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Abstract—A persistent challenge in the field of Intelligent
Transportation Systems is to extract accurate traffic insights
from geographic regions with scarce or no data coverage. To
this end, we propose solutions for speed prediction using sparse
GPS data points and their associated topographical and road
design features. Our goal is to investigate whether we can use
similarities in the terrain and infrastructure to train a machine
learning model that can predict speed in regions where we lack
transportation data. For this we create a Temporally Orientated
Speed Dictionary Centered on Topographically Clustered Roads,
which helps us to provide speed correlations to selected feature
configurations. Our results show qualitative and quantitative
improvement over new and standard regression methods. The
presented framework provides a fresh perspective on devising
strategies for missing data traffic analysis.

Index Terms—Topographical Features, Speed Prediction
Model, Regression Model, Clustering

I. INTRODUCTION

Intelligent Transportation Systems (ITS) play a crucial role
in optimizing transportation networks, promising safer, more
sustainable, and integrated mobility solutions. An important
aspect of ITS is the acquisition of transportation data, which
covers a diverse array of techniques for different scenarios
and requirements. Some examples include fixed loop sensors,
embedded vehicle sensors, and GPS-enabled applications.

Fixed loop sensors are embedded in roadways to detect
the passage of vehicles and provide real-time traffic flow.
These sensors offer high accuracy but are limited to specific
locations, making them less versatile for broader regional
analyses. Embedded sensors, on the other hand, are placed
within vehicles and offer mobility, enabling data collection
across a wide geographic range. They are particularly useful
for studying traffic patterns, but their effectiveness may vary
based on the density of sensor-equipped vehicles.

GPS-enabled mobile applications have gained prominence
as a cost-effective means of gathering speed data, leveraging
the ubiquity of smartphones. Unlike traditional fixed sensors,

GPS mobile apps offer the flexibility to collect data across vast
regions without the need for costly infrastructure installation.
However, it’s essential to note that GPS-based data acquisition
is not without its limitations. Signal disruptions in certain
areas, such as tunnels or densely built urban environments,
can affect data accuracy. Additionally, the effectiveness of GPS
apps relies on user participation, and the representativeness of
the data may vary based on the demographics and habits of
app users. Privacy concerns and data security issues also need
to be addressed when collecting GPS data.

Accurate speed predictions from such data enhance trans-
portation efficiency models, aiding intelligent routing and nav-
igation systems. This allows drivers to choose optimal routes
based on real-time traffic and environmental factors, reducing
emissions. However, speed prediction faces challenges such as
traffic pattern variability, dynamic environmental factors, miss-
ing data, and data scale. Traffic pattern variability, influenced
by rush hours, special events, or accidents, leads to sudden and
unpredictable speed changes. Dynamic environmental factors,
like weather and road quality, further complicate predictions.
Missing data in traffic datasets add complexity, hindering
accuracy. Processing large-scale urban data requires robust
methods and efficient algorithms for real-time forecasts.

This paper addresses speed prediction based on the use of
GPS-enabled mobile applications and geographic information
system (GIS) data, taking into account the uneven distribution
of this data across different regions in France. In this study,
highly populated areas tend to exhibit denser data coverage,
as a higher concentration of smartphone users contributes to
more comprehensive and fine-grained data. Conversely, in less
densely populated regions, the limited presence of active GPS
mobile users results in sparser data availability. Nevertheless,
this does not imply that these regions lack traffic, therefore,
this spatial heterogeneity in the data density poses significant
challenges by not only creating skews the representativeness
of the data, but also complicates efforts to extrapolate findings
to certain regions.



In our approach, we design a pipeline to create a Temporally
Orientated Speed Dictionary Centered on Topographically
Clustered Roads. This framework addresses a new way of
determining speed patterns from region similarity and road
design options followed by temporal constraints. This is done
with the creation of speed grids depending on a certain road
cluster. The importance of this work is rooted in its ability
to provide individuals with insights into the speed behavior
across distinct road design scenarios, relying on a defined
trajectory and inputs that can be entirely simulated without
the need for a specialized software.

The paper is organized as follows. In Section II, we discuss
existing works on the topic of speed prediction and highlight
the main differences with our method. In Sections III and IV,
important concepts used in this work are clarified, and the
proposed method is explained. In Section V, we describe the
experiments performed and compare the achieved results to
other standard methods. Finally, some concluding notes and
suggestions for future work are presented in Section VI.

II. PREVIOUS WORKS

Yuan and Li [1] identified five key data types in traffic
prediction: (i) Spatial data (Sd) with only spatial attributes;
(ii) Temporal data (Td) focusing on temporal characteristics;
(iii) Spatio-temporal Static data (STSd) involving constant
spatial and temporal dimensions; (iv) Spatial Static Temporal
Dynamic data (SSTDd) with changing temporal elements and
fixed spatial variables; and (v) Spatial Dynamic Temporal
Dynamic data (SDTDd) where both spatial and temporal
variables change.

In the realm of traffic prediction, as outlined by Yuan
and Li [1], there are three primary study types: (i) traffic
classification, (ii) traffic generation, and (iii) traffic forecasting.
Classification involves categorizing given data, while genera-
tion addresses the challenge of acquiring trainable traffic data
by simulating specific environments. Forecasting, the focus of
this discussion, entails predicting traffic variables like flow
or speed for activities such as monitoring, estimation, or
evaluation.

Statistical traffic speed prediction studies have predomi-
nantly employed methods like Historical Average (HA), and
Auto Regressive Integrated Moving Average (ARIMA) [2]–
[4]. These traditional approaches, rely on traffic speed over a
fixed time period to make predictions. This methodology can
involve the use of linear combinations of past observations and
their lagged differences. While valuable, due to the model’s
complexity, these approaches struggled to capture the inherent
stochastic nature of traffic, characterized by the complex
interplay of numerous other external and dependent factors.

Machine Learning (ML) models offer enhanced generaliza-
tion capabilities, learning intricate relationships within data.
Yin et al. [5] identify three core classical ML methodologies:
(i) Feature-based models, addressing traffic prediction with
manually crafted traffic features in regression models; (ii)
Gaussian process models, coping with inner characteristics
using kernel functions, albeit with higher computational load;

and (iii) State space models, assuming observations are gener-
ated by Markovian hidden states, enabling natural uncertainty
modeling and better capturing the latent structure of spatio-
temporal data. However, the limited overall non-linearity of
these models makes them sub-optimal for modeling complex
and dynamic traffic data most of the time.

Mi et al. [6],to tackle the challenges associated with ensem-
ble learning and the static nature of modeling in traffic speed
prediction,proposed a three-step framework. The initial step
involved constructing the traffic speed forecasting model using
a recursive network (SRU) and temporal convolution network
(TCN). Subsequently, the neural networks were integrated
through the optimization of weight coefficients (MOICA).
Finally, the optimal solution from MOICA was selected based
on changes in the traffic speed data. The dataset utilized in
this study was collected from Changsha, and the features
incorporated in the model encompassed traffic speed, traffic
volume, weather conditions, congestion level, and holiday
information.

Zhang et al. [7] directed their efforts toward addressing
the prediction of medium- to long-term traffic speed while
simultaneously minimizing short-term prediction errors. Their
approach involved introducing a temporal attention convo-
lutional network (ATCN) and focusing on graph models.
Similarly, they conceptualized the observation devices in the
network as vertices and the connections between them as
edges. The model takes in a weighted adjacency matrix and
a historical step traffic speed matrix as inputs and produces
a traffic speed matrix for the prediction time step. The data
utilized in their study was sourced from PEMS04, PEMS08,
and LOS.

Hu et al. [8] proposed a framework for the prediction of
large-scale traffic speed, employing the AB-ConvLSTM. The
model incorporates a convolutional-long short-term memory
(Conv-LSTM) module, an attention mechanism module, and
two bidirectional LSTM (Bi-LSTM) modules. To gauge its
effectiveness, the model underwent a thorough evaluation
against ARIMA, RF, SVR, LSTM, SAE, and CNN AT-
BLSTM.

Ma et al. [9] proposed a method for predicting traffic speed
that relies on incorporating both spatial-temporal information
and selecting optimal inputs based on their predictive accuracy
on the validation set. The dataset comprised seven months
of 2015 data obtained from seven long-distance microwave
detectors, monitoring flow, density, and lane occupancy. Fol-
lowing data filtration, their Spatio-Temporal Feature Selection
Algorithm (STFSA) identified four monitoring points with the
strongest correlation to the predicted points, forming a spatial-
temporal correlation matrix. STFSA operates using Pearson’s
correlation coefficient for time-series correlation and the Las
Vegas method (LVM) for feature selection. This matrix is
then employed in a STFSA-CNN-GRU Hybrid Model (SCG)
prediction model. A comparative analysis is conducted against
established methods, including ARIMA, SVR, CNN, RNN,
LSTM, and GRU.

Wang et al. [10] explored within the context of incomplete



data for prediction models, the study addressed the challenges
posed by error accumulation resulting from the use of im-
putation to fill gaps in the data. The authors proposed a
Graph Neural Network (GSTAE) trained on spatio-temporal
information coupled with an encoder-decoder for parallel
speed prediction. The underlying graph structure, denoted as G
= (V, E), consisted of a set of traffic sensors (V) and their con-
nectivity (E). Given the difference in objectives of prediction
and imputation, the two modules were trained sequentially.
This sequential training approach was adopted to leverage
imputation in allowing the encoder to derive representations
from the initially gapped data. The proposed model’s efficacy
was evaluated using the PEMSD7 and METR-LA datasets.

Tian et al. [11] introduced a model to predict traffic
speed, incorporating a multi-head attention mechanism and
a weighted adjacency matrix known as MAT-WGCN. In this
approach, a Graph Convolutional Network (GCN) is employed
to capture spatial features of the road network within the
weighted adjacency matrix. Simultaneously, a Gated Recurrent
Unit (GRU) is utilized to extract temporal correlations between
speed and time. These spatial and temporal features are then
combined and input into a multi-head attention mechanism.
The model’s performance is evaluated on the EXPY-TKY and
METR-LA datasets, and the results are compared with existing
methods such as HA, SVR, and various GCN and GRU-based
approaches.

Qiu et al. [12] aimed to enhance predictive accuracy by
focusing on event factors. They introduced an event-aware
graph attention fusion network (EGAF-Net), incorporating a
heterogeneous graph (G = (V, E)) representing road segments
and connections. An Event set, including critical attributes like
time, location, and speed in surrounding areas, was integrated.
Their approach’s efficacy was evaluated on the Q-Western-
Traffic, Q-Eastern-Traffic, and Q-Traffic datasets.

Within our knowledge and research, works that exhibit a
closer resemblance to our proposition are the ones involved
in the topic of travel speed prediction ( [13]–[16]). In which
Huang et al. [13] dealt with travel speed prediction with
missing traffic information with a PCA based technique and
spectral clustering of historical observations of road speed
ratios. In their study, Laraki et al [15], leverage GPS and
commercial Geographic Information System (GIS) data to
construct a speed profile for a road based on three key points
of speeds representing the origin, middle, and destination. By
categorizing these three points for each road, they cluster them
to define representative driving behaviors for each category,
ultimately determining the probable profile of the road. While
Yang et al. [16] proposed the prediction of various levels of
traveling speed with data acquired form historical trajectory
data. They defined in their work a basic path speed cell based
on GPS points clustering and were able to predict up until
an entire given path with the aid of 1-D convolution layer
and bidirectional LSTM in their model. While these studies
predominantly center on speed prediction, their primary focus
revolves around historical speed data suitable for time-series
speed prediction, often sourced from fixed-location sensors.

Moreover, there lacks consensus on uniform experimental
input data among these methodologies, with only a handful of
benchmark datasets applicable to these issues. Consequently,
making an informed comparison among them and identifying
overarching challenges becomes difficult.

This study builds upon the framework presented in [17].
However, instead of relying on 3-point feature associations for
input into a shared-weight multi-layer perceptron (SWMLP),
the current approach adopts a Recurrent Neural Network
(RNN) and introduces novel spatio-temporal features. The
enhancement lies in diminishing the dependence on fixed-
distance point-association, resulting in the development of a
more generalized and simulatable scenario. This adjustment
continues to tackle the challenge posed by the absence of his-
torical speed data and the complexity associated with adapting
models to diverse regions.

III. PROBLEM DEFINITIONS

In this section, we define the problem addressed by our
work, that is trajectory point-wise speed prediction for speed
profiling in missing data. We also introduce the basic concepts
for understanding the problem.

A. Trajectory

We define a trajectory T as a progression of registered GPS
points that its latitude and longitude form a parametric curve
in Cartesian coordinate system. We can then define a trajectory
as T (n) = {p0, p1, p2, ...., pn}, in which pi = (x, y, fpi

) is the
registered latitude x, and longitude y point over the time step
n. In addition, for each GPS point pi there is a feature vector
fpi also associated to it.

B. Trip

A trip in this work refers to a journey made us-
ing a car involving traveling from one location (ori-
gin) to another (destination). Considering Tp a trip, L a
road link with and unique identity id, and n the num-
ber of timesteps in the registered GPS trace, Tp =
{LidA

1 , LidA
2 , LidB

3 , LidB
4 , LidB

5 , ..., LidG
n−1, L

idH
n }. This means

that a trip is composed of multiple roads links that might or
not have distinct ids.

C. Missing Region Information

Based on a mobile application named Geco air1, we are
able to acquire GPS mobility data in the form of trajec-
tories. Exploratory analysis of this dataset have revealed a
heterogeneity in the density of the data acquired across the
French territory. Only a small part of the territory is actually
represented, mainly the big cities, and in particular Paris.
Geco air data collected over approximately 1 year (January
2017 - March 2018) show 5.2 million km. Of these, 30%
of these data, or 1.6 million kilometers, cover only 12 major
cities (Paris, Lyon, Marseille, Toulouse, Bordeaux, Lille, Nice,
Nantes, Strasbourg, Rennes, Grenoble, Tours).

1www.gecoair.fr/en/



D. Trajectory Point-wise Speed Prediction

Point-wise speed prediction is the process of estimating
the probable speed of a moving object, such as a vehicle, at
each individual registered point along a given trajectory. This
prediction usually involves determining how speed changes
as the object moves through space and time. In other words,
given a a trajectory T (n) = {p0, p1, p2, ...., pn} for each pi,
where i ∈ 1, · · · , n, we want to associate to it a probable
speed spi

value based on their feature vector fpi
. Therefore

we want to forecast for T (n) a speed prediction vector
S(n) = {sp0

, sp1
, sp2

, ...., spn
}.

E. Road Speed Profiling

Road speed profiling typically refers to the process of
collecting and analyzing data related to vehicle speeds on a
particular road or a section of a road. This involves gathering
information about the speeds at which vehicles travel on
that road under various conditions. Road speed profiling can
help identify areas where speed limits may need adjustment,
where traffic enforcement measures are required, or where
road design improvements are necessary to ensure the safe
and efficient flow of traffic. Thus in the case of missing
region information (Subsection III-C), it is possible to achieve
speed profiling from trajectory point-wise speed prediction
(Subsection III-D).

F. Point-wise Speed Prediction in Missing Data

The absence of registered data at a territorial level, as
elaborated in Subsection III-C, presents a significant obstacle
to advance research studies to design more optimized solutions
concerning mobility and sustainability. Assuming that studies
conducted in a single region can universally represent the
entire country may result in errors, biases, and challenges
when implementing these solutions in real-world scenarios.
In response to the challenge of lacking regional data, in this
paper we want to verify how can we address trajectory speed
prediction based on features that, if not registered can be at
least simulated.

Usually the most common data we can find for a territorial
extension is about its road design elements. In this work, we
consider road design features such as: length; if it has or not a
traffic light in one, none, or both of its directions; the distance
a car would be from the point that marks the beginning of
the road. In addition, we also take into account the class of
the car being used to generate this prediction. These were the
chosen elements, since they are easily simulated, even without
the need of a software, which are generally time consuming.

The hypothesis for a point-wise trajectory speed predic-
tion of this paper is supported by the following question:
”Can we harness the existing regional data as an inpainting
source to predict the probable missing region speed data,
leveraging their road design similarities and corresponding
temporal conditions?” The issue addressed here is whether
it is possible to perform point-wise speed prediction based
on a vehicle’s trajectory supported by topographical data.
Our primary objective is to ascertain whether predictions

produce favorable outcomes by grounding the method in easily
accessible variables.

IV. PROPOSED METHOD

We propose a method based on a Temporally Orien-
tated Speed Dictionary Centered on Topographically Clustered
Links as well as Recurrent Neural Networks (RNN) to predict
speed for all given points of a trajectory. In this section, our
methodology can be seen in Figure 1. The method follows four
main sections which are indicated in the diagram by: (I) Off-
training region table creation; (II) Cluster dictionaries; (III)
Spatio-temporal dictionary value association; and (IV) RNN.

A. Off-training Region Table

The first step of this process is to define an off-training
region (OTR) in our territory that we have data, which will
not be used for training the network. In our case we selected
3 city regions to build these initial tables. This is done so
that these regions can serve as the base of inpainting mobility
information and do not cause any data in-sample evaluation.
The problem of an in-sample evaluation occurs when the
model is tested with data it has already seen in training which
can lead to misleading impression of the model’s performance.
Therefore as the idea of this table is to be applied in a variety
of regions, it is essential to use a separate dictionary dataset.
In our case we selected the regions of Lille, Aix-en-Provence,
and Cannes to compose our OTRs.

B. Cluster Dictionaries

Here we go through the steps of creating a Temporally
Orientated Speed Dictionary Centered on Topographically
Clustered Links. The underlying concept of this dictionary
involves incorporating its information into the feature vector
utilized for speed prediction in instances where speed infor-
mation for a link is unavailable within a specific temporal
scenario.

In this work, we refer to a road section as a link. So we filter
all unique links found in all trips inside the OTRs. For each
individual link, a matrix is created. This matrix is a Days×
Hours×S in which S stands for the percentage of the links’s
subdivision (Algorithm 1). The percentage of subdivision is
given by the number of divisions (slots) we want to create
along a link’s length, normalized to percentage, thus, as an
example if we want to divide the link information based on
25%, it means that we will have a total of S = 4 slots, and
thus link speed information is grouped into placements 0–25%,
25–50%, 50–75%, 75–100% .

In the context of a trip, each link can be associated with
multiple trips, occurring at various times and on different days.
GPS data records a car position at a given time, allowing us
to track its location along a link. With knowledge of the link’s
length, we can determine if a car is at the initial 25%, halfway
(50%), or near the end (75% or 100%) of the link.

Based on these observations, along with the timestamp and
day of each registered trip, we can map this information inside
the spatio-temporal matrix. After mapping all of the trips for
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Fig. 1: Diagram of the framework used for this paper. In I (Subsection IV-A)(1) we define an region not used for training the
network (OTR) that we have data. In II (Subsection IV-B) with the (2) unique links extracted from the OTR we create (3)
an Individual Link Spatio-Temporal (ILSTM) for each OTR link. We then (4) cluster the OTR links based on their features
and (5) aggregate all of the ILSTM for all of the links that were attributed to the same cluster to create a Cluster Dictionary.
Thus, by having all of these cluster dictionaries, we create our (6) Temporally Orientated Speed Dictionary Centered on
Topographically Clustered Links. In III (Subsection IV-C) we work with (7) links that will be used in training, we get the
(8) GPS registrations of these links, and we use a (9) link inference clustering process(where each link is assigned to one
of the previously calculated clusters). We can then (10) reference the corresponding dictionary (subsection IV-B) based on
cluster information and temporal details of when the trip occurred. We join the (12) links features to the retrieved (11,13)
relevant dictionary feature associated with that specific data point. Finally In IV (Subsection IV-C2) we classifying an input
and associating its loss with the regression process to better train the regression model.

a link, we aggregate data from all trips and calculate average
speeds for specific positions within the matrix, taking into
account the number of recorded data points at each position.
By the end of this process we have a matrix Days×Hours×S
for all unique id (Lid) in OTR. This process is illustrated in
Figure 2.

All of the OTR have their default topographical information
that can be found and calculated based on databases like
HERE2, or Open Street Map (OSM)3. We then select the
topographical features: Average, maximal, and minimal link
curvature; Average, maximal, and minimal link pitch; Length
of the link; link functional class; link speed limit.

From these features a K-means clustering algorithm is then
used to categorize the links based on their feature similarity.
Then all the OTR in the same cluster are averaged (Figure 3).

C. Spatio-Temporal Value Association

Similar to the methodology in Section IV-B, the current
task involves gathering all links in the training, validation, and
testing datasets. After assembling the links and their respective
topological features, as previously specified, we apply our
trained K-means algorithm. The link features then serve as
inputs for an inference clustering process, where each link is
assigned to a specific cluster based on the K-means algorithm.

Building upon the trip definition provided in Section III-B,
it is understood that each GPS registration corresponds to a
particular link. Now, with the identified clusters associated
with each link through the inference clustering process, we

2www.here.com
3www.openstreetmap.org
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Fig. 2: This diagram illustrates the structure of the ILSTM
(Individual Link Spatio-Temporal Matrix) and how it is pop-
ulated. Typically, a link is associated with multiple trips,
denoted as n. For this explanation, let’s assume the link has an
identifier A, and we will consider T1 as the first trip recorded
with A in its GPS data. Consider that T1 occurred at 2 AM
on a Tuesday. In this scenario, we can map the corresponding
locations within the ILSTM to specific coordinates: depth 1,
row 2, and the respective subdivision column. Subsequently,
we calculate the average of all data points within each position
of the matrix, taking into account the number of data points
registered for that particular location. The resulting values are
then allocated to the final table.



Algorithm 1 Individual link Spatio-Temporal Matrix

1: # dist list where in a link the GPS registration occurred
2: Input: (dist list, percent, ILSTM , day, hour,
3: link speed)
4:
5: slot percent← int(100/percent)
6: # Initialize
7: if there is no content in ILSTM then
8: ILSTM ← []
9: # Day of the week

10: for i in range(7) do
11: hourly pattern← []
12: # Hour
13: for j in range(24) do
14: slot pattern← []
15: for k in range(slot percent) do
16: slot pattern.append([0, []])
17: end for
18: hourly pattern.append(slot pattern)
19: end for
20: ILSTM .append(hourly pattern)
21: end for
22: end if
23:
24: # Fill in
25: for i in range len(dist list) do
26: speed← link speed[i]# speed at data point
27: dist← dist list[i]
28: link percent← (dist*100)/length
29: slot← int(link percent/percent)
30: ILSTM [day][hour][slot][0] += 1
31: ILSTM [day][hour][slot][1].append(speed)
32: end for
33: Return ILSTM

can reference the corresponding dictionary (subsection IV-B)
based on cluster information and temporal details of when the
trip occurred. This allows us to retrieve the relevant dictionary
feature associated with that specific data point.

Subsequent to the identification of features, in this segment
of the methodology, we employ two branches of link feature
within our database: (i) topographical and (ii) infrastructure
design. Drawing from the concept of a trajectory, as discussed
in Section III-A, a feature vector (fpi

) for all of the gathered
points p in a trip T is established. We chose to create
two types of feature vectors fpi , each for an independent
experimental procedures (further explained in Section V). For
these feature vectors fpit

and fpif
, the following features have

been selected.

• Topographical features for fpit
:

– Data point curvature (curv)
– Data point yaw (yaw)
– Data point elevation (elv)
– Data point pitch (ptc)

OTR

LidA

LidB

LidC

LidN

Link Topographical
Feature Vectors

Link
Cluster ID

... ...

ILidBSTM ILidCSTM

Cluster id for LidB = Cluster id for LidC

aggregate

Cluster id
Dictionary (CDid)

...
Complete

CDids

Temporally Orientated
Speed Dictionary

Centered on
Topographically
Clustered Links

I II

III

IV

Fig. 3: This diagram refers to how we construct a cluster
dictionary section (CD) and how their set becomes our Tem-
porally Orientated Speed Dictionary Centered on Topographi-
cally Clustered Links. In I the we have the unique OTR links
with their topographical features. In II we have the cluster
ids for each of these uniques OTR links based on the k-means
algorithm. In III all the links that have identical cluster ids
have their ILSTM aggregated to from the respective Cluster
Dictionary. After all cluster dictionaries are formed, their set
(IV ) is what we call Temporally Orientated Speed Dictionary
Centered on Topographically Clustered Links.

– Day and hour of the trip (day, hour)
• Infrastructural features for fpif

:
– Link length (len)
– Position of the car inside the Link (pos)
– Indication if there is a traffic sign in any of the Link

directions (sign start, sign stop)
– Car class used (cc)
– Day and hour of the trip (day, hour)

The selection of two feature vectors is driven by the recog-
nition that a study can either focus exclusively on fundamental
topography or, more commonly, have access to only primary
design details concerning the links. For instance, consider
scenarios such as link construction, urban planning, and en-
vironmental impact assessments. In addition to these features,
as we found, in our Temporally Orientated Speed Dictionary
Centered on Topographically Clustered Links, the associated
cluster dictionary speed (CDS) to each of the points of a
trip’s trajectory we can concatenate it to the corresponding
fpi

. By the end of this process fpi
can take on the form of

either a topographical vector or an infrastructural vector, as in
Equations 1 and 2, depending on the experiment.

fpit = [curv, yaw, elv, ptc, CDS] (1)

fpif = [len, pos, sign start, sign stop, cc, day, hour, CDS]
(2)

1) Input Design: In the final phase, we need to build
the inputs to be received by the learning model. For our



0

1

2

3

 GPS
Trip Registrations

Max Skip = 3

MTS length = 6

Random Skip Vector
Generation

0

1

2

3

 
 Random Skip Vectors

5 7 10 11 14 15

15 - 1

14 - 3

11 - 1

10 - 3

7 - 2

N

Considering the
targeted point N = 15

N

Randomly Ordered Past Point Association

2 3 1 3 1

... ...

Fig. 4: Random Ordered Past Point Association (ROPPA): For
each point in a trip trajectory a different random skip vector
is generated and becomes a guideline for a ROPPA. As it is
possible to see in this example a case in which the point was
time step 15, the MTS defined length as equal to 6, and the
maximal skip as 3

model we test two distinct input configurations: employing
individual points, denoted as pi, as standalone inputs, and
adopting micro-time-series (MTS) point associations. Utilizing
individual points involves employing the feature vector fpi

as isolated inputs for a model, resulting in predictions for
each individual fpi

input. Conversely, point associations refer
to a select set of points that constitute a segment of the
trajectory to which the given point belongs. In essence, this
involves creating micro-time-series for each point within the
trip’s trajectory to serve as input for the model.

To facilitate the simulation of the MTS in scenarios where
precise car positions at each time step are uncertain, we
employ a method called Randomly Ordered Past Point As-
sociation ROPPA (Figure 4. For each point pi, we start by
defining the MTS size (Sz) and creating a random skip array
(RSA). The RSA serves as a guide for skipping from one
point to another. Since distant time steps may not significantly
influence predictions for a given point, our RSA primarily
contains small values. To control this randomness, we set
a maximal skip distance (max skip) between consecutive
points. Based on this limit, we populate the RSA with Sz
random numbers ranging from 1 to max skip.

With the RSA in place, we can determine the positions
of past points by cumulatively subtracting the RSA values
from the current point’s position in the trajectory. Importantly,
the RSA varies for each input, preventing the model from
learning a fixed pattern of time intervals between past points.
This adaptability (ROPPA) makes the model better suited for
handling non-fixed distance MTS.

ROPPA will be composed of Sz feature vectors f of the
points that were associated to the target point pn. Each ROPPA
is associated to a label that is the speed registered by the GPS
at the time step n creating the possibility to do the point-
wise speed prediction and therefore, if the path is complete

to create the speed profile for that specific trip trajectory. So
for a given time step pn the ROPPA that is going to be used
as input resembles Equation 3. For this equation, the variables
o, v, j, k, q are based on the data point indexes calculated by
ROPPA’s algorithm based on the target index n, they must
follow the rule that o < v < j < k < q < n and each fpi

refers to Equations 1 or 2 for the corresponding data point.
If fpi is chosen according to Equations 1, it implies that all
corresponding input fpi instances will also follow Equations 1.
Similarly, the selection of fpi

based on Equations 2 results in
all associated input fpi

conforming to Equations 2.

fpn ROPPA = [fpo , fpv , fpj , fpk , fpq , fpn ] (3)

2) Model Design: Finally our model is based on two
premises a regression and a classification. By classifying an
input and associating its loss with the regression process we
can help to influence and better train the regression model.

When we classify an input, we assign it to a specific
category based on a predefined criteria. This classification
provides the model with a fundamental understanding of the
input’s nature. Once the input is classified, we can associate
the classification loss with the regression process. It is our
understanding that by incorporating the classification loss into
the regression process, we create a relationship between the
two tasks. The regression process aims to predict a continuous
or numeric value, often related to the input’s characteristics.
Therefore, this prediction can be enriched and guided by the
knowledge obtained through classification.

From this assumption classification and regression are
trained simultaneously. We use the cluster association from
the K-means as the category to classify a point, because
we are able to assign to what link a point belong to. For
the regression aspect, we feed the model with ROPPA in-
puts (Equation 3). Both sections are trained and their losses
weighted and summed by each training iteration.

V. EXPERIMENTS

We have curated a database using real-world data sourced
from IFPEN mobile application Geco Air, and the commer-
cial geographic information systems HERE databases. This
database includes car trip data along with the topographical
and infrastructure characteristics of the traversed roads, metic-
ulously recorded at each GPS data point.

This database contains a training, validation and testing set.
The regions used to create each set were the city of Marseille,
Nice and Paris respectively. The selection of these regions
was purposeful, driven by their richness in data availability.
Although the primary objective of our work is to predict
speed profiles for regions lacking data, we conducted these
initial experiments within well-documented areas to rigorously
validate our methodologies. Furthermore, the training and
testing sets were chosen from geographically distant regions
to assess the method capacity of generalization.

The training dataset contains around 14000 car trips, while
validation and testing 5000 each, with data ranging from the
years of 2017 to 2021. The training set contains in its total



2.277.857 registered GPS points, while validation and test have
141.074 and 64.238 respectively.

A. Model

In the chosen model implementation, an RNN architecture
is employed, comprising an RNN layer succeeded by separate
branches designed for regression and classification tasks. The
regression branch is composed of three fully connected layers
(64, 64, and 32 neurons), while the classification branch
consists of a fully connected layer followed by a dropout layer
of 0.2 and a final fully connected layer (64, 120 neurons). The
ReLU activation function is applied after each layer in both
branches. The model takes the ROPPA with CDS as input and
generates two distinct outputs: one dedicated to regression and
another to classification. The classification output exclusively
contributes to our loss function, which is formulated as the
weighted sum of both branch outputs. The batch size was
specified as 1000, the length of ROPPA was set to 5, and the
initial learning rate was defined as 10−3. The loss criterion was
the Mean Squared Error, the optimizer employed was Adam,
and a Cosine Annealing scheduler was utilized.

B. Metrics and Evaluation

To evaluate our work we decided to use the metrics that the
works found in the literature generally use which are: Mean
Squared Error (MSE); Root Mean Square Error (RMSE);
and Mean Absolute Error (MAE). The MSE is a commonly
used metric in statistics and machine learning to measure the
average squared difference between the observed values (yi)
and the predicted values (ŷi) in a dataset. The RMSE is closely
related MSE, and is particularly more interpretable because it
has the same units as the original data, which makes it more
intuitive for practical interpretation. The MAE is a metric that
calculates the average absolute difference between predicted
and actual values in a dataset.

MSE =
1

n

n∑
i=1

(yi − ŷi)
2,MAE =

1

n

n∑
i=1

|yi − ŷi|

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2

C. Experimental Procedure and Results

We propose two experimental sets, one utilizing topo-
graphical features (i) and the other employing infrastructural
features (ii). This decision was made while considering the
features that studies may have access for the purpose of
speed prediction. Experiments were conducted to verify if
our Temporally Orientated Speed Dictionary Centered on
Topographically Clustered Roads feature, as well as our use of
Random Ordered Past Point Association in an RNN were able
to improve trajectory vehicle speed predictions. Our model
was compared to standard, and a new regression framework:
Multilayer Perceptron (MLP), Random Forest (RF), and the
Shared-weight Multi layer perceptron [17].

TABLE I: Quantitative analysis of predictions using the topo-
graphical features across the entire test set.

MSE RMSE MAE
MLP topo 2.19 1.32 0.88
MLP f topo 2.26 1.35 0.92
ROPPA RNN topo 1.16 0.97 0.59

Speed Prediction using Topography Features

Fig. 5: Examples of qualitative speed predictions results using
topographical features on 6 different trips of: MLP with no
CDS, MLP f with CDS, and ROPPA RNN.

1) Predictions with Topographical Features: In Table I we
can observe the quantitative regression analysis, by using the
topographical features, for: Multi layer perceptron without
using CDS (MLP topo); Multi layer perceptron using CDS
(MLP f topo); and Randomly Ordered Past Point Associ-
ation Recurrent Neural Network (ROPPA RNN topo). It
is evident that access to data-point-wise topographical infor-
mation results in relatively low error metrics. This is likely
attributed to the non-static values of the feature vectors fpt

utilized.
Additionally, confirmation of accurate prediction trends

can be seen in Figure 5. It appears that all the networks
were able to learn the topographical patterns for predicting
speed correctly. Despite the overall good predictions across
all networks, the best results are observed when employing
the ROPPA RNN in conjunction with CDS. However,
despite the smoothness of speed prediction achieved with these
topographical features, it restricts users from freely inputting
arbitrary feature values. Since this is confined to topographical
information, it requires the values to be simulated by field
experts, becoming less intuitive and less readily available for
widespread use. Therefore, in Section V-C2, we conducted a
second set of experiments focusing on features related to the
infrastructure of a link, which are more easily simulated and
accessible.

2) Predictions with Infrastructure Features: In this second
set of experiments we now use fpi

as the individual data point
feature vectors. Here we anticipated that regression becomes
much more challenging as the values of the feature vector
components become less dynamic.

We can observe in Table II a quantitative analysis made
upon the regression results yielded by: Random Forest with-



TABLE II: Quantitative analysis of the regression method
predictions across the entire test set.

MSE RMSE MAE
RF 33.20 5.42 4.66
RF f 28.17 4.98 4.32
MLP 31.03 5.10 4.48
MLP f 22.10 4.35 3.79
SWMLP (PuP ) [17] 8.58 2.79 2.13
ROPPA RNN 6.75 2.47 1.88

out using CDS (RF ); Random Forest using CDS (RF f );
Multi layer perceptron without using CDS (MLP ); Multi
layer perceptron using CDS (MLP f ); Shared-weight Multi
layer perceptron with Punctual Past point association arrange-
ment using CDS (SWMLP PuP ); and Randomly Ordered
Past Point Association Recurrent Neural Network (ROPPA
RNN ). Although these models may not achieve the top per-
formance in this comparison, both RF and MLP demonstrate
the benefits of incorporating CDS in the training features for
speed prediction. This is evident in the improved error metrics
observed in RFf and MLPf .

In our study, we have chosen SWMLP PuP from the
work of Carneiro et al. [17] as the direct point of compar-
ison for ROPPA RNN . This selection was made because
SWMLP PuP closely aligns with the methodology of
ROPPA RNN in that the associated past data points are
gathered based on a distance d from the target, rather than
being immediately previous to the target data point whose
speed we intend to predict.

In contrast, ROPPA RNN , by employing randomly or-
dered past point associations, removes the need for precise
vehicle positioning and eliminates reliance on a simulator
to accurately determine the likely positioning of the vehicle
before the target point. In our implementation of the ROPPA
method, we employ a distance of up to 3 jumps in the random
skip vector, thus, we set the SWMLP PuP distance d the
same, and the point association as specified in the paper (3
points, including the target).

Notably, in Table II, ROPPA RNN achieves better results
compared to SWMLP PuP without requiring a same fixed
positioning for all inputs along the path. This attribute renders
ROPPA RNN more path-independent, offering a pragmatic
advantage in scenarios where precise positioning information
is unavailable or challenging to ascertain.

For qualitative results (Figure 6) we can observe the changes
in predictions for the best configurations found in Table II:
RF f (RF f 120); MLP f (MLP f 120); SWMLP PuP
(SWMLP f 120); and ROPPA RNN (RNN f 120). Each
row in Figure 6 corresponds to a distinct trip, where the left
column (True Speed Values) represents the true labels (original
speed values) registered at each data point of the trip. The
middle column (Comparing Predictions-A) illustrates how the
methods (MLP f, RF f, and our ROPPA RNN) were able to
regress the speed values. Finally, the right column (Comparing
Predictions-B) provides a comparison between our method
using ROPPA RNN and SWMLP PuP (the punctual past

Speed Prediction using Infrastructure Features

True Speed Values Comparing Predictions - A Comparing Predictions - B

Fig. 6: Qualitative comparison of the methods that had the
best RMSE values. In this image we have five trips, one in
each row, in which the left column represent the true labels
(original speed values) registered in each data point of the trip,
and middle column the speed regression of: MLP, Random
Forest, and our ROPPA RNN. Finally, the right column is
the comparison of our method using ROPPA RNN and the
SWMLP with the punctual past approach.

approach).
In Comparing Predictions-A, it is evident that RF f and

MLP f primarily focus on identifying the mean speed value
of the data points and struggle to capture speed trends. On the
other hand, in Comparing Predictions-B, it is noticeable that
both SWMLP PuP and ROPPA RNN excel in capturing speed
trends in a more explicit manner.

3) OTR Clustering analysis: In our experimental config-
uration, to best define a number of OTR link clusters to
use to obtain our presented results we ran an experiment
involving 600.000 of the GPS points and defined the OTR
clusters number as 6, 30, 60, and 120. In Table III we can
verify that the evaluation metrics suggest that a higher number
of clusters can generate less prediction error. Thus, we used
120 OTR link clusters, and we opted for a road division of
10% for the development of our dictionary. The idea behind
increasing the number of clusters was grounded in the potential
for generating more specialized groups, as opposed to a
generalized cluster. Therefore, enhancing significance through
aggregation reduction.



TABLE III: OTR cluster sensitivity analysis: Metrics found
for insightful OTR cluster attribution during experiments.

OTR Clusters MSE RMSE MAE
6 14.73 3.36 2.80
30 12.53 3.18 2.68
60 11.64 3.06 2.58
120 10.96 2.92 2.45

VI. CONCLUSION

In this paper, we present a speed prediction approach
utilizing the Temporally Orientated Speed Dictionary Centered
on Topographically Clustered Roads, alongside the incor-
poration of Random Ordered Past Point Association in an
RNN (ROPPA RNN) using two different feature approaches.
The motivation for this study stems from trajectory speed
prediction, in which point-wise topographical elements and
road infrastructure design can be considered for predicting
point-wise speed.

The key advantages of our approach lie in its capability
to leverage similar topographical points with known speed
associations to create and map probable speeds based on the
temporal context of an input. Through our experiments, we
validate that the feature (CDS) generated from the Temporally
Orientated Speed Dictionary Centered on Topographically
Clustered Roads, combined with Random Ordered Past Point
Association, effectively trains a robust RNN across distinct
territorial regions (north vs. south).

Furthermore, our findings demonstrate that the enhance-
ments introduced by ROPPA RNN and CDS enable the model
to receive inputs with reduced dependence on precise location
information. This not only diminishes reliance on an actual
simulator for precise data point associations but also provides
the option to use more accessible link features while predicting
speed, rendering the user more independence in the modeling
process.
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