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We present a new language semantics for real-time concurrency. Its operational models are higher-dimensional timed automata (HDTAs), a generalization of both higher-dimensional automata and timed automata. We define languages of HDTAs as sets of interval-timed pomsets with interfaces. As an application, we show that language inclusion of HDTAs is undecidable. On the other hand, using a region construction we can show that untimings of HDTA languages have enough regularity so that untimed language inclusion is decidable.

Introduction

In order to model non-interleaving concurrency, models such as Petri nets [START_REF] Petri | Kommunikation mit Automaten[END_REF], configuration structures [START_REF] Van Glabbeek | Configuration structures[END_REF][START_REF] Van Glabbeek | Configuration structures, event structures and Petri nets[END_REF], or higher-dimensional automata (HDAs) [START_REF] Fahrenberg | Languages of higher-dimensional automata[END_REF][START_REF] Vaughan | Modeling concurrency with geometry[END_REF][START_REF] Van Glabbeek | Bisimulations for higher dimensional automata[END_REF] allow several events to happen simultaneously. The interest of such models, compared to other models such as automata or transition systems, is the possibility to distinguish concurrent and interleaving executions; using CCS notation [START_REF] Milner | Communication and Concurrency[END_REF], parallel compositions a b are not the same as choices a.b + b.a.

Semantically, concurrency in non-interleaving models is represented by the fact that their languages do not consist of words but rather of partially ordered multisets (pomsets). As an example, Fig. 1 shows Petri net and HDA models which execute the parallel composition of a.c and b; their language is generated by the pomset [ a→c b ] in which there is no order relation between a and b nor between b and c. However, these models and pomsets use logical time and make no statements about the precise durations or timings of events. 

Higher-dimensional timed automata

Higher-dimensional automata Timed automata Petri nets Automata Fig. 2. Taxonomy of some models for time and concurrency When we consider models for real-time systems, such as for example timed automata [START_REF] Alur | A theory of timed automata[END_REF] which can model precise durations and timings of events, the distinction between concurrency and interleaving is usually left behind. Their languages are sets of timed words, that is, sequences of symbols each of which is associated with a timestamp that records when the associated event took place.

In this article, our goal is to propose a language-based semantics for concurrent real-time systems. Our aim is to combine the two semantics above, timed words for interleaving real time and pomsets for non-interleaving logical time.

Another such proposal was developed in [START_REF] Balaguer | A concurrency-preserving translation from time Petri nets to networks of timed automata[END_REF], where, going back to [START_REF] Aura | A causal semantics for time Petri nets[END_REF], languages of time Petri nets [START_REF] Merlin | Recoverability of communication protocolsimplications of a theoretical study[END_REF] are given as sets of pomsets with timestamps on events, see also [START_REF] Chatain | Concurrency in Real-Time Distributed Systems, from Unfoldings to Implementability[END_REF][START_REF] Chatain | Back in time Petri nets[END_REF][START_REF] Fleischhack | Computing a finite prefix of a time Petri net[END_REF]. Nevertheless, this creates problems of causality, as explained in [START_REF] Chatain | Back in time Petri nets[END_REF] which notes that "[t]ime and causality [do] not necessarily blend well in [...] Petri nets".

We put forward a different language-based semantics for real-time concurrency, inspired by recent work on interval-order semantics of higher-dimensional automata [START_REF] Amrane | Closure and decision properties for higher-dimensional automata[END_REF][START_REF] Fahrenberg | Languages of higher-dimensional automata[END_REF][START_REF] Fahrenberg | A Kleene theorem for higher-dimensional automata[END_REF][START_REF] Fahrenberg | Posets with interfaces as a model for concurrency[END_REF][START_REF] Fahrenberg | A Myhill-Nerode theorem for higherdimensional automata[END_REF]. We use pomsets with interval timestamps on events, that is, every event has a start time and an end time, and the partial order respects these timestamps.

Our operational models for real-time concurrent systems are higher-dimensional timed automata (HDTAs), a simultaneous extension of timed automata [START_REF] Alur | Automata for modeling real-time systems[END_REF][START_REF] Alur | A theory of timed automata[END_REF] and higher-dimensional automata [START_REF] Fahrenberg | Languages of higher-dimensional automata[END_REF][START_REF] Vaughan | Modeling concurrency with geometry[END_REF][START_REF] Van Glabbeek | Bisimulations for higher dimensional automata[END_REF] (which in turn generalize (safe) Petri nets [START_REF] Van Glabbeek | On the expressiveness of higher dimensional automata[END_REF]), see Fig. 2. These have been introduced in [START_REF] Fahrenberg | Higher-dimensional timed and hybrid automata[END_REF], where it is shown among other things that reachability for HDTAs may be decided using zones like for timed automata. We adapt the definition of HDTAs to better conform with the event-based setting of [START_REF] Fahrenberg | Languages of higher-dimensional automata[END_REF] and introduce languages of HDTAs as sets of pomsets with interval timestamps.

This article is organised as follows. We begin in Section 2 by recalling timed automata and expressing their language semantics using two perspectives: delay words and timed words. In Section 3, we revisit higher-dimensional automata and their languages, again focusing on two complementary perspectives, of step sequences and pomsets with interfaces. In Section 4 we recall the definition of higher-dimensional timed automata and give examples.

The following sections present our proper contributions. In Section 5, we present two formalisms for languages for real-time concurrency: interval delay words and timed pomsets with interfaces, generalizing the dual view on languages of timed automata and of HDAs and showing their equivalence. Then in Section 6, we define languages of higher-dimensional timed automata using the formalisms previously introduced, and prove two main results: language inclusion is undecidable for higher-dimensional timed automata, but untimed language inclusion is decidable.

Due to space constraints, all proofs are shown in a separate appendix.

2 Timed automata and their languages Timed automata extend finite automata with clock variables and invariants which permit the modeling of real-time properties. For a set C (of clocks), Φ(C) denotes the set of clock constraints defined as

Φ(C) ∋ φ 1 , φ 2 ::= c ⊲⊳ k | φ 1 ∧ φ 2 (c ∈ C, k ∈ N, ⊲⊳ ∈ {<, ≤, ≥, >}) .
Hence a clock constraint is a conjunction of comparisons of clocks to integers. A clock valuation is a mapping v : C → R ≥0 , where R ≥0 denotes the set of non-negative real numbers. The initial clock valuation is 

v 0 : C → R ≥0 given by v 0 (c) = 0 for all c ∈ C. For v ∈ R C ≥0 , d ∈ R ≥0 ,
(v + d)(c) = v(c) + d v[R ← 0](c) = 0 if c ∈ R, v(c) if c / ∈ R. For v ∈ R C ≥0 and φ ∈ Φ(C), we write v |= φ if v satisfies φ. A timed automaton is a structure (Σ, C, Q, ⊥, ⊤, I, E)
, where Σ is a finite set (alphabet), C is a finite set of clocks, Q is a finite set of locations with initial and accepting locations ⊥, ⊤ ⊆ Q, I : Q → Φ(C) assigns invariants to states, and

E ⊆ Q × Φ(C) × Σ × 2 C × Q is a
set of guarded transitions. We will often take the liberty to omit Σ and C from the signature of timed automata.

Timed automata have a long and successful history in the modeling and verification of real-time computing systems. Several tools exist such as Kronos3 [START_REF] Bozga | Kronos: A model-checking tool for real-time systems[END_REF][START_REF] Yovine | KRONOS: A verification tool for real-time systems[END_REF], Uppaal4 [START_REF] Behrmann | A tutorial on Uppaal[END_REF][START_REF] Behrmann | Uppaal 4.0[END_REF][START_REF] Kim | Uppaal in a nutshell[END_REF], TChecker5 , IMITATOR6 [START_REF] André | IMITATOR: A tool for synthesizing constraints on timing bounds of timed automata[END_REF][START_REF] André | IMITATOR 3: Synthesis of timing parameters beyond decidability[END_REF], Roméo7 [START_REF] Gardey | Romeo: A tool for analyzing time Petri nets[END_REF][START_REF] Lime | Romeo: A parametric model-checker for Petri nets with stopwatches[END_REF] and PAT8 [START_REF] Sun | PAT: Towards flexible verification under fairness[END_REF], some of which are routinely applied in industry. The interested reader is referred to [START_REF] Aceto | Reactive Systems[END_REF][START_REF] Bouyer | Model checking real-time systems[END_REF][START_REF] Kim | From timed automata to stochastic hybrid games[END_REF].

The operational semantics of a timed automaton A = (Q, ⊥, ⊤, I, E) is the (usually uncountably infinite) transition system A = (S, S ⊥ , S ⊤ , ), with ⊆ S × (Σ ∪ R ≥0 ) × S, given as follows:

S = {(q, v) ∈ Q × R C ≥0 | v |= I(q)} S ⊥ = {(q, v 0 ) | q ∈ ⊥} S ⊤ = S ∩ ⊤ × R C ≥0 = {((q, v), d, (q, v + d)) | ∀0 ≤ d ′ ≤ d : v + d ′ |= I(q)} ∪ {((q, v), a, (q ′ , v ′ )) | ∃(q, φ, a, R, q ′ ) ∈ E : v |= φ, v ′ = v[R ← 0]}
Tuples in of the first type are called delay moves and denoted d , tuples of the second kind are called action moves and denoted a .

The definition of ensures that actions are immediate: for any (q, φ, a, R, q ′ ) ∈ E, then A passes from (q, v) to (q ′ , v ′ ) without any delay. Time progresses only during delays (q, v) (q, v + d) in locations. A path π in A is a finite sequence of consecutive moves of :

π = (l 0 , v 0 ) (l 1 , v 1 ) • • • (l n-1 , v n-1 ) (l n , v n ) (1) 
It is accepting if

(l 0 , v 0 ) ∈ S ⊥ and (l n , v n ) ∈ S ⊤ .
The language semantics of timed automata is defined in terms of timed words. There are two versions of these in the literature, and we will use them both. The first, which we call delay words here, is defined as follows. The label of a delay move δ = (q, v)

(q, v + d) is ev(δ) = d. That of an action move σ = (l, v) a (l ′ , v ′ ) is ev(σ) = a. Finally, the label ev(π) of π as in (1) is the concatenation ev((l 0 , v 0 ) (l 1 , v 1 )) • • • ev((l n-1 , v n-1 ) (l n , v n )).
Delay words are elements of the quotient of the free monoid on Σ ∪ R ≥0 by the equivalence relation ∼ which allows to add up subsequent delays and to remove zero delays. Formally, ∼ is the congruence on (Σ ∪ R ≥0 ) * generated by the relations

dd ′ ∼ d + d ′ , 0 ∼ ε. (2) 
The delay language L(A) of the timed automaton A is the set of delay words labeling accepting paths in A :

L(A) = {ev(π) | π accepting path in A } ⊆ (Σ ∪ R ≥0 ) * /∼
Any equivalence class of delay words has a unique representative of the form

d 0 a 0 d 1 a 1 . . . a n d n+1 in which delays d i ∈ R ≥0 and symbols a i ∈ Σ alternate.
The second language semantics of timed automata is given using words with timestamps, which we will call timed words here. In the literature [START_REF] Aceto | Reactive Systems[END_REF][START_REF] Bouyer | Model checking real-time systems[END_REF][START_REF] Kim | From timed automata to stochastic hybrid games[END_REF] these are usually defined as elements of the free monoid on Σ × R ≥0 in which the real components form an increasing sequence. Formally, let TW ′ ⊆ (Σ × R ≥0 ) * be the subset

TW ′ = {w = (a 0 , t 0 ) . . . (a n , t n ) | ∀i = 0, . . . , n -1 : t i ≤ t i+1 }.
The notions of delay words and timed words do not match completely, as delay words allow for a delay at the end of a run while timed words terminate with the last timestamped symbol. In order for the language semantics to better match the operational semantics, we prefer to allow for these extra delays. Let TW ⊆ (Σ × R ≥0 ) * R ≥0 be the subset

TW = {w = (a 0 , t 0 ) . . . (a n , t n ) t n+1 | ∀i = 0, . . . , n : t i ≤ t i+1 }.
Concatenation in TW is defined by shifting timestamps. For w = (a 0 , t 0 ) . . .

(a n , t n ) t n+1 , w ′ = (a ′ 0 , t ′ 0 ) . . . (a ′ n , t ′ n ) t ′ n+1 ∈ TW: ww ′ = (a 0 , t 0 ) . . . (a n , t n )(a ′ 0 , t n+1 + t ′ 0 ) . . . (a ′ n , t n+1 + t ′ n )(t n+1 + t ′ n+1 ).
The monoids (Σ ∪ R ≥0 ) * /∼ and TW are then isomorphic via the mapping

d 0 a 0 d 1 a 1 . . . a n d n+1 → (a 0 , d 0 ) (a 1 , d 0 + d 1 ) . . . (a n-1 , d 0 + • • • + d n ) (d 0 + • • • + d n+1 ),
and the timed language of a timed automaton A is the image of its delay language L(A) under this isomorphism.

3 Higher-dimensional automata and their languages

Higher-dimensional automata (HDAs) extend finite automata with extra structure which permits to specify independence or concurrency of events. We focus in this section on the languages of HDAs and refer to [START_REF] Fahrenberg | Languages of higher-dimensional automata[END_REF][START_REF] Fahrenberg | A Myhill-Nerode theorem for higherdimensional automata[END_REF] for more details on HDAs themselves.

Higher-dimensional automata

An HDA is a set X of cells which are connected by face maps. Each cell has a list of events which are active, and face maps permit to pass from a cell to another in which some events have not yet started or are terminated. We make this precise. A conclist (concurrency list ) over a finite alphabet Σ is a tuple U = (U, , λ), consisting of a finite set U (of events), a strict total order ⊆ U × U (the event order), 9 and a labeling λ : U → Σ. Let denote the set of conclists over Σ.

A precubical set on a finite alphabet Σ X = (X, ev,

{δ 0 A,U , δ 1 A,U | U ∈ , A ⊆ U })
consists of a set of cells X together with a function ev : X → . For U ∈ we write

X[U ] = {x ∈ X | ev(x) = U }.
Further, for every U ∈ and A ⊆ U there are face maps

δ 0 A,U , δ 1 A,U : X[U ] → X[U \ A] which satisfy δ ν A,U δ µ B,U\A = δ µ B,U δ ν A,U\B (3) 
9 A strict partial order is a relation which is irreflexive and transitive; a strict total order is a relation which is irreflexive, transitive, and total. We may omit the "strict".

for A∩B = ∅ and ν, µ ∈ {0, 1}. 10 The upper face maps δ 1 A transform a cell x into one in which the events in A have terminated, whereas the lower face maps δ 0 A transform x into a cell where the events in A have not yet started. The precubical identity (3) expresses the fact that these transformations commute for disjoint sets of events.

A higher-dimensional automaton (HDA) A = (Σ, X, ⊥, ⊤) consists of a finite alphabet Σ, a finite precubical set X on Σ, and subsets ⊥, ⊤ ⊆ X of initial and accepting cells. The

dimension of A is dim(A) = max{|ev(x)| | x ∈ X}.

Pomsets with interfaces

The language semantics of HDAs is defined in terms of ipomsets which we define now; see again [START_REF] Fahrenberg | Languages of higher-dimensional automata[END_REF][START_REF] Fahrenberg | A Myhill-Nerode theorem for higherdimensional automata[END_REF] for more details. First, a partially ordered multiset, or pomset, over a finite alphabet Σ is a structure P = (P, <, , λ) consisting of a finite set P , two strict partial orders <, ⊆ P × P (precedence and event order), and a labeling λ : P → Σ, such that for each x = y in P , at least one of x < y, y < x, x y, or y x holds.11 A pomset with interfaces, or ipomset, over a finite alphabet Σ is a tuple (P, <, , S, T, λ) consisting of a pomset (P, <, , λ) and subsets S, T ⊆ P of source and target interfaces such that the elements of S are <-minimal and those of T are <-maximal. Note that different events of ipomsets may carry the same label; in particular we do not exclude autoconcurrency. Source and target events are marked by " • " at the left or right side, and if the event order is not shown, we assume that it goes downwards.

An ipomset P is interval if its precedence order < P is an interval order [START_REF] Peter | Interval Orders and Interval Graphs: A Study of Partially Ordered Sets[END_REF], that is, if it admits an interval representation given by functions σ -, σ + : P → R such that σ -(x) ≤ σ + (x) for all x ∈ P and x < P y iff σ + (x) < σ -(y) for all x, y ∈ P . We will only use interval ipomsets here and hence omit the qualification "interval". The set of (interval) ipomsets over Σ is denoted iPoms.

For ipomsets P and Q we say that Q subsumes P and write P ⊑ Q if there is a bijection f :

P → Q for which 1. f (S P ) = S Q , f (T P ) = T Q , and λ Q • f = λ P ; 2. f (x) < Q f (y) implies x < P y; 3.
x < P y, y < P x and x P y imply f (x) Q f (y). That is, f respects interfaces and labels, reflects precedence, and preserves essential event order. (Event order is essential for concurrent events, but by transitivity, it also appears between non-concurrent events. Subsumptions ignore such non-essential event order.)

Isomorphisms of ipomsets are invertible subsumptions, i.e., bijections f for which items 2 and 3 above are strengthened to 2. f (x) < Q f (y) iff x < P y; 3. x < P y and y < P x imply that x P y iff f (x) Q f (y). Due to the requirement that all elements are ordered by < or , there is at most one isomorphism between any two ipomsets. Hence we may switch freely between ipomsets and their isomorphism classes. We will also call these equivalence classes ipomsets and often conflate equality and isomorphism.

Serial composition of pomsets [START_REF] Grabowski | On partial languages[END_REF] generalises to a gluing composition for ipomsets which continues interface events across compositions and is defined as follows. Let P and Q be ipomsets such that T P = S Q , x P y iff x Q y for all x, y ∈ T P = S Q , and the restrictions λ

P |TP = λ Q|S Q , then P * Q = (P ∪ Q, <, , S P , T Q , λ), where -x < y if x < P y, x < Q y, or x ∈ P \ T P and y ∈ Q \ S Q ; - is the transitive closure of P ∪ Q ; -λ(x) = λ P (x) if x ∈ P and λ(x) = λ Q (x) if x ∈ Q.
Gluing is, thus, only defined if the targets of P are equal to the sources of Q as conclists.

An ipomset P is a word (with interfaces) if < P is total. Conversely, P is discrete if < P is empty (hence P is total). Conclists are discrete ipomsets without interfaces. A starter is a discrete ipomset U with T U = U , a terminator one with S U = U . The intuition is that a starter does nothing but start the events in A = U -S U , and a terminator terminates the events in B = U -T U . These will be so important later that we introduce special notation, writing A ↑U and U ↓ B for the above. Discrete ipomsets U with S U = T U = U are identities for the gluing composition and written id U . Note that id U = ∅ ↑U = U ↓ ∅ . The empty ipomset is id ∅ .

Step sequences

Any ipomset can be decomposed as a gluing of starters and terminators [START_REF] Fahrenberg | Posets with interfaces as a model for concurrency[END_REF][START_REF] Janicki | Operational semantics, interval orders and sequences of antichains[END_REF]. Such a presentation is called a step decomposition. If starters and terminators are alternating, the step decomposition is called sparse. [START_REF] Fahrenberg | A Myhill-Nerode theorem for higherdimensional automata[END_REF]Prop. 4] shows that every ipomset has a unique sparse step decomposition.

We develop an algebra of step decompositions. Let St, Te, Id ⊆ iPoms denote the sets of starters, terminators, and identities over Σ, then Id = St ∩ Te. Let St + = St \ Id and Te + = Te \ Id. The following notion was introduced in [START_REF] Amrane | Closure and decision properties for higher-dimensional automata[END_REF].

Definition 1. A word P 1 . . . P n ∈ (St∪Te) * is coherent if the gluing P 1 * • • • * P n is defined.
Let Coh ⊆ (St ∪ Te) * denote the subset of coherent words and ∼ the congruence on Coh generated by the relations

I ∼ ε (I ∈ Id), S 1 S 2 ∼ S 1 * S 2 (S 1 , S 2 ∈ St), T 1 T 2 ∼ T 1 * T 2 (T 1 , T 2 ∈ Te). (4) 
Here, ε denotes the empty word in (St ∪ Te) * , not the empty ipomset id ∅ ∈ Id.

Definition 2. A step sequence is an element of the set SSeq = Id.Coh /∼ .Id.

The identities in the beginning and end of step sequences are used to "fix" events in the source and target interfaces, i.e., which are already running in the beginning or continue beyond the end. For example, • a • . • a • denotes an event labeled a which is neither started nor terminated. Technically we only need these identities when the inner part (in (St∪Te) * /∼ ) is empty (and even then we would only need one of them); but we prefer a more verbose notation that will be of interest when we introduce time, see Def. 12. Lemma 3. Every element of SSeq has a unique representative I 0 P 1 . . . P n I n+1 , for n ≥ 0, with the property that

(P i , P i+1 ) ∈ St + × Te + ∪ Te + × St + for all 1 ≤ i ≤ n -1. Such a representative is called sparse.
Proof. Directly from [START_REF] Fahrenberg | A Myhill-Nerode theorem for higherdimensional automata[END_REF]Prop. 4].

⊓ ⊔ Concatenation of step sequences is inherited from the monoid (St∪Te) * where I 0 .w.

I n • I ′ 0 .w ′ .I ′ m is defined iff I n = I ′ 0 .
Concatenations of sparse step sequences may not be sparse.

Remark 4. SSeq forms a local partial monoid [START_REF] Fahrenberg | Catoids and modal convolution algebras[END_REF] with left and right units id U id U , for U ∈ , and (U V )W = U (V W ) when the concatenation is defined. Local partial monoids may admit many units and are equivalent to categories: here, the objects are the conclists in and the morphisms from U ∈ to V ∈ are the step sequences id U w id V . We refer to [START_REF] Fahrenberg | Catoids and modal convolution algebras[END_REF] for more details.

For a coherent word P 1 . . . P n ∈ Coh ⊆ (St ∪ Te) * we define Glue(P 1 . . .

P n ) = P 1 * • • • * P n . It is clear that for w 1 , w 2 = ε, w 1 ∼ w 2 implies Glue(w 1 ) = Glue(w 2 ).
That is, Glue induces a mapping Glue : SSeq → iPoms. 

Languages of HDAs

Paths in an HDA X are sequences α = (x 0 , φ 1 , x 1 , . . . , x n-1 , φ n , x n ) consisting of cells x i of X and symbols φ i which indicate face map types: for every i ∈ {1, . . . , n},

(x i-1 , φ i , x i ) is either nosep (δ 0 A (x i ), ր A , x i ) for A ⊆ ev(x i ) (an upstep) nosep or (x i-1 , ց A , δ 1 A (x i-1
)) for A ⊆ ev(x i-1 ) (a downstep). Downsteps terminate events, following upper face maps, whereas upsteps start events by following inverses of lower face maps.

The source and target of α as above are src(α) = x 0 and tgt(α) = x n . A path α is accepting if src(α) ∈ ⊥ X and tgt(α) ∈ ⊤ X . Paths α and β may be concatenated if tgt(α) = src(β). Their concatenation is written α * β or simply αβ.

The observable content or event ipomset ev(α) of a path α is defined recursively as follows:

- Note that upsteps in α correspond to starters in ev(α) and downsteps correspond to terminators. For A ⊆ iPoms, A↓ = {P ∈ iPoms | ∃Q ∈ A : P ⊑ Q} denotes its subsumption closure. The language of an HDA X is L(X) = {ev(α) | α accepting path in X}. A language is regular if it is the language of a finite HDA. It is rational if it is constructed from ∅, {id ∅ } and discrete ipomsets using ∪, * and + (Kleene plus) [START_REF] Fahrenberg | A Kleene theorem for higher-dimensional automata[END_REF]. Languages of HDAs are closed under subsumption, that is, if L is regular, then L↓ = L [START_REF] Fahrenberg | Languages of higher-dimensional automata[END_REF][START_REF] Fahrenberg | A Kleene theorem for higher-dimensional automata[END_REF]. The rational operations above have to take this closure into account.

if α = (x), then ev(α) = id ev(x) ; -if α = (y ր A x), then ev(α) = A ↑ev(x); -if α = (x ց A y), then ev(α) = ev(x)↓ A ; -if α = α 1 * • • • * α n is a concatenation, then ev(α) = ev(α 1 ) * • • • * ev(α n ).

Theorem 6 ([26]

). A language is regular if and only if it is rational.

Example 7. The HDA of Fig. 3 is two-dimensional and consists of nine cells: the corner cells X 0 = {l 0 , l 1 , l 2 , l 3 } in which no event is active (for all z ∈ X 0 , ev(z) = ∅), the transition cells X 1 = {e 1 , e 2 , e 3 , e 4 } in which one event is active (ev(e 1 ) = ev(e 4 ) = a and ev(e 2 ) = ev(e 3 ) = b), and the square cell u where a and b are active: ev(u) = [ a b ]. When we have two concurrent events a and b with a b, we will draw a horizontally and b vertically. Concerning face maps, we have for example δ 1 ab (u) = l 3 and δ 0 ab (u) = l 0 . This HDA admits several accepting paths, for example

α 1 = l 0 ր ab u ց ab l 3 , α 2 = l 0 ր a e 1 ր b u ց b e 4 ց a l 3 , α 3 = l 0 ր a e 1 ց a l 1 ր b e 3 ց b l 3 , α 4 = l 0 ր b e 2 ց b l 2 ր a e 4 ց b l 3 , where ev(α 1 ) = [ a• b• ] * [ •a •b ] = ev(α 2 ) = a • * [ •a• b• ] * [ •a• •b ] * • a = [ a b ], ev(α 3 ) = a • * • a * b • * • b = ab, and ev(α 4 ) = b • * • b * a • * • a = ba. Its language is {[ a b ]}↓ = {[ a b ]
, ab, ba}. Observe that α 1 and α 2 induce the coherent words

w 1 = [ a• b• ] [ •a •b ] and w 2 = a • [ •a• b• ] [ •a •b• ] • b such that w 1 ∼ w 2 and s = id ∅ w 1 id ∅ is their corresponding sparse step sequence with Glue(s) = [ a b ].
4 Higher-dimensional timed automata

Unlike timed automata, higher-dimensional automata make no formal distinction between states (0-cells), transitions (1-cells), and higher-dimensional cells. We l0 l1 l2 l3

x, y ← 0 x ≥ 2; y ← 0 transfer this intuition to higher-dimensional timed automata, so that each cell has an invariant which specifies when it is enabled and an exit condition giving the clocks to be reset when leaving. Semantically, this implies that time delays can occur in any n-cell, not only in states as in timed automata; hence actions are no longer instantaneous. Definition 8. A higher-dimensional timed automaton (HDTA) is a structure (Σ, C, Q, ⊥, ⊤, inv, exit), where (Σ, Q, ⊥, ⊤) is a finite higher-dimensional automaton and inv : Q → Φ(C), exit : Q → 2 C assign invariant and exit conditions to each cell of Q.

y ≥ 1; x ← 0 x ≥ 2 ∧ y ≥ 1 x ≤ 4; y ← 0 e1 a y ≤ 3 x ← 0 e2 b x ≥ 2 ∧ y ≤ 3 e3 b x ≤ 4 ∧ y ≥ 1 e4 a x ≤ 4 ∧ y ≤ 3 ab u
As before, we will often omit Σ and C from the signature. The operational semantics of an HDTA A = (Q, ⊥, ⊤, inv, exit) is a (usually uncountably infinite) transition system A = (S, S ⊥ , S ⊤ , ), with the set of transitions (moves)

⊆ S × (St ∪ Te ∪ R ≥0 ) × S given as follows:

S = {(q, v) ∈ Q × R C ≥0 | v |= inv(q)} S ⊥ = {(q, v 0 ) | q ∈ ⊥} S ⊤ = S ∩ ⊤ × R C ≥0 = {((q, v), d, (q, v + d)) | ∀0 ≤ d ′ ≤ d : v + d ′ |= inv(q)} ∪ {((δ 0 A (q), v), A ↑ev(q), (q, v ′ )) | A ⊆ ev(q), v ′ = v[exit(δ 0 A (q)) ← 0] |= inv(q)} ∪ {((q, v), ev(q)↓ A , (δ 1 A (q), v ′ )) | A ⊆ ev(q), v ′ = v[exit(q) ← 0] |= inv(δ 1 A (q))}
Note that in the first line of the definition of above, we allow time to evolve in any cell of Q. As before, these are called delay moves and denoted d for some delay d ∈ R ≥0 . The second line in the definition of defines the start of concurrent events A (denoted A ) and the third line describes what happens when finishing a set A of concurrent events (denoted A ). These are again called action moves. Exit conditions specify which clocks to reset when leaving a cell. x, y ← 0 and b, which can be performed concurrently. This HDTA models that performing a takes between two and four time units, whereas performing b takes between one and three time units. To this end, we use two clocks x and y which are reset when the respective actions are started and then keep track of how long they are running.

x ≥ 2 ∧ z ≥ 1; y ← 0 y ≥ 1; x ← 0 x ≥ 2 ∧ y ≥ 1 ∧ z ≥ 1 x ≤ 4; y ← 0 e1 a x ≥ 1 ∧ y ≤ 3 x, z ← 0 e2 b x ≥ 2 ∧ y ≤ 3 ∧ z ≥ 1 z ← 0 e3 b x ≤ 5 ∧ y ≥ 1 e4 a 1 ≤ x ≤ 4 ∧ y ≤ 3 z ← 0; ab u
Hence exit(l 0 ) = {x, y}, and the invariants x ≤ 4 at the a-labeled transitions e 1 , e 4 and at the square u ensure that a takes at most four time units. The invariants x ≥ 2 at l 1 , e 3 and l 3 take care that a cannot finish before two time units have passed. Note that x is also reset when exiting e 2 and l 2 , ensuring that regardless when a is started, whether before b, while b is running, or after b is terminated, it must take between two and four time units.

Example 10. The HDTA in Fig. 5 

models the following additional constraints:

b may only start after a has been running for one time unit; -once b has terminated, a may run one time unit longer; -and b must finish one time unit before a. To this end, an invariant x ≥ 1 has been added to the two b-labeled transitions and to the ab-square (at the right-most b-transition x ≥ 1 is already implied), and the condition on x at the top a-transition has been changed to x ≤ 5. To enforce the last condition, an extra clock z is introduced which is reset when b terminates and must be at least 1 when a is terminating.

Note that the left edge is now unreachable: when entering it, x is reset to zero, but its edge invariant is x ≥ 1. This is as expected, as b should not be able to start before a. Further, the right b-labeled edge is deadlocked: when leaving it, z is reset to zero but needs to be at least one when entering the accepting state. Again, this is expected, as a should not terminate before b. As both vertical edges are now permanently disabled, the accepting state can only be reached through the square.

Concurrent timed languages

We introduce two formalisms for concurrent timed words: interval delay words which generalize delay words and step sequences, and timed ipomsets which generalize timed words and ipomsets. Figure 6 shows the relations between the different language semantics used and introduced in this paper.

Interval delay words

Intuitively, an interval delay word is a step sequence interspersed with delays. These delays indicate how much time passes between starts and terminations of different events.

Definition 11. A word x 1 . . . x n ∈ (St ∪ Te ∪ R ≥0 ) * is coherent if, for all i < k such that x i , x k ∈ St ∪ Te and ∀i < j < k : x j ∈ R ≥0 , the gluing x i * x k is defined.
Let tCoh ⊆ (St ∪ Te ∪ R ≥0 ) * denote the subset of coherent words. Let ∼ be the congruence on tCoh generated by the relations

dd ′ ∼ d + d ′ , 0 ∼ ε, I ∼ ε (I ∈ Id), S 1 S 2 ∼ S 1 * S 2 (S 1 , S 2 ∈ St), T 1 T 2 ∼ T 1 * T 2 (T 1 , T 2 ∈ Te).
Again, ε denotes the empty word in (St ∪ Te ∪ R ≥0 ) * above. That is, successive delays may be added up and zero delays removed, as may identities, and successive starters or terminators may be composed. Note how this combines the identifications in (2) for delay words and the ones for step sequences in (4). 

≤ i ≤ n -1, if d i = 0, then (P i , P i+1 ) ∈ St + × Te + ∪ Te + × St + . Such a representative is called sparse.
This is analogous to Lem. 3, except that here, we must admit successive starters or terminators if they are separated by non-zero delays (see Ex. 21 below for an example). With concatenation of idwords inherited from the monoid (St ∪ Te ∪ R ≥0 ) * , IDW forms a partial monoid (successive identities are composed using ∼). Concatenations of sparse idwords are not generally sparse. The identities for concatenation are the words id U id U ∼ id U 0 id U for U ∈ .

Timed ipomsets

Timed ipomsets are ipomsets with timestamps which mark beginnings and ends of events: Definition 14. Let P be a set, σ -, σ

+ : P → R ≥0 , σ = (σ -, σ + ), and d ∈ R ≥0 . Then P = (P, < P , , S, T, λ, σ, d) is a timed ipomset (tipomset) if -(P, < P , , S, T, λ) is an ipomset, -for all x ∈ P , 0 ≤ σ -(x) ≤ σ + (x) ≤ d, -for all x ∈ S, σ -(x) = 0, -for all x ∈ T , σ + (x) = d, and -for all x, y ∈ P , σ + (x) < σ -(y) =⇒ x < P y =⇒ σ + (x) ≤ σ -(y).
The activity interval of event x ∈ P is σ(x) = [σ -(x), σ + (x)]; we will always write σ(x) using square brackets because of this. The untiming of P is its underlying ipomset, i.e., unt(P ) = (P, < P , , S, T, λ). We will often write tipomsets as (P, σ, d) or just P .

Example 15. Figure 7 depicts the following tipomsets:

-

T 1 = ({x 1 , x 2 , x 3 }, < 1 , σ 1 , , {x 1 , x 3 }, {x 1 }, λ 1 , 3) with • < 1 = {(x 3 , x 2 )}, = {(x 1 , x 2 ), (x 1 , x 3 )}, • λ 1 (x 1 ) = a, λ 1 (x 2 ) = d, λ 1 (x 3 ) = c, and • σ 1 (x 1 ) = [0, 3], σ 2 (x 2 ) = [1.5, 3], σ 2 (x 3 ) = [0, 1.5] -T 2 = ({x 4 , x 5 , x 6 }, < 2 , σ 2 , x 4 x 5 x 6 , {x 4 }, ∅, λ 2 , 4) with • < 2 = ∅, λ 2 (x 4 ) = a, λ 2 (x 5 ) = b, λ 2 (x 6 ) = c, and • σ 2 (x 4 ) = [0, 2], σ 2 (x 5 ) = [0.5, 3.5], σ 2 (x 6 ) = [1, 3].
Note that in T 1 , the d-labeled event x 2 is not in the terminating interface as it ends exactly at time 3. Further, the precedence order is not induced by the timestamps in T 1 : we have σ + 1 (x 3 ) = σ - 1 (x 2 ) but x 3 < 1 x 2 ; setting < 1 = ∅ instead would also be consistent with the timestamps. For the underlying ipomsets, We generalize the gluing composition of ipomsets to tipomsets. Definition 16. Given two tipomsets (P, σ P , d P ) and

unt(T 1 ) = • a • • c → d , unt(T 2 ) =   • a b c   .
(Q, σ Q , d Q ), the gluing composition P * Q is defined if unt(P ) * unt(Q) is. Then, P * Q = (U, σ U , d U ), where -U = P * Q and d U = d P + d Q , -σ - U (x) = σ - P (x) if x ∈ P and σ - U (x) = σ - Q (x) + d P else, -σ + U (x) = σ + Q (x) + d P if x ∈ Q and σ U (x) = σ + P (x) else.
The above definition is consistent for events x ∈ T P = S Q : here, σ -

U (x) = σ - P (x) and σ + U (x) = σ + Q (x) + d P .
Example 17. Continuing Ex. 15, Fig. 8 depicts the gluing of T 1 and T 2 , which is the tipomset T = ({x 1 , x 2 , x 3 , x 5 , x 6 }, <, σ, , {x 1 , x 3 }, ∅, λ, 7) with -< = {(x 3 , x 2 ), (x 2 , x 5 ), (x 3 , x 5 ), (x 2 , x 6 ), (x 3 , x 6 )}, -= {(x 1 , x 2 ), (x 1 , x 3 ), (x 1 , x 5 ), (x 5 , x 6 ), (x 1 , x 6 )}, -λ(x 1 ) = a, λ(x 2 ) = d, λ(x 3 ) = c, λ(x 5 ) = b, λ(x 6 ) = c, -σ(x 1 ) = [0, 5], σ(x 2 ) = [1.5, 3], σ(x 3 ) = [0, 1.5], σ(x 5 ) = [3.5, 6.5], and σ(x 6 ) = [START_REF] Amrane | Closure and decision properties for higher-dimensional automata[END_REF][START_REF] André | IMITATOR 3: Synthesis of timing parameters beyond decidability[END_REF]. In this example, events x 1 and x 4 have been glued together. Thus

unt(T ) = unt(T 1 ) * unt(T 2 ) =     • a d b • c c     .
Here dashed arrows indicate event order, and full arrows indicate precedence order.

The next lemma, whose proof is trivial, shows that untiming respects gluing composition.

Lemma 18. For all tipomsets P and Q, P * Q is defined iff unt(P ) * unt(Q) is, and in that case, unt(P ) * unt(Q) = unt(P * Q).

⊓ ⊔ Definition 19. An isomorphism of tipomsets (P, σ P , d P ) and

(Q, σ Q , d Q ) is an ipomset isomorphism f : P → Q for which σ P = σ Q • f and d P = d Q .
In other words, two tipomsets are isomorphic if they share the same activity intervals, durations, precedence order, interfaces, and essential event order. As for (untimed) ipomsets, isomorphisms between tipomsets are unique, hence we may switch freely between tipomsets and their isomorphism classes.

Remark 20. Analogously to ipomsets, one could define a notion of subsumption for tipomsets such that isomorphisms would be invertible subsumptions. We refrain from doing this here, mostly because we have not seen any need for it. Note that as per Ex. 27 below, untimings of HDTA languages are not closed under subsumption.

Translations

We now provide the translations shown in Fig. 6. First, the bijection between idwords and tipomsets. Let I 0 d 0 P 1 d 1 . . . P n d n I n+1 be an interval delay word in sparse normal form. Define the ipomset P = P 1 * . . . * P n and let d P = n i=0 d i . In order to define the activity intervals, let x ∈ P and denote [START_REF] Behrmann | Uppaal 4.0[END_REF], this defines a mapping tGlue from idwords to tipomsets.

first(x) = min{i | x ∈ P i ∨ x ∈ I i }, last(x) = max{i | x ∈ P i ∨ x ∈ I i }. If first(x) = 0, then let σ -(x) = 0, otherwise, σ -(x) = first(x)-1 i=0 d i . Similarly, if last(x) = n + 1, then let σ + (x) = d P ; otherwise, σ + (x) = last(x)-1 i=0 d i . Using Lem.
Example 21. Tipomset T of Ex. 17 is the translation of the following sparse interval delay word:

[ •a• •c• ] 1.5 [ •a• •c ] 0 [ •a• d• ] 1.5 [ •a• •d ] 0.5 [ •a• b• ] 0.5 •a• •b• c• 1 •a •b• •c• 1 [ •b• •c ] 0.5 • b 0.5 id ∅ Lemma 22.
The mapping tGlue is a bijection between idwords and tipomsets.

Lemma 23. The vertical mappings i 1 , . . . , i 4 of Fig. 6 are injective and commute with the horizontal bijections.

Languages of HDTAs

We are now ready to introduce languages of HDTAs as sets of timed ipomsets. Let A = (Σ, C, L, ⊥, ⊤, σ, inv, exit) be an HDTA and

A = (S, S ⊥ , S ⊤ , ). A path π in A is a finite sequence of consecutive moves s 1 s 2 • • • s n , where each s i s i+1 is either s i di s i+1 , s i U s i+1 or s i U s i+1 for d i ∈ R ≥0 and U ∈ . As usual, π is accepting if s 1 ∈ S ⊥ and s n ∈ S ⊤ .
Definition 24. The observable content ev(π) of a path π in A is the tipomset (P, < P , P , S P , T P , λ P , σ P , d P ) defined recursively as follows: -if π = (l, v), then (P, < P , P , S P , T P , λ P ) = id ev(l) , σ P (x) = [0, 0] for all x ∈ P , and 

d P = 0; -if π = (l, v) d (l, v + d),
-if π = (l 1 , v 1 ) U (l 2 , v 2 )
, then (P, < P , P , S P , T P , λ P ) = U ↑ev(l 2 ), σ P (x) = [0, 0] for all x ∈ P , and

d P = 0; -if π = (l 1 , v 1 ) U (l 2 , v 2 )
, then (P, < P , P , S P , T P , λ P ) = ev(l 1 )↓ U , σ P (x) = [0, 0] for all x ∈ P , and

d P = 0; -if π = π 1 π 2 , then ev(π) = ev(π 1 ) * ev(π 2 ).
Observe that by definition of A , the first item above is a special case of the second one with d = 0. Definition 25. The language of an HDTA A is

L(A) = {ev(π) | π accepting path of A}.
Remark 26. With a few simple changes to Def. 24 above, we can define the observable content of an HDTA path as an idword instead of a tipomset. (By Lem. 22 this is equivalent.) If we define ev((l, v) d (l, v + d)) = d in the second case above and use concatenation of idwords instead of gluing composition in the last case, then ev(π) ∈ IDW. Thus, the language of an HDTA can be seen as a set of tipomsets or as a set of idwords.

Example 27. We compute the language of the HDTA A of Fig. 5. As both vertical transitions are disabled, any accepting path must proceed along the location sequence (l 0 , e 1 , u, e 4 , l 3 ). The general form of accepting paths is thus

π = (l 0 , v 0 ) d1 (l 0 , v 0 + d 1 ) a (e 1 , v 2 ) d2 (e 1 , v 2 + d 2 ) b (u, v 3 ) d3 (u, v 3 + d 3 ) b (e 4 , v 4 ) d4 (e 4 , v 4 + d 4 ) a (l 3 , v 5 ) d5 (l 3 , v 5 + d 5 ).
There are no conditions on d 1 , as both clocks x and y are reset when leaving l 0 . The conditions on x at the other four locations force Further, as there are no upper bounds on clocks in l 3 , there are no constraints on d 5 .

1 ≤ d 2 ≤ 4, 1 ≤ d 2 + d 3 ≤ 4,
To sum up, L(A) is the set of tipomsets

({x 1 , x 2 }, ∅, σ, x 1 x 2 , ∅, ∅, λ, d 1 + • • • + d 5 ) a b x ← 0 x ≤ 0 a b b a x ← 0
x ≤ 0 Fig. 10. Two HDTAs pertaining to Rem. 28

with λ(x 1 ) = a, λ(x 2 ) = b, σ(x 1 ) = [d 1 , d 1 + • • • + d 4 ] and σ(x 2 ) = [d 1 + d 2 , d 1 + d 2 + d 3 ],
or equivalently the set of idwords

id ∅ d 1 a • d 2 [ •a• b• ] d 3 [ •a •b• ] d 4 • b d 5 id
∅ , in which the delays satisfy the conditions above. As an example, π = (l 0 , (0, 0, 0)) 5 (l 0 , (5, 5, 5)) a (e 1 , (0, 0, 5)) 2 (e 1 , (2, 2, 7))

b (u, (2, 0, 7)) 1 (u, (3, 1, 7)) b (e 4 , (3, 1, 0))

1.5 (e 4 , (4.5, 2.5, 1.5)) a (l 3 , (4.5, 2.5, 1.5)) 2.5 (l 3 , (

is an accepting path whose associated tipomset is depicted in Fig. 9. Its interval delay word is id

∅ 5 a • 2 [ •a• b• ] 1 [ •a •b• ] 1.5 • b 4.5 id ∅ Note that unt(L(A)) = {[ a b
]} which is not closed under subsumption.

Remark 28. We can now show why the precedence order of a tipomset cannot generally be induced from the timestamps. Figure 10 shows two HDTAs in which events labeled a and b happen instantly. On the left, a precedes b, and the language consists of the tipomset ab with duration 0 and σ(a) = σ(b) = [0, 0]. On the right, a and b are concurrent, and the language contains the tipomset [ a b ] with the same duration and timestamps.

Language inclusion is undecidable

[24] introduces a translation from timed automata to HDTAs which we review below. We show that the translation preserves languages. It is not simply an embedding of timed automata as one-dimensional HDTAs, as transitions in HDTAs are not instantaneous. We use an extra clock to force immediacy of transitions and write idw(w) for the idword induced by a delay word w below. Let A = (Σ, C, Q, ⊥, ⊤, I, E) be a timed automaton and C ′ = C ⊎ {c T }, the disjoint union. In the following, we denote the components of a transition e = (q e , φ e , ℓ e , R e , q ′ e ) ∈ E. We define the HDTA H(A) = (L, ⊥, ⊤, inv, exit) by L = Q ⊎ E and, for q ∈ Q and e ∈ E, ev(q) = ∅, ev(e) = {ℓ e }, δ 0 ℓe (e) = q e , δ 1 ℓe (e) = q ′ e , inv(q) = I(q), exit(e) = R e , inv(e) = φ e ∧ c T ≤ 0, exit(q) = {c T }.

Example 29. The HDTA on the left of Fig. 10 is isomorphic to the translation of the timed automaton with the same depiction. (Because of the constraint x ≤ 0 in the accepting location, the extra clock c T may be removed.) By the above theorem, we can reduce deciding inclusion of languages of timed automata to deciding inclusion of HDTA languages. It follows that inclusion of HDTA languages is undecidable:

Lemma 30. For any q 1 , q 2 ∈ Q and v 1 , v 2 : C → R ≥0 , (q 1 , v 1 ) a (q 2 , v 2 ) is an action move of A if and only if (q 1 , v ′ 1 ) a (e, v ′ ) and (e, v ′ ) a (q 2 , v ′ 2 ) are moves of H(A) such that -for all c ∈ C, v ′ 1 (c) = v ′ (c) = v 1 (c) and v ′ 2 (c) = v 2 (c); -v ′ 1 (c T ) ∈ R ≥0 and v ′ (c T ) = v ′ 2 (c T ) = 0. In addition, idw(ev((q 1 , v 1 ) a (q 2 , v 2 ))) = ev((q 1 , v ′ 1 ) a (e, v ′ ) a (q 2 , v ′ 2 )).
Corollary 33. For HDTAs A 1 , A 2 , it is undecidable whether L(A 1 ) ⊆ L(A 2 ).

Untimings of HDTA languages are (almost) regular

We revisit the notions of region equivalence and region automaton from [START_REF] Fahrenberg | Higher-dimensional timed and hybrid automata[END_REF] in order to study untimings of languages of HDTAs. For d ∈ R ≥0 we write ⌊d⌋ and d for the integral, respectively fractional, parts of d, so that d = ⌊d⌋ + d .

Let A = (Σ, C, L, ⊥ L , ⊤ L , inv, exit) be an HDTA. Denote by M the maximal constant which appears in the invariants of A and let ∼ = denote the region equivalence on R

C ≥0 induced by A. That is, valuations v, v ′ : C → R ≥0 are region equivalent if -⌊v(x)⌋ = ⌊v ′ (x)⌋ or v(x), v ′ (x) > M , for all x ∈ C, and -v(x) = 0 iff v ′ (x) = 0, for all x ∈ C, and -v(x) ≤ v(y) iff v ′ (x) ≤ v ′ (y) for all x, y ∈ C.
[24] introduces a notion of untimed bisimulation for HDTA and shows that ∼ = is an untimed bisimulation. An immediate consequence is the following.

Lemma 34. Let t = (l 1 , v 1 ) (l 2 , v 2 ) be a transition in A . For all v ′ 1 ∼ = v 1 there exists a transition t ′ = (l 1 , v ′ 1 ) (l 2 , v ′ 2 ) such that v ′ 2 ∼ = v 2 . ⊓ ⊔ As usual, a region is an equivalence class of R C ≥0 under ∼ =. Let R = R C ≥0/ ∼ =
denote the set of regions, then R is finite [START_REF] Alur | A theory of timed automata[END_REF].

Definition 35. The region automaton of A is the transition system R(A) = (S, S ⊥ , S ⊤ , ։) given as follows:

S = {(l, r) ∈ L × R | r ⊆ inv(l) } ∪ {(l 0 ⊥ , {v 0 }) | l 0 ∈ ⊥ L } S ⊥ = {(l 0 ⊥ , {v 0 }) | l 0 ∈ ⊥ L } S ⊤ = S ∩ ⊤ L × R ։ = {((l 0 ⊥ , {v 0 }), id ev(l 0 ) , (l 0 , {v 0 })) | l 0 ∈ ⊥ L } ∪ {((l, r), id ev(l) , (l, r ′ )) | ∃v ∈ r, v ′ ∈ r ′ , d ∈ R ≥0 : (l, v) d (l, v ′ ), v ′ = v + d} ∪ {((l, r), U ↑ev(l ′ ), (l ′ , r ′ )) | ∃v ∈ r, v ′ ∈ r ′ : (l, v) U (l ′ , v ′ )} ∪ {((l, r), ev(l)↓ U , (l ′ , r ′ )) | ∃v ∈ r, v ′ ∈ r ′ : (l, v) U (l ′ , v ′ )}
Extra copies of start locations are added in order to avoid paths on the empty word ε. This construction is similar to the construction of an ST-automaton from an HDA [START_REF] Amrane | Closure and decision properties for higher-dimensional automata[END_REF]. The region automaton of A is a standard finite automaton whose transitions are labeled by elements of St ∪ Te. Its language is a set of coherent words of (St ∪ Te) * [START_REF] Amrane | Closure and decision properties for higher-dimensional automata[END_REF].

Lemma 36. A path (l 0 , v 0 ) • • • (l p , v p ) is accepting in A if and only if (l 0 ⊥ , r 0 ) ։ (l 0 , r 0 ) ։ • • • ։ (l p , r p ) with v i ∈ r i is accepting in R(A).
Theorem 37. For any HDTA A, L(R(A)) = unt(L(A)).

By the Kleene theorem for finite automata, L(R(A)) is represented by a regular expression over St ∪ Te. Since P 0 * P 1 * • • • * P n is accepted by A if and only if the coherent word unt(P 0 ) unt(P 1 ) . . . unt(P n ) is accepted by R(A), Theorems 6 and 37 now imply the following.

Corollary 38. For any HDTA A, unt(L(A))↓ is a regular ipomset language.

In [START_REF] Amrane | Closure and decision properties for higher-dimensional automata[END_REF] it is shown that inclusion of regular ipomset languages is decidable. Now untimings of HDTA languages are not regular because they are not closed under subsumption, but the proof in [START_REF] Amrane | Closure and decision properties for higher-dimensional automata[END_REF], using ST-automata, immediately extends to a proof of the fact that also inclusion of untimings of HDTA languages is decidable: Corollary 39. For HDTAs A 1 and A 2 , it is decidable whether unt(L(A 1 )) ⊆ unt(L(A 2 )).

Conclusion and Perspectives

We have introduced a new language-based semantics for real-time concurrency, informed by recent work on higher-dimensional timed automata (HDTAs) and on languages of higher-dimensional automata. On one side we have combined the delay words of timed automata with the step sequences of higher-dimensional automata into interval delay words. On the other side we have generalized the timed words of timed automata and the ipomsets (i.e., pomsets with interfaces) of higher-dimensional automata into timed ipomsets. We have further shown that both approaches are equivalent.

Higher-dimensional timed automata model concurrency with higher-dimensional cells and real time with clock constraints. Analogously, timed ipomsets express concurrency by partial orders and real time by interval timestamps on events. Compared to related work on languages of time Petri nets, what is new here are the interfaces and the fact that each event has two timestamps (instead of only one), the first marking its beginning and the second its termination. This permits to introduce a gluing operation for timed ipomsets which generalizes serial composition for pomsets. It further allows us to generalize step decompositions of ipomsets into a notion of interval delay words which resemble the delay words of timed automata.

As an application, we have shown that language inclusion of HDTAs is undecidable, but that the untimings of their languages have enough regularity to imply decidability of untimed language inclusion.

Perspectives. We have seen that unlike languages of higher-dimensional automata, untimings of HDTA languages are not closed under subsumption. This relates HDTAs to partial higher-dimensional automata [START_REF] Dubut | Trees in partial higher dimensional automata[END_REF][START_REF] Fahrenberg | Partial higher-dimensional automata[END_REF] and calls for the introduction of a proper language theory of these models.

Secondly, higher-dimensional automata admit Kleene and Myhill-Nerode theorems [START_REF] Fahrenberg | A Kleene theorem for higher-dimensional automata[END_REF][START_REF] Fahrenberg | A Myhill-Nerode theorem for higherdimensional automata[END_REF], but for timed automata this is more difficult [START_REF] Asarin | Challenges in timed languages: From applied theory to basic theory[END_REF]. We are wondering how such properties will play out for HDTAs.

Timed automata are very useful in real-time model checking, and our languagebased semantics opens up first venues for real-time concurrent model checking using HDTAs and some linear-time logic akin to LTL. What would be needed now are notions of simulation and bisimulation-we conjecture that as for timed automata, these should be decidable for HDTAs-and a relation with CTL-type logics. One advantage of HDTAs is that they admit a partial-order semantics, so partial-order reduction (which is difficult for timed automata [START_REF] Bønneland | Start pruning when time gets urgent: Partial order reduction for timed systems[END_REF][START_REF] Govind | Abstractions for the local-time semantics of timed automata: a foundation for partial-order methods[END_REF]) should not be necessary.

Finally, a note on robustness. Adding information about durations and timings of events to HDTAs raises questions similar to those already existing in timed automata. Indeed, the model of timed automata supports unrealistic assumptions about clock precision and zero-delay actions, and adding concurrency makes the need for robustness in HDTAs even more crucial. It is thus pertinent to study the robustness of HDTAs and their languages under delay perturbations, similarly for example to the work done in [START_REF] Bouyer | Permissive strategies in timed automata and games[END_REF][START_REF] Clement | Robustness of Timed Automata: Computing the Maximally-Permissive Strategies[END_REF][START_REF] Clement | Computing maximally-permissive strategies in acyclic timed automata[END_REF].

Robustness may be formalized using notions of distances and topology, see for example [START_REF] Asarin | Entropy of regular timed languages[END_REF][START_REF] Asarin | Distance on timed words and applications[END_REF][START_REF] Fahrenberg | A Generic Approach to Quantitative Verification[END_REF][START_REF] Fahrenberg | The quantitative linear-time-branching-time spectrum[END_REF][START_REF] Gupta | Robust timed automata[END_REF]. Distances between timed words need to take permutations of symbols into account [START_REF] Asarin | Entropy of regular timed languages[END_REF], and it seems promising to use partial orders and timed ipomsets to formalize this.
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 1 Fig. 1. Petri net and HDA models for a.c b.

  and R ⊆ C, the clock valuations v + d and v[R ← 0] are defined by

Lemma 5 .

 5 Glue : SSeq → iPoms is a bijection. Proof. Directly from [31, Prop. 4]. ⊓ ⊔ See below for examples of step sequences and ipomsets.

Fig. 3 .

 3 Fig. 3. HDA of Example 7. The grayed area indicates that a and b may occur concurrently, i.e., there is a two-dimensional cell, u in this instance

Fig. 4 .

 4 Fig. 4. HDTA of Example 9.

Example 9 .

 9 We give a few examples of two-dimensional timed automata. The first, in Fig.4, is the HDA of Fig.3with time constraints. It models two actions, a

Fig. 5 .

 5 Fig. 5. HDTA of Example 10

Fig. 6 .

 6 Fig.6. Different types of language semantics: below, for languages of timed automata; middle, for languages of HDAs; top, for languages of HDTAs. Vertical arrows denote injections, horizontal arrows bijections.

Definition 12 .Lemma 13 .

 1213 An interval delay word (idword) is an element of the set IDW = Id.tCoh /∼ .Id. Every element of IDW has a unique representative I 0 d 0 P 1 d 1 . . . P n d n I n+1 , for n ≥ 0, with the property that for all 1 ≤ i ≤ n, P i / ∈ Id and for all 1

Fig. 7 .

 7 Fig. 7. Tipomsets T1 (left) and T2 (right) of Ex. 15

Fig. 8 .

 8 Fig. 8. Gluing T1 * T2, see Ex. 17

Fig. 9 .

 9 Fig. 9. Tipomset of accepting path in HDTA of Ex. 27

and 2 ≤ d 2 + d 3 + d 4 ≤ 5 .

 2345 As y is reset when leaving e 1 , we must have 1 ≤ d 3 ≤ 3 and 1 ≤ d 3 + d 4 , and the condition on z at l 3 forces 1 ≤ d 4 .

Lemma 31 .

 31 For any a ∈ Σ and d, d ′ ∈ R ≥0 , d a d ′ is the label of some path in A if and only if d a • 0 • a d ′ is the label of some path in H(A) . Theorem 32. For any timed automaton A, L(H(A)) = {idw(w) | w ∈ L(A)}.
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We will omit the extra subscript "U " in δ ν A,U from here on.

The event order is needed to identify concurrent events, see[START_REF] Fahrenberg | Languages of higher-dimensional automata[END_REF][START_REF] Fahrenberg | A Myhill-Nerode theorem for higherdimensional automata[END_REF] for details.

Appendix: Proofs

Proof (of Lem. 13). If two words of the form of the lemma are equivalent, then they are equal. This proves uniqueness. To show existence, first note that by using the equivalences

any element of IDW may be rewritten to a word (not necessarily unique)

with n ≥ 0 and P 1 , . . . , P n ∈ St ∪ Te.

Next we prove by induction on n that any word w of the form ( 5) is equivalent to one as in the lemma. The case n = 0 is trivial. Now let n ≥ 1 and suppose the property holds up to index n -1. If w is not of the form (5) at index n, then this may be for two reasons.

-There is 

be sparse idwords such that P = tGlue(w) = tGlue(w ′ ). By Lem. 3, n = m and (I 0 , P 0 , . . . , P n , I n+1 ) = (I ′ 0 , P ′ 0 , . . . , P ′ m , I ′ m+1 ). Hence also first(x) = first ′ (x) and last(x) = last ′ (x) for all x ∈ P , and by induction,

i for all i. To show surjectivity, let P be a tipomset, P = P 1 * • • • * P n its unique sparse decomposition given by Lem. 3, and I 0 = id SP 1 , I n+1 = id TP n . Again by induction, we can use first and last to define the delays d 0 , . . . , d n , and then

starts and terminations of actions with 0 delays in-between (and the original delays between different actions). Similarly for i 2 , a sparse step sequence I 0 P 1 . . . P n I n+1 is translated to the (sparse) idword I 0 0 P 1 0 . . . 0 P n 0 I n+1 , inserting 0 delays between all elements.

For i 3 , let w = (a 0 , t 0 ) . . . (a n , t n ) t n+1 be a timed word. This is translated to the tipomset ({x 1 , . . . , x n }, <, σ, ∅, ∅, ∅, λ, d) with

Finally, an ipomset P is translated to a tipomset (P, σ, d) by setting σ(x) = [0, 0] for all x ∈ P and d = 0.

Injectivity of these four mappings (up to isomorphism) is clear, as is the fact that they commute with the horizontal bijections.

⊓ ⊔ Proof (of Lem. 30). By construction, (q 1 , φ, a, R, q 2 ) ∈ E if and only if there exist q 1 , q 2 , e ∈ L such that δ 0 a (e) = q 1 , δ 1 a (e) = q 2 , ev(e) = a, inv(q) = I(q), inv(e) = φ ∧ c T ≤ 0, exit(q) = {c T }, and exit(e) = R. Let us denote by A and H the set of transitions of A and H(A) , respectively. Then {((q 1 , v 1 ), a, (q

This proves the first part of the lemma. The second part is obtained directly from the definitions.

⊓ ⊔ Proof (of Lem. 31). From Lem. 30 we know that a is the label of a path in A if and only if idw(a) = a • 0 • a is the label of some path in H(A) . We conclude by noting that by construction, time evolves in H(A) only in 0-dimensional locations and exactly as it evolves in A.

⊓ ⊔

Proof (of Thm. 32). From Lem. 31 we know that d a d ′ is the label of some path in A if and only if idw(d a d ′ ) is the label of some path in H(A) . Now for any two delay words w, w ′ , idw(ww ′ ) = idw(w) idw(w ′ ), so the theorem follows by induction on paths and from

Proof (of Lem. 36). The direction from left to right follows directly from the definition of ։ in Def. 35. For the other direction we proceed by induction on p. For the base case p = 0 we have (l 0 , {v 0 }) in A . Assume now that the lemma is true for p-1, that is we have a path (l 0 , v 0 ) • • • (l p-1 , v p-1 ) in A satisfying the lemma. By construction the presence of a transition (l p-1 , r p-1 ) ։ (l p , r p ) in R(A) is due to the existence of some transition

p-1 , we can conclude by using Lem. 34.

⊓ ⊔

Proof (of Thm. 37). From Lem. 36 we know that for all n ≥ 0, a path π = (l 0 , v 0 )

Notice that by construction of R(A), unt(P 0 ) is the label of (l 0 ⊥ , r 0 ) ։ (l 0 , r 0 ) and for all 1 ≤ i ≤ n, unt(P i ) is the label of (l i-1 , r i-1 ) ։ (l i , r i ) regardless of the type of the move . Thus the label of π ′ is unt(P 0 ) unt(P 1 ) . . . unt(P n ). Hence P 0 * P 1 * • • • * P n is accepted by A if and only if unt(P 0 ) unt(P 1 ) . . . unt(P n ) is accepted by R(A).