
HAL Id: hal-04444390
https://hal.science/hal-04444390

Submitted on 7 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Discovering Repeated Patterns From the Onsets in a
Multidimensional Representation of Music

Paul Lascabettes, Isabelle Bloch

To cite this version:
Paul Lascabettes, Isabelle Bloch. Discovering Repeated Patterns From the Onsets in a Multidi-
mensional Representation of Music. Discrete Geometry and Mathematical Morphology, Apr 2024,
Florence, Italy. �hal-04444390�

https://hal.science/hal-04444390
https://hal.archives-ouvertes.fr


Discovering Repeated Patterns From the Onsets
in a Multidimensional Representation of Music

Paul Lascabettes1[0000−0001−7132−8642] and Isabelle Bloch2[0000−0002−6984−1532]
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Abstract. This article deals with the discovery of repeated patterns in
a multidimensional representation of music using the theory of mathe-
matical morphology. The main idea proposed here is to use the onsets
to discover musical patterns. By definition, the morphological erosion of
musical data by a musical pattern corresponds to its onsets. However,
the erosion of musical data by the onsets is not always equal to the mu-
sical pattern. We propose a theorem which guarantees the equality if the
musical pattern satisfies a topological condition. This condition is met
when the patterns do not intersect, or only slightly, which is coherent
in a musical context. Due to the importance of repetition in music, this
idea proves to be relevant for the musical pattern discovery task.

Keywords: Pattern discovery · Mathematical morphology · Point-set
algorithms · Geometric pattern discovery in music · Music analysis.

1 Introduction

While mathematical morphology has been widely applied to image processing,
analysis and understanding, there are only few direct applications of this the-
ory, in particular in its algebraic setting, to symbolic representations of music.
This is partly due to the different nature of the patterns. On the one hand, the
objects associated with digital image processing are defined on a discrete grid,
endowed with a discrete connectivity, and are often connected sets. On the other
hand, those associated with symbolic music are sparse, in the sense that they
are often not connected, according to the underlying connectivity of the space
of representation. It is therefore necessary to adapt the morphological tools and
the expected results when applying this theory to symbolic representations of
music. This has been started by adapting the basic operators of mathematical
morphology to find a musical meaning, for example to extract harmonic com-
ponents or to obtain musical transformations [6, 8]. Among the other existing
applications, Karvonen et al. have developed automatic methods to discover ap-
proximate occurrences of a given pattern in symbolic musical databases [4, 5].

This work was partly supported by the chair of I. Bloch in Artificial Intelligence
(Sorbonne Université and SCAI).
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We advocate in this article that mathematical morphology can provide relevant
tools for the discovery of repeated patterns in a multidimensional representation
of music, i.e. in a discrete set of points. Even if we focus on symbolic represen-
tations of music, the developed results can be applied to other types of discrete
data composed of repeated patterns.

There are many algorithms for discovering repeated patterns from a mul-
tidimensional representation of music. Most of these algorithms are based on
the SIA algorithm [12, 13], which stands for “Structure Induction Algorithm”.
This algorithm, developed by Meredith et al., consists in discovering the largest
translatable patterns in a multidimensional dataset. Among other fundamen-
tal algorithms, the SIATEC algorithm [10, 12, 13] reveals the repetitions of the
largest translatable patterns discovered by SIA. However, these algorithms dis-
cover too many patterns, some of which are not musically relevant. Therefore,
with the aim of improving the precision and efficiency of SIA, Collins et al.
proposed the SIAR algorithm [1], which corresponds approximately to using a
sliding window of size r in SIA in order to avoid discovering patterns that are
too long, and the SIACT algorithm [1], to detect if a sub-pattern of the largest
translatable pattern is musically more important. Finally, the method we pro-
pose here belongs to the category of algorithms that discover patterns in order
to describe musical data, such as COSIATEC [12] (cover the dataset without
overlaps), SIATECCompress [11] (cover the dataset with overlaps) or Forth’s
algorithm [2] (cover not the entire dataset and with overlaps).

The originality of our approach comes from the use of a musical meaning
to discover patterns by distinguishing the role of onsets or musical pattern. In
particular, we provide various mathematical results related to musical problems.
These results optimize the discovery of repeated patterns, and are the foundation
for a new approach to discover musical patterns.

This article is organized as follows. Section 2 summarizes the principal op-
erators of mathematical morphology and their properties used in this article.
Section 3 presents the problem of discovering the musical patterns from their
onsets. Section 4 provides a solution to this problem if the musical patterns
satisfy a specific topological condition. Section 5 interprets this result from a
musical point of view. Section 6 demonstrates how to use this result to optimize
the discovery of musical patterns. Finally, Section 7 concludes this article and
proposes some future work.

2 Notations and Background: Binary Mathematical
Morphology

In this section, we recall the concepts of mathematical morphology used in this
article, for it to be self-contained. In particular, we consider here the simple
case of binary mathematical morphology, where the set E is equal to Rn. In the
remainder of this article, P(E) is the power set of E. First, let S ∈ P(E) and
t ∈ E, we denote the translate of S by t as St = {s + t | s ∈ S}. The majority
of morphological operators, in the deterministic setting, result from two basic
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ones: the dilation resulting from the Minkowski addition ⊕ [14] and the erosion
from the substraction ⊖ [3].

Definition 1 (Dilation and Erosion). Let S ∈ P(E), the dilation δS and
erosion εS by S are defined by:

δS : P(E) −→ P(E)

X 7−→ X ⊕ S = {x+ s | x ∈ X, s ∈ S}
(1)

εS : P(E) −→ P(E)

X 7−→ X ⊖ S = {x ∈ E | Sx ⊆ X}
(2)

In this case, S is called a structuring element. By composing these two operations,
we obtain the two other fundamental operators of mathematical morphology:
opening and closing.

Definition 2 (Opening and Closing). Given S ∈ P(E), the opening γS and
the closing φS are defined by:

γS : P(E) −→ P(E)

X 7−→ δS(εS(X)) =
⋃

{Sx | x ∈ E ∧ Sx ⊆ X}
(3)

φS : P(E) −→ P(E)

X 7−→ εS(δS(X))
(4)

These four operations satisfy many different properties. In particular, they
are all increasing (i.e. X ⊆ X ′ ⇒ fS(X) ⊆ fS(X

′), where fS denotes one of the
four operations). Also, the dilation and the closing are increasing according to the
structuring element (i.e. S ⊆ S′ ⇒ ∀X, δS(X) ⊆ δS′(X) and φS(X) ⊆ φS′(X)).
While the erosion and the opening are decreasing according to the structuring
element (i.e. S ⊆ S′ ⇒ ∀X, εS′(X) ⊆ εS(X) and γS′(X) ⊆ γS(X)). Moreover,
the position of the structuring element S with respect to the origin OE of the
space E has an impact on the result of the dilation or erosion. In particular, if
the origin belong to S, the dilation is extensive (i.e. X ⊆ δS(X)) and the erosion
is anti-extensive (i.e. εS(X) ⊆ X), and conversely, these properties hold only if
the origin belong to S. However, the position of S in relation to the origin does
not change the result of the opening and the closing, only the shape is involved.
In any case, the opening is anti-extensive (i.e. γS(X) ⊆ X) and the closing is
extensive (i.e. X ⊆ φS(X)). In addition, it is easy to check that the dilation
is commutative (δS(S

′) = δS′(S)). Finally, if we consider that the origin is in-
cluded in S and that X is a piece of music, among the four basic operations of
mathematical morphology, erosion and opening are analysis operators (extract-
ing musical data), while dilation and closing are generation operators (enriching
the music).
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3 Presentation of the Problem of Discovering the Musical
Pattern From Its Onsets

We present here the problem of discovering the musical pattern from its onsets.
We define the onsets of a pattern as the origins of its occurrences in musical
data. This makes the connection with the morphological erosion.

Definition 3 (Onsets). Let P,X ∈ P(E). The onsets O of P in X are defined
by:

O = εP (X) (5)

The onsets of a pattern can be interpreted as the beginnings of this pattern in
the musical data if the origin of the pattern is placed on its first note, assuming
that the dimensions of space are oriented. For example, in Figure 1(a), musical
data are represented by dots, which can be seen as a pattern repeated four
times. In this two-dimensional representation, which is used in the rest of this
article, the vertical axis refers to note pitch, while the horizontal axis indicates
time. Repetitions of the pattern are indicated in the figure by dotted lines. The
onsets of this pattern are therefore composed of four dots, which correspond to
the beginnings of the repeated pattern. The interesting result is illustrated in
Figure 1(b), by now considering the onsets as a pattern: the onsets of the onsets
of the pattern are equal to the pattern. In other words, by computing the points
where the onsets occur, we discover the pattern (the repetitions of the onsets
are indicated by the dotted lines in the figure). This result is quite surprising,
and we can formalize it with morphological operators as follows.

Definition 4 (Discovering the Musical Pattern From Its Onsets). Let
P,O,X ∈ P(E), where O = εP (X). The problem of discovering the musical
pattern from its onsets is to understand when the following equation is true:

P = εO(X) (6)

Let P,O,X ∈ P(E) such that O = εP (X). This can be interpreted as X the
musical data, P a musical pattern and O its onsets. First of all, the problem of
discovering the musical pattern from its onsets, i.e. the equality P = εO(X), is
not always true as shown in Figure 2. However, Lemma 1 allows us to state that
the inclusion P ⊆ εO(X) is always true. Therefore, P is always included in the
onsets of O. This implies that taking the onsets of the onsets of a pattern enlarges
it, as can be seen in Figure 2 where P , represented in Figure 2(b), is included in
εO(X), represented in Figure 2(d). Note that the figures are 2D examples, for
the sake of clarity, but all theoretical results apply for any finite dimension that
can represent note duration, velocity or voice in a musical context.

Lemma 1. Let P,O,X ∈ P(E), such that O = εP (X) and O ̸= ∅. We have:

P ⊆ εO(X) (7)
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Pattern

OnsetsOrigin of 
the pattern

(a) Representation of the pattern and its onsets, which are interpreted as
the points where the pattern begins. Pattern repetitions are indicated by
the dotted-line border. The origin of the pattern is chosen at the starting
point of the pattern (assuming that the time axis is from left to right).

Onsets of the onsets

OnsetsOrigin of 
the onsets

(b) The onsets of the onsets are equal to the pattern. Onsets repetitions
are indicated by the dotted-line border. That is, the dots corresponding to
where the onsets begin are the same as the pattern dots. As before, the
origin of the onsets is chosen at its starting point.

Fig. 1. Presentation of the problem of discovering the pattern from its onsets. In this
example, the onsets of the onsets of the pattern are equal to the pattern, which shows
that it is sufficient to know the onsets to discover the pattern.

Proof (Lemma 1). Let p ∈ P and o ∈ O. Because O = εP (X) and O ̸= ∅,
∃x ∈ X : p+o = x. This is true for all o ∈ O, consequently Op ⊆ X, which leads
to p ∈ εO(X). □

In the remainder of this article, we prove that the problem of discovering the
musical pattern from its onsets can be solved under some assumptions that are
musically interpretable.

4 Main Results

Because the equality P = εO(X) is not always true, we need to add an additional
condition on P and X to ensure this equality. First, we consider the particular
case where the data X is composed of patterns P which are repeated with
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(a) X (b) P (not full in X)

(c) O = εP (X) (d) P ̸= εO(X)

Fig. 2. Example where P is not full in X (Definition 5) and P ̸= εO(X), however the
inclusion P ⊆ εO(X) is satisfied (the origin is the first point on the left).

translations, that is to say γP (X) = X. Moreover, we introduce a new definition,
illustrated in Figure 3, that is, to some extent, the counterpart of the connectivity
(without holes) used in image processing. For P ∈ P(E), let us note CH(P ) the

convex hull of P defined by CH(P ) = {
∑k

i=1 λipi | k ∈ N∗ ∧
∑k

i=1 λi = 1 ∧ ∀i ∈
[[1, k]], pi ∈ P, λi ≥ 0}, where [[1, k]] is the set of integers from 1 to k included.

Definition 5 (P Full in X). Let P,X ∈ P(E). P is full in X if Pt ⊆ X for
any t implies that CH(Pt) does not contain any point of X other than Pt, i.e.:

∀t ∈ E,Pt ⊆ X ⇒ CH(Pt) ∩X = Pt (8)

Under the condition that P is full in X, Theorem 1 provides the equality
P = εO(X). Therefore, it is possible, under the assumptions of the theorem, to
discover the pattern P from its onsets O.

Theorem 1. Let P,X ∈ P(E) such that:

– γP (X) = X,
– P is full in X,
– X is bounded.

Then, by defining O = εP (X), we have:

P = εO(X) (9)

We provide another link between P and O using morphological operators
with the following lemma, which is useful for the proof of Theorem 1.

Lemma 2. Let P,O,X ∈ P(E), such that O = εP (X) and γP (X) = X. We
have:

εO(X) = φO(P ) (10)
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(a) P (b) CH(P )

(c) P is full in X (d) P is not full in X

Fig. 3. Musical pattern P (a) and its convex hull (b). P is full in X (set of dots) in (c)
because there are no dots inside the convex hull where it is included in X. However,
this is not the case for (d).

Proof (Lemma 2). Under the assumptions of the lemma, we have:

γP (X) = X

⇒ δP (εP (X)) = X (definition of γP )

⇒ δP (O) = X (definition of O)

⇒ δO(P ) = X (commutativity of ⊕)

⇒ εO(δO(P )) = εO(X) (composing by εO)

⇒ φO(P ) = εO(X) (definition of φO)

□

Proof (Theorem 1). Under the assumptions of the theorem, we can use Lemma 2
and Lemma 1. We prove that P = εO(X) with two inclusions.

⊆ The first inclusion comes directly from Lemma 1.

⊇ It has been proved by Serra that for every C ∈ P(E) convex and S ∈ P(E)

bounded, we have: φS(C) = C (proposition IV-4 in [15]). Since X is bounded,
O = εP (X) is also bounded and CH(P ) is convex by definition. Consequently,
we have:

φO(CH(P )) = CH(P ) (11)
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Let t ∈ E such that Pt ⊆ X (such t exists because γP (X) = X), therefore t ∈ O
and we have the following implications:

P ⊆ CH(P )

⇒ φO(P ) ⊆ φO(CH(P )) (φO is increasing)

⇒ φO(P ) ⊆ CH(P ) (φO(CH(P )) = CH(P ) Eq. (11))

⇒ εO(X) ⊆ CH(P ) (φO(P ) = εO(X) Lemma 2)

⇒ εO(X)t ⊆ CH(P )t (translation by t)

⇒ εO(X)t ⊆ CH(Pt) (CH(P )t = CH(Pt))

⇒ εO−t(X) ⊆ CH(Pt) (εO(X)t = εO−t(X))

⇒ εO−t(X) ∩X ⊆ CH(Pt) ∩X (intersection with X)

⇒ εO−t(X) ⊆ CH(Pt) ∩X (εO−t(X) ⊆ X because OE ∈ O−t)

⇒ εO−t(X) ⊆ Pt (CH(Pt) ∩X = Pt because P is full)

⇒ εO(X) ⊆ P (translation by − t)

□

5 Musical Interpretations of the Theorem

The main result of this article, i.e. Theorem 1, is illustrated in Figure 4 with
a piece of music X composed of a musical pattern P repeated several times
(therefore γP (X) = X). The assumptions of Theorem 1 are satisfied because X
is bounded and P is full in X. By definition, the morphological erosion of X by
the musical pattern P is equal to the onsets O. Moreover, Theorem 1 ensures
that the other way around is true: we can obtain the pattern P by applying the
erosion by the onsets O. All these morphological links between the piece X, the
pattern P and its onsets O are summarized in Figure 4. In this case, we can
describe the piece of music X by a morphological dilation between the pattern
and its onsets:

X = P ⊕O (12)

This last equality increases the relevance of the use of morphological operators
applied to music.

Remark 1 (About the assumptions in Theorem 1). In Theorem 1, there are three
assumptions which are: P is full in X, γP (X) = X and X is bounded.

– P is full in X: This assumption is coherent in a musical context. In the Gen-
erative Theory of Tonal Music (GTTM), the authors state several rules
about overlaps in music [9]. In particular, the Grouping Well-Formedness
Rules 4 asserts:

“If a group G1 contains part of a group G2, it must contain all of G2”

This proves that it is very rare for patterns to intersect in music. However,
later in GTTM, in Section 3.4 Grouping Overlaps, it is mentioned that this
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Erosion by:

Erosion by:

Dilation by:

Dilation by:

Fig. 4. Illustration using morphological operators of the relations between the musical
pattern P , which is full in X, and its onsets O.

rule is not always true and that patterns can overlap in a specific case: if
patterns overlap, it is only the first or last note of the pattern that can
be part of two patterns. Therefore, if we assume that a pattern P satisfies
the GTTM rules (i.e. patterns do not intersect or only share their first or
last note) and that the data X is composed of P which is repeated with
translations (i.e. γP (X) = X), this leads to having a pattern P that is full
inX. This reasoning shows that the property that a pattern is full is perfectly
coherent in a musical context. Moreover, this property allows us to obtain
the fundamental result of Theorem 1, and if we remove this assumption, the
theorem is not always true, as shown in Figure 2.

– γP (X) = X: In general, there are several musical patterns in a piece of music
and we cannot always have γP (X) = X. However, to ensure this equality, we
can restrict the analysis to musical sections composed of repeated patterns,
and not the whole piece of music. Since musical sections do not intersect, it
is therefore possible to apply Theorem 1 to temporal regions separately, and
thus to apply Theorem 1 independently to each musical section and not to
the whole piece. Therefore, to respect this assumption, we can consider the
discovery of each pattern Pi separately and restrict X to γPi

(X).
– X is bounded: In our analysis, the case where X is not bounded never hap-

pens because X represents a piece of music which is by definition bounded.
There is neither an infinite number of notes, nor an infinite value for pitch
or other musical characteristics. Therefore, this assumption is necessary to
ensure that Serra’s proposition is true but is not a restriction for the musical
applications.
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6 Optimize the Discovery of Musical Patterns With the
Onsets

In this article, we propose the novelty of having two methods for discovering the
musical patterns in a multidimensional representation of music: one can discover
either the musical patterns P or their onsets O. Using Theorem 1, it is enough
to identify only one of the two to obtain the other one (if P is full in X which is
usually the case in music). In each case, it is necessary to proceed differently, but
the main idea is to use X to discover the musical patterns. The following lemma
indicates that musical patterns or the onsets must be composed of sub-patterns
in X, i.e. if a sub-pattern P ′ does not appear in X then it cannot be contained
in musical patterns or the onsets.

Lemma 3. Let P, P ′, X ∈ P(E). If γP ′(X) = ∅ then γP∪P ′(X) = ∅.

Proof (Lemma 3). This is due to the decreasingness of the opening with respect
to the structuring element, i.e: P ′ ⊆ P ∪ P ′ ⇒ γP∪P ′(X) ⊆ γP ′(X) = ∅. □

From the previous lemma, we can deduce that the points of the musical patterns
or the onsets must belong to the set:

{x2 − x1 | x1, x2 ∈ X ∧ x1 ≤ x2}, (13)

where x1 ≤ x2 means that the temporal component of x1 is less than or equal
to the temporal component of x2. In other words, we can restrict ourselves
to this set, rather than trying to cover the whole E set to discover musical
patterns. This observation has already been made by Meredith et al. with the
SIA algorithm to optimize the discovery of musical patterns [12]. However, we
propose here to give a musical meaning to the discovered patterns, distinguishing
the role of pattern P and onsets O. Because many elements of this set are
not musically interesting, additional conditions have to be added to find the
appropriate musical patterns. Depending on whether we want to discover P
or O, we then add different constraints.

Learning the Musical Patterns P . To reduce the possibilities to be tested to dis-
cover musical patterns P , we need to add more constraints that remove irrelevant
candidates. For example, to avoid obtaining musical patterns that are too long
in time, Collins et al. proposed to add a constraint on the temporal length of the
musical pattern with the SIAR algorithm [1]. However, the possibilities remains
very large and we propose another approach to discover musical patterns, using
the onsets.

Learning the Onsets O. One of the most important results of this article is the
possibility of discovering musical patterns from the onsets. Under the assump-
tions mentioned in Theorem 1, it is possible to discover the musical pattern from
the onsets with the morphological erosion. The major usefulness of this result
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arises from the algorithmic complexity reduction: it can be faster to discover the
onsets than the patterns because there are far fewer possible choices.

In order to discover exact repetitive patterns, it is possible to consider time-
periodic onsets. For example, if we are looking for musical patterns P that repeat
in time at regular intervals of length L > 0, the onsets O are:

O = {(iL, 0, . . . , 0) | i ∈ [[0,m− 1]]}, (14)

where the first coordinate iL represents the temporal component. In this case,
we are looking for at least m exact repetitions of the musical pattern P . As a
result, only one parameter L is required to discover patterns that repeat exactly
at regular intervals. However, in the case where the patterns are not repeated
exactly with a time translation, they can also be discovered with transpositions,
which means that a pitch translation is also allowed. Up to an octave trans-
position up or down is enough to cover most cases, i.e. a pitch translation in
[[−12, 12]]. Representing the pitch by the second coordinate, the onsets O are of
the following form:

O = {(iL, pi, 0, . . . , 0) | i ∈ [[0,m− 1]] ∧ pi ∈ [[−12, 12]]} (15)

We can search for the values of L and pi that are in the set defined in Equation 13,
choosing those that maximize the number of notes after an opening by the onsets.
Therefore, only a few parameters L and pi are required to discover patterns
that repeat at regular intervals with transpositions, where each parameter has
a limited number of values.

7 Conclusion and Future Work

In this article, we have proposed an original approach based on mathematical
morphology for discovering musical patterns using a multidimensional represen-
tation of music. The originality of our method is to provide a musical meaning
to the discovered patterns, by distinguishing the role of onsets from the musical
patterns. With this characterization, we introduced the problem of discovering
the musical pattern from its onsets. We then proposed a solution to this problem
if the patterns respect a topological property that is musically coherent, because
patterns do not intersect in music. This reveals the possibility of discovering
musical patterns from their onsets. We have demonstrated the relevance of this
result in a musical context, as it optimizes the discovery of musical patterns due
to the importance of repetition in musical data. An interesting feature is that
we proved a mathematically strong result, with a relevant musical interpreta-
tion, based on simple morphological operations. In future work, we intend to
apply the method developed in this article to music databases, and compare the
obtained results with existing methods. In addition, we aim to determine the
links between point-set algorithms and mathematical morphology [7], and pro-
duce other mathematical results to characterize the discovered pairs of musical
patterns and their onsets. These directions of research are original in that they
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produce mathematical results that come from a musical motivation, but which
can be applied to other types of discrete data, e.g. in topological data analysis.
Finally, based on this approach, we hope to extend the application of mathe-
matical morphology to symbolic representations of music, which will allow us to
develop additional theories and produce further original mathematical results.
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