (N=12) yes 3139 (N=12) yes 23,754 (N=23) yes 23,764 (N=12) yes 23,748 (N=12) yes 0,7214 (N=11) yes 0,7214 (N=12) yes 0,7214 (N=12) yes 0,7061 (N=23) yes	134,4 104 89,37 3,672 3,311 2,432 0,02257 0,04381 0,02366	(N=30) (N=34) (N=184) 2432 (N=16) yes 3651 (N=25) yes 22,44 (N=36) yes 26,26 (N=25) 0,647 (N=36) yes 0,6225 (N=16) yes yes yes yes	227,9 165,6 132,2 3,607 4,462 3,141 0,06177 0,04318 0,03478	<0,0001 0,0022 ** 0,0001 0,2085 0,8771 0,8771 0,8258 0,5171 0,8258 0,5171 0,8258 0,5124 0,524 0,524 0,524 0,1502 0,00182 * 0,0182 *
INEUROINFLAMMATION ASTROCYTE HIPPOCAMPUS Fig. 4 BEHAVIOR Fig. 5 and supplemental figure 3 PHYSIO PARAMETERS Supplemental figure 2	Sholl analysis M Two-wary ANOVA (group effect) M Sholl analysis M File Analysis F Two-wary ANOVA (group effect) FF Sholl analysis MF Two-wary ANOVA (group effect) MF Open Field distance (cm) M Shopiro-Wik normality test F Ordinary one-wary ANOVA Open field distance (cm) FF Shopiro-Wik normality test F Ordinary one-wary ANOVA Open field distance (cm) MF Shopiro-Wik normality test F Ordinary one-wary ANOVA Open field distance (cm) MF Shopiro-Wik normality test M Ordinary one-wary ANOVA Open field distance (cm) MF Shopiro-Wik normality test F Ordinary one-wary ANOVA Open field time in center F Shopiro-Wik normality test F Copen field time in center F Shopiro-Wik normality test F Copen field time in center F Shopiro-Wik normality test F Ordinary one-wary ANOVA M Ordinary one-wary ANOVA M Ordinary one-wary ANOVA F Discrimination ratio M Shopiro-Wik normality test F Ordinary one-wary ANOVA MF Discrimination ratio MF Shopiro-Wik normality test F Cordinary one-wary ANOVA MF Weight gain (%) F Shopiro-Wik normality test MF Charary one-wary ANOVA MF Weight gain (%) F Shopiro-Wik normality test F Food intake (g/ kg bw/ d) F Shopiro-Wik normality test F Food intake (g/ kg bw/ d) F Shopiro-Wik normality test F Food intake (g/ kg bw/ d) F Shopiro-Wik normality test F Food intake (g/ kg bw/ d) F Shopiro-Wik normality test F	(N=75) (N=93) (N=168) 3537 (N=12) ycs 3537 (N=12) ycs 3633 (N=20) ycs 25,47 (N=12) ycs 24,88 (N=20) ycs 24,88 (N=20) ycs 0,736 (N=20) ycs 0,736 (N=20) ycs 0,736 (N=20) ycs 1,000	160,7 191,9 121,9 3,373 3,039 2,311 0,02573 0,04032 0,02167	(N=90) (N=113) (N=203) 3921 (N=12) yes 3736 (N=23) yes 28,49 (N=12) yes 27,48 (N=12) yes 28,49 (N=12) yes 28,49 (N=12) yes 0,628 (N=12) 0,7214 (N=13) yes 0,7214 (N=13) yes 0,7214 (N=13) yes 0,7214 (N=13) yes 0,7214 (N=13) yes	134,4 104 89,37 3,672 3,311 2,432 0,02257 0,04361 0,02366	(N=30) (N=34) (N=34) 2639 (N=9) yes 2492 (N=6) yes 3631 (N=25) yes 28,41 (N=3) no 26,25 (N=6) 0,6225 (N=6) 0,6225 (N=6) 0,6225 (N=6) 0,6225 (N=6) yes 0,6216 (N=25) yes yes yes	227,9 165,6 132,2 3,607 4,462 3,141 0,06177 0,04318 0,03478	<0,0001 *** 0,0022 ** 0,0001 *** 0,2085 0,8771 0,5969 0,5171 0,8258 0,524 0,3232 0,1502 0,0182 * 0,0182 * 0,7546 0,1705 0,1229
INEUROINFLAMMATION ASTROCYTE HIPPOCAMPUS Fig. 4 BEHAVIOR Fig. 5 and supplemental/joure 3 Fig. 5 and supplemental/joure 3 PHYSIO PARAMETERS Supplemental/joure 2	Sholl analysis M Two-way ANOVA (group effect) M Sholl analysis F Two-way ANOVA (group effect) F Sholl analysis MF Two-way ANOVA (group effect) MF Open Field distance (cm) M Shopiro-Wik normality test F Ordinary one-way ANOVA Open field distance (cm) F Shopiro-Wik normality test F Ordinary one-way ANOVA Open field distance (cm) F Shopiro-Wik normality test F Ordinary one-way ANOVA Open field distance (cm) MF Shopiro-Wik normality test F Ordinary one-way ANOVA Open field distance (cm) MF Shopiro-Wik normality test F Kraskal-Walki test F Copen field time in center F Shopiro-Wik normality test F Kraskal-Walki test F Discrimination ratio M Shopiro-Wik normality test M Ordinary one-way ANOVA M Discrimination ratio M Shopiro-Wik normality test M Ordinary one-way ANOVA K Discrimination ratio M Shopiro-Wik normality test M Ordinary one-way ANOVA K Discrimination ratio M Shopiro-Wik normality test M Two-way ANOVA (group effect) M Weight gain (5) M Shopiro-Wik normality test M Two-way ANOVA (group effect) M Weight gain (5) M Shopiro-Wik normality test M Two-way ANOVA (group effect) M Weight gain (5) M Shopiro-Wik normality test M Two-way ANOVA (group effect) M Weight gain (5) M Shopiro-Wik normality test M Two-way ANOVA (group effect) M Weight gain (5) M Shopiro-Wik normality test M Two-way ANOVA (group effect) M Weight gain (5) M Shopiro-Wik normality test M Two-way ANOVA (group effect) M Weight gain (5) M Shopiro-Wik normality test M Two-way ANOVA (group effect) M Weight gain (5) M Shopiro-Wik normality test M Two-way ANOVA (group effect) M Weight gain (5) M Shopiro-Wik normality test M Two-way ANOVA (group effect) M Weight gain (5) M Shopiro-Wik normality test M Two-way ANOVA (group effect) F Shopiro-Wik normal	(N=75) (N=93) (N=68) 3537 (N=12) yes 3513 (N=20) yes 3513 (N=20) yes 25,47 (N=12) yes 24,88 (N=20) yes 0,7286 (N=20) yes 0,7322 (N=8) yes 0,7305 (N=20) yes 0,7305 (N=20) yes 0,7305 (N=20) yes	160,7 191,9 121,9 3,373 3,039 2,311 0,02573 0,04032 0,02167	(N=90) (N=113) (N=203) 3921 (N=12) yes 3736 (N=23) yes 28,49 (N=12) yes 27,48 (N=11) yes 0,692 (N=12) yes 0,692 (N=12) yes 0,7214 (N=11) yes 0,724 (N=13) yes 0,725 (N=23) yes 0,724 (N=13) yes	134,4 104 89,37 3,672 3,311 2,432 0,02257 0,04381 0,02366	(N=30) (N=34) (N=34) 2639 (N=9) yes 2492 (N=6) yes 3621 (N=25) yes 22,44 (N=9) yes 22,44 (N=9) 0,625 (N=6) yes 0,625 (N=25) yes 0,625 (N=25) yes 0,625 (N=25) yes yes yes yes yes	227,9 165,6 132,2 3,607 4,462 3,141 0,06177 0,04318 0,03478	<0,0001 **** 0,0022 *** 0,0001 **** 0,2085 0,8771 0,8796 0,5171 0,8258 0,524 0,524 0,1502 0,0182 * 0,0182 * 0,0182 *
NEUROINFLAMMATION ASTROCYTE HIPPOCAMPUS Fig. 4 BEHAVIOR Fig. 5 and supplemental figure 3 Fig. 5 and supplemental figure 3 Supplemental figure 3	Sholl analysis M Two-way ANOVA (group effect) M Sholl analysis F Two-way ANOVA (group effect) F Sholl analysis MF Two-way ANOVA (group effect) MF Open field distance (cm) M Shopiro-Wik normality test M Ordinary one-way ANOVA Open field distance (cm) F Shopiro-Wik normality test F Ordinary one-way ANOVA Open field distance (cm) MF Shopiro-Wik normality test MF Ordinary one-way ANOVA Open field distance (cm) MF Shopiro-Wik normality test F Ordinary one-way ANOVA Open field distance (cm) MF Shopiro-Wik normality test F Kraskali-Wallis test F Open field time in center F Shopiro-Wik normality test F Kraskali-Wallis test MF Discrimination ratio M Shopiro-Wik normality test M Ordinary one-way ANOVA M Discrimination ratio M Shopiro-Wik normality test M Ordinary one-way ANOVA MF Discrimination ratio M Shopiro-Wik normality test M Discrimination ratio M Shopiro-Wik normality test F Nordinary one-way ANOVA MF Weight gain (%) M Shopiro-Wik normality test M Two-way ANOVA (group effect) M Food intake (g/kg bw/d) M Shopiro-Wik normality test M Two-way ANOVA (group effect) M Food intake (g/kg bw/d) M Shopiro-Wik normality test M Two-way ANOVA (group effect) M Shopiro-Wik normality test M Two-way ANOVA (group effect) M Shopiro-Wik normality test M Two-way ANOVA (group effect) M Shopiro-Wik normality test M	(N=75) (N=33) (N=68) 3537 (N=12) yes 3154 (N=8) yes 3151 (N=8) yes 3151 (N=20) yes 25,47 (N=12) yes 23,99 (N=8) yes 24,88 (N=20) yes 0,7286 (N=20) yes 0,7332 (N=8) yes 0,7332 (N=8) 0,7352 (N=8) 0,7552 (N=8) 0,7552 (N=8) 0,7552 (N=8) 0,75	160,7 191,9 121,9 3,373 3,039 2,311 0,02573 0,04032 0,02167	(N=90) (N=113) (N=203) 3321 (N=12) yes 3328 (N=23) yes 28,49 (N=12) yes 28,49 (N=12) yes 28,40 (N=23) yes 0,692 (N=12) yes 0,721 4 (N=23) 0,761 (N=23) yes 0,721 4 (N=23) yes 0,721 4 (N=23) yes 0,721 4 (N=23) yes	134,4 104 89,37 3,672 3,311 2,432 0,02257 0,04381 0,02366	(N=30) (N=34) (N=34) 2232 (N=5) yes 2242 (N=6) yes 2363 (N=25) yes 22,44 (N=9) yes 22,44 (N=9) no 22,62 (N=25) no 0,622 (N=6) yes 0,623 (N=3) yes 0,623 (N=3) yes yes	227,9 165,6 132,2 3,607 4,462 3,141 0,06177 0,04318 0,03478	<0,0001 **** 0,0022 *** 0,2085 0,8771 0,5969 0,5171 0,8258 0,524 0,3232 0,1502 0,0182 * 0,0182 * 0,1705 0,1705 0,1229 0,9994
INEUROINFLAMMATION ASTROCYTE HIPPOCAMPUS Fig. 4 BEHAVIOR Fig. 5 and supplemental/fgure 3 Fig. 5 and supplemental/fgure 3 Supplemental/fgure 2	Sholl analysis M Two-wary ANOVA (group effect) M Sholl analysis F Two-wary ANOVA (group effect) F Sholl analysis M+F Two-wary ANOVA (group effect) M+F Open field distance (cm) M Shapiro-Wik normality test M Ordinary one-wary ANOVA M Open field distance (cm) F Shapiro-Wik normality test F Ordinary one-wary ANOVA Open field distance (cm) F Shapiro-Wik normality test F Ordinary one-wary ANOVA Open field distance (cm) M+F Shapiro-Wik normality test F Ordinary one-wary ANOVA Open field distance (cm) M+F Shapiro-Wik normality test F Ordinary one-wary ANOVA Open field distance (cm) M+F Shapiro-Wik normality test F F Open field time in center (s) M Shapiro-Wik normality test F Discrimination ratio M Shapiro-Wik normality test F Ordinary one-wary ANOVA M Ordinary one-wary ANOVA M Discrimination ratio M Shapiro-Wik normality test F Ordinary one-wary ANOVA M Discrimination ratio M+F Shapiro-Wik normality test F Ordinary one-wary ANOVA M+F Discrimination ratio M+F Shapiro-Wik normality test F Ordinary one-wary ANOVA M+F Discrimination ratio M+F Shapiro-Wik normality test F Ordinary one-wary ANOVA M+F Discrimination ratio M+F Shapiro-Wik normality test F Two-wary ANOVA (group effect) M Weight gain (%) F Shapiro-Wik normality test F Food intake (g/ te bw/ 0) M Shapiro-Wik normality test F Two-wary ANOVA (group effect) F Water intake (g/ te bw/ 0) H Shapiro-Wik normality test F Two-wary ANOVA (group effect) F Water intake (g/ te bw/ 0) F	(N=75) (N=93) (N=168) 3537 (N=12) ycs 3613 (N=8) ycs 3613 (N=20) ycs 25,47 (N=12) ycs 23,99 (N=8) ycs 23,99 (N=8) ycs 0,7382 (N=20) ycs 0,7382 (N=20) ycs 0,7382 (N=20) ycs 0,7395 (N=20) ycs 0,7395 (N=20) ycs 0,7395 (N=20) ycs 0,7395 (N=20) ycs 0,7395 (N=20) ycs 0,7395 (N=20) ycs 0,7395 (N=20) ycs 0,7395 (N=20) ycs	160,7 191,9 121,9 3,373 3,039 2,311 0,02573 0,04032 0,02167	(N=90) (N=113) (N=023) 3921 (N=12) yes 3734 (N=23) yes 27,48 (N=12) yes 27,48 (N=12) yes 27,48 (N=12) yes 0,7214 (N=12) yes	134,4 104 89,37 3,672 3,311 2,432 0,02257 0,04381 0,02366	(N=30) (N=34) (N=34) 2432 (N=5) yes 2432 (N=5) yes 2432 (N=5) yes 22,41 (N=25) no 26,26 (N=25) no 0,6479 (N=3) yes 0,6472 (N=3) yes	227,9 165,6 132,2 3,607 4,462 3,141 0,06177 0,04318 0,03478	<0,0001 **** 0,0002 *** 0,2085 0,8771 0,5969 0,5171 0,8258 0,5171 0,8258 0,5171 0,8258 0,5171 0,8258 0,5171 0,8258 0,5171 0,5171 0,224 0,1502 0,0182 * 0,0182 * 0,1705 0,1705
NEUROINFLAMMATION ASTROCYTE HIPPOCAMPUS Fig. 4 BEHAVIOR Fig. 5 and supplemental figure 3 PHYSIO PARAMETERS Supplemental figure 2	Sholl analysis M Two-way ANOVA (group effect) M Sholl analysis M File Analysis M File Analysis M Two-way ANOVA (group effect) M Sholl analysis MH Two-way ANOVA (group effect) MF Open Field distance (cm) M Shopiro-Wik normality test F Ordinary one-way ANOVA Open field distance (cm) F Shopiro-Wik normality test F Ordinary one-way ANOVA Open field distance (cm) MF Shopiro-Wik normality test F Ordinary one-way ANOVA Open field distance (cm) MF Shopiro-Wik normality test M Ordinary one-way ANOVA Open field time in center (s) M Shopiro-Wik normality test M Ordinary one-way ANOVA Open field time in center F Shopiro-Wik normality test F Open field time in center F Shopiro-Wik normality test F Open field time in center F Shopiro-Wik normality test F Open field time in center F Shopiro-Wik normality test F Ordinary one-way ANOVA M Discrimination ratio M Shopiro-Wik normality test F Ordinary one-way ANOVA F Discrimination ratio M Shopiro-Wik normality test F Ordinary one-way ANOVA MF Discrimination ratio F Shopiro-Wik normality test F Ordinary one-way ANOVA F Discrimination ratio M Shopiro-Wik normality test F Food intake (g/ Ry W/ 0) M Shopiro-Wik normality test F Food intake (g/ Ry W/ 0) M Shopiro-Wik normality test F Food intake (g/ Ry W/ 0) M Shopiro-Wik normality test F Two-way ANOVA (group effect) M Weight gain (%) F Shopiro-Wik normality test F Two-way ANOVA (group effect) M Water intake (g/ Ry W/ 0) F Shopiro-Wik normality test F Two-way ANOVA (group effect) F Water intake (g/ Ry W/ 0) F Shopiro-Wik normality test M Two-way ANOVA (group effect) F Water intake (g/ Ry W/ 0) F Shopiro-Wik normality test F Two-way ANOVA (group effect) F Water intake (g/ Ry W/ 0) F Shopiro-Wik normality test M Two-way ANOVA (group effect) F	(N=75) (N=93) (N=93) 3537 (N=12) ycs 3513 (N=20) ycs 3613 (N=20) ycs 25,47 (N=12) ycs 25,47 (N=12) ycs 24,88 (N=20) ycs 24,88 (N=20) ycs 0,728 (N=12) ycs 0,730 (N=20) ycs 0,730 (N=20) (N=	160,7 191,9 121,9 3,373 3,039 2,311 0,02573 0,04032 0,02167	(N=90) (N=113) (N=203) 3321 (N=12) yes 3338 (N=23) yes 23,849 (N=23) yes 23,849 (N=23) yes 23,849 (N=23) yes 23,849 (N=23) yes 24,849 (N=23) yes 24,940 (N=23) yes 0,724 (N=23) yes 0,726 (N=23) yes	134,4 104 89,37 3,672 3,311 2,432 0,02257 0,04381 0,02366	(N=30) (N=34) (N=34) 2639 (N=9) yes 2492 (N=6) yes 3631 (N=25) yes 28,41 (N=6) no 26,25 (N=76) 0,625 (N=76) 0,625 (N=16) 0,625 (N=16) 0,625 (N=16) 0,625 (N=16) 0,625 (N=16) 0,625 (N=16) yes 0,6316 (N=25) yes 0,6316 (N=25) yes	227,9 165,6 132,2 3,607 4,462 3,141 0,06177 0,04318 0,03478	<0,0001 **** 0,0002 *** 0,2085 0,8771 0,5969 0,5171 0,8258 0,5171 0,8258 0,524 0,1502 0,1502 0,1502 0,0182 * 0,0182 * 0,0182 *

877 Supplemental Table 1. Summary of statistical analyses.