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We consider the class of interval maps with dense set of periodic points CP and its closure CP equipped with the metric of uniform convergence. Besides studying basic topological properties and density results in the spaces CP and CP we prove that CP is dynamically characterized as the set of interval maps for which every point is chain-recurrent. Furthermore, we prove that a strong topological expansion property called topological exactness (or leo property) is attained on the open dense set of maps in CP and on a residual set in CP . Moreover, we show that every second category set in CP and CP is rich in a sense that it contains uncountably many conjugacy classes. An analogous conclusion also holds in the setting of interval maps preserving any fixed non-atomic probability measure with full support. Finally, we give a detailed description of the structure of periodic points of generic maps in CP and CP and show that generic maps in CP and CP satisfy the shadowing property.

Introduction

Many definitions of chaos in a compact metric space X involve an assumption that the set of periodic points is dense in X. In the current article we put ourselves in the context of X being a unit interval and study dynamical, topological and dimension properties of the set of interval maps with dense set of periodic points CP and its closure CP using the metric of uniform convergence. Our line of study can be thought as a continuation of Barge and Martin's study [START_REF] Barge | Dense periodicity on the interval[END_REF], where the authors gave a nice dynamical characterization of the maps from CP .

Let I := [0, 1] and let C(I) denote the set of all continuous interval maps. We call f ∈ C(I) a chain recurrent map if f is chain recurrent in every point of I. The notion of a chain recurrent map is one of the standard notions in topological dynamics. In [START_REF] Block | Maps of the interval with every point chain recurrent[END_REF] Block and Coven provided a dynamical description of chain recurrent maps. In complement to these results, our first main result shows that a map f ∈ C(I) is chain-recurrent if and only if f ∈ CP (Theorem 3.1). Theorem 3.1 implies that the maps id and up to conjugacy the map 1 -id are the only maps with zero topological entropy from CP (Corollary 3.2). A map f ∈ C(I) is called turbulent if there exist nondegenerate closed intervals J, K ⊂ I with at most one point in common, such that J ∪ K ⊂ f (J) ∩ f (K).

Note that Barge and Martin in [START_REF] Barge | Dense periodicity on the interval[END_REF] proved that if f has a dense set of periodic points, then either f 2 is the identity map or f 2 is turbulent. Theorem 3.1 together with results from [START_REF] Block | Maps of the interval with every point chain recurrent[END_REF] also implies that if f ∈ CP such that h top (f ) > 0 then f 2 is turbulent. Therefore h top (f ) ≥ log 2/2 for every map f ∈ CP except for the id or maps conjugate to 1 -id.

Our second main result is that CP and CP are uniformly locally arcwise connected (see the beginning of Subsection 4.2 and Theorem 4.10). In particular, uniform local arcwise connectedness implies local connectedness. In the same section we also prove that the set of Lebesgue measure-preserving interval maps C λ is arcwise connected (Corollary 4.8), which, in particular, answers on a question of Micha l Misiurewicz asked during a conference in Barcelona in 2020. These results fit in the context of study initiated by Kolyada, Misiurewicz and Snoha [START_REF] Kolyada | Spaces of transitive interval maps, Ergodic Theory Dynam[END_REF] who proved that the spaces of transitive, piecewise linear transitive and piecewise monotone transitive interval maps are locally connected and arcwise connected.

Next we turn our attention towards studying dynamical properties which hold on dense sets in the sets CP and CP . We prove another fundamental result that locally eventually onto (or leo for short, sometimes also called topologically exact) maps form an open dense collection of maps in CP (Theorem 5.3). This, in particular, gives another aspect to the dynamical characterization of maps from CP from the paper of Barge and Martin [START_REF] Barge | Dense periodicity on the interval[END_REF]. Theorem 5.3 implies that there is a residual (but not open) set of leo maps in CP as well. To put these results in the context, it was proven by the first and the last author in [START_REF] Bobok | Typical properties of interval maps preserving the Lebesgue measure[END_REF] that generic interval maps of C λ are also leo. The proof of Theorem 5.3 also yields that leo maps are open and dense in C λ . As an application we get that maps satisfying the periodic specification property form an open dense collection in CP (Corollary 5.7).

Let X be a standard Borel space and ν a non-atomic probablity measure on X . Let Aut(ν) denote the topological group of all measurable, measure-preserving bijections of X . A classical theorem of Rokhlin says that the conjugacy classes on Aut(ν) are meager (see [START_REF] Kechris | Global Aspects of Ergodic Group Actions[END_REF]Theorem 2.5]). Moreover, Foreman and Weiss [START_REF] Foreman | An anti-classification theorem for ergodic measure preserving transformations[END_REF] proved that equivalence relation of conjugacy among the generic element in Aut(ν) is non-classifiable. This line of research culminated recently in the paper of Solecki [START_REF] Solecki | Generic measure preserving transformations and the closed groups they generate Invent[END_REF] who answered the question of Glasner and Weiss about the structure of the closure of subgroups of Aut(ν) generated by iterates of elements T ∈ Aut(ν).

We study analogous questions in the setting of interval map where the conjugating maps are homeomorphisms. For f ∈ C(I) we consider its conjugacy class defined by

{ψ -1 • f • ψ ∈ C(I) : ψ is a homeomorphism of I}.
Before studying other typical properties of the set CP we ask ourselves a fundamental question motivated by the preceding paragraph about the number of conjugacy classes in the residual sets in CP . A beautiful result of Kechris and Rosendal [START_REF] Kechris | Turbulence, analgamation, and generic automorphisms of homogeneous structures[END_REF] shows that there is a residual set in the space of all homeomorphisms of the Cantor set such that each pair of its elements are conjugate (so-called residual conjugacy class). Moreover, Bernardes and Darji [START_REF] Bernardes | Graph theoretic structure of maps of the Cantor space[END_REF] proved there is a residual conjugacy class in the space of all self-maps of the Cantor set. In the case of CP all the standard invariants (entropy (see Proposition 5.22), mixing,...) do not exclude the possibility that such a class exists.

Our fourth main result, Theorem 5.8, is that every conjugacy class in CP is nowhere dense. This implies that a residual conjugacy class cannot exist in CP , it also implies that every second category set G ⊂ CP contains uncountably many conjugacy classes (Corollary 5.9). An analogous conclusion also holds in the setting of interval maps preserving any fixed non-atomic probability measure with full support and in CP . Corollary 5.9 also has an application to the results in [START_REF] Činč | Pseudo-arc as the attractor in the disc -topological and measuretheoretic aspects[END_REF]; it implies that there are uncountably many dynamically non-equivalent attractors in the neighborhood of any attractor in the construction of a parameterized family of planar homeomorphisms with pseudo-arc attractors in [START_REF] Činč | Pseudo-arc as the attractor in the disc -topological and measuretheoretic aspects[END_REF].

Finally we study typical properties of maps from CP as well as maps from CP . A result in this direction was given in the literature recently in [START_REF] Činč | Pseudo-arc as the attractor in the disc -topological and measuretheoretic aspects[END_REF], where the second and third author proved that a very strong condition on the values of interval maps called the δ-crookedness is satisfied for some iterate of any generic map from CP . This result can be interpreted through the notion of inverse limits; namely, the inverse limit of a generic map in CP is the pseudo-arc (see [START_REF] Činč | Pseudo-arc as the attractor in the disc -topological and measuretheoretic aspects[END_REF]Theorem 1.3]). Similarly as in the context of C λ in [START_REF] Bobok | Periodic points and shadowing for generic Lebesgue measure preserving interval maps[END_REF] we obtain that the shadowing property is typical in CP and CP . Furthermore, we prove that these results are optimal in CP and CP since there is a dense set of maps in CP resp. CP which do not have the shadowing property (see Theorem 5.16). We also provide a study of the structure and dimension of periodic points of generic maps in CP and CP (related results in the setting of interval continuous map have been given by Agronsky, Bruckner and Laczkovicz [START_REF] Agronsky | Dynamics of typical continuous functions[END_REF]). Namely, in Theorem 5.19 we completely describe the structure of fixed points, periodic points and the union of all periodic points as well as their Hausdorff, upper box and lower box dimension. Finally, we also show in Theorem 5.21 that the set of leo maps in CP whose periodic points have full Lebesgue measure and whose periodic points of period k have positive measure for each k 1 is dense in CP to give a counterpart of Theorem 5.19.

Let us give a brief outline of the paper. In Section 2 we start with introducing the basic notions that are used throughout the article. In Section 3 we prove Theorem 3.1 which gives a dynamical characterization of CP . We start Section 4 with Subsection 4.1 where we prove structure statements that CP is a residual subset of CP and that CP \ CP is dense in CP . We continue with Subsection 4.2 where we prove the results about topological structure of spaces CP , CP and C λ , namely Theorem 4.7, Corollary 4.8 and Theorem 4.10. In Section 5 we address denseness properties of CP and CP . First, in Subsection 5.2 we prove in Theorem 5.3 that the set of leo maps is open and dense in CP and then in Subsection 5.3 we show through Corollary 5.9 the result about conjugacy classes in CP . In Subsection 5.1 we introduce the technique called window perturbations which is used in the rest of the article. We finish the article with Subsections 5.4 and 5.5 where we prove that shadowing is a typical property in CP (Theorem 5.16) and describe the structure and dimension of periodic points of generic maps in CP (Theorem 5.19). 

Preliminaries

ψ(x) = µ([0, x]) is a homeomorphism of I; moreover, if f preserves µ then ψ • f • ψ -1 ∈ C λ (see Remark in [7]). Remark 2.1. The map f → ψ • f • ψ -1 is a homeomorphism of C µ with C λ .
Let CP ⊂ C(I) denote the set of continuous maps with a dense set of periodic points, i.e., all maps f ∈ C(I) such that the closure Per(f ) = I. We consider the uniform metric on C(I) defined by

ρ(f, g) := sup x∈[0,1] |f (x) -g(x)|.
Let B(x, ξ) denote the open ball of radius ξ centered at the point x in a metric space X and for a set U ⊂ X we shall denote

B(U, ξ) := x∈U B(x, ξ).
We call a set containing a dense G δ set residual and call a property generic if it is attained on at least a residual set of the Baire space on which we work. Definition 2.2. We say a map f ∈ C(I) is

• transitive if for all nonempty open sets U, V ⊂ I there exists n 0 so that f n (U ) ∩ V = ∅, • topologically mixing if for all nonempty open sets U, V ⊂ I there exists n 0 ≥ 0 so that f n (U ) ∩ V = ∅ for every n n 0 , • locally eventually onto (leo) (also known as topologically exact) if for every nonempty open set U ⊂ I there exists n ∈ N so that f n (U ) = I.

A dynamical characterization of CP

For f ∈ C(I), x, y ∈ I and ε > 0 an ε-chain from x to y is a finite sequence x = x 0 , . . . , x n = y where n > 0 and |f

(x i ) -x i+1 | < ε for 0 < i < n -1.
We say that x is chain-recurrent (for f ) if for every ε > 0 there is an ε-chain from x to itself. We will call f chain-recurrent if every point in I is chainrecurrent for f . A point x ∈ I is called non-wandering if for any open set U containing x there exists n > 0 such that f n (U ) ∩ U = ∅. It follows from the definitions that every non-wandering point is chain-recurrent and that any chain-recurrent map is onto.

Theorem 3.1. A map f ∈ C(I) is chain-recurrent if and only if f ∈ CP .
Proof. (⇒) Fix such a map f . The map f has to be onto. Fix ε > 0. By our assumption on f , there exist points 0 = x 1 0 , . . . , x m 0 = 1 ∈ I and finitely many disjoint ε/6-chains A := {x 0 , x 1 , x 2 , . . . , x n( )-1 , x n( ) = x 0 } from x 0 to itself. Since A are disjoint, the set A = 1 m A can be written spatially as

I = {0 = i 0 < i 1 < • • • < i n-1 = 1}. We can assume that (i) |f (u) -f (v)| < ε/6 for each k ∈ {0, . . . , n -2} and points i k u < v i k+1 . (ii) |i k -i k+1 | < 2ε/3 for each k ∈ {0, . . . , n -2}.
Let ϕ : A → A satisfy ϕ(x i ) = x i+1 (mod n( )). Consider the extension g : I → I defined as the connect-the-dots map of (A, ϕ). Clearly, A is a union of n( )-cycles for g, 1 m. From (i) and the fact that A is a union of g h

I i I j I k Figure 1.
The perturbation h of g. ε/6-chains for f we obtain for each x ∈ (i k , i k+1 )

|g(i k ) -g(x)| |g(i k ) -g(i k+1 )| |g(i k ) -f (i k )| + |f (i k ) -f (i k+1 )|+ (1) + |f (i k+1 ) -g(i k+1 )| < ε/6 + ε/6 + ε/6 < ε/2, hence |f (x) -g(x)| |f (x) -f (i k )| + |f (i k ) -g(i k )| + |g(i k ) -g(x)| < < ε/6 + ε/6 + ε/2 = 5ε/6; it means that (2)
ρ(f, g) < 5ε/6.

Denote

I k := [i k , i k+1 ], 0 k n -2.
We can consider a regular piecewise affine perturbation h : I → I of g satisfying (see Figure 1).

(iii) g| A = h| A , (iv) for every non-empty interval J, either h(J) ⊃ I k for some k or λ(h(J)) > αλ(J) for some α > 1, (v) for each k, h(I k ) contains I-neighbors of g(I k ), (vi) |g(x) -h(x)| < 7ε/6, x ∈ I.

The property (vi) can be fulfilled since (ii) and (1). We get from (2) and (vi)

(3) |f (x) -h(x)| |f (x) -g(x)| + |g(x) -h(x)| < 5ε/6 + 7ε/6 = 2ε, x ∈ I.
Let us prove that h is leo. Fix a non-empty interval J, Property (iv) implies that after a finite number m of iterations h m (J) ⊃ I k for some k. Remembering that n = Π n( ) is the common period of our cycles, properties (iii) and (v) imply that applying h n to this I k must contain I k and its I-neighbors. Since there are finitely many intervals we eventually cover the whole space. The claim is proven, h is a leo map, in particular h is a map from the set CP . Since ε is arbitrary we have f ∈ CP .

(⇐) Fix a map f ∈ CP and ε > 0. Since f is uniformly continuous, there is δ > 0 such that |f (u) -f (v)| < ε/2 whenever |u -v| < δ. Fix an arbitrary point x ∈ I. Taking a map g ∈ CP such that ρ(f, g) < ε/2 and a g-periodic point p of period n satisfying |x -p| < δ, we put

x 0 = x, x i = g i (p), 1 i n -1, x n = x. Then |f (x 0 ) -x 1 | |f (x) -f (p)| + |f (p) -g(p)| < ε/2 + ε/2 = ε, for each 1 i n -2, |f (x i ) -x i+1 | = |f (g i (p)) -g(g i (p))| < ε/2 < ε; choosing δ < ε/2, since p = g n (p) and x n = x, also |f (x n-1 ) -x n | |f (x n-1 ) -p| + |p -x n | < ε/2 + ε/2 = ε.
Thus, the finite sequence

x 0 = x, x 1 = g(p), . . . , x n-1 = g n-1 (p), x n is an ε- chain from x to itself. A map f ∈ C(I) is called turbulent if there exist nondegenerate closed intervals J, K ⊂ I with at most one point in common, such that J ∪ K ⊂ f (J) ∩ f (K).
Corollary 3.2. The following hold:

(1) The maps id and up to conjugacy the map 1 -id are the only maps with zero topological entropy from CP . (2) f ∈ CP such that h top (f ) > 0 =⇒ f 2 turbulent. Therefore, either h top (f ) = 0 or h top (f ) ≥ log 2/2. In the latter case f has a periodic point of period 6.

Proof. The statements follow from [START_REF] Block | Maps of the interval with every point chain recurrent[END_REF], where the authors prove that interval map f with chain-recurrent set I is either such that f 2 = id or f 2 is turbulent. Furthermore, turbulent maps have topological entropy at least 1 2 log 2. But if f 2 = id then either f = id or f is topologically conjugate to 1 -id. By the definition of turbulence, the second iterate of f has a horseshoe and thus also the final of the claims above follows.

Theorem 3.3. If a map f ∈ C(I) satisfies ψ • f = g • ψ ∈ C(I)
where map g ∈ CP and where ψ is (not necessarily strictly) monotone, but the ψpreimages of g-periodic points are singletons, then f is chain recurrent. In particular, f ∈ CP .

Proof. Fix any x ∈ I. If x is in a singleton fibre of ψ then it is approximated by periodic points since g ∈ CP and hence belongs to a chain recurrent set. So assume that x ∈ J = ψ -1 (z) for some z where diam(J) > 0. Since z is not a periodic point, for any ε > 0 there is k and sets

J i ⊂ I, i = -k, . . . , k such that diam(J -k ) < ε, diam(J k ) < ε and f (J i ) = J i+1 for i = -k, . . . , k -1 and
x ∈ J 0 ⊂ J. But then there is also a sequence of periodic points p n such that lim n p n ∈ J -k . Then it is not hard to see that there is a 2ε chain from x to x. Indeed, we iterate x until reaching J k , then we move onto orbit of f 2k (p n ) and then return from p n to J -k hitting a point in f -k (x) ∩ J -k = ∅. This can be done for every ε > 0 showing that x is chain-recurrent. Lemma 12], we can consider a piecewise affine map g ∈ U n ∩ C λ having a transversal periodic point in ψ n (J m ). Then for a sufficiently small δ positive, all maps in the ball

ψ n of [0, 1] defined by ψ n (x) = µ n ([0, x]), we get that g n = ψ n • f n • ψ -1 n ∈ C λ and U n := {ψ n • g • ψ -1 n : g ∈ B CP (f n , 1/n)} is an open neighborhood of g n in CP . Since C λ ⊂ CP the set U n ∩CP contains a small C λ neighborhood of g n . Repeating the construction from [7,
B CP (g, δ) ⊂ U n have a periodic point in ψ n (J m ). Put V m,n := {ψ -1 n • g • ψ n : g ∈ B CP (g, δ)}. Clearly V m,n ⊂ B CP (f n , 1/n) is open and all maps in V m,n have a periodic point in J m . Moreover, the set V m := n V m,
n is open and dense in CP containing maps with periodic points in J m . It follows that any map from m V m contains periodic points in all J m , and thus is in [7, p. 2]). Proposition 8 from [START_REF] Bobok | Typical properties of interval maps preserving the Lebesgue measure[END_REF] states that piecewise affine leo maps are dense in C λ . Choose a sequence ( fn ) of piecewise affine maps in C λ converging to f and choose a sequence of piecewise affine homeomorphism ψ n converging to ψ. Let

CP . At the same time m V m is a dense G δ in CP . Corollary 4.2. If A is a residual subset in CP , then A is a residual subset of CP .
. Proof. Fix f ∈ CP , choose a homeomorphism ψ of I such that f := ψ•f •ψ -1 ∈ C λ (see
f n := ψ -1 n • fn • ψ n .
The maps f n are clearly piecewise affine, they are leo since the leo property is preserved by conjugation by a homeomorphism. Since leo maps have dense periodic points f n ∈ CP . Finally

f n = ψ -1 n • fn • ψ n → ψ -1 • f • ψ = f since ψ n → ψ and fn → f . Theorem 4.5. CP \ CP is dense in CP .
Proof. Start with any piecewise affine topologically mixing map T and η ∈ (0, 1/2). Note that any piecewise monotone topologically mixing map is leo (see Proposition 2.34 in [START_REF] Ruette | Chaos on the interval[END_REF]). We will construct a non-transitive map with no flat parts in B(T, η) which can be uniformly approximated by maps from CP . Once we have constructed such a map, this completes the proof since piecewise affine leo maps are dense in CP (Lemma 4.4). More precisely we will perform a construction from [START_REF] Kulczycki | Properties of dynamical systems with the asymptotic average shadowing property[END_REF]Example 4.6] resembling a Denjoy map [START_REF] Devaney | An Introduction to Chaotic Dynamical Systems[END_REF]Example 14.9].

First we choose a point z ∈ (0, 1) with a dense orbit under map T , which exists since T is leo. Denote by

D 0 := {z, T (z)} ∪ T -1 ({z}) and inductively set D n+1 := T (D n ) ∪ T -1 (D n ). Let D := ∞ n=1 D n .
Note that D is a dense and countable set such that T (D) = D. Since the set of points with dense orbit is residual and the space is perfect, it is uncountable. Denote the set of turning points of T by T T . Since T is a piecewise affine map T T is finite and hence we can replace z by another point when necessary, ensuring this way that also D ∩ ({0, 1} ∪ T T ) = ∅. Enumerate its elements by D = {x i : i ∈ N} where x i = x j for i = j. Furthermore observe that if T n (x i ) = x j for some n > 0 then i = j and x i / ∈ {x j , T (x j ), T 2 (x j ), . . .}, if not z would be an eventually periodic point. By definition, both D and [0, 1] \ D are invariant under T . Define a function φ : N → N so that T (x i ) = x φ(i) .

We follow the standard Denjoy construction, see [START_REF] Devaney | An Introduction to Chaotic Dynamical Systems[END_REF] for details. At the i-th step we remove the point x i from the interval and replace the hole with an interval I i of length η i+1 (the new interval is longer, so it naturally redefines the set {x j : j > i}). This way a new continuous map F is defined on the extended space so that each interval I i is mapped by an affine map onto I φ(i) in such a way that F is continuous.

Note that F is semi-conjugate to T by collapsing the intervals I i back to single points as explained below. As the domain of F is isometric to [0, 1 + γ], where γ = i∈N η i+1 < η we view F : [0, 1 + γ] → [0, 1 + γ]. In this way every interval I i becomes some interval [a i , b i ] ⊂ (0, 1 + γ) and there is a quotient map

I k I φ(k) b a F Figure 2. Construction of F n . Note that b -a = diam(I k ). π : [0, 1 + γ] → [0, 1] that does not increase distance, collapses every interval [a i , b i ] into a single point x i ,

and has the property that

T • π = π • F . If we fix i, j, so that x i ∈ {x j , T (x j ), T 2 (x j ), . . .} then F n ((a j , b j )) ∩ (a i , b i ) = ∅ for all n > 0.
Thus, the map F is not transitive, and is non-constant on any open interval. Nonetheless we will show that it can be obtained as uniform limit of maps from CP . To do so, let F n be the map obtained from F in the following way:

(1) outside of k≥n I k we have

F n (x) = F (x). (2) If |k| ≥ n then F n | I k is
defined as the map with 5 pieces of monotonicity, constant slope, and a 3-fold map constructed using the interior 3 pieces of monotonicity with the properties that on each piece of monotonicity J we have

F n (J) ⊃ I φ(k) = F (I k ) and γ > diamF n (J) > max{diamI k , diamI φ(k) }.
The remaining two pieces of the monotonicity with one endpoint contained in the set of endpoints of I k are used to make the map F n continuous. We can additionally require that the slope on each piece of I k is at least 3 because the pieces of monotonicity do not need to be of equal length.

It is clear that F n converges uniformly to F . We claim that each F n is topologically mixing. Indeed, fix any interval J and any ε > 0. Note that if an interval I ⊂ I k for some |k| ≥ n and

F n (I) ⊂ I φ(k) and |φ(k)| ≥ n then either diamF n (I) > diam(I) or F n (I) contains two consecutive critical points in I φ(k) and then F 2 n (I) I φ 2 (k)
. But since diameter of an interval can not grow to infinity, it means that for J there is some iterate m such that F m n (J) ⊂ I k for any k. But since T is mixing and π(F m n (J)) is a nondegenerate interval, for any δ > 0 there are points u, v ∈ π(F m n (J)) and j > 0 such that T j (u) < δ and T j (v) > 1 -δ. But since δ is arbitrarily small, there are p, q

∈ k I k ∩ F m n (J) such that F j n (p) < ε and F j n (q) > 1 + γ -ε. This means that [ε, 1 + γ -ε] ⊂ F m+j n (J), because F j (p) = F j n (p) and F j (q) = F j n (q)
showing that F n is mixing. This proves the claim, and as a consequence each F n has dense periodic points.

To finish the proof, let ζ : [0, 1] → [0, 1 + γ] be a linear onto map with ζ(0) = 0 and let

G = ζ -1 • F • ζ.
Note that if we fix any z ∈ [0, 1 + γ] then there is z ∈ [0, 1 + γ] such that z is either endpoint of I k for some k or z = z and z ∈ I k for any k. In any of these cases

T (π(z)) ≤ F (z ) ≤ T (π(z)) + γ. But |F (z )-F (z)| < sup k diamF (I k ) ≤ γ. This means that T (π(z))-2γ ≤ F (z) ≤ T (π(z)) + 2γ. On the other hand, for any x ∈ [0, 1] there is z ∈ [0, 1 + γ] such that π(z) = x and so T (x) -2γ ≤ F (z) ≤ T (x) + 2γ. Fix any x ∈ [0, 1] and let z = ζ(x) and y = π(z). Note that d(x, z) < γ and d(y, z) ≤ γ so d(x, z) < γ This gives d(T (x), G(x)) = d(T (x), ζ -1 (T (x))) + d(ζ -1 (T (x)), ζ -1 (F (z))) ≤ ≤ γ + d(T (x), F (z)) ≤ 3γ + d(T (x), T (y)).
But if γ → 0 then d(T (x), T (y)) → 0, hence taking small γ we can make ρ(T, G) arbitrarily small. This completes the proof.

Proposition 4.6. Sets CP and CP are nowhere dense in C(I).

Proof. First note that the map x → x 2 / ∈ CP and the same is true for any map in its small neighbourhood in C(I). For what follows we refer the reader to the proof of Theorem 4.5 where a procedure of blowing up the points is described in more detail. Fix ε > 0, f ∈ CP and take any g ∈ C(I) that is topologically mixing and piecewise affine, has finite set of local extrema (i.e., there is no interval with constant value) and ε-close to f . Let p be a fixed point of g and D = ∪ n≥0 g -n (p). Observe that D is countable and dense in I. We enumerate it D = {a 0 = p, a 1 , . . .}. Now take a collection of intervals {I n } n≥0 such that n≥0 λ(I n ) = γ where γ > 0 is small. As in the proof of Theorem 4.5 we modify g to a continuous map G by blowing up each point a n to an interval I n , and if g(a n ) = a m (n > 0) then we define I m = G(I n ) putting a piecewise affine map properly assigning the values of endpoints so that continuity and monotonicity are preserved; and G : I 0 → I 0 is a properly rescaled version of x → x 2 , i.e., rescaled so that G(I 0 ) = I 0 . Since I m is dense in [0, 1 + γ] the map G is uniquely defined on its complement. Interior points of I 0 cannot be periodic points of G, thus any map sufficiently close to G can not be in CP . Furthermore, if we take ε → 0 and γ → 0 the resulting maps G converge to f . 4.2. CP and CP are uniformly locally arcwise connected. The first step is to prove the following theorem that answers a question Micha l Misiurewicz asked at during a talk at the "Workshop on topological and combinatorial dynamics" in April 2021 at at the CRM in Montreal.

Recall that f, g ∈ C(I) are homotopic, if there is a family of maps {h t } t∈[0,1] such that h 0 := f , h 1 = g and the map (x, t) → h t (x) is continuous from I × [0, 1] to I. Proof. We first show how to reduce to the case when f (0) = 0. Suppose f (0) > 0 and define ε := inf{x ∈ [0, 1] : f (x) = 0}. For a ∈ [0, ε] we define f a as a two-fold perturbation on the interval [0, a]. {f a } a∈[0,ε] is a continuous family of maps in C λ and f ε (0) ∈ {0, 1}. Let g := f ε . Next, for every α ∈ [0, 1] we define g α : I → I by:

g α (x) := x, x ≤ α, α + (1 -α)g( x-α 1-α ), x > α.
We have g α ∈ C λ for all α ∈ [0, 1], and they form a continuous family of maps and g 1 = Id.

Corollary 4.8. The space C λ is arcwise connected.

A metric space (X, d) is called uniformly locally arcwise connected if for any ε > 0 there is a δ > 0 such that whenever 0 < d(x, y) < δ, then x and y are joined by an arc of diameter smaller than ε (see [START_REF] Hocking | Topology[END_REF]). For the following definitions and statements see [START_REF] Jr | Continuum theory[END_REF]Subsections 5.10 and 5.22]. A metric space (X, d) is connected im kleinen at x ∈ X if for each open set x ∈ U , there is a component of U which contains x in its interior. The space X is locally connected at x if for each open set U containing x there is a connected open set V such that x ∈ V ⊂ U . We say a space is locally connected if it is locally connected at every x ∈ X. Note that connectedness im kleinen at every x ∈ X implies local connectedness. However, uniformly locally arcwise connectedness implies connectedness im kleinem at every x ∈ X since such a point will be always contained in the interior of some arc. Thus uniformly locally arcwise connectedness implies local connectedness. In [START_REF] Kolyada | Spaces of transitive interval maps, Ergodic Theory Dynam[END_REF] it is proven that each of the three spaces: all transitive maps, all piecewise monotone transitive maps and all piecewise linear transitive maps are uniformly locally arcwise connected.

The fact that transitive maps have dense sets of periodic points allows us to restate Lemma 2.6 from [START_REF] Kolyada | Spaces of transitive interval maps, Ergodic Theory Dynam[END_REF], which will help us to prove arcwise connectedness of CP . Lemma 4.9. For any transitive maps f, g ∈ CP there is an arc A ⊂ CP joining f and g such that its diameter is smaller than or equal to 5d(f, g). Proof. Fix any maps f, g ∈ CP . Let δ = d(f, g). Since by Lemma 4.4 leo maps are dense in CP , there are sequences f n → f and g n → g of leo maps. We may also assume that d(g n , g) < δ/2 n+1 , so in particular d(g n , g n+1 ) < δ/2 n+1 and d(g 0 , f 0 ) < 2δ. Let A 0 be the arc joining f 0 , g 0 , A n arc joining g n-1 , g n and A -n an arc joining f n-1 , f n . Furthermore, we assume that these arcs are obtained by application of Lemma 4.9, so diamA 0 < 10δ and diamA n ≤ 5δ/2 |n| . It is also clear that if we denote J n = ∪ n i=-n A n then it is an arc, and d(J n , J m ) < 5δ/2 n for any m > n, so it is a Cauchy sequence. Then the limit J = lim n J n exists. But it is also clear that lim n diam(sup i≥n A i ) = 0 and lim n diam(sup i≥n A -i ) = 0, so ∪ n J n compactifies with two points, which in fact are f, g as limits of endpoints of J n . This shows J is an arc and also that J ⊂ CP . By our construction

diamJ ≤ ∞ n=0 10δ/2 n ≤ 20δ.
This proves uniform local arcwise connectedness of CP .

The proof that CP is uniformly locally arcwise connected follows the same lines as for CP with the only difference that in place of the sequence of leo maps we now can use elements of CP and its uniform local arcwise connectedness.

We do not know if an analog of Lemma 4.9 is true for C λ . More precisely, it would be interesting to know the answer of the following question. Fix any f, g ∈ C λ . Is there a constant η > 0 and an arc A ⊂ C λ connecting f with g such that diamA ≤ ηd(f, g)?

Denseness properties in CP and CP

Window perturbations in CP.

The proofs in this section use window perturbations as a tool. Let J ⊂ I be an interval, m an odd positive integer and {J i ∈ I : 1 i m} a finite collection of intervals satisfying ∪ m i=1 J i = J and Int(J i ) ∩ Int(J j ) = ∅ when i = j. We will refer to this as a partition of J.

In our previous articles we considered the following notion in C λ . Fix f ∈ C λ an interval J ⊂ I and a partition {J i } of J. A map g ∈ C λ is an m-fold window perturbation of f with respect to J and the partition {J i } if

• g| J c = f | J c
• for each 1 i m the map g| J i is an affinely scaled copy of f | J with g| J 1 having the same orientation as f | J , g| J 2 having the opposite orientation to f | J , and then continuing with the orientations alternating.

The essence of this definition is illustrated by Figure 3.

We will apply this in CP in the following way. We fix f ∈ CP and conjugate

f to a map f = ψ -1 • f • ψ ∈ C λ .
We can apply the above procedure to f to obtain an m-fold window perturbation ĝ of f , and then we call the map g := ψ • ĝ • ψ -1 an m-fold window perturbation of f .

We call an m-fold wind perturbation regular if the intervals ψ(J i ) all have the same length. (a) There is a collection (perhaps finite or empty) J = J (f ) = {J 1 , J 2 , . . . } of closed subintervals of [0, 1] with mutually disjoint interiors, such that for each i, f 2 (J i ) = J i , and there is a point

x i ∈ J i such that {f 4n (x i ) : n 0} is dense in J i . (b) If x ∈ (0, 1) \ i 1 Ji , then f 2 (x) = x.
(c) For each J ∈ J , the map f 2 | J is topologically mixing.

At the first glance, one might naively expect that a similar characterization holds in CP , namely, for a map in CP \CP one could hope to partition I based on restricting to a different ω-limit sets. The following example shows this is not always possible. First note that the map f from Figure 4 is in CP \ CP . Indeed, f is not in CP since periodic points are not dense in [1 -ε, 1] for ε > 0 small. However f ∈ CP since one can approximate the leftmost critical value of f with maps that have critical values slightly above 3/4 and thus these perturbations will all be transitive and therefore in CP . On the other hand, we cannot expect a Barge-Martin decomposition for f . Namely, the set [0, 3/4] is f -invariant, and there exists a Cantor set of points in [3/4, 1 -ε], for small ε > 0, which get mapped to [0, 3/4]. Therefore, we cannot separate the ω-limit set of f | [0,3/4] from the ω-limit set of f | [3/4,1] . Clearly M is open in CP . We claim M is also dense in CP . Fix f ∈ CP and ε > 0. By Remark from [START_REF] Bobok | Periodic points and shadowing for generic Lebesgue measure preserving interval maps[END_REF] there is a non-atomic invariant measure µ for f with full support on I and a homeomorphism ψ : I → I such that g := ψ -1 • f • ψ ∈ C λ . If g(0) = 0 or g(0) = 1 then we can perform a 2-fold window perturbation of size at most ε on the arc [0, ε] to destroy the fixed points and similarly we can destroy f (1) = 0 or f (0) = 1. We obtain a map G ∈ C λ with ρ(G, g) < ε such that G(0), G(1) / ∈ {0, 1}. Note that G ∈ CP , and thus the map F := ψ • G • ψ -1 ∈ CP as well. Since this is true for every ε there exists a map F ∈ CP arbitrarily close to f with F (0), F (1) / ∈ {0, 1}.

Notice that if f ∈ M then f 2 = Id. If f 2 = Id, the set of intervals J in Proposition 5.1 is non-empty.

We claim that the set N :={g ∈ M : a periodic interval or point of period p ∈ {1, 2} g-splits [0, 1]} coincides with the set of maps in M that are not leo. The only if direction is clear, thus suppose that f ∈ M is not leo. Suppose first that # J = 1. We claim that J I. Suppose the contrary, i.e., J = I. By Proposition 5.1(c) f is topologically mixing, but for any interval (a, b) we have f n (a, b) is an interval and λ(f n (a, b)) → 1. Since f ∈ CP it is surjective and since f ∈ M we have some 0 < c < d < 1 such that f (c) = 0 and f (d) = 1 (or vice versa). Combining these two fact yields that f n (a, b) = I for sufficiently large n, contradicting that f is not leo. We have shown J I. By Proposition 5.1(b) f 2 (C) = C for each connected component C of J c and thus J f -splits I. If J 1 , J 2 ∈ J then again by Proposition 5.1(b) f 2 (C) = C for each nonempty connected component C of (J 1 ∪ J 2 ) c and thus either of the J i f -splits I. This finishes the proof of the claim.

Let us prove that N is closed in M . Suppose that {f n } ⊂ N converges to f . Since I is compact we can choose a subsequence of n i 's such that the corresponding intervals J n i converge to an interval J, which is possibly degenerate to a point or J = [0, 1]. Since f 2 n (J n ) = J n and the f n are continuous we get f 2 (J) = J.

If J = [0, 1] and J ∩ (0, 1) = ∅ then J f -splits I and so f ∈ N . If J = {0} then f (0) = 0 or f (0) = 1 and so f ∈ M , and similarly if J = {1} we have f ∈ M .

Finally we turn to the case J = [0, 1]. But in this case it follows from Proposition 5.1(a) and the fact f n → f that f (0) = 0 or f (0) = 1 (and similarly for f (1)). Therefore, also in this case f / ∈ M .

To conclude the proof note that the set N is nowhere dense in M since the set of piecewise affine leo maps is dense in M by Lemma 4.4. 

Conjugacy classes in CP .

A beautiful result of Kechris and Rosendal [START_REF] Kechris | Turbulence, analgamation, and generic automorphisms of homogeneous structures[END_REF] shows that there is residual set in the space of all homeomorphisms of the Cantor set such that each pair of its elements are conjugate (so-called residual conjugacy class). Moreover, Bernardes and Darji [START_REF] Bernardes | Graph theoretic structure of maps of the Cantor space[END_REF] proved there is a residual conjugacy class in the space of all self-maps of the Cantor set. In the case of CP (or C µ and C(I)) all the standard invariants (entropy, mixing, ... ) do not exclude the possibility that such a class exists. Our next result shows that in CP a residual conjugacy class does not exist.

Let H(I) denote the set of all homeomorphism (increasing or decreasing) of I and for f ∈ CP put

G f = {ψ -1 • f • ψ : ψ ∈ H(I)}.
Theorem 3.1 directly implies that the set G f is a subset of CP .

As usually, sgn : R → {-1, 0, 1} is defined as

sgn(x) :=      -1, x < 0, 0, x = 0, 1,
x > 0.

Theorem 5.8. For every f ∈ CP , the set G f is nowhere dense in CP .

Proof. Let us fix f ∈ CP . For every ψ ∈ H(I) define

f ψ := ψ -1 • f • ψ ∈ CP .
We start with three basic but useful observations: Since 0 and 1 have α-preimages outside the set {0, 1}, for each positive integer n there is x ∈ O -n α (u), u ∈ {0, 1}, such that f i (x) / ∈ {0, 1} for i = 0, 1, . . . , n-1. Because α is leo, there exists n so large that one can choose x i , y i for i ∈ {0, 1}

(A) ∀ ψ ∈ H(I), sgn(f (0) -f (1)) = sgn(f ψ (0) -f ψ ( 1 
0 t 1 1 s 0 1 s 0 l-1 x 0 = s 0 l t 1 2 t 1 3 s 0 k δ β 1 α 0 t 1 1 s 0 1 s 0 l-1 x 0 = s 0 l t 1 2 t 1 3 s 0 k δ β α Figure 5
. The maps α (black) and β constructed in two steps (β 1 in red, then modified to β in blue) from the proof of Theorem 5.8 on the interval [0, δ] with x 0 = s 0 . On the interval [1 -δ, 1] the redefinition of S 0 and T 1 is analogous.

such that

x 0 ∈ O -n α (0) ∩ (0, δ), x 1 ∈ O -n α (1) ∩ (0, δ), y 0 ∈ O -n α (0) ∩ (1 -δ, 1), y 1 ∈ O -n α (1) ∩ (1 -δ, 1)
and define

S 0 := {s 0 1 < s 0 2 • • • < s 0 k 0 } = {x 0 , α(x 0 ), . . . , α n-1 (x 0 )} ∩ ([0, δ] ∪ [1 -δ, 1]), S 1 := {s 1 1 < s 1 2 • • • < s 1 k 1 } = {x 1 , α(x 1 ), . . . , α n-1 (x 1 )} ∩ ([0, δ] ∪ [1 -δ, 1]), T 0 := {t 0 1 < t 0 2 • • • < t 0 0 } = {y 0 , α(y 0 ), . . . , α n-1 (y 0 )} ∩ ([0, δ] ∪ [1 -δ, 1]), T 1 := {t 1 1 < t 1 2 • • • < t 1 1 } = {y 1 , α(y 1 ), . . . , α n-1 (y 1 )} ∩ ([0, δ] ∪ [1 -δ, 1]).
As mentioned above these four sets are disjoint from the set {0, 1}. Now we distinguish two cases:

I. sgn(f n (0) -f n (1)) ∈ {1, 0}.
As it is shown in Figure 5 in this case there exists a window perturbation β of α on the intervals [0, δ], [1 -δ, 1] such that α and β coincide on S 0 and T 1 , hence β i (0) = α i (x 0 ) for each i ∈ {1, . . . , n} and also β i (1) = α i (y 1 ) for each i ∈ {1, . . . , n};

then sgn(f n (0) -f n (1)) = sgn(β n (0) -β n (1)) = -1 hence from (A),(B) follows β / ∈ B(α, ε), a contradiction. II. sgn(f n (0) -f n (1)) ∈ {0, -1}.
In this case there exists a window perturbation β of α on the intervals [0, δ], [1 -δ, 1] such that α and β coincide on S 1 and T 0 , hence

• β i (0) = α i (x 1 )
for each i ∈ {1, . . . , n} and also

• β i (1) = α i (y 0 ) for each i ∈ {1, . . . , n}; then sgn(f n (0) -f n (1)) = sgn(β n (0) -β n (1)) = 1
and from (A),(B) one again gets β / ∈ B(α, ε), a contradiction.

We have shown that the set G f has an empty interior, i.e., G f is nowhere dense.

As an immediate consequence of Theorem 5.8 we obtain.

Corollary 5.9. Every second category set G ⊂ CP contains uncountably many conjugacy classes.

Proof. By Theorem 5.8 each union of countably many conjugacy classes is a set of the first category.

Remark 5.10. Adapting the preceding two proofs easily leads to results analogous to Theorem 5.8 and Corollary 5.9 in the setting of C λ or CP . By Remark 2.1 the conclusions of Theorem 5.8 and Corollary 5.9 hold also for C µ .

In [START_REF] Činč | Pseudo-arc as the attractor in the disc -topological and measuretheoretic aspects[END_REF] the authors constructed a parameterized family of planar homeomorphisms arising from a residual set T of functions from C λ . The maps from T share several dynamical properties (shadowing, topological exactness, δcrookedness, the same structure of the sets of periodic points, etc.). In this context the question if T could be contained in a single conjugacy class naturally arose. Corollary 5.9 and Remark 5.10 provide a negative answer to this question.

5.4.

Shadowing is generic in CP . Now let us recall the definition of shadowing and periodic shadowing. For some δ > 0, a sequence (

x n ) n∈N 0 ⊂ I is called δ-pseudo orbit of f ∈ C(I) if d(f (x n ), x n+1
) < δ for every n ∈ N 0 . A periodic δ-pseudo orbit is a δ-pseudo orbit for which there exists N ∈ N 0 such that x n+N = x n , for all n ∈ N 0 . We call the sequence (x n ) n∈N 0 an asymptotic pseudo orbit if lim n→∞ d(f (x n ), x n+1 ) = 0.

Definition 5.11. We say that a map f ∈ C(I) has the:

• shadowing property if for every ε > 0 there exists δ > 0 satisfying the following condition: given a δ-pseudo orbit y := (y n ) n∈N 0 we can find a corresponding point x ∈ I which ε-traces y, i.e.,

d(f n (x), y n ) < ε for every n ∈ N 0 .
• periodic shadowing property if for every ε > 0 there exists δ > 0 satisfying the following condition: given a periodic δ-pseudo orbit y := (y n ) n∈N 0 we can find a corresponding periodic point x ∈ I, which εtraces y.

Lemma 5.12 (Lemma 22 from [START_REF] Bobok | Periodic points and shadowing for generic Lebesgue measure preserving interval maps[END_REF]). For every ε > 0 and every map f ∈ C λ there are δ < ε 2 and F ∈ C λ such that:

(1) F is piecewise affine and ρ(f, F ) < ε 2 , (2) if g ∈ C λ and ρ(F, g) < δ then every δ-pseudo orbit x := {x i } ∞ i=0 for g is ε-traced by a point z ∈ I. Furthermore, if x is a periodic sequence, then z can be chosen to be a periodic point.

In fact, a close study of the proof of Lemma 22 from [START_REF] Bobok | Periodic points and shadowing for generic Lebesgue measure preserving interval maps[END_REF] reveals that in statement (2) we may consider wider neighborhood of maps g ∈ C(I), ρ(F, g) < δ. We explain this in more detail in the following paragraph.

For an interval J ⊂ I let diam(J) := sup{d(x, y) : x, y ∈ J}. Take any g ∈ C λ such that ρ(F, g) < δ and let x := {x i } ∞ i=0 be a δ-pseudo orbit for g. In the proof we claim that there is a sequence of closed intervals

J i such that (a) diamJ i ≤ γ and if i > 0 then J i ⊂ g(J i-1 ), (b) dist(x i , J i ) < γ, (c) for every i there is p such that F (J i ) = F ([a p , a p+1 ]) and x i ∈ [a p , a p+1 ]
provided that g ∈ C λ and ρ(F, g) < δ, where points a i are endpoints of a partition of I and γ > 0 is a sufficiently small constant. The claim is proved simply by the definition of uniform metric and covering of intervals (by continuity of F ), so in fact the conditions hold for any g ∈ C(I), ρ(F, g) < δ, in particular for g ∈ CP . Now the tracing point is obtained as any z ∈ ∩g -n (J n ) = ∅.

Therefore perturbing the original map f ∈ CP to a map f ∈ CP , passing through conjugacy of f from CP into C λ , applying Lemma 5.12 (with sufficiently decreased constants) and then passing back to CP (which gives coverings satisfying (a)) we obtain the following adaptation of the result to the CP case. Lemma 5.13. For every ε > 0 and every map f ∈ CP there are δ < ε 2 and F ∈ CP such that:

(1) ρ(f, F ) < ε 2 , (2) if g ∈ CP and ρ(F, g) < δ then every δ-pseudo orbit x := {x i } ∞ i=0 for g is ε-traced by a point z ∈ I. Furthermore, if x is a periodic sequence, then z can be chosen to be a periodic point.

In what follows, we will need a result by Chen [START_REF] Chen | Linking and the shadowing property for piecewise monotone maps[END_REF], which connects the following definition with the shadowing property for interval maps. Definition 5.14. Let f ∈ C(I) and fix any ε > 0. A point x ∈ I is ε-linked to a point y ∈ I by f if there exists an integer m > 1 and a point z ∈ B(x, ε) such that f m (z) = y and d(f (x), f (z)) < ε for 0 < j < m. We say x ∈ I is linked to y ∈ I by f if x is ε-linked to y by f for every ε > 0. We say C ⊂ I is linked by f if every point c ∈ C is linked to some point in C. We say that f has the linking property if the set C consisting of critical points together with endpoints of I is linked by f .

The following result is a consequence of [START_REF] Chen | Linking and the shadowing property for piecewise monotone maps[END_REF] and [START_REF] Parry | Symbolic dynamics and transformations of the unit interval[END_REF]. Theorem 5.15. For a topologically mixing piecewise monotone map of the interval, the shadowing property and the linking property are equivalent. Theorem 5.16. Shadowing is generic in CP and in CP and there is a dense set of maps in CP which do not have the shadowing property.

Proof. The proof that shadowing property is generic follows exactly the same arguments as the proof of Theorem 3 in [START_REF] Bobok | Periodic points and shadowing for generic Lebesgue measure preserving interval maps[END_REF] with Lemma 5.12 replaced by Lemma 5.13.

To see that shadowing property is not dense property in CP , fix any map f ∈ CP and conjugate it by a homeomorphism ψ with a map F ∈ C λ . Since by Remark 5.4 C λ contain an open and dense subset U of leo maps and piecewise affine maps form a dense subset of C λ , we can choose a piecewise affine leo map G in U which is in an arbitrarily small neighborhood of F . Now, we can perturb map G by a 2-fold perturbation in a small neighborhood of 0 to a piecewise affine map Ĝ such that 0 is eventually periodic with periodic orbit P and P is disjoint from the set of turning points of Ĝ. That is indeed possible, because the set of preimages of any point p under G is dense in I, since G is leo. If the perturbation is sufficiently small then Ĝ remains in U and so it is leo. But it is clear that Ĝ does not have the linking property, so also a) no interval with slope ±1 and b) having at least one periodic point of period k, and c) all periodic points of period k transverse is dense in C λ (Definition 10 and Lemma 12 in [START_REF] Bobok | Periodic points and shadowing for generic Lebesgue measure preserving interval maps[END_REF]). The set Fix(ĝ, k) is finite for such a map ĝ, since ĝ does not have slope ±1. Thus we can choose ĝi ∈ PA λ satisfying a), b) and c) close enough to fi and piecewise affine homeomorphisms ψi of I sufficiently close to ψ i such that (i) each periodic point of g i is a point where ψ i is differentiable and (ii) the set of piecewise affine maps

{g i := ψi • ĝi • ψ-1 i } is a dense subset of CP .
Notice that all points in Fix(g i , k) are also transverse. The advantage of transversality is that for each point in Fix(g i , k), there is at least one corresponding periodic point in Fix(g, k) if the perturbed map g is sufficiently close to g i .

After these modifications the rest of the proof follows exactly the same arguments as the proof of Theorem 1 in [START_REF] Bobok | Periodic points and shadowing for generic Lebesgue measure preserving interval maps[END_REF]. For convenience we repeat and streamline the proof, correcting an error in the proof of (2) of Theorem 1 in [START_REF] Bobok | Periodic points and shadowing for generic Lebesgue measure preserving interval maps[END_REF] along the way.

Since ĝi ∈ PA λ does not have slope ±1 the set Fix(ĝ i , k) is finite, and thus the set Fix(g i , k) is finite as well. Suppose it consists of i disjoint orbits and the set Per(g i , k) consists of ¯ i i distinct orbits. In particular (4) i #Fix(g i , k) k i and Per(g i , k) = k ¯ i .

Choosing one point from each of the orbits in Fix(g i , k) defines the set {x l,i : 1 l i } ⊂ Fix(g i , k). Let k(x l,i ) denote the minimal period of x l,i . Let xl,i := ψ -1 i (x l,i ). The construction in the proof depends on integers n i 1 which will be defined in the proof, for most of the estimates it suffices to have n i = 1, but for the upper box dimension estimates we will need n i growing sufficiently quickly. We consider a very small number âi (several restrictions will be introduced progressively) and define new maps

h i := ψ i • ĥi • ψ -1 i
where ψi ∈ PA λ is obtained by applying a regular 2n i + 1-fold window perturbation of ĝi with respect to Îl,i := (x l,i -âi , xl,i + âi ). Finally set I l,i := ψ i ( Îl,i ), and let a i be half the length of this interval.

We choose âi so small that {h i } satisfies the following properties:

i) ψ i | I l,i is affine. ii) 2a i (k i ) -i
. This implies a i → 0 and thus the collection {h i } i≥1 is dense in CP .

iii) (Disjointness) I l,i ∩ I l ,i = ∅ if l = l and for all 1 l < i and all 0 j < k the images h j i (I l,i ) are mutually disjoint, iv) (Regularity) For each 1 j k(x l,i ) the map h j i restricted to the interval I l,i is composed of 2n i + 1 full monotone branches with widths equal to 2a i /(2n i + 1). This implies a) The map h k(x l,i ) i has exactly 2n i + 1 fixed points in the interval I l,i and these points have period k(x l,i ), b) The map h k i has (2n i + 1) k/k(x l,i ) fixed points in this interval. c) The full branches of h k/k(x l,i ) i have width b l,i := 2a i /((2n i +1) k/k(x l,i ) ), thus each subinterval of I l,i of length 2b l,i contain at least one full branch and at most parts of three branches, and thus at least one fixed point and at most 3 fixed points of h k/k(x l,i ) i . d) The map h i has a point of period k in each interval I l,i . e) The total number N l,i of fixed points of h k i arising from the orbit of x l,i satisfies

N l,i = (2n i + 1) k/k(x l,i ) k(x l,i ).
Summing over the points x l,i and using

1 k(x l,i ) k yields #Fix(h i , k) = i l=1 N l,i (2n i + 1) k k i .
Since we have i different points x l,i and among them there is a fixed point of g i , so there is at least one l with k(x l,i ) = 1, yielding max((2n i + 1) i , (2n i + 1) k ) #Fix(h i , k). v) new periodic points obtained by perturbations of each x l,i ∈ Per(g i , k)

have to visit all k disjoint intervals h j i (I l 0 ,i ) (0 j < k). Thus for each x l,i ∈ Per(g i , k) the N l,i = (2n i + 1)k points are not only in Fix(h i , k) but also in Per(h i , k); and so #Per(h i , k) (2n i + 1)k ¯ i .

Consider δ i > 0 and

G := j∈N i j B(h i , δ i ),
where the ball is taken in CP . By construction the set G is a dense G δ subset of CP , by Lemma 4.1 the set G ∩ CP is a G δ subset of CP .

(1) First we claim that if δ i > 0 goes to zero sufficiently quickly then Fix(f, k) is a Cantor set for each f ∈ G.

By its definition the set Fix(f, k) is closed for any continuous map f . The set Fix(h i , k) is finite. We choose δ i so small that if g ∈ B(h i , δ i ) then Fix(g, k) ⊂ B(Fix(h i , k), a i ); in particular the set Fix(g, k) can not contain an interval whose length is longer than 2a i . Suppose f ∈ G, thus f ∈ B(h i j , δ i j ) for some subsequence i j . Since a i j → 0 the set Fix(f, k) can not contain an interval.

It remains to show that there are no isolated points in Fix(f, k). By (iib) each interval I l,i contains exactly (2n i + 1) k/k(x l,i ) points of Fix(h i , k). We choose δ i so small that for each g ∈ B(h i , δ i ) each interval I l,i contains at least (2n i + 1) k/k(x l,i ) points of Fix(g, k) and Fix(g, k) ⊂ ∪ l,0 j k(x l,i ) h j i (I l,i ). Now we apply this to f ∈ G and x ∈ Fix(f, k). Let l j be such that x ∈ I l j ,i j . Each of these intervals contains other points of Fix(f, k), and their lengths tend to zero, which show that x is not isolated and completes the proof of (1).

(2) Fix f ∈ G and an i such that f ∈ B(h i , δ i ). As we already saw in the proof of (1) we have Fix

(f, k) ⊂ B(Fix(h i , k), a i ). But (ii(d)) implies that Fix(h i , k) ⊂ B(Per(h i , k), 2a i ). Combining these two facts yields Fix(f, k) ⊂ B(Fix(h i , k), a i ) ⊂ B(Per(h i , k), 3a i ).
Next we claim that δ i can be chosen so that Per(h i , k) ⊂ B(Per(f, k), a i ). Once the claim is proven we will have shown that Per(f, k) is dense in Fix(f, k).

Condition (iia) tells us that if x l,i ∈ Per(h i , k) then the (2n i + 1) fixed points of h k i in the interval I l,i all have period k. We have chosen δ i so small that each I l,i contains at least as many points of Fix(g, k) for any g ∈ B(h i , δ i ) and Fix(g, k) ⊂ ∪ l,0 j k(x l,i ) h j i (I l,i ). We additionally require that δ i is so small that a similar statements hold for periodic points, namely that if k(x l,i = k then each I l,i contains at least as many points of Per(g, k) for any g ∈ B(h i , δ i ) and Per(g, k) ⊂ ∪ l:k(l,i)=k,0 j k h j i (I l,i ). This implies Per(h i , k) ⊂ B(Per(g, a i ) as well, and finishes the proof of the claim.

Finally notice that Per(f, k) = Fix(f, k) \ ∪ 1 <k: |k Fix(f, ). But this finite union is closed, thus Per(f, k) is relatively open subset of Fix(f, k). This completes the proof of (2).

3) It suffices to prove the lower box dimension statement for Fix(f, k), the other statements follow since Per(f, k) ⊂ Fix(f, k) and since the Hausdorff dimension of a set is smaller than its lower box dimension. We will show that if δ i > 0 goes to zero sufficiently quickly then the lower box dimension of Fix(f, k) is zero for any f ∈ G.

Consider the open cover C i := {(x -a i , x + a i ) : x ∈ Fix(h i , k)} of Fix(h i , k), notice that the intervals are pairwise disjoint by assumption (iii) and that C i covers the domain {I l,i : 1 l l i } of our perturbations. Choose δ i sufficiently small so that for each f ∈ B(h i , δ i ) the collection C i covers the set Fix(f, k).

Fix f ∈ G, thus f ∈ B(h i j , δ i j ) for some subsequence i j . Let N (ε) denote the number of intervals of length ε > 0 needed to cover Fix(f, k), combining the previous discussion with Equation (4) yields N (2a i j ) k i j = #C i . Applying (4) Instead of covering Fix(h i , k) by intervals of length a i we cover it by intervals of length 2b i . By (iic) each such interval covers at most three points of Fix(h i , k). Thus we need at least (#Fix(h i , k))/3 such intervals to cover Fix(h i , k); so by (iie) we need at least (2n i + 1) k /3 such intervals to cover Fix(h i , k). Fix such a covering and choose δ i sufficiently small so that all periodic points of period k of any f ∈ B(h i , δ i ) are contained in the covering intervals. Thus [START_REF] Blokh | Decomposition of dynamical systems on an interval, (Russian)[END_REF] log(N (2b i )) log(1/2b i ) log((2n i + 1) k /3) log(1/2b i ) = log((2n i + 1) k ) -log(3) log((2n i + 1) k ) -log(2a i ) .

The sequence a i has been fixed above, if n i grows sufficiently quickly the last term in (5) approaches one. We can not cover Fix(h i , k) by fewer intervals, and thus we can not cover Fix(f, k) by fewer intervals for any f ∈ B(h i , δ i ).

By the above discussion, if we fix any f ∈ G then f ∈ B(h i j , δ i j ) for some subsequence i j and therefore, the upper box dimension of Fix(f, k) defined as lim sup Obviously there is a piecewise affine homeomorphism : I → I such that [START_REF] Bobok | Periodic points and shadowing for generic Lebesgue measure preserving interval maps[END_REF] ρ(ψ, ) + ρ(ψ -1 , -1 ) < ε 1 .

Choose ε 2 > 0 arbitrary. If ε 1 is sufficiently small, from ( 6) and ( 7) one has for δ = -1 • γ • , Per(δ, k) = -1 (Per(γ, k)) for each k hence also Per(δ) = -1 (Per(γ)),

ρ(α, δ) = ρ(ψ -1 • β • ψ, -1 • γ • ) < ε 2 ,
and since is piecewise affine, λ(Per(δ, k)) > 0 for each k and λ(Per(δ)) = 1.

For completeness we also show the following proposition which is well known in many situations. Let CP entr=∞ denote the set of maps from CP with topological entropy ∞.

Proposition 5.22. The set of maps CP entr=∞ is a residual set in CP and thus in CP .

Proof. Every map f ∈ CP \ {id} has a fixed point b where the graph of f is transverse to the diagonal at b. This is indeed true since it holds for maps in C λ \ {id} and any map f ∈ CP is conjugate to a map f = ψ -1 • f • ψ ∈ C λ ; therefore also f ∈ CP \ {id} have a transverse fixed point. Using an (n + 2)fold window perturbation on a neighborhood of b, and again passing through C λ , we can create a map g ∈ CP arbitrarily close to f with a horseshoe with entropy log(n) in the window. Since horseshoes are stable under perturbations around stable fixed points, there is an open ball B(g, δ) in CP such that each h in this ball has topological entropy at least log(n) for any n ≥ 1. The result also hold for CP by Lemma 4.1.
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  Let I := [0, 1] denote the unit interval, d denote the Euclidean distance on I, and C(I) denote the set of all surjective continuous interval maps. A point x is called periodic of period N ∈ N, if f N (x) = x and f i (x) = x for 1 ≤ i < N . Periodic points of f ∈ C(I) of period N are denoted by Per(f, N ) and the set of periodic points of f ∈ C(I) by Per(f ). Let λ denote the Lebesgue measure on the unit interval I := [0, 1]. We denote by C λ ⊂ C(I) the family of all continuous Lebesgue measure-preserving functions of I and more generally by C µ ⊂ C(I) the family of all continuous interval maps preserving a non-atomic probability measure µ on I with full support. For µ a non-atomic probability measure on I with full support the map ψ : I → I defined as

4 . 1 .

 41 Topological structure of the sets CP and CP 4.Basic properties of CP , CP and CP \ CP . By definition CP is a complete metric space, thus a Baire space. The next proposition implies that CP equipped with uniform metric is also a Baire space, see [17, p. 10]. Lemma 4.1. CP is a residual subset of CP . Proof. Fix a sequence (J m ) m of rational subintervals of [0, 1] and a sequence (f n ) n of maps from CP dense in CP . By [7, Remark p. 2] each map f n from CP has an invariant measure µ n with the full support [0, 1]. In this proof we will use the notation B CP (•, •) to denote an open ball in CP . Using the increasing homeomorphism

Remark 4 . 3 .

 43 Transitive interval maps have dense periodic points, thus all maps from CP \ CP are not transitive.

Lemma 4 . 4 .

 44 The set of piecewise affine leo maps is dense in CP

Theorem 4 . 7 .

 47 Every map f ∈ C λ is homotopic to Id.

Theorem 4 . 10 .

 410 CP and CP are uniformly locally arcwise connected.

Figure 3 . 5 . 2 .Proposition 5 . 1 .

 35251 Figure 3. For f ∈ C λ shown on the left, we show on the right the graph of g which is a 3-fold piecewise window perturbation of f on the interval [a, b].

Figure 4 . 3 . 5 . 2 .Theorem 5 . 3 .

 435253 Figure 4. An example explaining that Barge-Martin-like decomposition in CP is not possible.

Remark 5 . 4 .Remark 5 . 5 .Corollary 5 . 6 . 5 . 7 .

 54555657 The set of leo piecewise affine interval maps f preserving λ such that f ({0, 1}) ∩ {0, 1} = ∅ forms a dense collection in C λ , see [6, Proposition 8]. Thus the proof of Theorem 5.3 works without change in the setting of C λ . Suppose µ is a non-atomic invariant measure µ with full support. By Remark 2.1 leo maps are open and dense in C µ as well. In fact the proof of Theorem 5.3 shows more, namely that the set of leo maps f such that f ({0, 1}) ∩ {0, 1} = ∅ is an open and dense subset of CP . Suppose µ is a non-atomic invariant measure µ with full support. By Remark 5.4 the space C µ contains an open dense set of leo maps f such that f ({0, 1}) ∩ {0, 1} = ∅. Applying Corollary 4.2 and Theorem 4.5 yields The set of leo maps is residual in CP but is not open. Blokh showed that topological mixing implies the periodic specification property [25, Theorem 3.4] (see also [8, Appendix A]), thus we have Corollary Maps satisfying the periodic specification property form an open dense collection in CP , C λ and C µ .

  )). (B) If f ψn ⇒ g then f m ψn ⇒ g m for each m ∈ N (by induction over m). (C) For each ψ ∈ H(I) the map H ψ : CP → CP defined as H ψ (f ) = ψ -1 • f • ψ, f ∈ CP , is a homeomorphism of CP . Assume to the contrary that there exists a nonempty open set U ⊂ G f ⊂ CP . Notice that by (C) H ψ (U ) is an open set in CP . Using [7, Remark p.2] there exist a homeomorphism ψ ∈ H(I) and a piecewise affine leo map α such that α ∈ H ψ (U ) ∩ C λ and each of the points 0 and 1 have a preimage outside the set {0, 1} using Remark 5.4. Fix ε > 0 so small that B(α, ε) ⊂ H ψ (U ). There is a small δ > 0 such that each window perturbation of α on the intervals [0, δ], [1 -δ, 1] remains in B(α, ε), see Subsection 5.1. For u ∈ [0, 1] and n ∈ N denote O -n α (u) := {x ∈ I : α n (x) = u}.

(

  ii) yields log(N (2a i j )) log(1/2a i j ) log(k i j ) log(1/2a i j ) 1 i jand thus the lower box dimension of Fix(f, k)

Remark 5 . 20 . 1 . 5 . 21 . 1

 52015211 The statements of Theorem 5.19 also hold for generic maps in CP by Lemma 4.Theorem The set of leo maps in CP whose periodic points have full Lebesgue measure and whose periodic points of period k have positive measure for each k 1 is dense in CP .Proof. Fix a map α ∈ CP . By[7, Remark, p. 2536] the map α is from C µ for some nonatomic probability measure µ with supp µ = I. Moreover, the map ψ :I → I defined by ψ(x) = µ([0, x]) is a homeomorphism for which β = ψ • α • ψ -1 ∈ C λ . By[7, Theorem 2] the statement of Theorem 5.21 is true in C λ . So there exists a map γ ∈ C λ for which ρ(β, γ) < ε 1 , λ(Per(γ, k)) > 0 for each k, (6) λ(Per(γ)) = λ( k Per(γ, k)) = 1.
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does not have the shadowing property by Theorem 5.15. If Ĝ is sufficiently close to F then its conjugate g by ψ -1 is sufficiently close to f . Observe that by definition both Ĝ and g belong to CP . This proves the density of maps without the shadowing property, completing the proof.

Remark 5.17. Using Lemma 5.12 instead of Lemma 5.13 we obtain with analogous arguments as in the proof of Theorem 5.16 that there is a dense set of maps in C λ which do not have the shadowing property.

Fix(f, k).

Definition 5.18. We call a periodic point p ∈ Per(f, k) transverse if there exist three adjacent intervals Proof. First note that the last part of (3) follows from the first part of (3) since dim H (Per(f )) sup

For the proofs of 1), 2), 3) and 4) it suffices to prove the result for a fixed k ∈ N. Fix a countable dense set of maps {f i } in CP . Let ψ i be a homeomorphism of Email address: oprocha@agh.edu.pl (S. Troubetzkoy) Aix Marseille Univ, CNRS, I2M, Marseille, France Email address: serge.troubetzkoy@univ-amu.fr