
HAL Id: hal-04444552
https://hal.science/hal-04444552v1

Preprint submitted on 7 Feb 2024 (v1), last revised 10 Feb 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Colorful Ascent: Painting a New Rainbow Tables
Variant

Gildas Avoine, Xavier Carpent, Diane Leblanc-Albarel

To cite this version:
Gildas Avoine, Xavier Carpent, Diane Leblanc-Albarel. A Colorful Ascent: Painting a New Rainbow
Tables Variant. 2024. �hal-04444552v1�

https://hal.science/hal-04444552v1
https://hal.archives-ouvertes.fr

A Colorful Ascent: Painting a New

Rainbow Tables Variant

Gildas Avoine1†, Xavier Carpent2†, Diane Leblanc-Albarel3*†

1SPICY group, INSA Rennes, IRISA, France.
2 University of Nottingham, United Kingdom.

3COSIC group, KU Leuven, Belgium.

*Corresponding author(s). E-mail(s): diane.leblanc-albarel@kuleuven.be;
†These authors contributed equally to this work.

Abstract

The concept of a time-memory trade-off was first introduced by M. Hellman in
1980, providing an algorithm for conducting brute-force attacks more efficiently.
This method consists of an intensive precomputation phase, the results of which
are stored in tables and subsequently used to significantly reduce the time re-
quired for brute-force attacks. A notable advancement is the introduction of
rainbow tables by Oechslin in 2003. However, the process of precomputing rain-
bow tables is marked by inefficiency, primarily due to the large proportion of
computed values that are ultimately discarded. In 2023, descending stepped rain-
bow tables were introduced by Avoine et al., which consists of recycling chains
during the precomputation phase. This paper introduces and evaluates ascend-
ing stepped rainbow tables, unlike traditional rainbow tables, which use uniform
chains, this variant adds new, distinct chains during the precomputation phase.
The paper presents a detailed analysis of the ascending stepped rainbow tables,
including formulas to predict attack time, precomputation time, memory re-
quirements, and coverage. Through theoretical results and implementation, the
analysis demonstrates that this new variant offers significant improvements over
both descending stepped rainbow tables and traditional rainbow tables for high
coverage. Specifically, for the typical 99.5% coverage, ascending stepped rainbow
tables achieve up to 30% faster precomputation time compared to descending
stepped tables, and up to 45% compared to traditional rainbow tables, while also
reducing attack times by up to 15% and 11% respectively. For lower coverages,
although the precomputation times are higher, the attacks remain faster.

Keywords: Applied Cryptogrphy, Password Cracking, Time-Memory Trade-Off,
Rainbow Tables, Descending Stepped Rainbow Tables

1

1 Introduction

Time-Memory Trade-Off (TMTO) algorithms aim to retrieve the preimage of an
one-way function image more efficiently than exhaustive searches while requiring less
memory than dictionary attacks. Rainbow Tables (RT) are a type of TMTO algorithm
introduced by Oechslin in 2003 [22]. They are considered as one of the most effective
TMTO algorithms [1, 2] and are widely used today [3–9].

Given a one-way function h : A → B (where A is an input space of N = |A|
elements), the goal of RTs is to retrieve an element x ∈ A from its image Y with
Y = h(x). Although an exhaustive search can solve this problem, it is slow, requiring
an average of N/2 operations to retrieve x. Dictionary attacks are faster, but they
require too much memory (in order ofN) for practical use cases. RTs allow the retrieval
of x using a given memory M , with a cost of T ∝ N2/M2 operations, which is much
faster than an exhaustive search while requiring less memory than a dictionary attack.

RTs consist of two phases: a precomputation phase and an attack phase. During
the precomputation phase, a “matrix” (a collection of hash chains) is computed and
truncated. This phase is performed only once but is computationally expensive (with
a lower bound of about 6N operations per table – see section 2). In practice, several
tables (typically between 2 and 5) are generated to ensure a high success probability,
increasing the precomputation time. Once the precomputation phase is completed, the
attack phase can be performed quickly and repeatedly as desired using the generated
tables. RTs are effective when (1) a large number of attacks must be performed, (2)
the attack phase must be very fast but the attacker has time to prepare, or (3), the
attacker can buy or download tables and only perform the attack.

Many improvements and variants of RTs have been proposed over the years [10–
20]. Recently, a variant called Stepped Rainbow Tables has been introduced [20]. This
variant performs better than vanilla RTs in both the precomputation and attack
phases.

In this paper, we introduce a new variant called Ascending Stepped Rainbow Tables
(ASRT) and show that in some cases, ASRT performs better than the original Stepped
Rainbow Tables (which we refer to as Descending Stepped Rainbow Tables (DSRT) for
clarity). Despite the similarity of their name, and to some extent of their structure,
ASRT and DSRT vary quite dramatically in their analysis. In this paper, we explain
in which cases ASRT performs better than DSRT, why, and discuss when it is more
appropriate to use each variant. The paper presents the background on RTs and
DSRT, introduces ASRT, compares ASRT and DSRT, and propose recommendations
for their use.

2 Background on Rainbow Tables

2.1 Precomputation phase

The precomputation phase consists in computing a series of chains of hashes, called
(rainbow) matrices. Once computed, only the first and last columns of each matrix
are saved into tables for the attack phase.

2

2.1.1 Matrix Construction

In the precomputation phase, a matrix of t+ 1 columns and mt rows is computed
using elements from the search space A. The matrix elements are denoted as xi,j with
0 ⩽ i ⩽ t representing the column and 1 ⩽ j ⩽ mt representing the row. Two types
of functions are used to construct the matrix: the one-way function h : A → B, and
so-called reduction functions ri : B → A. The reduction functions are fast, mapping
elements from the hash space B to A with uniform distribution. In contrast, the
function h with h : A → B is considered slow and is the function that the algorithm
aims to invert. The matrix element xi+1,j is obtained from xi,j (element in the same
row, previous column) using xi+1,j = ri(h(xi,j)). A chain depicts the collection of
elements of the same row. Functions fi with fi : A→ A are the composition functions
of ri and h such as xi+1,j = fi(xi,j) and are called hash-reduction functions. Elements
in the first column x0,j with j as 1 ⩽ j ⩽ m0 are chosen arbitrarily but must be
different. They are called start points (SP). The elements in the last column of the
matrix are called end points (EP). The combination of SP and EP is called a table.

2.1.2 Clean Rainbow Table

The word collision is used to describe a situation where xi,j = xi′,j′ . Many collisions
occur between chains during matrix computations. When two different chains collide
in different columns, they will remain distinct in subsequent columns because different
reduction functions are applied. However, when two chains merge in the same column,
they will be identical in all subsequent columns, constituting a so-called merge. A
merge in column i between two chains in rows j ̸= j′ occurs when xi−1,j ̸= xi−1,j′

but f(xi−1,j) = f(xi−1,j′). As discussed in section 2.4, these merges significantly slow
down the attack phase. As a result, only one among a set of merged chains is kept at
the end of the precomputation phase. Discarding chains that have merged together to
keep only one instance is called cleaning. A RT without merged chains is referred to
as a clean RT1. In the following, RTs are considered clean.

2.1.3 Maximality

When using clean RTs, the number of elements in the last column of the cleaned
matrix is less than the number of elements with which the precomputation begins. The
number of elements considered at the start of the precomputation phase is denoted by
m0, while the number of elements in the last column after cleaning is denoted by mt.
The surviving chains in column i are the number of distinct elements in column i, i.e.,
the number of chains remaining if only the chains of the distinct elements in column i
are kept. The average number of surviving chains in a column i is represented by mi

and can be calculated using the equation 1 from [21]:

mi =
2N

i+ 2N
m0

. (1)

1Also known as perfect in some papers [1, 11, 21, 22]

3

To achieve the highest success probability, one can choose m0 = N elements at the
beginning of the precomputation phase. In this case, a maximum of mmax

t elements
will remain at the end of the phase, where mmax

t is given by equation 2 from [22]:

mmax
t =

2N

t+ 2
. (2)

A table generated using m0 = N elements is known as a maximal table. However,
selecting m0 = N elements is impractical due to a very high precomputation time.
Instead, fewer start points are usually considered, and it is useful to express this
number as m0 = rmmax

t , resulting in αmmax
t elements remaining at the end of the

precomputation phase, where α is given by equation 3 introduced in [18]:

α =
r

r + 1
. (3)

The parameter α is referred to as the maximality factor, and characterizes how
far a table is from being maximal. For instance, taking r = 20 (corresponding to α ≃
0.95) allows to drastically reduce the precomputation time [18] while not significantly
impacting the attack time or the success probability.

2.1.4 Precomputation Time

In 2021, [18] proposed the filtration method, which consists in cleaning the matrix
several times during precomputation, instead of cleaning a single time in the final col-
umn. While cleaning in every columns reduces the total number of required hashes, it
increases the overhead in the form of interruption of row computations during clean-
ing. In [18], the authors show that only several dozen of cleaning closely approximates
the theoretical minimum precomputation time, while minimizing the interuptions and
overhead due to the cleaning itself.

In order to compare the precomputation time of vanilla RTs with those of DSRT
and ASRT, we choose to instead use precomputation lower bound as our comparison
criterion. The rationale for this choice is explained in section 5. Throughout the paper,
unless otherwise stated, we will use the term time to refer to the number of hash (h)
operations for a particular action. The minimum precomputation time of a RT has
been established and demonstrated in [18] and is presented in equation 4:

Pmin =

t−1∑
i=0

mi ≈ 2N ln(1 + r). (4)

2.2 Success Probability

In a RT attack, the success probability depends on the number of distinct elements
in the matrix. The success probability of a single RT is provided in [22] and is given
by Equation 5:

p = 1−
(
1− mt

N

)t
. (5)

4

When coupled with Eq. (2), this shows that the maximal coverage of a clean RT
is 1− e−2 ≈ 86%. As mentioned in section 1, the use of multiple tables increases the
success probability beyond the limit of 86%. Specifically, when ℓ tables are used, the
success probability of the attack is given by Equation 6, also introduced in [22]:

pℓ = 1− (1− p)ℓ. (6)

2.3 Memory Used

In [17], a method called compressed delta encoding is introduced for storing RTs.
This method achieves a memory usage very close to the theoretical lower bound, with
a difference of only approximately 0.66%. Consequently, for simplicity, we approxi-
mate the memory used to store a single RT, denoted as MRT , using the lower bound
introduced in [17]. This lower bound is provided in equation 7.

Since only the SP and EP are required for the attack, only the memory required
to store the SP (MRT

sp) and the memory required to store the EP (MRT
ep) needs to be

considered. The total memory used to store a RT,MRT , is the sum ofMRT
sp andMRT

ep .

MRT =MRT
sp +MRT

ep

= ℓ

[
mt⌈log2(m0)⌉+ log2

(
N

mt

)]
. (7)

2.4 Attack Phase

The aim of the attack phase is to retrieve x from its hash value Y = h(x). The
attacker begins by assuming that the target x is in the penultimate column of the
rainbow matrix, and tests this hypothesis. The process of assuming x is in a particular
column and testing the assumption is referred to as a search. If x is not found in
the penultimate column, the attacker iteratively searches previous columns until x is
found or all columns have been searched.

To perform a search in a column ci, the attacker computes the attack chain which
is a chain starting by ri(Y) and finishing in column t. More formally the attack chain
is Z = ft(ft−1(...(fi+1(ri(Y))))) . Once this chain computed, the attacker checks if
Z matches any of EPs stored in the RT. If there is a match (with j the row of the
matched EP), the attacker computes a chain starting from x0,j and ending at xci,j .
The attacker then computes h(xci−1,j) , if h(xci−1,j) = Y , then xci−1,j is the desired
value.

Because of collisions, a false alarm can occur if there is a match between Z and an
EP despite the fact that h(xci−1,j) ̸= Y . In this case, the attacker continues the search
in other columns until either all columns have been searched or the correct x is found.

It is worth noting that when multiple RTs are used, it is faster to search through the
columns of each table in parallel rather than searching through each table sequentially,
because the cost of a searches increases as it gets deeper.

The average number of hash operations required to search through a single column
is given by Proposition 1 from [20]:

5

Proposition 1. For a given column c, the average number of hash operations Cc
needed to perform a search is given by:

Cc = t− c

t∏
i=c

(
1− mi

N

)
.

Given the cost of searching through a single column, the average total time required
to perform an attack using ℓ tables is given by Theorem 2. This theorem is introduced
and proven in [21]. Intuitively, it corresponds to the sum of the cost of a search in
column i weighted by the probability that the search stops there, plus the cost of the
fail case.
Theorem 2. Given a search space of size N , the average number of hash opera-
tions T required to perform an attack using ℓ RTs with t+ 1 columns, is:

T = ℓ

t∑
c=1

(
mt

N

(
1− mt

N

)ℓ(c−1) c∑
j=1

Ct−j+1

)
+ ℓ
(
1− mt

N

)t t∑
c=1

Cc.

3 Background on Descending Stepped Rainbow
Tables

Stepped Rainbow Tables have been introduced in 2023 in [20]. But they are referred
to as Descending Stepped Rainbow Tables (DSRTs) in this paper for distinction with
ASRTs. This choice is made to easily distinguish DSRTs and ASRTs. In this section we
first provide an overview of DSRTs, followed by an explanation of the precomputation
phase, its cost, the memory required to store DSRTs, their success probability, and
finally, the attack phase and formulas to evaluate their running time.

3.1 Overview

During the cleaning of RTs, a large proportion of computed chains are discarded as
a result of merges. DSRTs instead recycle some merged chains that would otherwise be
discarded. These recycled chains are shorter than regular chains because they exclude
the merged portions. As a result, tables generated using this approach are composed
of several steps, giving the technique its name. A step si < t, is a column in which
chains are cut. The collection of chains ending in step si have a length of si.

The parameters of DSRTs are the total number of steps τ , the steps themselves s
with s = {s1, s2, ..sτ}, the maximality factor α, the total number of columns t and the
number of tables ℓ. The first two are unique for DSRTs, while the others are inherited
from RTs.

3.2 Precomputation

The precomputation begins by computing the m0 chains from column 0 to the
first step s1, then a filtration is performed in s1, a copy of the ms1 remaining chains
is put aside and the precomputation continues until reaching step s2. A new filtration

6

Figure 1: Construction of a DSRT with 3 steps.

is performed and instead of discarding chains that have merged between s1 and s2,
those chains are kept with a size s1. A copy of the ms2 remaining chains is put aside
then the computation continues until reaching s3 and so on until reaching column t.

The minimum DSRT precomputation time is the same as for RT, see equation 4
from [18, 20].

Figure 1 illustrates the construction of a DSRT with 3 steps . The area under the
dashed red line represents the precomputation cost for building the DSRT using the
filtration method (each landing of the curve corresponds to the application of a filter).
The solid purple line is the number of chains that remain after a cleaning for each
column (the area under which corresponds to the minimum precomputation time) .
The matrix obtained at the end of precomputation phase is the solid purple area.

3.3 Success Probability

The success probability of a DSRT is computed similarly to that of RTs, with
the difference that some chains are shorter, which must be taken into account when
computing the success probability.

The success probability for a single DSRT is given in theorem 3 from [20].
Theorem 3. Given τ steps noted si with 0 < i ⩽ τ , s0 = 0 and sτ+1 = t, and
considering msi the number of surviving chains in column si, the success probability p
of a single clean DSRT is:

p = 1−
τ+1∏
i=1

(
1− msi

N

)si−si−1

.

7

The success probability using ℓ tables is then obtained the same way as RT, using
equation 6.

3.4 Memory Used

The total memory lower bound used to store DSRT, MDSRT , is computed as the
sum of the memory used to store the SPs, MDSRT

sp (as defined in equation 8) with

the memory used to store the EPs, MDSRT
ep , (as defined in equation 9). The difference

with RT is that EPs compression cannot be performed on all EPs due to varying chain
lengths2. Therefore, the total EPs memory is computed as the sum of memory used
to store each step. The total memory required for storing SPs and EPs is given in
equation 10 and is proved in [20].

MDSRT
sp =MRT

sp = ℓms1⌈log2(m0)⌉. (8)

MDSRT
ep = ℓ

(
log2

(
N

mt

)
+

τ∑
i=1

log2

(
N

msi −msi+1

))
. (9)

MDSRT =MDSRT
sp +MDSRT

ep . (10)

3.5 Attack Phase

In this section, we first describe the attack process and introduce definitions to
characterize the values involved in attack time evaluation. We then provide an ex-
planation of how to evaluate the attack time, along with the corresponding formulas.
Proofs of propositions and theorems included therein are given in [20].

3.5.1 Attack Process

In contrast to vanilla RT, the DSRT attack is not carried out by searching linearly
from right to left in the matrix. Indeed, while the cost does increase with the size of
the attack chain (just as it does in RTs), the probability of successful search does not
remain constant (contrarily to RTs). As a result, a metric µ is used to evaluate the
success probability of a search in a given column per average number of operations
require to perform this search. This success probability over cost is computed for all
columns of the table, and the resulting values are sorted in decreasing order in a
vector v. Hence, vector v represents the optimal order in which the columns should be
searched during the attack. The values of µ and v are formally defined in definitions 2
and 3, respectively.

Once the order of search has been computed, the attack begins by searching in
the column c that maximizes µ. If c ⩾ sτ , the chain starting by rc(Y) is built from
column c+1 to column t, and the attacker searches for a match with the stored EPs.
If an alarm is raised, the attacker builds the attack chain from column 0 to column c
and checks if the element in column c matches the search element (i.e., if Y = h(xc,j),
with j the row of the matched EP). If not, the attack proceeds to the next columns

2In addition, information on the steps in which chains are needs to be stored

8

c chosen usin µ. If c < sτ , the chain starting by rc(Y) is first built until reaching
the leftmost step that is to the right of c. We note this step by sk(c), as defined in
Definition ??. A check for a match with the EP in column sk(c) is then performed.

If a match is found, the attack chain is rebuilt as usual. In case of a false alarm,
no EP match is searched in the other steps or in column t since, by construction, it
would lead to another false alarm.

If no match in column sk(c) is found, the chain is computed until sk(c)+1 or until
reaching column t, and the same process is repeated.

3.5.2 Evaluation of the Attack Time

To evaluate the average attack time, three different events are considered (1) no
alarm (i.e., no match with any EPs), (2) true alarm (i.e., success of the search), and
(3) false alarm (the attack chain match an EP but does not allow to retrieve the
searched element). Each has a distinct probability of occurrence and associated cost.
The time for a search is the weighted average of these.

Firstly, definitions and lemmas that are used to characterize DSRTs are introduced.
Then the probability and cost of each event is given. The cost of a search Cc, in column
c is obtained by summing up the cost of each event multiplied by its probability, which
is given by Theorem 9. Finally, this cost is used to compute the average time of the
attack in the whole DSRT, as presented in Theorem 10.

3.5.3 DSRT Characterization

The index of the leftmost step to the right of a given column c is noted k(c), with
thus sk(c)−1 ⩽ c < sk(c).

Given a column c, the proportion of chains ending in a particular step si with c < si
must to be known. This proportion is called ρsi,k(c) and is defined in Definition 1.
Definition 1. Given a column c and a step si, the proportion of chains with length
si in column c is given by ρi,k(c) with ρi,j such that:

ρi,j =


msi

−msi+1

msj
i ⩽ τ

mt

msj
i = τ + 1

wheremsi andmsi+1 are the number of chains with length si and si+1, respectively.
The metric µ(c) is used to evaluate the ratio of the probability of finding the

searched element x in column c over the cost of a search in this column c. It is defined
in Definition 2.
Definition 2. Given N and a column c with 0 ⩽ c ⩽ t and a cost of the in column c,
Cc:

µ(c) =
msk(c)

NCc
.

Cc (the average cost of a search in column c) for DSRT is formally defined in
theorem 9.

The vector v, defined in Definition 3, is used to determine the order of search in
the table. It is such that µ(vi) > µ(vj) for 0 ≤ i < j ≤ t.

9

Definition 3. Given a DSRT table with t columns, the vector v with v= [v1, v2, . . . , vt]
is obtained by sorting the columns [1, . . . , t] in decreasing order of µ(c).

The probability pnomrg(c, c
′) represents the probability that an attack chain does

not merge with any chains of a DSRT between column c and c′. It is given in Lemma 1.
Lemma 1. Given two columns c and c′ with c < c′ ⩽ t, the probability that the attack
chain does not merge with any chains of the rainbow matrix by c′, given it had not
merged in or before c, is:

pnomrg(c, c
′) =

c′∏
i=c+1

(
1− mi

N

)
. (11)

3.5.4 No Alarm

When searching in a column c that does not raise any alarm, the cost of a search
is t− c. The attacker computes the chain from column c to t even when c < sτ .

The probability of no alarm occurring between column c and column t is given in
Proposition 4.
Proposition 4. The probability that no alarm occurs between a column c and column
t is

pnoalarm(c) = pnomrg(c, t).

3.5.5 True Alarm

When searching in a column c, the success probability, i.e., the probability of raising
a true alarm, is given by Proposition 5. Its cost is given in Proposition 6. This cost
corresponds to the sum of the probability of raising a true alarm in each step to the
right of c, multiplied by the cost of dealing with these true alarms.
Proposition 5. The probability that a true alarm occurs when starting the attack
chain in c is:

pfind(c) =
msk(c)

N
.

Proposition 6. Given a search performed in a column c and k(c) the index of the
leftmost step that is to the right of c, the number of hash operations needed to rule out
an alarm is:

τ+1∑
i=k(c)

ρi,k(c)si.

3.5.6 False Alarm

The probability of raising a false alarm during the search process depends on the
column in which the merge that leads to the false alarm occurs. Proposition 7 gives
the probability of raising a false alarm when searching in column c, when the merge
occurred between columns c and k(c).
Proposition 7. The probability to raise a false alarm due to a merge between columns
c and sk(c) is

pfa-pre(c) = 1− pfind(c)− pnomrg(c, sk(c)).

10

Additionally, Proposition 8 gives the probability of raising a false alarm when
searching in column c, when the merge occurred between columns si and sj , with
c ⩽ sk(c) < si < sj .
Proposition 8. The probability to raise a false alarm due to a merge between columns
si an sj, with c ⩽ sk(c) < si < sj, is:

pfa-post(c, si, sj) = pnomrg(c, si)− pnomrg(c, sj).

The cost of a false alarm is the same as a true alarm and is therefore given by
Proposition 6.

3.5.7 Cost of a Single Search

The average cost of a search in a column c is noted Cc, and is the sum of the cost
of each event described bellow weighted by its probability. It should be noted that if
sτ < c ⩽ t, then the cost is the same as with RTs.

The cost required to perform a search in a column c is given by Theorem 9.
Theorem 9. For a given column c and the index k(c), the average number of
cryptographic operations Cc needed to perform a search is:
For sτ < c ⩽ t:

Cc = t− cpnoalarm(c).

For c ⩽ sτ :

Cc =
(
1− pnomrg(c, sk(c))

) τ+1∑
i=k(c)

ρi,k(c)si

+

τ∑
j=k(c)

pfa-post(c, sj , sj+1)

τ+1∑
i=j+1

ρi,j+1si

+ (t− c) pnoalarm(c).

3.5.8 Average Attack Time

The average attack time using ℓ DSRTs is given in Theorem 10. This attack time
is computed in two parts.

The first part is the sum of the probability of finding the searched element in a
given column, given that it has not been found yet. This sum is multiplied by the total
cost of searching in all columns.

The second part is the probability of not finding the searched element in any of
the tables. This probability is multiplied by the total cost of searching in all tables.
Theorem 10. Given N , ℓ DSRT with τ steps, and considering its vector v =
[v1, v2, ...vt] ordering the columns of tables, the average number of hash operations T
required to perform an attack is:

T = ℓ

t∑
c=1

(
mvc

N

c−1∏
i=1

(
1− mvi

N

) c∑
j=1

Cvt−j+1

)
+ ℓ

t∏
i=1

(
1− mvi

N

) t∑
c=1

Cvc .

11

with mvc the number of points in column c, and with svc−1 ⩽ c < svc .

4 Ascending Stepped Rainbow Tables

This section introduces the Ascending Stepped Rainbow Tables (ASRT) variant,
which differs in behavior and efficiency from the DSRT. Although the ASRT shares
some similarities with the DSRT and is in many ways its dual. ASRTs are introduced
in this section.

4.1 Overview

The ASRT algorithm involves a gradual addition of chains to the matrix during the
precomputation phase. In well chosen columns of the matrix called steps, a cleaning
is performed, and new chains are added to the matrix. These chains do not begin in
column 0, but rather in some columns si where 0 < si < t. As a result, the matrix
consists of chains that start in different columns but all end in the last column. The
Ascending Stepped Rainbow Matrix (ASRM) can be cleaned in the usual way since the
added chains are computed using the same hash-reduction functions as those already
present in the matrix.

The addition of chains to the matrix in given columns results in an increase in
both the precomputation and memory cost. However, this leads to a matrix with more
chains present in the right part of the table, including in particular, more shorter
chains. The purpose is thus to reduce the attack time by utilizing these shorter chains.
Moreover, a higher number of chains also means a higher success probability.

In DSRT and RT, mi (defined in Equation 1) represents the number of unique
elements in column i. However, this notation is not suitable for ASRT since not all
chains start in the same column. Therefore, we introduce mi,j , which represents the
number of unique elements in column j that are part of chains starting in column i or
before.

4.2 Precomputation

4.2.1 Generation

Differing from RT and DSRT, the initial number of SP used in ASRT precompu-
tation is referred to as m0,0. Accordingly, m0,0 chains are computed from column 0
up to the first step, denoted by s1, and then filtered to retain m0,s1 chains.

Next, a value of ms1,s1 , greater than m0,s1 , is chosen (refer to section 4.2.3 for the
formal definition of the ms1,s1 value). Then, ms1,s1 − m0,s1 elements are chosen to
be as small as possible3 and not equal to any of the m0,s1 elements that remained in
column s1.

At this point, m0,s1 chains with length s1 remain from the first part of the pre-
computation, while ms1,s1 − m0,s1 additional elements have been selected. In total,
ms1,s1 elements are present in column s1. The ms1,s1 −m0,s1 elements are the SP of
chains starting in s1.

3This choice is justified to minimize the total memory.

12

Figure 2: ASRM with 2 steps.

The computation of chains then continues by computing the next columns of the
ms1,s1 chains, regardless of where they started. This computation continues until
reaching column s2, where another cleaning is performed.

Whenever chains starting in different columns merge, the longer chain is always
retained. Intuitively, keeping a shorter chain decreases the success probability of the
table too much compare to the gain in attack time and is, therefore, not worth it.

After cleaning in column s2, ms1,s2 chains remain. As previously, ms2,s2 −ms1,s2

elements are added to thems1,s2 that remain from the previous part. The computation
of chains starts again with ms2,s2 chains.

This continue for the τ steps chosen and until reaching the last column of the
ASRT t.

As for DSRT, the total number of steps is denoted by τ , these steps are denoted
{s1, s2, ..., sτ}, with by convention s0 = 0 and sτ+1 = t. The choice of the steps
placement is explained in section 5.

Figure 2 represents an ASRM with 2 steps and noteworthy points represented.

4.2.2 Maximality

Similarly to RT and DSRT, one could set m0,0 = N , ms1,s1 = N ,.., msτ ,sτ = N to
achieve a maximal ASRT. However, this choice would result in a significant increase
in precomputation cost for comparatively little benefit. Therefore, only msi,si < N
with i ∈ {0, 1, ..., τ} are selected.

To determinemsi,si , a maximality factor αi is chosen for each step, with 0 < αi < 1
and i ∈ {0, 1, ..., τ}.

Unlike RT and DSRT, ASRT has multiple maximality factors (one per step).

13

Figure 3: ASRM with 2 steps.

Given an αi and m
max
t−si , the value of msi,si is obtained from Equation 12:

msi,si =
αi

1− αi
mmax
t−si (12)

where mmax
t−si , obtained from Equation 2, is the maximum number of chains that

started in column si and remain in column t.

4.2.3 Characterization

To facilitate the characterization and visualization of ASRT, and to simplify
equations, this section provides notations and notions utilized for characterizing ASRT.
Figure 3 illustrates these notions on an ASRM. The introduced notions are then used
throughout the rest of this paper.

Firstly, ηi denotes the number of elements contained in a chain starting at si. As
t − si + 1 columns are present between si and t, ηi = t − si + 1. We note ψc,si the
number of columns between si and column c if c > si, and 0 if c ⩽ si, resulting in
ψc,si = max(c− si + 1, 0).

With ASRT, it is essential to differentiate chains that are part of the final matrix
(and thus present in the final table) from those that were present at a given column
during precomputation but not in the final matrix (due to merges). Given a column
c and a starting column si, the unique chains are chains that begin in column si or
earlier and, during the precomputation phase, remain after cleaning in column c. These
chains may or may not be present in the final matrix. The number of unique chains
in column c starting at si or earlier is denoted by msi,c and is given by Equation 13,
which is derived from Equation 1.

14

msi,c =


2N

ψc,si
+ 2N

msi,si

c ⩾ si

0 c < si
(13)

Among the unique chains in column c, some will merge and, consequently, will
not be present in the final matrix. Given a column c and a step si, the faulty chains
are chains that begin in column si or earlier and, during the precomputation phase,
remain after cleaning in column c but do not belong to the final matrix.

The number of faulty chains in column c starting at si or earlier is denoted by
mf
si,c and is given by Equation 14, which is derived from Equation 13.

mf
si,c =

{
msi,c −msi,t c ⩾ si

0 c < si
(14)

Moreover, to effectively utilize ASRT, it is often necessary to determine the closest
step to the left of a given column c. The index of this closest step is denoted by kA(c)
and is defined in Definition 4.
Definition 4. We note kA(c) the index of the rightmost step that is to the left of
column c, i.e., skA(c) ⩽ c < skA(c)−1 and with kA(c) ∈ {0, .., τ}.

4.2.4 Precomputation Time

If the cleaning method is not used , the precomputation time of an ASRM is given
by multiplying for each step, the msi,si SPs considered, by the number of columns
until the next step. The maximum precomputation time Pmax can then be obtained
by summing up the product of msi,si and (si+1 − si), as shown in Equation 15:

Pmax =

τ∑
i=0

msi,si(si+1 − si) (15)

However, as with RT and DSRT, filtering can significantly reduce the precompu-
tation time by reducing the number of hash computations required. The minimum
theoretical precomputation time for a given ASRM can be achieved when a filter is used
in every column. The minimum number of operations needed to generate the matrix
is obtained by summing every mskA(c),c

values for c ∈ 1, .., t, as shown in Equation 16.

Pmin =

t−1∑
c=0

mskA(c),c
(16)

4.3 Success Probability

The success probability for a single ASRT is given by Theorem 11. Similarly to
DSRT and RT, the success probability for ℓ ASRTs is obtained by applying Equation 6.
As for RT and DSRT, the intuitive success probability is the number of distinct el-
ements in the ASRM. Therefore, the success probability is obtained by counting the
number of unique chains in each column of the final matrix, which is divided by the
total number of possible elements N .

15

Theorem 11. Given a single ASRT wih τ steps and t + 1 columns, the success
probability for this single ASRT is given by:

P = 1−
τ∏
i=0

(
1− msi,t

N

)si+1−si

Proof. In each column c, there are msi,t different elements present. The probability of
finding the target element in a given column is

msi,t

N . The probability of not finding

the target element in a column c is therefore 1− msi,t

N .
Between each step, there are si+1−si columns. Thus, the probability of not finding

the target element in any column between si and si+1 is(
1− msi,t

N

)si+1−si
.

As there are τ steps plus the main table, the probability of not finding the target
element in the entire ASRT is

τ∏
i=0

(
1− msi,t

N

)si+1−si
.

4.4 Memory

The storage approach for ASRT is similar to RT and DSRT with a slight difference
in the computation of the SP lower bound. Like RT and DSRT, we use the memory
lower bound to compare each variant since the available storage methods [17] are
very close to this lower bound and simplifies the analysis. The total memory used by
ASRT, denoted by MASRT , is the sum of the memory used for storing the SP and the
memory required to store the EP, denoted respectively as MASRT

sp and MDSRT
ep .

The method for storing EPs is the same as for DSRT, where each collection of
chains starting in a given step is compressed and stored separately from chains starting
in other steps. The memory used to store EPs is given by Equation 17, which is
adapted from [17] and is the same as for DSRT introduced in [20].

MASRT
ep = ℓ

(
log2

(
N

m0,t

)
+

τ∑
i=1

log2

(
N

msi,t −msi−1,t

))
. (17)

For SPs, unlike RT and DSRT, the number of SP varies depending to in which step
the corresponding chains start. Hence, the formula used for SP needs to be adapted
to take this into account.

At each step si, there are msi,si possible SPs to considered. Thus, the minimal
naive way to store SP is to store (msi,t −msi−1,t) log2(msi,si) for each step. This is
because there are msi,t −msi−1,t elements to store for each step, and for each step,
there are msi,si possible SPs.

16

However, when considering ASRT, among the msi,si possible elements, msi−1,si

are already part of the chains computed previously and cannot be chosen. Each chain
among these msi−1,si only have very low probability to be among the msi,si elements
considered in step si, but there will nonetheless be a small amount of redundancy.
To model this, we can compute the value mu(i, zp) , which depicts the maximum
number of possible elements among the msi−1,si elements that are among the msi,si

with a probability of 1−p that more elements than mu(i, zp) will be among the msi,si

elements.
Here, zp is the quantile function of the standard normal distribution. In our exper-

iments, we have chosen p = 0.99994, i.e., zp = 4 to ensure that the probability that
more elements than mu(i, zp) (defined in Proposition 12) will be among the msi,si

elements is less than 0.0007.
Proposition 12. Given a step si with msi,si SPs, given msi−1,si elements of chains
starting in si−1 and remaining in si after cleaning. mu(i, zp) is the maximum number
of elements from msi−1,si that are in the msi,si elements with a probability 1− p with:

mu(i, zp) = msi−1,si −

(
msi−1,si

msi,si

N
+ zp ×

√
msi−1,si

msi,si(1−msi,si)

N2

)

Proof. The probability that an element from the msi−1,si elements of the previous

chains is part of one of themsi,si elements to choose is
msi,si

N . This is because the hash-
reduction function is considered random, and thus themsi−1,si elements are considered
as msi−1,si random elements in N . The number of msi−1,si elements that are part of
the msi,si elements to choose thus follows a binomial distribution with parameters
p =

msi,si

N and n = msi−1,si . The expected value E of this distribution is thus given

by E = np = msi−1,si
msi,si

N , and the standard deviation σ is given by

σ =
√
p(1− p)n =

√
msi−1,si

msi,si(1−msi,si)

N2

From this, we obtain mu(i, zp) by adding E with zpσ and subtracting this sum
from n = msi−1,si .

According to Proposition 12, the maximum number of possible SPs to store for
step si with 1 ⩽ i ⩽ τ is given by msi,si −mu(i, zp). The total memory required to
store all the SP can be computed using Equation 18 which is derived directly from [17].

MASRT
sp = ℓms0,t⌈log2(ms0,s0)⌉+ ℓ

(
τ∑
i=1

msi,t⌈log2(msi,si −mu(i, zp))⌉

)
. (18)

By taking zp = 4, the probability that the memory for SPs is larger than the one
given by Equation 18 is less than 0.0007%.

The total memory used by ASRT, MASRT , is then obtained by adding MASRT
sp

and MASRT
ep , and is given in Equation 19.

17

MASRT =MASRT
sp +MASRT

ep (19)

4.5 Attack Phase

4.5.1 Attack Process

The attack using ASRTs is similar to the attack using vanilla RT. Contrary to
DSRT, it is not required to define any metric for choosing the column of the search.
By construction, the most advantageous columns in which to perform a search are
the rightmost ones, as they are the columns for which the price to build a chain until
column t is the lowest. In addition, they are the columns with the higher success
probability since they are the column with the higher number of chains. They are also
the columns that contain the shortest chains. All these reasons make the search to
have a monotonically increasing cost as the online chains get longer.

Thus, the attack begins by assuming that the target element is in the second to
last column. The attacker computes Rt(Y) and checks if the result is one of the EPs
stored.

If this is the case, the attacker builds the attack chain from the corresponding SP
(regardless of the column in which the chain starts) to column t− 1 and thus obtains
xt−1,j with j the rows of the matched EP. The attacker computes h(xt−1,j) and if
h(xt−1,j) = Y the attack ends and the target element is xt−1. If h(xt−1,j) ̸= Y it is a
false alarm and the attack continues in the next left columns until finding the target
element or reaching the end of the table.

4.5.2 Roadmap

In the next sections, we introduce propositions used to characterize the average
cost of the attack. The average attack time is the sum of the average cost of the search
in each column multiplied by each column’s probability that a search in that column
occurs. Thus, we first need to define the cost and probability of a search in a given
column c.

The search in a given column c is equal to the sum of the cost of each possible
event multiplied by their respective probability of occurrence.

We thus, firstly define each event, namely no alarm, false alarm, and true alarm.
We define the cost of each event and their probability of occurrence. We then multiply
each cost of event by its probability of occurrence and sum the whole to obtain the
cost of search in any column of the table.

4.5.3 No Alarm

Cost

In the process of searching for a match in column c, if the event of no alarm occurs,
it indicates that there is no match with any EP in the table. In such a scenario, the
cost associated with this event is equivalent to the construction of a chain from column
c to t, which is equal to t− c.

18

Probability

If no match occurs with any EP in the table, it implies that the attack chain does
not merge with any chain of the matrix. More formally, for all columns i between
column c and t, the elements of the attack chain are not present in any of the mskA(i),i

elements of the matrix in column i. This corresponds to the fundamental results of
Equation (3) in [22], which is generalized in Lemma 2. Instead ofmi elements,mskA(i),i

surviving chains are present in column i, in the ASRT variant.
Lemma 2. Given a column c with c < t, the probability that the attack chain does
not merge with any chain of the rainbow matrix by t, given it had not merged in or
before c, is:

pAnoalarm(c) =

t∏
i=c+1

(
1−

mskA (i),i

N

)
.

4.5.4 True Alarm

Cost

When searching for an element in column c, a true alarm occurs when the searched
element is found in that column.

The cost associated with this search depends on the column in which the searched
element is found. Since the attack chain needs to be built from column c to t and then
from the corresponding SP to column c, the cost of the search is the length of the
chains in which the corresponding SP is found.

To evaluate the cost of the search, Definition 5 introduces ρAi,j , which represents the
proportion of chains with a length of si in column j. For instance, consider an ASRT
with two steps in columns s1 and s2 with s1 < s2 < t. In column c with s2 < c < t,
chains can be of length s1, s2, or t. ρ

A
1,kA(c) gives the proportion of chains in column c

that have a length of s1. Definition 5 generalizes this concept for all steps and columns.
Definition 5. Given a step si and a step sj, the proportion of chains with length si
in a column c with sj < c < sj+1 is given by ρAi,j such that:

ρAi,j =


msi,t

−msi−1,t

msj,t
i > 0

ms0,t

msj,t
i = 0

Given that a true alarm occurs, its cost is the sum, for each si such that si ⩽
skA(c), of the probability that the true alarm is caused by a chain of length si with

0 ⩽ i ⩽ kA(c), denoted by ρAi,kA(c), multiplied by its length si. This cost is given by
Proposition 13.
Proposition 13. Given a search performed in a column c and k(c) the index of the
leftmost step that is to the right of column c, the number of hash operations needed to
rule out a true alarm is:

kA(c)∑
i=0

ρAi,kA(c)ηi.

19

Proof. ρAi,kA(c) is the proportion of chains with length ηi in column c. In column c,

chains that remain in the final matrix have a length between ηkA(c) and t.
If a true alarm is raised when searching in column c, this means that the attack

chain merged with one of the mskA(c),t
chains present in the final matrix in column c.

Each of these mskA(c),t
chains has a different length, the cost for ruling out the alarm,

is thus the sum of the probability of merging with a chain of a given length, multiplied
by its length.

Given a merge with one of the chains present in the final matrix in column c, the
probability of merge with a chain of length ηi, with 0 ⩽ i ⩽ kA(c) is ρAi,kA(c).

Thus ∀i ∈ {0, ...kA(c)}, the probability of matching a chain of length ηi multiplied
by the cost of going through all the chain is ρAi,kA(c)ηi.

Probability

Equation 13 asserts that a given column c containsmsA
k(c)

,t elements. Consequently,

for each column c, the probability of finding the searched element in any of the col-
umn’s c elements can be computed straightforwardly. This probability is provided by
Proposition 14.
Proposition 14. The probability that a true alarm occurs when starting the attack
chain in c is:

pfind(c) =
mskA(c),t

N
.

Proof. As the search space consists of N elements, and since the column c contains
mskA(c),t

elements, the probability of finding the searched element among the mskA(c),t

elements of column c is simply
ms

kA(c)
,t

N .

4.5.5 False Alarm

The cost and probability of a false alarm depend on various factors. To characterize
it effectively, we first need to introduce several propositions.

Intermediary Results

We first introduce in Proposition 15 the probability that the starting element of
the attack chain is not part of a surviving chain (Equation 13) in a given column.
Proposition 15. Given a column c in which a search is performed, the probability
that the starting element of the attack chain is not among the elements of surviving
chains starting in skA(c) in column c is:

pnotunique(c) = 1−
mskA(c),c

N
.

Proof. The number of surviving chains in column c is, by construction, mskA(c),c
, thus

the probability that a random element in N is not one of the mskA(c),c
elements of

those chains is straightforward.

20

Following, we introduce in Proposition 16, the probability that the starting element
of the attack chain is an element of a doom chain (the number of doom chains in a
column c, md

si,c has been defined in Equation 14).
Proposition 16. Given a column c in which a search is performed, the probability
that the starting element of the attack chain is among a doom chain is:

pfaulty(c) =
md
skA(c),c

N
.

Proof. The probability that the starting element of the attack chains is among the
elements of surviving chains in column c is by definition, the average number of doom
chains in column c, md

si,c, divided by the number N , of elements in the searched
space.

Lemma 3 defines the probability that the attack chain does not merge with a chain
starting in a precise step between two columns c and c′. Lemma 3 is obtained by
derivation of Lemma 1.
Lemma 3. Given two columns c and c′ and a step of index j with c < c′ ⩽ t, the
probability that the attack chain does not merge with any chain starting in step sj or
before by c′, given it had not merged in or before c, is:

pAsubnomrg(c, c
′, j) =

c′∏
i=c+1

(
1−

msj ,i

N

)
.

Cost

The cost of the false alarm depends on the column in which the alarm is detected.
Thus, the cost to rule out a false alarm is ηi, with si the step at which the matrix

chain that merged with the attack chain starts.

Probability

When performing a search in column c, the probability of a false alarm depends,
among other factors, on the value of the starting element of the attack chain.

There are two possibilities:
(a) If the starting element is among the elements of doom chains, a false alarm will

occur, but the probability of occurrence will vary for different steps.
(b) If the starting element is not one of the mskA(c),c

elements of surviving chains,

either no alarm will be raised or a false alarm will occur.
These two possibilities ((a) and (b)) have different probabilities of false alarm, and

thus require separate propositions. Proposition 17 provides the probability of a false
alarm in the first case (a), while Proposition 18 provides the probability of a false
alarm in the second case (b).
Proposition 17. Given an attack chain starting in c, the probability pfa(c, i), to raise
a false alarm due to merge with chains of length ηi and given that the starting element

21

of the attack chain is not an element of a surviving chain in column c is:

pfa(c, i) =

{
pAsubnomrg(c, t, i− 1)− pAsubnomrg(c, t, i) i > 0

1− pAsubnomrg(c, t, i) i = 0

Proof. The probability of the attack chain merging with any chain of length at least ηi
is the complementary event of Lemma 3, for parameters (c, t, i), thus this probability
is 1− pAsubnomrg(c, t, i). For the special case of i = 0, the attack chain can only merge
with a chain of length ηi.

For i > 0, we define events E1 and E2 as “no merge occurs between c and t with a
chain of length at least ηi−1” and “no merge occurs between c and t with a chain of
length at least ηi”, respectively. Since E2 ⊂ E1, we deduce that Pr(E1∧E2) = P (E2).
Therefore, we have:

pfa(c, i) = Pr(E1 ∧ Ē2)

= Pr(E1)− Pr(E1 ∧ E2)

= Pr(E1)− Pr(E2)

= pAsubnomrg(c, t, i− 1)− pAsubnomrg(c, t, i)

Proposition 18. Given an attack chain starting in c, the probability of raising a false
alarm due to merge with chains of length ηi and given that the starting element of the
attack chain is among the elements of doom chains in column c:

p′fa(c, i) =


pAsubnomrg(c, t, k

A(c)− 1) i = kA(c) ∧ i ̸= 0

pAsubnomrg(c, t, i− 1)− pAsubnomrg(c, t, i) i ̸= kA(c) ∧ i ̸= 0

1− pAsubnomrg(c, t, i) i = 0

Proof. In the cases of i ̸= kA(c) or i = 0 (second and third cases), since c is among the
doom chains present in column c, it follows that ηkA(c) < ηi. If the starting element
of the attack chain is among a doom chain in column c, this implies that the starting
element is not among a surviving chain of any step starting to the left of column
skA(c). Given that ηkA(c) < ηi when i ̸= kA(c) or i = 0, the second and third case are
obtained exactly as demonstrated in Proposition 17.

For the specific case of i = kA(c) and i ̸= 0, we again define events E1 and E2 as
“no merge occurs between c and t with a chain of length at least ηkA(c)−1” and “no
merge occurs between c and t with a chain of length at least ηkA(c)”. By the definition
of a doom chain, a chain starting with an element among a doom chain in column c
will merge with a chain of length at least ηkA(c), therefore Pr(E2) = 0. Consequently,

we have Pr(E1 ∧ E2) = 0. From this, we deduce that when i = kA(c) and i ̸= 0:

pfa(c, i) = Pr(E1 ∧ Ē2)

22

= Pr(E1)

= pAsubnomrg(c, t, i− 1)

4.5.6 Cost of the Search in One Column

The number of operations needed to perform a search in a column c is given by
Theorem 19. It is obtained by summing for each event, its probability with its cost.
Theorem 19. For a given column c, the average number of cryptographic operations
CAc needed to perform a search is:

CAc = pfind(c)

kA(c)∑
i=0

ρi,kA(c)ηi

+ pnotunique(c)

kA(c)∑
j=0

pfa(c, j)ηj

+ pfaulty(c)

kA(c)∑
j=0

p′fa(c, j)ηj

+ (t− c) pnoalarm(c).

Proof. To compute the total cost of a search in any column c, one must multiply the
probabilities of the three possible events (true alarm, false alarm, no alarm) by their
respective costs and sum these results.

(a) The probability of a true alarm, denoted as pfind, is given by Proposition 14.

Its corresponding cost is

kA(c)∑
i=0

ρi,kA(c)ηi as stated in Proposition 13. Hence, the cost of

a true alarm in column c can be expressed as pfind(c)

kA(c)∑
i=0

ρi,kA(c)ηi.

(b) A false alarm can occur under two scenarios: (E1) “The starting element of the
attack chain does not equal an element of a surviving chain in column c”. (E2) “The
starting element of the attack chain matches an element of a doom chain in column c”.

Hence, the cost of a search in case of a false alarm is the sum of the probabilities
of these two events multiplied by their respective costs.

- (E1): The probability of event E1 is provided by Proposition 15. The cost of a false
alarm in this case, analogous to the true alarm, is, for all j with 0 ⩽ j ⩽ kA(c),
the probability of a merge with a chain of length exactly ηj multiplied by its cost

23

(ηj). The probability of merging with a chain of length exactly ηj under event E1 is

given by Proposition 17 as pfa(c, j). Hence, the cost of event E1 is

kA(c)∑
j=0

pfa(c, j)ηj .

- (E2): The probability of event E2 is provided by Proposition 16. Analogous to E1,
the probability of a merge with a chain of length exactly ηj under event E2 is given

by Proposition 18 as p′fa(c, j). Hence, the cost of event E2 is

kA(c)∑
j=0

p′fa(c, j)ηj .

In sum, the cost of a false alarm in column c is:

pnotunique(c)

kA(c)∑
j=0

pfa(c, j)ηj + pfaulty(c)

kA(c)∑
j=0

p′fa(c, j)ηj .

(c) The probability of no alarm, denoted as pnoalarm(c), is given by Proposition 2.
Its cost is t− c as seen in Section 4.5.3. Hence, the cost of no alarm in column c can
be expressed as (t− c) pnoalarm.

By summing the cost of each event ((a), (b), and (c)), CAc is obtained.

4.5.7 Average Attack Time

The average attack time using ℓ ASRTs is given in Theorem 20. As for RTs and
DSRTs, this attack time is computed in two parts. The first part is the cost of the
attack if the searched element is in the table, multiplied by the probability that the
searched element is in the table. The second part is the cost of the attack if the
searched element is not in the table multiplied by the probability that the searched
element is not in the table.
Theorem 20. Given N , ℓ ASRT with τ steps, the average number of hash operations
T required to perform an attack is:

T = ℓ

t∑
c=1

(
mskA(c),t

N

c−1∏
i=1

(
1−

mskA(c),t

N

) c∑
j=1

CAt−j+1

)
+ℓ

t∏
i=1

(
1−

mskA(c),t

N

) t∑
c=1

CAc .

Proof. This expression is a generalization of Theorem 2 as it has been done for DSRT
in Theorem 10. T is obtained by adding on the one hand, the success probability of
the attack using ℓ tables, multiplied by its average cost, and on the other hand, the
failure probability of the attack using ℓ tables, multiplied by the cost of a failed search.

The first term is obtained by multiplying for each column c, the probability of a
true alarm in the column, with the probability of no true alarm in all earlier iterations:

mskA(c),t

N

c−1∏
i=1

(
1−

mskA(c),t

N

)
.

24

This is multiplied by the cost of all searches performed until reaching this column,

which is

c∑
j=1

CAt−j+1.

The second term is obtained by multiplying the failure probability using ℓ tables,
namely:

ℓ

t∏
i=1

(
1−

mskA(c),t

N

)
,

with the cost of performing a search in all columns of a table, namely:

t∑
c=1

CAc .

5 Comparison

In this Section, we compare ASRT, DSRT and RT. We first present in Section 5.1
the experimental validation of the analysis of ASRT provided in Section 4.2.3. We
then provide in Section 5.2 the methodology used for the comparison, and we finally
present our results in Section 5.3.

In what follows, we call configuration a list of parameters describing a set of either
RTs, DSRTs, or ASRTs. For RTs, a configuration is composed of one maximality factor
α, a number of columns t, and a number of tables ℓ. For DSRT, in addition to these
three parameters a configuration is also composed of the steps positions {s1, s2, ..., sτ}.
Finally, the ASRT configuration is composed of the same parameters as DSRT plus
the quasi-maximality factors considered at each step, defined by {α0, α1, ..., ατ}.

5.1 Experimental Validation

In order to validate the formulas characterizing the different variants, RT, DSRT,
and ASRT were implemented. A series of experiments were conducted to verify the
close alignment between the theoretical results and the practical outcomes observed
in concrete examples. The experiments were carried out on small-sized problems
(N = 224 and N = 232) to facilitate a large number of attacks and generate multiple
sets of tables for the different variants. Some larger simulations have then been made
on an input space of size N = 242.

This section provides an overview of the tests performed to assess the success proba-
bility, memory requirement, precomputation time, and attack time of the implemented
variants.

5.1.1 Success Probability

To evaluate the success probability of each variant, we generated multiple sets of
tables for various success probabilities and configurations. For each variant, a large
number of attacks were carried out using these tables, typically we conducted 1 000 000
attacks per configuration in order to obtain accurate results. The observed success
probabilities were consistent with the theoretical predictions given by Equation 5 and
Theorems 3, and 11, with differences below 0.1%.

25

5.1.2 Precomputation Time

The precomputation time is assessed by generating tables for the three variants
with a fixed number of filters (typically around 20). Additionally, tests were conduced
on smaller spaces (N = 232) using one filter per column. We did not conduct tests using
one filter per column on bigger spaces because as the computations are distributed,
the overhead becomes prohibitively large.

Our experimental results demonstrate that the precomputation time with one filter
per column (Pmin) closely aligns with the theoretical predictions, with a maximum
difference of less than 0.1%. Moreover, the experiments demonstrate that employing
approximately 20 filters (including those used for steps) results in precomputation
times that closely approach the theoretical lower bound, given by Equation 16, for all
variants.

5.1.3 Memory Requirements

We did not implement table compression for memory testing since compression is
independent of the variants chosen. Instead, we adapted the original formula provided
in [17] for each variant. We tested the values involved in these formulas and verified
that we obtained the expected numbers of EPs and SPs according to the theory. When
applying the formulas to our experimental results versus the theoretical number of SPs
and EPs to store, the differences were less than 0.05% across all tested configurations.

5.1.4 Attack Phase

The attack phase was tested in a manner analogous to the success probability
evaluation. Tables were generated for various configurations and target success prob-
abilities, followed by conducting a substantial number of attacks for each variant and
configuration (typically between 100 000 and 1 000 000 attacks to ensure the accu-
racy of the average attack time measured – the attack times of DSRT, and especially
ASRT, are more variable than for RT, so more attacks were needed to obtain reliable
measurements). The average attack time closely adhered to the theoretical predictions,
with a difference of less than 0.8% for all variants. The results were well distributed
around the theoretical mean, with no significant difference based on the configuration
used. The variability of the attack time is further discussed in Section 6.

5.2 Comparison Methodologies

In Section 5.3, the precomputation and attack times of the RT, DSRT, and ASRT
variants are compared, using the same targeted memory and targeted success proba-
bility. This approach allows for an evaluation of RT, DSRT and ASRT in a manner
consistent with that presented in the DSRT paper [20]. Furthermore, comparing the
variants at fixed success probability and memory settings highlights the trade-off
between precomputation and attack times for each case.

This Section outlines the evaluation process for the precomputation time, attack
time, memory, and success probability of each variant, and provides justifications for
the chosen methodology.

26

5.2.1 Precomputation Time

Pmin was chosen for comparison instead of P . The reasons explaining this choice is
firstly that our tests demonstrated that filter usage gives results near the theoretical
lower bound for RT, DSRT, and ASRT, thus offering a suitable comparison basis.
Secondly, to perform the evaluation of tens of thousands of configurations, we favored
Pmin over a more time-consuming filter optimization evaluation. Finally, the use of
Pmin avoids any bias that could arise from selecting filter-based comparisons and, as
discussed in Section 5.1.2, Pmin approximates filter results for all variants.

5.2.2 Memory

The memory lower bound is used to evaluate the memory used by each variant.
This lower bound closely approximates (within 1%) the compressed delta encoding,
but offers formulas that are easier to work with. To ensure no bias towards DSRT
or ASRT over RT, each step of DSRT and ASRT was treated as a separate table
for memory computation which tends to slightly favor RTs over DSRTs and ASRTs.
This is fair as DSRT and ASRT share similar step-by-step storage methodologies. We
also checked that the difference between compressed delta encoding applied to ASRT
and DSRT and their minimal memory lower bound remains under 0.7%, giving us the
confidence to use the memory lower bound for comparison.

5.2.3 Success Probability and Attack Time

To compare the success probability and attack time of each variant, we simply
applied Equation 6, and Theorems 3, 11, 9, 10, and 19. As mentioned in Section 5.1,
the success probabilities and attack times estimated using these formulas closely align
with the success probabilities and attack time obtained in practice for each variant.

5.3 Results

5.3.1 Parameters

The search space considered in the comparison is N = 242, which was chosen to
allow easy comparison with the results from papers [14, 17, 18, 20]. The memory
considered is M = 32GB, which represents a practical use case. The variants are then
compared for various success probabilities, ranging from 80% to 99.95%. To maintain
brevity, only results for some of the tested success probabilities are presented; however,
the conclusions drawn are valid for all success probabilities.

For each success probability, possible configurations for RTs, DSRTs, and ASRTs
are computed. For RTs, the number of possible configurations for fixed memory and
fixed success probability is limited, as the only variable left free is the number of tables.
For DSRT, in addition to the number of tables, the positions of the steps can vary
according to the configurations, leading to many possible configurations as extensively
explained in [20]. When considering ASRT, the position of steps that remain free,
and the number of elements to add in each step (determined by {α0, α1, ...ατ}) are
additional parameters to set.

27

In total, the number of possible configurations for a given number of tables, given
probability, and given memory is 1 for RT, bounded by (t−1)τ for DSRT, and bounded
by (t− 1)τ ×Nτ for ASRT.

Given the number of possible configurations for DSRTs and ASRTs, the number of
steps is set to 4 for DSRTs and to 2 for ASRTs. This choice is justified by the fact that
using more than 4 steps for DSRTs does not significantly increase their performance,
as stated in [20] and using more than 2 steps for ASRT does not allow a significant
gain compared to the computational cost needed to find possible configurations with
3 steps.

The algorithm presented in [20], is used to determine the DSRT configurations .
For ASRT, we performed an exhaustive search , adjusting the steps for each α and t.
We varied both t and the columns {s1, s2} in steps of 100 columns, α0 in steps of 0.003,
α1 in steps of 0.002, and α2 in steps of 0.001. This strategy offers a balance between
precision and computational efficiency in discovering configurations. The step size for
α0 is larger than that for α1, and the step size for α1 is larger than that for α2. This
is due to the fact that α0, the maximality factor of the leftmost step, is associated
with longer chains. Therefore, the impact of changes of α0 is less pronounced in the
resulting number of chains. The same conclusion holds for choosing the step variation
of α1 larger than those for α2.

5.3.2 Figures Interpretation

Figures 4a 4b, 4c depict, for various success probabilities, a series of points in the
attack time / precomputation time space corresponding to RTs, DSRTs and ASRTs in
a multitude of configurations. Table 1, presents some noteworthy results. The attack
time and precomputation time are expressed in the number of hashes to perform.

For each variant the best configurations are the configurations for which there is
no existing configuration that is better both in precomputation and in attack.

In each plot, ASRT configurations are represented by red dots, DSRT configura-
tions are represented by green dots, and RT configurations are indicated by orange
dots. The black line represents the optimal configurations among all the configurations
of all variants (the Pareto frontier).

5.3.3 ASRTs Versus RTs

In the following Sections, the focus will be on comparing ASRT solely to DSRT,
since as illustrated in Figures 4a, 4b, and 4c, there always exists an ASRT configura-
tion superior to the RT configurations. Furthermore, similar to DSRT, the number of
possible configurations for a given success probability and specified memory is higher
when using ASRT than when using DSRT or RT. As a result, employing ASRTs allows
to reach more trade-off between precomputation and attack compared to RTs.

The explanation regarding why ASRTs outperform RT is provided in Section 6.

28

5.3.4 ASRTs Versus DSRTS

The subsequent paragraphs highlight noteworthy results from Table 1 and Figure 4,
which help illustrate the differences between the use of ASRTs and DSRTs. We discuss
and provide interpretations for these results in Section 6.

Case 1: DSRTs more Efficient than ASRTs

There are instances, especially when the targeted coverage is low enough to necessi-
tate only a single DSRT or ASRT, where DSRT configurations are more advantageous
than ASRT configurations. This is demonstrated in Figure 4a and the first sub-Table
of Table 1. For a given attack time achievable with DSRT, the corresponding ASRT
needs considerably more precomputation time, rendering the variant configuration less
interesting. The configurations on the left of Figure 4a may be worthwhile in some
cases, as they permit a reduction in attack time by 4% compared to DSRT, albeit at
the cost of a 31% increase in precomputation time.

Table 1 Expected gain illustrated on several examples with ASRT and DSRTs. Pre-
computation and attack phase numbers are quantity of cryptographic operations.

Success probability: 90%
Precomputation Attack

1 ASRT 1.48× 1013

1.82× 1061 DSRT 1.21× 1013

Gain +22%

1 ASRT 2.9× 1013 1.3× 106

1 DSRT 2.2× 1013 1.35× 106

Gain +31% −4%

Success probability: 99%
Precomputation Attack

ASRT 5× 1013 4.11× 106

DSRT 2.89× 1013 4.98× 106

Gain +73% −17%

ASRT 3.23× 1013 4.7× 106

DSRT 2.89× 1013 4.98× 106

Gain +12% −6%

Success probability: 99.95%
Precomputation Attack

ASRT 4.8× 1013

8.71× 106DSRT 7.2× 1013

Gain −33%

ASRT
7.2× 1013

7.57× 106

DSRT 8.66× 106

Gain −13%

Case 2: DSRTs and ASRTs Efficient

29

Figure 4b illustrates a typical scenario where ASRT may be preferred over DSRT if
attack time is the most important factor for the attacker. ASRT configurations achieve
nearly identical trade-offs as the fastest DSRT configurations, and additionally offer a
range of faster attack configurations at the cost of increased precomputation time. For
instance, compared to the fastest DSRT configurations, it is possible to reach trade-offs
6% quicker in attack but requiring 12% additional precomputation time, or trade-offs
that are 17% faster in attack at the expense of a 73% increase in precomputation time
compared to DSRT (only 24% slower than the fastest RT configuration).

These results are observable for different coverage values greater than 97%.
When targeting coverage higher than 99.5%, ASRT configurations outperform DSRT
configurations.

5.3.5 Case 3: ASRTs more Efficient than DSRTs

For high targeted coverage, typically coverage requiring three or more tables, AS-
RTs outperform DSRTs. Figure 4c presents results for a common case discussed in
the literature: the use of four quasi-maximal vanilla RTs, which allows to achieve a
coverage of 99.95%.

As depicted in Figure 4c and Table 1, the optimal configurations are nearly all
ASRT configurations. Compared to the fastest DSRT configuration, an ASRT config-
uration can achieve the same attack time with 33% less precomputation time, or can
reach a configuration 13% faster in attack for the same precomputation time.

6 Discussion

We initiate the discussion by comparing ASRT with RT exclusively in Section 6.1.
This comparison facilitates the comprehension of the critical factors that render ASRT
effective in a straightforward manner. Subsequently, in Section 6.2, we use the argu-
ments developed in comparison with RT to contrast DSRT and ASRT, explaining why
ASRT outperforms DSRT under certain circumstances and not in others.

6.1 Comparison with RT

To simplify the explanation for the reader, we opted to compare RT and ASRT
using a representative example. Although the comparison uses a specific example, the
insights presented can be generalized to a broad range of cases.

Figure 5 illustrates a Rainbow matrix (depicted in green) and its corresponding
ASRM. For the sake of clarity, this figure is constructed for a small space (N = 224),
but the proportions remain consistent for larger spaces. Both configurations aim for a
coverage of 98% and with the same memory.

Precomputation

For the same coverage and memory, the initialm0 considered for the RT is substan-
tially larger than the ms0,s0 of the ASRT (almost four times larger). This observation
holds for all significant configurations and constitutes a key factor exploited by both

30

(a) Trade off between precomputation time and attack time 90%
of success, N = 242 and a 31.99 GB memory.

(b) Trade off between precomputation time and attack time 99%
of success, N = 242 and a 31.99 GB memory.

(c) Trade off between precomputation time and attack time 99.95%
of success, N = 242 and a 31.99 GB memory.

Figure 4: Trade-off between precomputation and attack.

31

Figure 5: ASRM with 2 steps versus the corresponding RT for the same memory and
the same coverage (98%).

ASRT and DSRT. Selecting four times fewer elements at the beginning of precompu-
tation does not lead to a reduction by a factor of four in the final number of elements
obtained at the end of the precomputation, but slightly less than twice as many. It is
important to note that when employing filtration, as is our case, choosing four times
more elements at the beginning of the precomputation does not quadruple the pre-
computation time, but increases it slightly less than three-fold. The saved time can
be effectively employed to add more elements later in the precomputation phase.

In column s1, adding more elements to the ASRM still keeps the number of hashes
required during the precomputation phase much lower for the ASRM than for the
rainbow matrix, and allows increasing the number of elements in the final table to
about 75% of the number of elements in the final rainbow matrix.

The number of SPs considered in column s2 provides crucial insight into how the
ASRT outperforms vanilla RT. The number of SPs considered in column s2 is much
larger than those considered in s0 and s1 and, at the same time, is significantly shifted
to the right of the table. This enables to keep more elements in column t than the
vanilla RT. Although the precomputation of the elements between s2 and t requires
more time than the precomputation of the RT chains in the corresponding columns,
the time gained at the beginning of the precomputation by computing fewer chains
significantly compensates for this extra time.

Memory

A crucial point to understanding why the matrices depicted in Figure 5 occupy the
same memory is based on acknowledging the impact of the log(m0) and log(ms0,s0)
factors in the memories formulas. For instance, with RTs, the initial m0 in the case of
Figure 5 is four times larger than the number of elements obtained at the end. Since,

32

in this example N = 224, this implies that each SP of the RT consumes about 15%
more memory per element than the ms0,s0 elements considered in the ASRT variant.
The RT SPs then take about 25% more memory per SP than the SP of the chains
beginning in s1 and about 10% more memory per element than the SPs of chains
starting in s2.

In the final analysis, even though more SPs must be stored with the ASRT than
with RT, and the fact that storing three batches of SPs slightly mitigates the decrease
in memory required to store each SP, the memory used to store the ASRT SPs is
roughly 12% lower than the memory required to store the RT SPs.

This 12% memory saving is then used to ”compensate” for storing the EPs, which
is more optimized for the RTs due to: (a) greater efficiency in compressing a single
“large” batch of elements (as in RT EPs) as opposed to three “small” batches of
elements (as in ASRT); and (b) The fact that slightly fewer EPs need to be stored
when using RT than when using ASRT.

Attack

Even though the ASRT chains are longer than the RT chains, the attack phase is
faster when using this particular ASRT configuration than the RT configuration.

Firstly, the chains of the ASRT starting in s1 and s2 are substantially shorter than
those of the RT, and these chains account for about half of the ASRT chains. Thus,
when performing a search in columns between s2 and t, about half the time, the search
will cost significantly less than the search in the RT. For the remaining half of the
time, where a match occurs with chains starting in s0 rather than s1 or s2, the cost
is higher than when using RT, but less significantly. This is due to the fact that the
difference between the lengths of the RT chains and the ASRT chains starting in s0
is considerably less high than the difference in length between the RT chains and the
ASRT chains starting in s1 or s2.

Lastly, there are more chains between s2 and t in the ASRM than in the rainbow
matrix . This shifts the average column in which the searched element is found, pushing
it further to the right. Consequently, this decreases the number of searches before
finding the searched element and increases the chances of matching with chains of
length ηi and η2 instead of t, thus increasing the chance of performing a search costing
less operations.

6.2 ASRTs versus DSRTs

The comparison between ASRT and DSRT is more complex than between ASRTs
and RTs. To facilitate this comparison, we will separately address the comparison of
ASRT and DSRT in terms of coverage, precomputation time, attack time, and memory.

It is worth noting that the following points are true when ASRT and DSRT are
compared for the same number of tables. When fewer ASRT tables are used than
DSRT, their shape can be changed . For brevity and simplicity, we chose an example
where DSRT and ASRT use the same number of tables.

33

6.2.1 Coverage

Quasi-Maximality Factor

A key point when using the same number of ASRT tables than DSRT or RT is the
need for continuously increasing quasi-maximality factors. In other words, for ASRT
to be effective, the quasi-maximality factors should satisfy α0 < α1 < ... < αs. The
intuition behind this is that the operational principle of ASRT is based on maintaining
a large number of chains, ideally shorter ones, towards the right of the matrix.

One can perceive the right part of an ASRM as the segment that ensures the speed
of the attack phase, and the left part as the segment that guarantees to reach the
targeted coverage.

To perform well in comparison, ASRT must therefore start with an initial number
of chains ms0,s0 significantly lower than that of DSRT. As the coverage increases, the
quasi-maximality factor used tends to increase (to maintain an acceptable attack time
by not adding an additional table), thus enhancing the use of ASRT.

However, at lower coverage, the maximality factor of RTs and DSRTs tends to
be lower. This is particularly true for DSRTs, where the central idea is to generate
matrices with lower quasi-maximality factors and to “compensate” for the waste of
chains caused by the decrease in the quasi-maximality factor, with the steps.

Number of Tables

The DSRT variant tends to be less interesting, particularly regarding the attack
time, as the number of tables increases. One of the factors contributing to DSRT better
attack performance over RT is its general reliance on one fewer table than RT, which
thereby reduces attack time. However, at higher coverage, the requirement for tables
increases, and thus the benefit of using one less table decreases, since each table has
less impact when more tables are used.

Conversely, the most effective ASRT configurations can use the same number of
tables as the best-performing RT configurations in the attack phase. This is partic-
ularly true when fewer RT tables are used, in this case, the attack performance of
ASRT is not based mainly on the difference in the number of tables used. In highter
coverage, e.g. 99.95%, ASRT configurations can require only 3 tables against 4 DSRT
tables and 5 RTs tables.

Conclusion on Coverage

ASRT outperforms DSRT in both attack and precomputation scenarios when the
same number or less tables is used, or if the quasi-maximality factors are sufficiently
high. Under different circumstances, either DSRT performs better in both attack and
precomputation, or ASRT is faster in attack but slower in precomputation. These
latter cases are further detailed in Sections 6.2.2 and 6.2.3.

6.2.2 Precomputation

DSRT was designed with fast precomputation in mind. The critical element that
facilitates the speed of DSRT precomputation is the choice of a lower maximality
factor than RT, and compensate the resulting waste of chains through the use of steps.

34

Despite that, compared to ASRT, DSRT generally uses a higher maximality factor
than ASRT initial maximality factor (while still being lower than RT). Consequently,
the initial phase of precomputation is more costly when generating DSRT than ASRT.
However, ASRT subsequent maximality factors will increase during the precomputa-
tion phase. In some cases, as soon as the first ASRT step is reached, the number of
chains to compute becomes higher for ASRT than for DSRT. Ultimately, in a signif-
icant number of cases, the rising quasi-maximality factors of ASRT lead to a slower
precomputation phase, as more chains need to be computed in the ASRT case after
the first step.

When DSRT maximality factor is sufficiently high, the number of chains considered
up until the final step of ASRT remains lower than the number of chains considered
in the DSRT matrix. In the final step, the number of chains considered when using
ASRT exceeds that of DSRT in all examples we have encountered. However, when the
difference does not offset ASRT initial precomputation speed advantage, the precom-
putation time for the ASRT variant ends up being less than that of DSRT. On the
other hand, if this is not the case, the ASRT precomputation time exceeds that of
DSRT.

6.2.3 Attack

Inherently, ASRTs tend to outperform DSRTs in terms of attack due to their key
concept of maximizing the number of short chains on the right side of the matrix. As
discussed in Section 6.2.2, this may come to the cost of a higher precomputation time.

Compared to DSRTs, ASRTs have more chains on the right of the matrix, with
some parts of these chains being shorter than even the shortest DSRT chains. When
ASRT shorter chains are not shorter than DSRT shortest chains, ASRT typically still
comes with superior efficiency in attack due to the slightly higher number of chains
per table, and the lower cost of building the attack chain when using ASRT.

However, when ASRT shorter chains are not short enough, DSRT surpasses ASRT
in attack speed mainly due to the fact that when a false alarm is detected in a DSRT
step, the attack chain is not rebuilt until the final table column. It acts as a sort of
partial checkpoints [11] and is one of the key points for maintaining the efficiency of
DSRTs in attack.

In scenarios where ASRT does not have a sufficiently high last maximality-factor
ατ to guarantee a sufficient number of chains on the right side of the matrix, and
where the chains of steps are not short enough, ASRT configurations are inferior to
DSRT configurations in attack.

Nonetheless, at sufficiently high coverage (typically greater or equal to 90%), there
always exists an ASRT configuration that outperforms the fastest DSRT in terms of
attack time. However, this may come at the cost of a longer precomputation phase,
particularly when 3 or fewer tables are used.

35

(a)

(b)

Figure 6: Trade-off between precomputation and attack for 16GB and 32GB available
memory, and 90% coverage.

6.3 Memory

6.3.1 Memory Variation

It is essential to note that the relative performances of ASRT, DSRT, and RT
do not depend on the memory available. By relative performances, we refer to the
difference in performance between the variants, irrespective of the memory. Figures 6a
and 6b illustrate the configurations of ASRTs, DSRTs, and RTs for a space N = 242,
a coverage of 90%, and memory availabilities of 16GB and 32GB, respectively.

For a given coverage, it is clear that the precomputation time does not vary with the
available memory, provided this memory allocation remains “reasonable”. However,
noticeable side effects might appear in the precomputation time when t is exceed-
ingly low (high available memory), or when t is overly high (low available memory),
resulting in an insufficient number of chains. Excluding these exceptional cases where

36

precomputation time could marginally fluctuate with memory changes, the precom-
putation time does not depend on the available memory, since the number of element
in the matrix to compute remains the same irrespective of the memory available. The
only variation lies in the shape of the computed matrices, which may be more or less
wide or tall, depending on the memory available.

Regarding the attack phase, the results, though intuitive, are less clear-cut. Ini-
tially, when considering the RT, the results shown in Figures 6a and 6b align perfectly
with expectations. As the memory is doubled while N remains the same and following
the relation T = N2/M2, we can expect that by doubling the memory, we quarter the
attack time, which is indeed the case.

For the DSRT and ASRT variants, we do not provide proof, but we hypothesize
that the behavior of these variants is equivalent to that of RTs.

We give some arguments to justify our intuition: (a) numerous experiments per-
formed on various search spaces, memory availabilities, and coverage consistently
confirm this supposition. For instance, as presented in Figures 6a and 6b, DSRTs and
ASRTs follow this postulate and their attack time quarter when the memory is di-
vided by two.; (b) the fact that RTs are, in essence, a special case of DSRT and ASRT
(ASRT and DSRT formulas perfectly align with RT formulas when all steps are in the
same column t); (c) ASRT and DSRT can also be considered as multiple RTs sharing
the same reduction functions. If each RT follows the relation T = N2/M2, we can
expect the combined DSRT and ASRT to also adhere to this relation.

6.3.2 Memory Accesses

On average, the number of memory accesses required for the ASRT attack is less
than those needed for the DSRT and RT variants. This is primarily due to the greater
number of chains in the right part of the table, which tends to be higher in ASRT than
in the other two variants, thereby reducing the number of searches (and consequently
the number of memory accesses).

Nevertheless, the decrease in the number of memory accesses is not significant; it
amounts to only a few percents, depending on the coverage and memory used.

6.4 Worst-Case Attack Time

Like DSRTs, a drawback of ASRTs is that their worst-case attack time is longer
than that of the worst-case RT attack. This is due to the fact that in a significant
number of cases (almost all), the longest ASRT chain exceeds the length of the longest
RT chain.

Consequently, the attack time increases when the entire table must be searched
through. This disadvantage can be mitigated since ASRTs are typically of inter-
est in situations with high coverage, and thus, the worst-case scenario occurs very
infrequently.

The most significant implication of this is an increase in the variability of the attack
time. Similar to DSRTs, while the average attack time of ASRTs is shorter than that
of RTs, it is more variable.

37

7 Conclusion

This paper introduces ASRTs, which demonstrate superior performance than
vanilla RTs and, under certain conditions, DSRTs. The concept of ASRTs is the
addition of chains in specified columns, referred to as steps. The variant involves in-
crementally adding more chains at each step, with the goal of having more chains on
the right side of the final matrix at the end of the precomputation phase. This ap-
proach implies the concept of ascending stepped Rainbow Tables and offers a two-fold
benefit: improved matrix coverage and faster attack phase.

Owing to the larger parameter space, ASRTs afford a greater number of possible
configurations compared to DSRTs. When targeting sufficiently high coverages, ASRTs
outperform both DSRTs and RTs in terms of both attack and precomputation times,
with the extent of the gain primarily dependent on the targeted coverage.

In our practical experiments, when a coverage of 99.95% (frequently referenced in
literature) is targeted, ASRTs can reduce precomputation time by 33% when compared
to DSRTs, for the same attack time, coverage, and memory. Alternatively, ASRTs can
trim attack time by 13% for the same coverage, memory, and precomputation time.
Compared to RTs, this represents a precomputation time reduction of 48% for the
same attack time, coverage, and memory, or an attack time reduction of 15% with a
precomputation time that remains 24% lower.

When targeting lower coverage, ASRTs can reduce attack time compared to DSRTs
(and thus RTs) at the cost of an increase in precomputation time. For instance, for a
99% coverage, ASRTs can decrease attack time by 17% at the cost of an additional
73% in precomputation time compare to DSRT, or reduce attack time by 6% with a
12% increase in precomputation time.

Using both DSRTs and ASRTs instead of RTs can enable an attacker to substan-
tially decrease both the attack and precomputation times of the used TMTOs, if the
suitable variant is selected based on their targeted coverage and requirements. The po-
tential for combining DSRTs and ASRTs in one variant remains a prospect for future
work.

References

[1] J. Hong, S. Moon, A comparison of cryptanalytic tradeoff algorithms, J. Cryptol.
26 (4) (2013) 559–637.

[2] G. Lee, J. Hong, Comparison of perfect table cryptanalytic tradeoff algorithms,
Des. Codes Cryptogr. 80 (3) (2016) 473–523.

[3] A. Biryukov, A. Shamir, D. Wagner, Real time cryptanalysis of a5/1 on a pc, in:
International Workshop on Fast Software Encryption, Springer, 2000, pp. 1–18.

[4] E. Biham, O. Dunkelman, Cryptanalysis of the A5/1 GSM stream cipher, in:
B. K. Roy, E. Okamoto (Eds.), Progress in Cryptology - INDOCRYPT 2000, First
International Conference in Cryptology in India, Calcutta, India, December 10-
13, 2000, Proceedings, Vol. 1977 of Lecture Notes in Computer Science, Springer,

38

https://doi.org/10.1007/3-540-44495-5_5

2000, pp. 43–51. doi:10.1007/3-540-44495-5_5.
URL https://doi.org/10.1007/3-540-44495-5 5

[5] J. W. Kim, J. Seo, J. Hong, K. Park, S. Kim, High-speed parallel implementations
of the rainbow method based on perfect tables in a heterogeneous system, Softw.
Pract. Exp. 45 (6) (2015) 837–855. doi:10.1002/spe.2257.
URL https://doi.org/10.1002/spe.2257

[6] J. D. Golić, Cryptanalysis of alleged a5 stream cipher, in: International Con-
ference on the Theory and Applications of Cryptographic Techniques, Springer,
1997, pp. 239–255.

[7] G. Avoine, X. Carpent, D. Leblanc-Albarel, Rainbow Tables: How Far
Can CPU Go?, The Computer JournalBxac147 (10 2022). arXiv:https:

//academic.oup.com/comjnl/advance-article-pdf/doi/10.1093/comjnl/

bxac147/46671690/bxac147.pdf, doi:10.1093/comjnl/bxac147.
URL https://doi.org/10.1093/comjnl/bxac147

[8] M. Vanhoef, A time-memory trade-off attack on WPA3’s SAE-PK, in: J. P. Cruz,
N. Yanai (Eds.), APKC ’22: Proceedings of the 9th ACM on ASIA Public-Key
Cryptography Workshop, APKC@AsiaCCS 2022, Nagasaki, Japan, 30 May 2022,
ACM, 2022, pp. 27–37. doi:10.1145/3494105.3526235.
URL https://doi.org/10.1145/3494105.3526235

[9] N. Mentens, L. Batina, B. Preneel, I. Verbauwhede, Time-memory trade-off attack
on FPGA platforms: UNIX password cracking, in: K. Bertels, J. M. P. Cardoso,
S. Vassiliadis (Eds.), Reconfigurable Computing: Architectures and Applications,
Second International Workshop, ARC 2006, Delft, The Netherlands, March 1-3,
2006, Revised Selected Papers, Vol. 3985 of Lecture Notes in Computer Science,
Springer, 2006, pp. 323–334.

[10] W. Wang, D. Lin, Analysis of multiple checkpoints in non-perfect and perfect
rainbow tradeoff revisited, in: S. Qing, J. Zhou, D. Liu (Eds.), Information and
Communications Security - 15th International Conference, ICICS 2013, Beijing,
China, November 20-22, 2013. Proceedings, Vol. 8233 of Lecture Notes in Com-
puter Science, Springer, 2013, pp. 288–301. doi:10.1007/978-3-319-02726-5\
_21.
URL https://doi.org/10.1007/978-3-319-02726-5 21

[11] G. Avoine, P. Junod, P. Oechslin, Time-memory trade-offs: False alarm detec-
tion using checkpoints, in: S. Maitra, C. E. V. Madhavan, R. Venkatesan (Eds.),
Progress in Cryptology - INDOCRYPT 2005, Vol. 3797 of Lecture Notes in Com-
puter Science, Springer, 2005, pp. 183–196. doi:10.1007/11596219_15.
URL https://doi.org/10.1007/11596219 15

[12] G. Avoine, A. Bourgeois, X. Carpent, Analysis of rainbow tables with finger-
prints, in: E. Foo, D. Stebila (Eds.), Information Security and Privacy - 20th

39

https://doi.org/10.1007/3-540-44495-5_5
https://doi.org/10.1007/3-540-44495-5_5
https://doi.org/10.1002/spe.2257
https://doi.org/10.1002/spe.2257
https://doi.org/10.1002/spe.2257
https://doi.org/10.1002/spe.2257
https://doi.org/10.1093/comjnl/bxac147
https://doi.org/10.1093/comjnl/bxac147
http://arxiv.org/abs/https://academic.oup.com/comjnl/advance-article-pdf/doi/10.1093/comjnl/bxac147/46671690/bxac147.pdf
http://arxiv.org/abs/https://academic.oup.com/comjnl/advance-article-pdf/doi/10.1093/comjnl/bxac147/46671690/bxac147.pdf
http://arxiv.org/abs/https://academic.oup.com/comjnl/advance-article-pdf/doi/10.1093/comjnl/bxac147/46671690/bxac147.pdf
https://doi.org/10.1093/comjnl/bxac147
https://doi.org/10.1093/comjnl/bxac147
https://doi.org/10.1145/3494105.3526235
https://doi.org/10.1145/3494105.3526235
https://doi.org/10.1145/3494105.3526235
https://doi.org/10.1007/978-3-319-02726-5_21
https://doi.org/10.1007/978-3-319-02726-5_21
https://doi.org/10.1007/978-3-319-02726-5_21
https://doi.org/10.1007/978-3-319-02726-5_21
https://doi.org/10.1007/978-3-319-02726-5_21
https://doi.org/10.1007/11596219_15
https://doi.org/10.1007/11596219_15
https://doi.org/10.1007/11596219_15
https://doi.org/10.1007/11596219_15
https://doi.org/10.1007/978-3-319-19962-7_21
https://doi.org/10.1007/978-3-319-19962-7_21

Australasian Conference, ACISP 2015, Brisbane, QLD, Australia, June 29 - July
1, 2015, Proceedings, Vol. 9144 of Lecture Notes in Computer Science, Springer,
2015, pp. 356–374. doi:10.1007/978-3-319-19962-7_21.
URL https://doi.org/10.1007/978-3-319-19962-7 21

[13] B. Kim, J. Hong, Analysis of the non-perfect table fuzzy rainbow tradeoff, in:
C. Boyd, L. Simpson (Eds.), Information Security and Privacy - 18th Australasian
Conference, ACISP 2013, Brisbane, Australia, July 1-3, 2013. Proceedings, Vol.
7959 of Lecture Notes in Computer Science, Springer, 2013, pp. 347–362. doi:

10.1007/978-3-642-39059-3_24.
URL https://doi.org/10.1007/978-3-642-39059-3 24

[14] G. Avoine, X. Carpent, Heterogeneous rainbow table widths provide faster crypt-
analyses, in: R. Karri, O. Sinanoglu, A. Sadeghi, X. Yi (Eds.), Proceedings of the
2017 ACM on Asia Conference on Computer and Communications Security, Asi-
aCCS 2017, Abu Dhabi, United Arab Emirates, April 2-6, 2017, ACM, 2017, pp.
815–822.

[15] A. Biryukov, S. Mukhopadhyay, P. Sarkar, Improved time-memory trade-offs with
multiple data, in: B. Preneel, S. E. Tavares (Eds.), Selected Areas in Cryptog-
raphy, 12th International Workshop, SAC 2005, Kingston, ON, Canada, August
11-12, 2005, Revised Selected Papers, Vol. 3897 of Lecture Notes in Computer
Science, Springer, 2005, pp. 110–127. doi:10.1007/11693383_8.
URL https://doi.org/10.1007/11693383 8

[16] A. Biryukov, S. Mukhopadhyay, P. Sarkar, Improved time-memory trade-offs with
multiple data, in: B. Preneel, S. E. Tavares (Eds.), Selected Areas in Cryptog-
raphy, 12th International Workshop, SAC 2005, Kingston, ON, Canada, August
11-12, 2005, Revised Selected Papers, Vol. 3897 of Lecture Notes in Computer
Science, Springer, 2005, pp. 110–127.

[17] G. Avoine, X. Carpent, Optimal storage for rainbow tables, in: H. Lee, D. Han
(Eds.), Information Security and Cryptology - ICISC 2013 - 16th International
Conference, Seoul, Korea, November 27-29, 2013, Revised Selected Papers, Vol.
8565 of Lecture Notes in Computer Science, Springer, 2013, pp. 144–157.

[18] G. Avoine, X. Carpent, D. Leblanc-Albarel, Precomputation for rainbow tables
has never been so fast, in: E. Bertino, H. Shulman, M. Waidner (Eds.), Computer
Security – ESORICS 2021, Springer International Publishing, Cham, 2021, pp.
215–234.

[19] G. Avoine, X. Carpent, B. Kordy, F. Tardif, How to handle rainbow tables with
external memory, in: J. Pieprzyk, S. Suriadi (Eds.), Information Security and
Privacy - 22nd Australasian Conference, ACISP 2017, Auckland, New Zealand,
July 3-5, 2017, Proceedings, Part I, Vol. 10342 of Lecture Notes in Computer
Science, Springer, 2017, pp. 306–323.

40

https://doi.org/10.1007/978-3-319-19962-7_21
https://doi.org/10.1007/978-3-319-19962-7_21
https://doi.org/10.1007/978-3-642-39059-3_24
https://doi.org/10.1007/978-3-642-39059-3_24
https://doi.org/10.1007/978-3-642-39059-3_24
https://doi.org/10.1007/978-3-642-39059-3_24
https://doi.org/10.1007/11693383_8
https://doi.org/10.1007/11693383_8
https://doi.org/10.1007/11693383_8
https://doi.org/10.1007/11693383_8

[20] X. C. Gildas Avoine, D. Leblanc-Albarel, a completer.

[21] G. Avoine, P. Junod, P. Oechslin, Characterization and improvement of time-
memory trade-off based on perfect tables, ACM Trans. Inf. Syst. Secur. 11 (4)
(2008) 17:1–17:22.

[22] P. Oechslin, Making a faster cryptanalytic time-memory trade-off, in: D. Boneh
(Ed.), Advances in Cryptology - CRYPTO 2003, 23rd Annual International
Cryptology Conference, Santa Barbara, California, USA, August 17-21, 2003,
Proceedings, Vol. 2729 of Lecture Notes in Computer Science, Springer, 2003, pp.
617–630.

41

	Introduction
	Background on Rainbow Tables
	Precomputation phase
	Matrix Construction
	Clean Rainbow Table
	Maximality
	Precomputation Time

	Success Probability
	Memory Used
	Attack Phase

	Background on Descending Stepped Rainbow Tables
	Overview
	Precomputation
	Success Probability
	Memory Used
	Attack Phase
	Attack Process
	Evaluation of the Attack Time
	DSRT Characterization
	No Alarm
	True Alarm
	False Alarm
	Cost of a Single Search
	Average Attack Time

	Ascending Stepped Rainbow Tables
	Overview
	Precomputation
	Generation
	Maximality
	Characterization
	Precomputation Time

	Success Probability
	Memory
	Attack Phase
	Attack Process
	Roadmap
	No Alarm
	Cost
	Probability

	True Alarm
	Cost
	Probability

	False Alarm
	Intermediary Results
	Cost
	Probability

	Cost of the Search in One Column
	Average Attack Time

	Comparison
	Experimental Validation
	Success Probability
	Precomputation Time
	Memory Requirements
	Attack Phase

	Comparison Methodologies
	Precomputation Time
	Memory
	Success Probability and Attack Time

	Results
	Parameters
	Figures Interpretation
	ASRTs Versus RTs
	ASRTs Versus DSRTS
	Case 1: DSRTs more Efficient than ASRTs
	Case 2: DSRTs and ASRTs Efficient

	Case 3: ASRTs more Efficient than DSRTs

	Discussion
	Comparison with RT
	Precomputation
	Memory
	Attack

	ASRTs versus DSRTs
	Coverage
	Quasi-Maximality Factor
	Number of Tables
	Conclusion on Coverage

	Precomputation
	Attack

	Memory
	Memory Variation
	Memory Accesses

	Worst-Case Attack Time

	Conclusion

