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We explore the interplay between topology and eigenmodes by changing the stabilizing mechanism of
skyrmion lattices (skX). We focus on two prototypical ultrathin films hosting a hexagonal [Pd/Fe/Ir(111)] and
a square [Fe/Ir(111)] skyrmion lattice, which can both be described by an extended Heisenberg Hamiltonian.
We first examine whether the Dzyaloshinkskii-Moriya, or the exchange interaction as the leading energy term
affects the modes of the hexagonal skX of Pd/Fe/Ir(111). In all cases, we find that the lowest-frequency
modes correspond to internal degrees of freedom of individual skyrmions, and suggest a classification based on
azimuthal and radial numbers (l, p), with up to l = 6 and p = 2. We also show that the gyration behavior induced
by an in-plane field corresponds to the excitation of l = 1 deformation modes with varying radial numbers.
Second, we examine the square lattice of skyrmions of Fe/Ir(111). Its stabilization mechanism is dominated by
the four-spin interaction. After relaxation, the unit cell does not carry a topological charge, and the eigenmodes do
not correspond to internal skyrmion deformations. By reducing the four-spin interaction, the integer topological
charge is recovered, but the charge carriers do not possess internal degrees of freedom, nor are they separated by
energy barriers. We conclude that a four-spin dominated Hamiltonian does not yield skyrmion lattice solutions
and that, therefore, a nontrivial topology does not imply the existence of skyrmions.

DOI: 10.1103/PhysRevB.107.144415

I. INTRODUCTION

Magnetic skyrmions are topologically nontrivial solitonic
chiral spin textures localized in two dimensions at the
nanometric scale [1,2]. In systems with broken inversion
symmetry, they are typically stabilized by the Dzyaloshinskii-
Moriya interaction (DMI) [3,4] in competition with exchange
and anisotropies. Experimental observation of a skyrmion
lattice (skX) phase in chiral magnets was first reported over
a decade ago in bulk MnSi [5]. In skyrmion-hosting bulk
magnets, the leading energy term responsible for spatially
modulated spin configurations is the DMI, and the skX phase
is stabilized at intermediate magnetic fields by the free energy,
typically close to the critical temperature [2,6,7]. Skyrmion
lattices were later reported in ultrathin magnetic films [8]. In
that case, density functional theory (DFT) calculations have
shown that they are stabilized at zero temperature by the
Gibbs energy, as a result of competing exchange, DMI, and
anisotropy, and/or magnetic field [9].

Skyrmion lattices are especially attractive for applications
in microwave electronics and nanomagnonics [10], whereby
periodically arranged magnetic textures can be used to cre-
ate magnonic crystals with reconfigurable wave properties
[11]. The nontrivial topology of the spin texture additionally
results in the presence of topological magnon bands with
nonzero Chern number, which can in turn create magnon edge
states, and be responsible for a magnon Hall effect [11–13].
As such, skyrmion lattices have been investigated in metal-
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lic (MnSi, FeGe), semiconducting (Fe1−xCoxSi, GaV4S8),
and insulating (Cu2OSeO3) chiral magnets [14–18]. These
studies have pointed to a universal character of the skX
eigenmodes, independently of the material [11,16]. In par-
ticular, in insulating materials, they offer the potential for
energy-efficient, high-frequency wave-based computing tech-
nologies, with electric-field control of the magnetic order and
low spin-wave damping. For such applications, an in-depth
understanding of the eigenmodes is necessary.

Aside from the field of magnonics, studying the modes
of skyrmionic systems gives insight into their fundamental
properties such as thermal stability or rigidity. The knowledge
of eigenfrequencies is also useful for resonance experiments,
e.g., to determine material parameters.

Localized modes of isolated skyrmions are typically found
below the magnon continuum, and correspond to translation
and lth-order polynomial deformations of the skyrmion tex-
ture [19–22]. These internal degrees of freedom were shown
to be responsible for the skyrmion mass [19], and enhance
its thermal stability through a large configurational entropy
[23–25].

Meanwhile, in skyrmion lattices, three classes of excita-
tions were theoretically predicted [26–28] and experimentally
observed [14–16,18], namely, the (Goldstone) translation
mode, clockwise (CW) and counterclockwise (CCW) gyra-
tion, and breathing. Breathing is dynamically excited by an
out-of-plane oscillatory magnetic field, while gyration is ex-
cited by an in-plane magnetic field. Gyration motion was
shown to originate from the interplay of inertia and the emer-
gent Lorentz force resulting from the topological magnetic
texture [26]. The dispersion of the lowest-energy magnon
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bands was derived theoretically, and some bands were shown
to possess a nonzero Chern number [11,12], but the na-
ture of these modes was not identified aside from the three
kinds mentioned above. Additionally, CW gyration is the only
skyrmion mode which has been reported to possess a node in
the radial direction [28,29].

In this paper, we compute and classify the eigenmodes
of magnetic skyrmion lattices. We focus on transition metal
thin films of Pd/Fe/Ir(111) [9] and Fe/Ir(111) [30], while the
general results should hold for all chiral magnets. The rest of
this work is organized as follows.

In Sec. II, we first present the different formulations of the
Heisenberg Hamiltonian used in this work, and we provide an
overview of the method used to extract the eigenmodes. Sec-
ond, in Sec. III, we classify the sets of coefficients describing
the magnetic properties of our ultrathin films based on their
different stabilization mechanisms. To do so, we compute the
energy dispersion of single spin spirals (1Q states), and of the
superposition of two spin spirals (2Q states). We highlight the
fact that, while in Pd/Fe/Ir(111), a minimum in the energy
of single-Q spirals is created close to the � point (q = 0) of
the first Brillouin zone (BZ) by the interplay of exchange and
DMI [9], in Fe/Ir(111), the competition of exchange and the
four-spin interaction creates an energy minimum for 90◦ spin
spirals around the middle of the BZ [30].

Third, the lowest-frequency modes of the skX ground
state of Pd/Fe/Ir(111) are derived in Sec. IV. We suggest
a classification of the modes based on (l, p) azimuthal and
radial numbers. We find that the nature of the low-frequency
skX modes as internal skyrmion deformations is independent
of the formulation of the Hamiltonian. Next, in Sec. V, we
examine the modes of the ground state of Fe/Ir(111), the
so-called nanoskyrmion lattice, as well as that of a fictitious
system obtained by reducing the four-spin amplitude by half.
We find that the four-spin interaction can stabilize a lattice of
topological objects which are not skyrmions, as they do not
possess internal degrees of freedom, and are not separated by
energy barriers. This demonstrates that a topological charge
does not guarantee the existence of skyrmions, and that neither
energy barriers nor internal degrees of freedom automatically
derive from the topology.

After that, in Sec. VI, we perform magnetization dynamics
simulations in Pd/Fe/Ir(111), and show that selective modes
can be excited depending on the azimuthal number carried
by an applied magnetic field. We identify the CCW and CW
modes as l = 1 deformation modes with amplitude localized,
respectively, far from and onto the skyrmion core. Last, the
results are summarized in Sec. VII, and some perspectives are
discussed.

II. MODEL AND METHODS

A. Magnetic Hamiltonian

We simulate N magnetic moments M = {m̂i} of norm
unity on a hexagonal lattice with periodic boundary condi-
tions. Atomistic simulations are performed with the MATJES

code [31], and the SPIRIT atomistic framework [32]. The
Heisenberg Hamiltonian used throughout this work has the

general form

H=Hex −
∑

i j

Di j · (m̂i × m̂ j ) − K
∑

i

m2
z,i − μs

∑
i

B · m̂i,

(1)
where Hex contains contribution from the Heisenberg ex-
change and higher-order terms, Di j is the interfacial DMI
vector between first neighbors i and j, K is the effective per-
pendicular magnetic anisotropy constant, and B is the external
applied magnetic field. We neglect demagnetizing fields, as it
was shown that the effect of the dipole-dipole interaction on
the energy landscape in ultrathin films can be well approxi-
mated by an effective anisotropy [33].

For Hex, we use three different formulations:
(i) Effective Heisenberg exchange,

Heff
ex = −Jeff

∑
i j

(m̂i · m̂ j ), (2)

in which Jeff is the effective isotropic exchange coupling be-
tween first-nearest neighbors.

(ii) Extended Heisenberg exchange [9],

Hext
ex = −

∑
i j

Ji j (m̂i · m̂ j ), (3)

in which Ji j extends beyond the first-nearest neighbors.
(iii) Extended Heisenberg exchange and high-order inter-

actions (HOI) [30],

HHOI
ex = −

∑
i j

Ji j (m̂i · m̂ j ) −
∑

i j

Bi j (m̂i · m̂ j )
2

−
∑
i jkl

Ki jkl [(m̂i · m̂ j )(m̂k · m̂l )

+ (m̂i · m̂l )(m̂ j · m̂k )

− (m̂i · m̂k )(m̂ j · m̂l )], (4)

where Bi j , and Ki jkl are, respectively, the biquadratic
and four-spin interaction exchange constants. Here, the bi-
quadratic interaction is limited to first-nearest neighbors, and
the four-spin interaction to the first-nearest quadruplets.

B. Extracting eigenmodes

The eigenmodes of the dynamics are derived in the har-
monic approximation. The Hamiltonian in Eq. (1) is linearized
by expanding it in second order of small deviations from the
ground state. The result is then injected into the dynamics
equations. We obtain a set of N eigenfrequencies {ωk} and cor-
responding eigenvectors {χk}, where k = 1 . . . N is the mode
index. More details are given in Appendix B.

III. STABILIZATION MECHANISM

A. 1Q dispersions

In Fig. 1(a), we show the energy dispersion of 1Q Néel spin
spirals propagating along the �K direction, in Pd/Fe/Ir(111)
at zero magnetic field with the three formulations of the
Hamiltonian [Eqs. (1)–(4)] [9,34,35], and in Fe/Ir(111) [30].
More details are given in Appendix A. The 1Q dispersion only
depends on the exchange, the DMI, the anisotropy, and the bi-
quadratic energies. In this case, the four-spin interaction does
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FIG. 1. Energy dispersions of spin spirals for Pd/Fe/Ir(111),
Fe/Ir(111), and Fe/Ir(111) with reduced four-spin interaction.
(a) Exchange energy dispersion of 1Q spin spirals along the high-
symmetry line �K . The inset shows a closeup of the total energy
close to �. (b), (c) Energy dispersion of (b) the four-spin interaction
and (c) the total energy of 90◦ 2Q spin spirals propagating along �M
and �K . The inset in (c) shows a closeup of the total energy around
the center of the Brillouin zone. The zero of the energy is chosen as
that of the ferromagnetic state (q = 0). The lines are splines intended
as a guide to the eye.

not play any role, as its energy contribution is −12K for all
single-Q states. In what follows, wave vectors are expressed
in units of 2π/a, where a = 2.7 Å is the lattice constant of Fe.
Several cases have to be distinguished.

First, in Pd/Fe/Ir(111) with Heff
ex , the exchange is almost

quadratic close to �. When, instead, the extended exchange
term Hext

ex is used to describe the system, the exchange energy
leads to a very flat dispersion up to q ∼ 0.05, which implies
that a long-range noncollinear state such as a spin spiral costs
very little exchange energy. Depending on the fitting param-
eters, the energy of the extended Heisenberg model can even
exhibit a small energy minimum [9]. This is in stark contrast
to the effective Hamiltonian model. The difference of behavior
close to the � point explains the large discrepancy in the en-
ergy at the edge of the BZ. The DMI splits the energies of left-
and right-rotating spin spirals, and yields a minimum in the
total energy around q ∼ 0.05 for right-rotating spin spirals.
Note that the contribution of the biquadratic term is equivalent
to a change in the third-neighbor exchange coupling J3, so the
sum of the exchange and the biquadratic contributions in HHOI

ex
yields the same energy as the exchange in Hext

ex .
In the case of Fe/Ir(111), the dispersion is flat up to q ∼

0.2, which leads to nearly zero effective exchange. In that
case, the DMI plays a major role, as it favors a 90◦ angle
between neighboring magnetic moments, corresponding to a
minimum at q = 0.25. When the DMI is taken into account,
the minimum in the energy of the spin spirals is found at
q ∼ 0.17.

B. 2Q dispersions

When higher-order magnetic interactions, such as the four-
spin interaction, are taken into account, the exploration of the
stabilization mechanisms becomes more complex. The four-

spin interaction has a constant dispersion for 1Q spin spiral
states. It is then necessary to explore a 2Q spin spiral disper-
sion, i.e., the superposition of two spin spirals, as described in
Heinze et al. [30]. Since the four-spin interaction is minimized
for a 90◦ angle between wave vectors [30], we restrict the
dispersion to the spin spirals propagating in the q1 ‖ �M and
q2 ‖ �K directions with q1 ⊥ q2 for q1,2 ∈ [0, 0.5], in units
of 2π/a1,2. Further details are given in Appendix A.

The dispersion of 2Q spin spirals is shown in Figs. 1(b)
for the four-spin contribution, and 1(c) for the total energy
contribution, in Pd/Fe/Ir(111) with HHOI

ex , and Fe/Ir(111). For
Pd/Fe/Ir(111), the dispersion of 2Q spin spirals is qualita-
tively similar to that of 1Q for exchange and DMI, but the
four-spin interaction increases with q and reaches a maximum
at the edge of the BZ (q1 = q2 = 0.5) [Fig. 1(b)]. On the other
hand, in Fe/Ir(111), the four-spin interaction has the opposite
sign, and is minimum at the edge of the BZ. In the end, the
contribution of the four-spin creates a lower minimum for
2Q states in Fe/Ir around q1 = q2 ∼ 0.26, with Etot = −4.92
meV/at. below the FM state [Fig. 1(c)]. When the four-spin
strength is reduced by half, this minimum is moved towards
�, at q ∼ 0.22.

In summary, while the interplay of exchange and DMI
creates a minimum for single-Q spin spirals close to � in
Pd/Fe/Ir(111), in Fe/Ir(111) it is the interplay of exchange
and the four-spin interaction which creates a lower minimum
for a combination of 90◦ spin spirals around the middle of
the BZ. The implications of this observation for noncollinear
magnetic states in these systems will be uncovered in the rest
of this work.

IV. EIGENMODES OF A skX STABILIZED BY EXCHANGE
AND DMI

In this section, we focus on Pd/Fe on Ir(111), a skyrmion-
hosting system that has been extensively studied both
theoretically [9,34,36] and experimentally [8,37]. At zero
temperature, the system exhibits a skyrmion lattice ground
state at intermediate magnetic fields, which persists until
around 80 K [36,38]. Later on, it was shown that energy
barriers of isolated skyrmions in this system were sensitive to
the inclusion of the four-spin interaction in the Hamiltonian
[35].

In what follows, we investigate the lowest-frequency eigen-
modes of the skyrmion lattice of Pd/Fe/Ir(111) under three
different formulations of the Hamiltonian from Eqs. (1)–(4),
namely, effective exchange, extended exchange, and extended
exchange with higher-order terms. In particular, the four-spin
interaction in the latter has a value of K = 2.14 meV/at. [35].
Each Fe atom carries a magnetic moment μS = 3μB, where
μB is the Bohr magneton. The damping is set to α = 0.3.
The supercell contains N = 60 × 60 atomic sites for Heff

ex and
Hext

ex , and N = 65 × 65 for HHOI
ex .

A. Skyrmion lattice ground state

First, the skX ground state is relaxed with overdamped
spin dynamics simulations [39] for all three formulations of
the Hamiltonian. We set the out-of-plane magnetic field to
Bz = 2.5 T, corresponding to the skX phase for all three
Hamiltonians [34,35]. The relaxed skX are very similar, with
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FIG. 2. Relaxed portion of the skyrmion lattice ground state for
Hex = Heff

ex and Bz = 2.5 T. The unit cell is shown in white.

wave vector qsk = 0.05 for Heff
ex and Hext

ex , and qsk = 0.04 for
HHOI

ex . The larger wavelength with HOI is coherent with the
fact that the higher-order terms were shown to increase the
radii of isolated skyrmions in this system [35]. In Fig. 2, we
show a portion of the relaxed skX for Heff

ex , where the unit cell
is shown in white.

B. (l, p) mode classification

Next, the modes are extracted as described in Appendix B.
Their profiles are characterized by the real part of the polar

θ components of the eigenvectors χk , which amounts to set-
ting the out-of-plane z direction as the quantization axis. We
suggest a classification of the uniform modes according to
their (l, p) numbers. l is the azimuthal number, such that 2l
nodes are encountered when traveling around a skyrmion in
the azimuthal direction. p is the radial number and gives the
number of nodes the radial direction.

The results are gathered in Fig. 3.
Similarly to an isolated skyrmion state, the lowest-

frequency modes correspond to coupled internal deformations
of the individual skyrmions, and are either uniform, i.e., all
the skyrmions are deformed in the same way, or nonuniform.
In nonuniform modes, either different types of internal modes
are excited, such as, for instance, translation and elliptic defor-
mation, or the same mode is excited along different axes for
different skyrmions. In the following, we focus on uniform
modes amongst the first 200 lowest frequencies, which, in
Pd/Fe/Ir(111), correspond to the 108–1013 Hz range.

Figure 3(a) shows the θ profiles of the uniform modes for
all three formulations of the Hamiltonian, ordered by increas-
ing l and p numbers. The corresponding frequencies are given
in Fig. 3(c) for each p branch, where the azimuthal number l
is indicated by the color inside the markers. In all cases, the
lowest-frequency modes are the skyrmion deformation modes
that are commonly reported in isolated skyrmions: two trans-
lation modes with (l, p) = (1, 0), breathing (0,0), as well as
elliptical (2,0) and triangular (3,0) deformations. Note that the
low-frequency translation mode is not gapless, but possesses

FIG. 3. Lowest-frequency uniform modes of the skyrmion lattice ground state of Pd/Fe/Ir(111) in the harmonic approximation, classified
by azimuthal and polar numbers (l, p). (a) θ profiles of the eigenvectors of the first 200 lowest-frequency uniform modes, classified by
increasing l and p. The three rows correspond to the three different formulations of the Hamiltonian given in Eqs. (1)–(4). (b) Example of
modes for effective Heisenberg exchange, where the top row shows the θ profile of the eigenvector, and the bottom row shows the magnetic
texture resulting from the application of the mode to the skX according to Eq. (B5). The color code is the same as that of Fig. 2. The amplitudes
are set to A0 = 50 or 100 for better visibility. In all mode profiles, the ground state is superimposed as a guide to the eye. The view is limited to
one unit cell. (c) Eigenfrequencies of the uniform modes shown in (a) sorted by increasing value, where each subplot corresponds to a different
p branch. The different formulations of Heff are indicated by the color of the lines and marker shape, and the azimuthal number l is given by
the color inside the markers.
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a finite frequency in the 100 MHz–10 GHz range due to the
weak pinning of the skyrmions to the crystal lattice. The faster
(1,0) mode is found around 2 THz. The presence of both low-
and high-frequency (1,0) modes in the skX is in agreement
with theoretical predictions [26].

Examples of modes beyond these more common ones are
shown in Fig. 3(b), for Hex = Heff

ex . The top row corresponds
to the θ profiles of the eigenvectors, while the bottom row
shows the spin configuration that results from the application
of the mode to the skX ground state, according to Eq. (B5). We
find, on the one hand, higher-order azimuthal deformations:
square (4,0), pentagonal (5,0), and hexagonal (6,0) modes.
Such modes were previously reported for isolated skyrmions
in the skX phase at low magnetic field or perpendicular
anisotropy, while typically not being physically accessible due
to the elliptic instability [20]. On the other hand, we report
higher-order radial modes up to p = 2. When these modes are
excited, the core {mi|mz,i � 0}, the envelope {mi|mz,i ≈ 0},
and the tail {mi|mz,i � 0} of the skyrmions can be deformed
in different ways. For instance, the (1,1) mode, shown in the
first column in Fig. 3(b), results in the antiphase translation of
the core and tail of the skyrmions in opposite directions.

Additionally, we find hybrid modes, examples of which
are shown in the last columns of Figs. 3(a) and 3(b). In
this case, the azimuthal number varies in the radial direction.
For instance, the hybrid mode in Fig. 3(b) has p = 1, with
lp=0 = 2 and lp=1 = 4. When this mode is excited, the core
undergoes elliptical deformation, while the envelope and tail
undergo square deformation.

This classification highlights an interesting resemblance of
the skyrmion modes with atomic orbitals, where, for a given
l , the energy (frequency) increases with radial number p. A
third quantum number m, the magnetic number, could be used
to differentiate between modes with the same (l, p) values and
different orientations.

Nevertheless, the profiles of the higher-frequency modes
[Fig. 3(a)] hint at the fact that this classification is more valid
at low frequency, where the number of nodes remains low.
With a higher number of nodes, the hexagonal symmetry
of the system is more prevalent, and mode profiles often
no longer resemble solutions with cylindrical symmetry. For
instance, the last (2,1) modes shown for Hext

ex and HHOI
ex only

possess antinodes with p = 1 along a single axis. Addition-
ally, most of the l = 4 modes exhibit only a twofold symmetry
and appear to be a superposition of l = 2 modes along or-
thogonal axes. Such discrepancies are more pronounced for
those classes of modes, as twofold and fourfold symmetries
are harder to accommodate onto the underlying hexagonal
symmetry of the system, compared to the twofold, threefold,
and sixfold ones. For the same reason, modes with l = 5 are
almost nonexistent.

C. Effect of frustrated exchange and HOI

The influence of exchange frustration and higher-order
terms on the eigenfrequencies is visible on the p = 0 and 1
branches in Fig. 3(c). At low frequency (low l), the graphs
are almost superimposed, and so the formulation of Hext has
a negligible effect on these modes. With increasing frequency
(increasing l), Hext

ex yields higher frequencies than Heff
ex . This

is coherent with the fact that, with the inclusion of frustrated
exchange, the coupling to the crystal lattice increases, and so
do the energy scales. Interestingly, the inclusion of HOI yields
lower frequencies than Hext

ex , which may be due to the larger
skyrmion size with HOI. In general, the effect of extended
exchange and HOI on the higher frequencies seems more
pronounced as p increases.

The effect of the formulation of Hex is also visible in the
mode profiles, whereby the enhanced coupling to the crys-
tal lattice with frustrated exchange and HOI results in more
dramatic breaking of the cylindrical symmetry of the mode
profiles. For instance, the (0,0) breathing mode acquires a
more hexagonal profile for Hext

ex and HHOI
ex , and the symmetries

of the l = 2 and 4 modes are also more reduced than for Heff
ex .

In summary, in Pd/Fe/Ir(111), where noncollinear states
are stabilized by the interplay of exchange and DMI, the
low-frequency modes of the skX state correspond to coupled
(l, p) deformations of the individual skyrmions, reminiscent
of atomic orbitals. This is independent of the inclusion of
frustrated exchange and higher-order terms. At higher fre-
quencies, modes with more nodes tend to lose their cylindrical
symmetry, and the (l, p) classification appears less pertinent.
The inclusion of exchange frustration and HOI does not affect
the lower frequencies, while it tends to increase the larger
ones, and more so for a larger p number.

In Sec. VI, we will show how these modes can be dynam-
ically excited with a magnetic field matching their azimuthal
number, and we will identify and explain the observation of
(C)CW modes. Before that, in the next section, we examine
the modes of skX states stabilized by the interplay of ex-
change and the four-spin interaction.

V. EIGENMODES OF A skX STABILIZED BY EXCHANGE
AND THE FOUR-SPIN INTERACTION

A. Ground state of Fe/Ir(111)

In Fe/Ir(111), the strong four-spin interaction favors multi-
Q modulated states over single-Q states. In combination with
the DMI that selects a particular sense of rotation of the mag-
netization, its interplay with exchange leads to the peculiar
nanoskyrmion lattice (nanoskX) ground state of this system
[30].

Following parameters derived from first-principles [30],
the Hamiltonian has the form in Eqs. (1) and (4), with a
four-spin interaction amplitude of K = −1.05meV/at., and
zero applied magnetic field. We simulate a single unit cell
of N = 15 × 15. Each Fe atom caries a magnetic moment of
amplitude μs = 2.7μB. Note that the reduction of magnetic
polarization compared to Pd/Fe/Ir(111) is due to Pd, which
brings an extra contribution of 0.3μB in the latter [34].

A portion of the relaxed nanoskX is shown in Fig. 4(a). It
has an energy of −9.97 meV/at. with respect to the ferromag-
netic state, which is coherent with the value of −7 meV/at.
given in Ref. [30] for the unrelaxed state. Note that the real
magnetic unit cell is the entire simulated supercell, while the
pseudomagnetic unit cell is sketched in white solid lines in
Fig. 4(a).

To characterize the structure, we compute its discrete topo-
logical charge Q [36,40]. The topological charge density ρ is
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FIG. 4. (a), (c) Relaxed portion of the skyrmion lattice ground
state of (a) Fe/Ir(111), (c) Fe/Ir(111) with the four-spin interaction
reduced by half. The pseudomagnetic unit cell is sketched in white
solid lines. The insets show the topological charge density over one
pseudo unit cell. In (a), the pseudo unit cell of the topological charge
density is also indicated in white dashed lines. (b), (d) Examples of
low-frequency uniform modes with α = 1, where the top row shows
the mode θ profile, and the bottom row shows the same mode applied
to the ground state according to Eq. (B5). In the top row, the relaxed
magnetic texture is superimposed as a guide to the eye. The scaling
factor is set to (b) A0 = 5, (d) A0 = 25. (e) Snapshots of the dynamics
of the nucleation of a topologically nontrivial multi-Q state from a
single initial skyrmion with α = 0.5 and K = −0.53 meV/at.

shown in Fig. 4(a), in the pseudo unit cell delimited by the
dashed line. This is because the topological charge density
does not exhibit the quasisquare periodicity of the magnetic
texture. We find that the square unit cell carries a topological
charge of Q = 0.2, and is therefore not a lattice of skyrmions,
but rather, based on the topological charge distribution, a
lattice of bimerons with alternating polarization.

Next, some of the pseudouniform mode profiles and the
result of their application to the ground state are shown in
Fig. 4(b). The damping of the system at cryogenic temper-
atures at which the nanoskX remains stable was obtained
by first-principles calculations around α = 0.3 [41]. We set
α = 1 for sharper looking mode profiles. In this overdamped
regime, the system possesses some zero-frequency modes, as
shown in Fig. 4(b). When excited, they simply decay exponen-
tially in time, following Eq. (B5) with ωk = 0. We note that
these are, however, not Goldstone modes because the system
has no flat energy curvature. In the underdamped regime, they
recover an oscillatory behavior in the THz range. Unlike in
Pd/Fe/Ir(111), we find that the lower-frequency mode am-
plitudes are not consistently localized onto the “skyrmions”
and do not correspond to internal deformations modes. An
exception is a mode akin to (1,0) shown in the first column of
Fig. 4(b). It leads to the translation of the whole texture along
the crystal lattice unit vector a1 = (1/2,−√

3/2) that coin-

cides with the diagonal of the magnetic lattice. Nevertheless,
when this mode, and all the others, are applied to the ground
state, the skyrmionlike texture is destroyed, and the fractioned
topological charge is not conserved.

Based on these arguments, we conclude that the ground
state of Fe/Ir(111) as obtained after relaxation of our super-
cell, is, in fact, not a skyrmion lattice, but rather a multi-Q
state driven by the four-spin interaction. However, since the
magnetic pseudo unit cell does not carry a topological charge,
this result remains in agreement with the conclusions of
Sec. IV, i.e., the ground state does not contain skyrmions,
and so its eigenmodes do not correspond to internal skyrmion
deformations.

B. Reduced four-spin interaction

In the following, we reduce the four-spin interaction by
half, K′ = −0.53 meV/at., while keeping all the other param-
eters the same, and the size of the supercell is increased to
N = 30 × 30.

The relaxed state is shown in Fig. 4(c), and has the
form of a hexagonal skyrmion lattice, with Q = −1 per unit
cell, and wave vector qsk = 0.2. It has a total energy of
−6.1 meV/at. with respect to the FM state, and is indeed
lower than the minima in both 1Q and 2Q dispersions, which,
respectively, correspond to total energies of −3.8 and −2.6
meV/at. [Figs. 1(a) and 1(c)]. Note that in this case, the
minimum of the 2Q states is above that of the 1Q states, but a
lower minimum should be found for a superposition of three
spin spirals with equilateral wave vectors yielding a hexagonal
skyrmion lattice [5].

We once more derive the eigemmodes of this new state.
Examples of lower-frequency uniform modes are shown in
Fig. 4(d). Surprisingly, we do not recover skyrmion deforma-
tion modes. The amplitude of the modes is not localized onto
the topological charge carriers, and they do not correspond to
internal deformations of the (l, p) nature, aside from the first
mode akin to (1,0) translation in Fig. 4(d).

Next, in Fig. 4(e), we show snapshots of the dynamics
of the system over 5 ps when initialized with a single iso-
lated skyrmion, and α = 0.5. Surprisingly, the topologically
nontrivial lattice nucleates spontaneously from the single
skyrmion, i.e., topological charge creation occurs without
having to overcome energy barriers.

Therefore, despite the nontrivial topological charge, this
state appears to only be a multi-Q state, but not a skyrmion
lattice. The charge carriers do not behave as individual enti-
ties, as (i) they do not possess internal degrees of freedom, and
(ii) they are not separated by energy barriers. This shows that
a topological charge is not enough to ensure that a magnetic
texture is a skyrmion, and that the energy barrier separating a
skyrmion from other states does not automatically derive from
the topology.

In the present system, even though we reduced the four-
spin interaction, it still favors multi-Q over single-Q states.
When it is reduced further, the single-Q spin-spiral ground
state created by the interplay of Heisenberg exchange and
DMI is recovered [Fig. 1(a)], and either an out-of-plane mag-
netic field or an increased perpendicular anisotropy is required
to yield a skX state. In this state, the skyrmions are very
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FIG. 5. Dynamical response of the skX of Pd/Fe/Ir(111) to a Gaussian pulse in magnetic field. (a), (e), (g) Spatial profile of the applied
field along either y (in plane) or z (out of plane). (b), (f), (h) Corresponding Fourier transform of the system’s dynamics resolved up
to 16 THz, where the position of peaks is indicated by vertical dashed lines. (c), (i) Fourier θ profiles at the peaks. Since the in-plane
uniform (a), and (1,0) out-of-plane (e) field profiles excite the same modes, only the response to the uniform field is shown in (c). (d),
(j) Corresponding θ components of the matching eigenvectors computed as in Sec. IV. In all spatial plots, the view is limited to one unit
cell.

small but do possess the (0,0) and (1,0) modes, and they are
separated by energy barriers.

In summary, in systems where noncollinear magnetic states
are stabilized by exchange and the four-spin interaction rather
than the DMI, magnetic textures with a nontrivial topology
may not be skyrmions. Indeed, we have found that the four-
spin interaction can stabilize lattices of topological objects
which are not skyrmions.

VI. DYNAMICAL skX MODE EXCITATION

In this section, we perform magnetization dynamics sim-
ulations on the skX state of Pd/Fe/Ir(111) (Fig. 2), with
a time-varying magnetic field, by numerical integration of
Eq. (B2) [39]. We use the Hamiltonian in Eq. (1) with Heff

ex ,
while the upcoming results should hold for all three formula-
tions of Hex. The damping is set to a more realistic value of
α = 0.01. In the following, we demonstrate selective mode
excitation based on their azimuthal number l . The modes
obtained in the dynamics are in good agreement with the ones
obtained in the harmonic approximation [Eq. (B3)]. Addi-
tionally, we reproduce the CCW and CW gyration behavior
initially described in Ref. [27] and explain its origin.

A. Exciting modes based on azimuthal number

In order to dynamically excite the modes, we examine the
response of the system to a Gaussian pulse in magnetic field of
the form B(t, r) = B0e(−t/τ )2

f (r)ûB, where B0 = 5 mT, τ =
40 fs, f (r) is a function determining the spatial dependence
of the field, and ûB a unit vector pointing either in plane or out
of plane. The results are gathered in Fig. 5.

We first apply a uniform in-plane field with f (r) = cst,
and ûB = êy [Fig. 5(a)]. The spectral response of the system
is shown in Fig. 5(b), where the positions of the peaks are
indicated by dashed lines, and arbitrarily labeled ω0–5. We
identify a peak in the GHz range, and five more peaks in the
THz range.

The spatial distribution of spectral amplitudes in θ at each
peak is shown in Fig. 5(c). We find slow and fast (1,0)
translation modes at, respectively, ω0 =80 GHz and ω1 =2.5
THz. The next peak at ω2 = 5 THz corresponds to the (1,1)
mode. Higher-frequency modes are additional internal de-
formation modes with l = 1, and a hybrid mode at around
12 THz. Based on Ref. [27], we can expect the modes at
ω1,2 to be responsible for the gyration behavior when ex-
cited with an oscillating field. This will be investigated in
Sec. VI B.

In Fig. 5(d), we match the spectral profiles in Fig. 5(c)
with the corresponding (l, p, ω) eigenmodes computed as in
Sec. IV with α = 0.01. We obtain a good agreement of the two
methods, both in profiles and frequencies. This validates the
use of the harmonic approximation for the lower-frequency
modes [Eq. (B1)]. We also carry out an additional simulation
with an out-of-plane uniform field, and find a single resonance
peak at 1.88 THz corresponding to the (0,0) breathing mode
[27], in good agreement with the harmonic approximation
which predicts ω(0,0) = 2.07 THz.

Next, we propose to show how a magnetic field with a
nonzero azimuthal number can excite the matching azimuthal
modes of the skX. In order to obtain an excitation profile that
matches the periodicity of the skX state, the θ components
of the eigenvectors are used as the spatial dependence of the
field, i.e., f (r) = χθ and ûB = êz. We start with the (1,0) field
profile in Fig. 5(e). The spectral response, given in Fig. 5(f),
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FIG. 6. Dynamical response of the skX of Pd/Fe/Ir(111) to an oscillatory in-plane field along y at radial frequencies (a)–(d) ω0, (e)–(h) ω1,
(i)–(l) ω2. (a), (e), (i) Snapshots of the dynamics over one period T at an applied field amplitude of 5 mT, where the black arrows represent the
magnetization and the color code gives the deviation of the mz component from the ground state. (b), (f), (j) Snapshots of the dynamics at an
applied field amplitude of 500 mT where the white isolines in mz correspond to the antinodes of the respective dmz profiles in (a), (e), (i). (c),
(g), (k) Snapshots of the dynamics at an applied field amplitude of 5 mT, where the black arrows represent the deviation of the magnetization
from the ground state, and the color code gives the amplitude of the deviation. In every snapshot, the view is limited to one unit cell. (d), (h),
(l) Time trace of the center of the skyrmion over a large number of periods at an applied field amplitude of 5 mT, in which (x0, y0) correspond
to the equilibrium position in units of the lattice constant.

shows that this yields a similar response to that of the uniform
in-plane field, where the l = 1 modes shown in Fig. 5(c) are
once more excited. Second, the (2,0) profile in Fig. 5(g) is
used, and yields the spectral response in Fig. 5(h). We arbitrar-
ily set the largest resolved frequency around 16 THz. In this
interval, we identify nine peaks, at frequencies which we label
ω6–14. The corresponding spectral profiles and the matched up
eigenvectors are, respectively, given in Figs. 5(i) and 5(j). We
find that the majority of excited modes indeed pertain to the
l = 2 category. Additionally, some l = 4 modes respond, as
they also possess the twofold symmetry. This is especially true
of the mode at ω11, which we previously classified as (4,1). As
touched upon in Sec. IV, it does not actually possess a fourfold
symmetry, and instead resembles a pair of superimposed (2,1)
modes. In this way, the (l, p) classification reaches its limit
at higher frequencies, where the number of nodes increases,
and the pseudocylindrical symmetry found in lower-frequency
modes is broken due to the underlying hexagonal symmetry of
the system.

B. Gyration dynamics

In skyrmion lattices, two typically reported modes are the
CCW and CW gyration modes [14–16,18,27,28]. It has been
shown that the center of a skyrmion can be viewed as a
collective coordinate whose dynamics obeys Thiele’s equa-
tion [19,22]. In this case, the gyrotropic term should determine
the sense of gyration based on the sign of the topological
charge, and so the existence of both CCW and CW motion
is not clearly understood.

Based on the system’s response to the in-plane field
[Fig. 5(b)], we focus on the modes previous labeled ω0,1,2, i.e.,
the two (1,0) modes, and the (1,1) mode. Following Ref. [27],
we apply a spatially uniform oscillating in-plane magnetic
field of the form By(t ) = B0 cos(ωBt ), with B0 = 5 mT or
500 mT. The results are compiled in Fig. 6.

In Figs. 6(a), 6(e), and 6(i), we show snapshots of the
dynamics induced by a field amplitude of 5 mT with ωB,
respectively, set to ω0, ω1, and ω2, over one period T . The
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black cones show the magnetic moments, and the color code
gives the deviation of the z component of the magnetization
from the ground state. We find that at ω0, the amplitude of the
deviation remains mostly stationary while its sign oscillates
[Fig. 6(a)], whereas at ω1,2, it respectively propagates CCW
[Fig. 6(e)] and CW [Fig. 6(i)] over one period.

For better visibility, we go beyond the linear response
regime and increase the field amplitude to 500 mT. We obtain
the dynamics snapshots in Figs. 6(b), 6(f), and 6(j), where we
show contour plots corresponding to isolines in mz, and the
thicker white isolines match the position of the corresponding
antinodes in Figs. 6(a), 6(e), and 6(i). We find that the slow
(1,0) mode at ω0 induces apparent translation of the skyrmion
[Fig. 6(b)], the fast (1,0) mode at ω1 induces apparent CCW
motion [Fig. 6(f)], and the (1,1) mode at ω2 induces apparent
CW antiphase motion of the skyrmion core and tail [Fig. 6(j)].
Note that the higher radial order of the CW mode was previ-
ously reported in Refs. [28,29].

Next, in Figs. 6(c), 6(g), and 6(k), we represent the devia-
tion of the magnetization from the ground-state configuration
dM(t ) = M(t ) − M0 as black cones, where the color code
gives the amplitude of dM(t ). The field amplitude is reduced
back to 5 mT. We find that in both (1,0) modes, the devia-
tion amplitude is essentially localized far from the skyrmion
core, i.e., where mz > 0 [Figs. 6(c) and 6(g)]. On the other
hand, most of the amplitude of the (1,1) mode is localized
onto the skyrmion core, with mz < 0 [Fig. 6(k)]. As made
visible by the black cones, magnetic moments with mz > 0
(< 0) precess in the CCW (CW) direction, and this dictates
the propagation direction of the perturbation. We verified that
this also applies to the modes at ω3–5 in Fig. 5(c), where, at
ω3, more amplitude is found far from the core, and so the
deviation propagtes CCW, while at ω4,5, most of the amplitude
is localized onto the core, and the deviation propagates CW.
Furthermore, at a high damping of α = 1, we can suppress
the precession and recover a stationary perturbation amplitude
with an oscillating sign, similar to the behavior described
by Eq. (B5). As for the slow (1,0) mode at ω0, it does not
appear to be fundamentally different from the fast (1,0) mode,
but because the dynamics is much slower, it behaves like
an overdamped mode where a small perturbation is damped
down before it propagates.

Last, the time trace of the skyrmion center, defined as the
center of mass of the topological charge distribution according
to [22], is shown in Figs. 6(d), 6(h), and 6(l) for 5 mT. The
duration of the simulation is chosen as to allow the motion
to reach an almost stationary state (blue lines). We find that
the displacement of the skyrmion center over a period is
consistently smaller than one atomic site. Within the linear
regime, the skyrmion should thus be considered stationary,
and undergoing internal deformations. In this case, there is
no gyrotropic term, as the center of mass has zero velocity in
the atomistic framework. This conclusion remains true for an
applied field of 500 mT.

In summary, we have found that the CCW and CW modes
of the skX correspond, respectively, to the gapped (1,0), and
the (1,1) modes. When these modes are excited by an oscil-
lating magnetic field, the displacement of the center of the
skyrmion is negligible compared to the interatomic distance,
and thus has zero velocity in the atomistic framework. The

observed dynamics is therefore more akin to internal deforma-
tion than to gyration. The CCW or CW propagation direction
of the perturbation was explained by the different spatial
distribution of the mode amplitude, where the (1,0) mode is
localized far from the skyrmion core and thus the spins have
mz > 0 and precess CCW, while the (1,1) mode is localized
onto the skyrmion core, where the spins precess CW.

VII. SUMMARY AND PERSPECTIVES

In this work, we computed the eigenmodes of skyrmion lat-
tices in transition metal thin films. We compared two classes
of systems: systems where noncollinear states are stabilized
by the interplay of Heisenberg exchange and DMI, such as
Pd/Fe/Ir(111), and systems in which noncollinear states are
stabilized by exchange and the four-spin interaction, such as
Fe/Ir(111).

First in Pd/Fe/Ir(111), we found that the lowest-frequency
modes correspond to coupled internal deformation of the
skyrmions. We suggested a classification based on azimuthal
and radial numbers (l, p), with up to l = 6 and p = 2. The
nature of the modes did not change with the inclusion of
frustrated exchange and high-order terms, but the eigenfre-
quencies of modes with higher l and p increased slightly
compared to the case with only effective exchange.

Second, in systems like Fe/Ir(111), we showed that the
four-spin interaction can stabilize a lattice of topological
objects which are not skyrmions. In this case, the charge
carriers do not exhibit internal degrees of freedom of the
(l, p) kind, and they are not separated by energy barriers. This
demonstrates that the energy barriers that separate individual
skyrmions do not automatically derive from the nontrivial
topology, and neither do the internal degrees of freedom. We
note that in Ref. [35], the authors show that isolated skyrmions
can be stabilized in Pd/Fe/Ir(111) and other similar systems
at zero DMI, by the four-spin interaction. However, these
skyrmions exist as metastable excitations of the FM ground
state, and in the absence of DMI, these systems do not exhibit
noncollinear magnetic ground states, whether spin spirals or
skX. That is because the four-spin interaction has the opposite
sign to that of Fe/Ir(111), and thus yields an energy maximum
in the dispersion of 2Q spin spirals [Fig. 1(b)].

Last, we performed magnetization dynamics simulations
in the skX of Pd/Fe/Ir(111). We showed how the skX modes
with a given l can be selectively excited by a magnetic field
with matching azimuthal number. We identified the CCW and
CW modes as the gapped (1,0), and (1,1) modes. We showed
that the dynamics resulting from their excitation under an
oscillating magnetic field is an internal deformation propa-
gating either CW or CCW, depending on whether the mode
amplitude is localized onto the skyrmion core, or far from it.

We have shown that a nonuniform magnetic field could
selectively excite l = 1 and 2 modes based on their az-
imuthal number. Experimentally, a magnetic field carrying
orbital angular momentum can be generated by a Laguerre-
Gauss electromagnetic beam [42]. In our simulations, the
field profile matched the periodicity of the underlying skX,
which seems challenging to realize in practice. Nevertheless,
the same principle could be applied to selectively excite the
modes of an isolated skyrmion. Alternatively, in materials
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exhibiting both magnetic and ferroelectric orders, as is the
case of Cu2OSeO3, the l = 2 mode is associated to an oscillat-
ing electric dipole moment, and could therefore be electrically
excited [21]. One can speculate that the other modes would
exhibit a similar behavior.

So far, internal modes with l � 4 and p � 1 have rarely
been reported for isolated skyrmions [20]. Reference [28] is
a good demonstration of how the (1,1) mode, present in the
skX phase, is absent in the isolated skyrmion, and it was
speculated that the presence of this particular mode depends
on interskyrmion interactions. However, it is possible that
other types of confining potentials would have the same effect,
as the (1,1) mode was also reported in a skyrmion confined
in a nanodot [29]. An isolated skyrmion possessing these
additional stable degrees of freedom would benefit from a
large entropic stabilization effect [23–25], and would thus be
very interesting for spintronics applications requiring a large
thermal stability, such as data storing and processing [43,44].
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APPENDIX A: ENERGY DISPERSIONS

1. 1Q spin spirals

For single Néel-type spin spirals with wave vector q, the
magnetization at lattice site Ri is given by

mi = Rq cos(q · Ri ) + Iq sin (q · Ri ), (A1)

where Rq = (0, 0, 1) and Iq = a1 + a2, with a1,2 =
(∓1/2,

√
3/2, 0), the basis vectors for the monoatomic

hexagonal unit cell.

2. 2Q spin spirals

Based on [30], we plot the energy of 2Q spin spirals with
wave vectors q1 and q2, where the magnetization at lattice site
Ri is given by

mi
x = cos (q2 · Ri ) sin (q1 · Ri ), (A2)

mi
y = sin (q2 · Ri ), (A3)

mi
z = cos (q2 · Ri ) cos (q1 · Ri ). (A4)

To make the 2Q states commensurate with the supercell,
the unit cell must contain two Fe atoms, with base vectors
a1 = (1, 0, 0) and a2 = (0,

√
3, 0) in direct space, and b1 =

(1, 0, 0) and b2 = (0, 1/
√

3, 0) in reciprocal space. For q1 ‖

b1 ‖ �K and q2 ‖ b2 ‖ �M, the state at q1 = q2 = 0.2 is the
multi-QM star that resembles the nanoskX state [30]. In this
configuration, the boundary of the first BZ for the biatomic
unit cell is simultaneously reached along �K and �M for
q1 = q2 = 0.5.

APPENDIX B: DERIVING THE EIGENMODES OF THE
DYNAMICS

To obtain the eigenmodes of the dynamics, a harmonic
expansion of the Hamiltonian in Eq. (1) is performed about
the ground-state configuration M0 as

H(M) ≈ H0(M0) + 1

2

(
M − M0

)T
HM0

(
M − M0

)
, (B1)

where HM0 is the Hessian matrix of the energy evaluated at
M0.

To solve the dynamics of small excitations about the
ground state, we linearize the Landau-Lifshitz-Gilbert (LLG)
equation

Ṁ = − 1

(1 + α2)h̄

[
M × ∂H

∂M
+ α

(
M × ∂H

∂M

)
× M

]
, (B2)

in which α is the dimensionless Gilbert damping, h̄ is the
reduced Planck constant, and an overdot denotes a time
derivative. This is done by injecting Eq. (B1) into (B2). We
choose polar and azimuthal angles θ and φ to describe the 2
degrees of freedom at each magnetic moment. The time evo-
lution of small deviations from the ground state � = θ − θ0

and � = φ − φ0 then takes the form(
�̇

�̇

)
= TM0

(
�

�

)
, (B3)

in which TM0 is the transfer matrix of the dynamics evaluated
at M0. More details on the derivation are given in [23].

Next, the transfer matrix is diagonalized by solving the
eigenvalue problem

TM0χ = λχ. (B4)

The 2N obtained eigenvalues are complex conjuguates of the
form λ = (σk ± iωk ), where k = 1 . . . N is the mode index,
σk , ωk ∈ R, and i2 = −1. We arbitrarily select the N solutions
with positive imaginary part. For stable modes, as is the case
of all the modes at an energy minimum, we have σk < 0, and
|σ−1

k | is a characteristic timescale of the mode, while ωk is its
radial frequency.

Last, we can apply the kth mode to the magnetic ground
state M0 as

M(t ) = M0 � [I + A0 Re (χk )]eσkt eiωkt , (B5)

where I is the identity matrix, A0 is an arbitrary amplitude, and
the � symbol denotes an element-wise vector multiplication.
In the rest of this work, we simply denote Re(χk ) as χk for
readability.
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