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Transmissibility of tuberculosis 
among students and non-students: 
an occupational-specific mathematical 
modelling
Qiuping Chen1,2,3†, Shanshan Yu1†, Jia Rui1,2,3†, Yichao Guo1, Shiting Yang1, Guzainuer Abudurusuli1, 
Zimei Yang1, Chan Liu1, Li Luo1, Mingzhai Wang4, Zhao Lei1, Qinglong Zhao5, Laurent Gavotte6, Yan Niu7*, 
Roger Frutos2* and Tianmu Chen1*   

Abstract 

Background: Recently, despite the steady decline in the tuberculosis (TB) epidemic globally, school TB outbreaks 
have been frequently reported in China. This study aimed to quantify the transmissibility of Mycobacterium tuber-
culosis (MTB) among students and non-students using a mathematical model to determine characteristics of TB 
transmission.

Methods: We constructed a dataset of reported TB cases from four regions (Jilin Province, Xiamen City, Chuxiong 
Prefecture, and Wuhan City) in China from 2005 to 2019. We classified the population and the reported cases under 
student and non-student groups, and developed two mathematical models [nonseasonal model (Model A) and 
seasonal model (Model B)] based on the natural history and transmission features of TB. The effective reproduction 
number (Reff) of TB between groups were calculated using the collected data.

Results: During the study period, data on 456,423 TB cases were collected from four regions: students accounted 
for 6.1% of cases. The goodness-of-fit analysis showed that Model A had a better fitting effect (P < 0.001). The aver-
age Reff of TB estimated from Model A was 1.68 [interquartile range (IQR): 1.20–1.96] in Chuxiong Prefecture, 1.67 (IQR: 
1.40–1.93) in Xiamen City, 1.75 (IQR: 1.37–2.02) in Jilin Province, and 1.79 (IQR: 1.56–2.02) in Wuhan City. The average 
Reff of TB in the non-student population was 23.30 times (1.65/0.07) higher than that in the student population.

Conclusions: The transmissibility of MTB remains high in the non-student population of the areas studied, which 
is still dominant in the spread of TB. TB transmissibility from the non-student-to-student-population had a strong 
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Background
Despite widespread implementation of control measures, 
including pharmaceutical therapy and vaccination, tuber-
culosis (TB) remains a major cause of disease and death 
in most high-burden countries. In 2021, most TB cases 
occurred in the 30 high-burden countries (87%), in which 
8 countries account for two-thirds, with China (7.4%) 
ranking after India (28%) and Indonesia (9.2%) [1]. China 
is also on the three lists of high-burden countries for TB, 
HIV-associated TB, and multidrug resistant tuberculosis 
(MDR-TB) of the World Health Organization (WHO). 
Despite the difficulties that remain, such as the emer-
gence of drug-resistant strains of Mycobacterium tuber-
culosis (MTB) and the coinfection of TB with the human 
immunodeficiency virus (HIV)/acquired immune defi-
ciency syndrome (AIDS), the global incidence of tuber-
culosis is estimated to slowly decline by 1.6% per year, 
far from the 4–5% estimated to be required to reach the 
objectives of the WHO’s End TB Strategy [2]. Due to the 
emergence of the COVID-19 pandemic, there is a large 
global drop in people newly diagnosed with TB and 
reported in 2020, compared to 2019[3].

In China 2021, the number of reported TB cases is 
ranked second highest after viral hepatitis, and in terms 
of death is the second highest after AIDS [4]. There are 
about 250 million students in China (about 20% of the 
population). The reported TB cases in students account 
for about 4–6% of the total reported TB cases [5]. TB 
cases in the 15–24-year age group accounted for about 
85% of the total reported TB cases in students, which 
means the number of TB cases in high school and col-
lege students is higher, especially in the 18-year-old age 
group [6–8]. When MTB spreads in schools, it can be 
transmitted rapidly and have a major impact on young 
people simply because of cluster. Therefore, it is one of 
the reasons why school TB outbreaks have been reported 
frequently in China, despite the steady global decline of 
the TB incidence trend [9–13]. Moreover, MDR-TB out-
breaks have also been reported in schools, making TB 
control in schools much more difficult [14, 15].

Theoretical epidemiology, also known as the math-
ematical model of epidemiology, uses mathematical for-
mulas to express the law of disease prevalence explicitly 
and quantitatively between cause, host and environment, 
and to theoretically explore the effects of different con-
trol measures. Mathematical modelling has become a 

powerful tool for analysing epidemiological character-
istics [16], which is used to reveal the characteristics of 
the internal spread of infectious diseases. Transmission 
dynamic models are commonly used in infectious dis-
ease models, including Susceptible-infectious-recovered 
model, Susceptible-exposed-symptomatic-recovered 
(SEIR) model, and Autoregressive integrated moving 
average model. Some studies use models to analyse TB, 
such as TB intervention assessments [17], analysis of 
vaccine control effectiveness [18, 19], and TB treatment 
[20–23]. Different models have been developed to treat 
latent TB infections (LTBI) that incorporate certain fac-
tors such as drug-resistant strains [24], coinfection with 
HIV [25], and TB reinfection [26], and to study the epi-
demiology of TB [27]. Specific targeted sub-populations 
have been defined, including age-specific subgroups [28], 
adults and children [29], and smokers and non-smokers 
[30]. However, only a few studies have used occupational 
mathematical models to study TB transmission in China. 
The construction of TB models which are used to explore 
the dynamics of TB transmission between students and 
non-students is unclear.

The prevention and control of TB in schools has been 
improved with the efforts of medical personnel staff at all 
levels. In the past 10 years, control measures have been 
continuously strengthened and improved, but the trans-
mission characteristics of TB in schools are still unclear. 
The aim of this study is to establish a mathematical model 
of TB between students and non-students, to analyse 
and explore the transmissibility of MTB in schools, and 
then to take reasonable and effective measures to control 
TB in schools.

Methods
Study design
In this study, based on the reported and observed mor-
bidity characteristics, we developed a SEIR model with 
two occupational groups (students and non-students). 
We investigated the role of occupation in the transmis-
sion process and evaluated feasible control strategies 
to achieve the objectives outlined in the WHO End TB 
Strategy [3]. Furthermore, this study classified active 
TB  patients  into high or low transmissibility groups 
according to their pathogenic status [31].

Firstly, in this study, a dataset was constructed, includ-
ing basic information (sex, age, occupation, and location) 

influence on students. Specific interventions, such as TB screening, should be applied rigorously to control and to pre-
vent TB transmission among students.

Keywords: Tuberculosis, Transmission, Compartmental model, Occupational-specific dynamics, Student, Non-
student, China
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and case classification (positive and negative cases of 
pathogen). Demographic data was obtained from the 
Chinese Statistical Yearbook [32–35], including the total 
population, the total student population, birth rate, and 
the death rate for each city (Additional file 1: Table S1).

Secondly, two mathematical models (Models A and B 
refer to non-seasonal and seasonal models, respectively) 
were constructed to simulate the reported TB cases of 
the four regions in China, based on the natural history 
and seasonality of TB. In each model, we divided the col-
lected data into four subpopulations of active diseases in 
two dimensions. The first dimension for all calculations 
and outputs was the occupation of students (1 subscript) 
or non-students (2 subscript), while the second dimen-
sion was the pathogenic status, including pathogen posi-
tive (p subscript) and pathogen negative (n subscript) 
pulmonary disease. In addition, goodness-of-fit was con-
ducted to evaluate the effectiveness of model fitting.

Finally, we simulated the sub-population-to-sub-
population transmission process, to determine the 
combination with the most distinctive impact, via calcu-
lating effective reproduction number (Reff) and perform-
ing knock-out analysis. This enabled the formulation of 
effective and targeted control measures for TB transmis-
sion in China, in accordance with occupation-specific 
prevention and control (Fig. 1).

Data collection
We collected year-based TB incidence data from the 
China Public Health Science Data Center (http:// www. 
phsci enced ata. cn/ Share/ index. jsp) from January 1, 2005 
to December 31, 2017 for each province in China (not 
included Hong Kong, Macao, and Taiwan) [36]. After we 
calculated the average annual incidence rate and plotted 
the incidence map (Fig. 2), we found an inequality in the 
disease burden.

Fig. 1 Study design for analysing the transmissibility of TB among students and non-students. The four subscripts are denoted as follows: TB 
transmission in student groups (11 subscript), TB transmission of student-to-non-student groups (12 subscript), TB transmission in non-student 
groups (22 subscript), TB transmission of non-student-to-student groups (21 subscript)

http://www.phsciencedata.cn/Share/index.jsp
http://www.phsciencedata.cn/Share/index.jsp
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Considering the geographic position, the TB incidences 
in four regions (located in the north, south, southwest, 
and middle of China) are average incidences compared to 
those of the other regions in China, which is consistent 
with the population distribution [37], which means that 
the selection can better reflect the TB epidemiological 
characteristics in geographical differences.

This study collected data on reported TB cases, popu-
lations, and areas in four regions [Jilin Province, Wuhan 

City in Hubei Province, Chuxiong Yi Autonomous Pre-
fecture (Chuxiong Prefecture) in Yunnan Province, 
and Xiamen City in Fujian Province] (Additional file  1: 
Table  S1), which are from the Health Commission of 
each region, the Statistics Bureau of each region and data 
mentioned in some researches [38, 39], etc. Therefore, 
the TB results from these four regional analyses are effec-
tively representative of TB epidemiological characteris-
tics in China.

Fig. 2 Regional and national distribution of reported TB incidence. Reported TB incidence in different regions (not included Hong Kong, Macao, 
and Taiwan) in China from 2005 to 2017
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Classification of TB patients
Reported TB cases included in this study consisted of 
laboratory confirmed pulmonary tuberculosis (PTB), and 
clinical diagnostic PTB. Since the Chinese government 
implemented the National Notifiable Disease Surveil-
lance System (NNDSS) for infectious diseases in 2004, 
the diagnostic criteria for TB has changed several times 
(“WS288–2008 Diagnosis of tuberculosis” [40] with the 
adjusted notice in 2017 [41], and the “WS 288–2017 
Diagnosis of Tuberculosis” [42] and the “WS 196–2017 
Classification of Tuberculosis” standards [43], with the 
adjusted notice in 2018 [31]). All TB cases were classi-
fied on the base of the following criteria. The confirmed 
PTB cases were denoted as people with possible PTB 
symptoms, such as a continuous cough for more than 2 
weeks, hemoptysis, and night sweat, and confirmed by 
a sputum smear and/or a sputum culture with the result 
of detectable acid-fast bacilli or positive result from a 
rapid molecular diagnostic instrument (e.g., GeneXpert). 
The clinical diagnosis of PTB was defined as people with 
obviously abnormal chest radiography along with no 
curative effect from anti-inflammatory treatment under 
the circumstance of negative results from laboratory tests 
or absence of related results [44–46].

The PTB cases are classified as follows, based on patho-
genic findings: sputum smear positive, sputum smear 
negative, sputum culture positive, sputum culture nega-
tive, molecular biology positive, and without sputum 
PTB [42]. In the latest notice published in 2018, the clas-
sification of TB cases, which must be reported in the 
NNDSS, was adjusted to “pathogen positive (including 
sputum smear positive and only sputum culture posi-
tive PTB)”, “pathogen negative (including sputum smear 
negative PTB)”, “rifampicin resistant”, “no pathogenic 
findings (including without sputum PTB and tubercu-
lous pleurisy” [31]. We have reclassified all historical data 
according to the new classification notice for consistency 
(see detail in Additional file 2: Table S2).

Diagnosis criteria of PTB patients
The diagnosis of PTB is based on a pathogenic exami-
nation (including bacteriology and molecular biology), 
combined with epidemiological history, clinical manifes-
tations, chest imaging, relevant auxiliary examinations, 
differential diagnosis, and other comprehensive analyses 
[47]. Pathogenic and pathological results were used as 
the basis for diagnosis. Therefore, the following inclusion 
criteria were TB cases with pathogen positive [“positive 
cases with MTB detected by sputum smear, culture-con-
firmed or molecular biology (nucleic acid of MTB)”] and 
negative [“TB cases without MTB detected (including 
patients with negative sputum smear and without spu-
tum)”].  The rifampicin resistance category was officially 

reported in 2019 and represented a small percentage 
(< 5%) of the total data collected. Therefore, to maintain 
the consistency of the overall data, we excluded these 
data from the analysis.

Occupational‑specific transmission model of TB
Based on the model, the total population (N) was divided 
into the following five compartments: susceptible popula-
tion (S), exposed population (or low-risk latent tubercu-
losis infection, LTBI) (E), pathogen positive tuberculosis 
population (Ip), pathogen negative tuberculosis popula-
tion (In), and recovered or removed population (R).

1) Susceptible population (S): people who have not 
been exposed to MTB or those who experienced 
self-clearance by their own immune system. The lat-
ter is a state in which the bacteria in the body cannot 
replicate to the extent that self-clearance occurs due 
to the strong immunity of the body after exposure, 
a state in which the body has a sustained immune 
response to MTB antigen stimulation.

2) Exposed population (or low-risk LTBI) (E): A suscep-
tible population is exposed to MTB through contact 
with a highly infectious or less infectious population 
and is in an MTB carrier state but is temporarily 
noninfectious.

3) Pathogen positive TB population (Ip): positive cases 
with MTB detected by sputum smear, culture-con-
firmed, or molecular biology (nucleic acid of MTB).

4) Pathogen negative TB population (In): TB cases with-
out MTB detected (including patients with negative 
sputum smear and no sputum), with low infectious-
ness.

5) Recovered or removed population (R): This is a state 
of cure or recovery, noninfectious and asymptomatic, 
referring to the population undergoing successful 
treatment, including the treatment success for the 
“pathogen negative” population and the “pathogen 
positive” population (both the cured and the treat-
ment success population).

Based on the natural history of TB, we developed a 
mathematical model Susceptible-exposed-symptomatic 
(pathogen positive)-symptomatic (pathogen negative)-
recovered (SEIpInR) model to investigate the transmission 
process of TB. The proposed SEIpInR model is based on 
the following facts and assumptions:

1) Births and natural deaths change the total population 
(N); the birth rate and the death rate are br and dr, 
respectively. The entire birth population enters group 
2(the non-student group).
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2) This population is generally susceptible to MTB 
infection. When an infected individual is exposed, 
the exposed population (E) progresses to the active 
TB-infected population (I) at a rate of β. Since the 
transmissibility of the pathogen positive TB popu-
lation (Ip) is higher than the pathogen negative TB 
population (In), the transmissibility of In is set to be a 
к times (к < 1) compared to Ip.

3) Approximately 5–10% of the exposed population 
(E) infected with MTB will develop symptoms and 
become Ip or In; both belong to the active TB-infected 
population and will receive treatment. Most exposed 
people do not develop symptoms, but undergo a pro-
cess of self-clearance and become a susceptible popu-
lation (S). If E progresses to Ip at a rate of ω1 (incuba-
tion period coefficient) with a scale factor of q, and 
E progresses to In at a rate of ω2 (latent period coef-
ficient) with a scale factor of (1-q). The progression 
from E to S occurs at a rate of θ (early self-clearance 
rate) on a scale factor of m. At time t, the progression 
from E to Ip, from E to In and from E to S is propor-
tional to the number of exposed populations, which 
is qω1E, (1-q)ω2E, and mθE, respectively.

4) Studies have shown that the proportion of patients 
with TB cured by the directly observed treatment 
and short course chemotherapy (DOTS) who require 
retreatment in the next 1–2 years is 2 to 7% [48, 49]. 
Patients who are retreated can be broadly divided 
into two categories: those who were not  successfully 
cured following treatment, and those who relapsed 
after being cured.

5) There were two outcomes for the Ip compart-
ment: First, a certain proportion   of treatment suc-
cess  individuals (1-λ) transform into a recovered or 
removed population (R), while another proportion 
of treatment failure individuals (λ) transform into an 
exposed population (E). At time t, the rate of devel-
opment from Ip to R, which is proportional to the 
Ip population, is given as (1-λ)γ1Ip, while the rate of 
development from Ip to E, which is proportional to 
the E population, is given as λμ1Ip. γ1 is the removal 
coefficient, whereas μ1 is the coefficient of develop-
ment from Ip to E. Similarly, the rate of development 
to R in the In compartment is given as (1-λ)γ2In, while 
the rate of development to E is given as λμ2In. γ2 is 
the removal coefficient and μ2 is the coefficient of 
development of In to E.

6) The people in the Ip and In compartments recover 
or are removed (R) after successful treatment (com-
pletion of treatment for In and Ip [50]). Reinfection 

occurs after the completion of treatment or cured, 
that is, the active TB-infected population (Ip, In) 
returns to the exposed population (E).

7) Reactivation (or relapse) is often associated with 
immunodeficiency, such as the onset of disease due 
to HIV/TB coinfection      or low resistance, such as 
severe cold. If people in the R compartment develop 
into E with a relapse ratio a where τ represents the 
relapse coefficient, the rate of development from R to 
E at time t is proportional to R, which is aτR.

8) The pathogen positive TB population (Ip) and the 
pathogen negative TB population (In) die of disease, 
in addition to natural deaths. Suppose the fatality 
rates for Ip were f1 and that for In were f2; then, at time 
t, the death rates for Ip and In are f1Ip and f2In, respec-
tively.

9) The student population was set as S1, E1, Ip1, In1, and 
R1, whereas the non-student population was set as 
S2, E2, Ip2, In2, and R2. Interactions were observed 
between students and non-students. We defined 
the relative transmission rate of student-to-student 
as β11, non-student-to-non-student as β22, student-
to-non-student as β12, and non-student-to-student 
as β21. Therefore, the number of newly emerging 
infections was β11S1(Ip1 + кIn1) from the student-to-
student population, β22S2(Ip2 + кIn2) from the non-
student-to-non-student population, β12S2(Ip1 + кIn1) 
from the student-to-non-student population, and 
β21S1(Ip2 + кIn2) from the non-student-to-student 
population.

A framework diagram of the SEIpInR model is shown 
in Fig.  3. The mathematical expression of the differential 
equation of the SEIpInR model are as follows:

dS1

dt
= −β11S1 Ip1 + κIn1 +mθE1 − β21S1 Ip2 + κIn2 − drS1

dE1

dt
=β11S1

(

Ip1 + κIn1
)

−mθE1 + β21S1
(

Ip2 + κIn2
)

− drE1 − qω1E1 + �µ1Ip1 − (1− q)ω2E1

+ �µ2In1 + ατR1

dIp1

dt
= qω1E1 − �µ1Ip1 − (1− �)γ1Ip1 − (dr + f

1
)Ip1

dIn1

dt
= (1− q)ω2E1 − �µ2In1 − (1− �)γ2In1 − (dr + f2)In1

dR1

dt
= (1− �)γ1Ip1 + (1− �)γ2In1 − ατR1 − drR1
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dS2

dt
=brN − drS2 − β22S2

(

Ip2 + κIn2
)

+mθE2 − β12S2(Ip1 + κIn1)

dE2

dt
=β22S2

(

Ip2 + κIn2
)

−mθE2 + β12S2(Ip1 + κIn1)

− drE2 − qω1E2 + �µ1Ip2 − (1− q)ω2E2

+ �µ2In2 + ατR2

dIp2

dt
= qω1E2 − �µ1Ip2 − (1− �)γ1Ip2 − f1Ip2 − drIp2

dIn2

dt
= (1− q)ω2E2 − �µ2In2 − (1− �)γ2In2 − f2In2 − drIn2

dR2

dt
= (1− �)γ1Ip2 + (1− �)γ2In2 − ατR2 − drR2

Fig. 3 Flowchart of the SEIpInR model. The four occupational compartments are denoted as follows: pathogen positive students  (Ip1 subscript), 
pathogen positive non-students  (Ip2 subscript), pathogen negative students  (In1 subscript) and pathogen negative non-students  (In2 subscript)
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Parameter estimation
Fourteen parameters were obtained from references or 
actual data in this model: birth rate (br), death rate (dr), 
transmission relative rate (β), proportion of early clear-
ance (m), rate of early clearance (θ), transmission relative 
rate between pathogen negative and positive TB popula-
tion (к), proportion of exposed to TB population (q), rate 
of exposed to TB population (ω), proportion of treatment 
failure (λ), rate from TB population to exposed popula-
tion (μ), TB population removal coefficient (γ), Case 
fatality rate of TB population (f), recurrence ratio- pro-
portion of recovered or removed population developing 
into exposed population (a), and reciprocal of time to 
recurrence rate at which recovered or removed popula-
tion progresses to exposed population (τ).

Parameter β was derived from the curve-fitting 
results. Some parameters (br, dr, and q) were obtained 
from actual data, while other parameters were obtained 
from the literature. The description of each variable and 
parameter in this model is detailed in Table 1.

1) Early self-clearance (early clear) was defined as a 
persistent negative interferon-gamma release test 
(IGRA) (patients with pathogenically positive TB 

were tested at baseline and after 14 weeks). Studies in 
Indonesia have shown that early self-clearance is 25% 
[51]. The time to self-clearance was set at 14 weeks, 
which is the interval between the two IGRA tests; 
thus θ = 1/ (14/4) = 0.286.

2) Treatment failure: The WHO 2021 TB report [3] 
showed the treatment success rate was 95.9% in 2019 
and 95.7% in 2020. Previous reports revealed that 
this value did not change much between 2000 and 
2020. Therefore, we considered the treatment suc-
cess rate  as 95% and set the treatment failure rate 
(λ) to 5%, that is λ = 0.050. The conventional treat-
ment course was 6  months. Therefore, the time to 
complete the treatment was set as 6 months, that is, 
μ1 = μ2 = 1/6 = 0.167 [52].

3) Relapse: Studies [53–55] in China showed the relapse 
rate was 5.3–6.9%. Therefore, the median was cho-
sen and the relapse proportion was set at a = 0.062 
(recurrence ratio). A domestic study [53] showed 
that the median time from the first attack to relapse 
in TB patients was 1.3  years [interquartile range 
(IQR) 0.6–2.8 years]. Therefore, the relapse rate was 
established at 1/(1.3*12), i.e., τ = 0.064 (reciprocal of 
time to recurrence).

Table 1 The description and features of estimated parameters

E for the exposed population (or low-risk latent tuberculosis infection, LTBI), Ip for pathogen positive tuberculosis population, In for pathogen negative tuberculosis 
population, I1 for student tuberculosis population, I2 for non-student tuberculosis population, and R for recovered or removed population

Parameter Description Unit Value Source

br Birth rate 1 Null Reported data

dr Death rate 1 Null Reported data

β Transmission relative rate Per person. per month Null Curve fitting

β11 Transmission relative rate among students Per person. per month Null Curve fitting

β22 Transmission relative rate among non-students Per person. per month Null Curve fitting

β12 Transmission relative rate from students to non-students Per person. per month Null Curve fitting

β21 Transmission relative rate from non-students to students Per person. per month Null Curve fitting

κ Transmission relative rate between population In and population Ip 1 0.2 Reference [56]

m Proportion of early clearance 1 0.25 Reference [51]

θ Rate of early clearance Per month 0.286 Reference [51]

q Proportion from E to Ip 1 Null Reported data

1-q Proportion from E to In 1 Null Reported data

ω1 Rate from E to I1 Per month 0.667 Reference [93]

ω2 Rate from E to I2 Per month 0.667 Reference [93]

λ Proportion of treatment failure 1 0.05 Reference [3]

μ1 Rate from I1 to E (reciprocal time to retreatment) Per month 0.167 Reference [52]

μ2 Rate from I2 to E (reciprocal time to retreatment) Per month 0.167 Reference [52]

γ1 I1 removal coefficient Per month 0.286 Reference [57]

γ2 I2 removal coefficient Per month 0.286 Reference [57]

f1 Case fatality rate of I1 1 0.1284 References [94, 95]

f2 Case fatality rate of I2 1 0.1284 Reference [94, 95]

a Proportion of R developing into E (recurrence ratio) 1 0.062 References [53–55]

τ Rate at which R progresses to E (reciprocal of time to recurrence) Per month 0.064 Reference [53]
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4) The transmissibility coefficient of In relative to Ip was 
set as κ to 0.2 [56] with reference to the actual data 
and the relevant literature.

5) After approximately two weeks of effective treat-
ment, TB cases with a nondrug-resistant active infec-
tion usually do not remain infectious to others and 
become low in infection status [57]. Short-course 
(3-to 4-month) rifamycin-based treatment regimens 
are preferred over longer-course (6 to 9 months) iso-
niazid monotherapy for the treatment of low-infec-
tion cases of TB [8]. Therefore, we set the duration 
of the illness at 14 weeks (average value 3–4 month), 
γ1 = γ2 = 1/(14/4) = 0.286.

6) The birth rate (br) and the death rate (dr) for each 
year in each region were obtained from the statistical 
offices of each study area.

Transmissibility index
The basic reproduction number (R0) is an important 
parameter for determining the infectiousness of a dis-
ease. R0 refers to the number of new cases expected from 
an infected case in a susceptible population during an 
average infectious period. We set Reff as the evaluation 
index, which denotes R0 after intervention measures were 
taken, to evaluate the impact of intervention measures on 
the relative transmissibility of MTB in the population.

In this study, Reff was calculated using the next-gener-
ation matrix method, and all source codes are accessible 
at GitHub (https:// github. com/ rorsc hachk wok/ tb_ reff). 
In this study, Reff1 represents the transmissibility of the 
population of students with active TB [sum of transmissi-
bility from student cases to student cases (Reff11) and from 
student cases to non-student cases (Reff12)], while Reff2 
represents the transmissibility of the population of non-
student active TB cases [sum of transmissibility from 
non-student cases to non-student cases (Reff22) and from 
non-student cases to student cases (Reff21)].

Simulation methods and statistical analysis
Berkeley Madonna 8.3.18 (developed by Robert Macey 
and George Oster of the University of California in 
Berkeley. Copyright ©1993–2001 Robert I. Macey & 
George F. Oster) was used to fit the curves of the inci-
dence data. The estimated model coefficients and the 
simulation of the intervention effects were also generated 
using this software. The curving fit was performed using 
the fourth order Runge–Kutta method to obtain the key 
parameter values: student-to-student (β11), non-student-
to-non-student (β22), student-to-non-student (β12), and 
non-student-to-student (β21) transmission rates.

To consider the potential seasonality transmission of 
TB, although seasonality remains unclear, we developed 
two models in this study, which are described as follows:

Model A: seasonality excluded.
In Model A, the epidemic curve for each year was 

divided into ascending and descending periods accord-
ing to the characteristics of the reported number of TB 
cases (Fig.  1). The SEIpInR model without seasonality 
was adopted to fit the data in each period, and the cor-
responding transmission relative rates (β, β11, β12, β22, 
and β21), the ascending and descending Reff (Reff(asc) and 
Reff(des), respectively) were calculated.

Model B: seasonality included.
In Model B, we used a seasonality function in the SEIp-

InR model to fit the reported TB epidemic curve (Fig. 1), 
which is shown as follows:

In this equation, βt, β0, c, and T refer to the transmis-
sion rate at time t, the transmission rate at time = 0, the 
correcting value of time (month) and the potential sea-
sonality cycle, respectively.

The goodness-of-fit test was performed between the 
fitted results and the collected data by calculating the 
R2 and P values. Key parameters (β11, β12, β22, β21) were 
knocked out, and the cumulative number of cases was 
calculated to assess the main parameter affecting trans-
missibility. SPSS Statistics for Windows, version 13.0 
(SPSS Inc., Chicago, Ill, USA) was used to perform statis-
tical analyses. The coefficient of determination (R2) was 
used to evaluate the curve fitness.

Results
Epidemiology of tuberculosis in the four regions
The age range of the TB patients was between 15 and 
90 years, with two peaks in the incidence of TB: a large 
and a small peak in the age groups 35–90 and 15–35, 
respectively. In Wuhan City, Jilin Province and Chux-
iong Prefecture, there were two age distribution peaks of 
non-student TB patients (15–35 and 45–60 years group), 
while in Xiamen City, there was only one peak (15–
35  years group). Student patients with TB were among 
15–25 year group (Fig. 4A). Most patients with TB in the 
four regions were male, with a male-to-female ratio of 7∶3 
(Fig.  4B). The Chinese Infectious Disease Report Card 
categorises cases into 18 categories, and the top six occu-
pations (88.4% of the total cases) in the four regions were: 
farmers, housework and unemployment, others, work-
ers, students, and retirees. Among these four regions, 
the top three occupations of TB patients in Wuhan were 

βt = β0

(

1+ sin

(

2π(t − c)

T

))

https://github.com/rorschachkwok/tb_reff
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domestic and unemployed (23.2%), farmers (22.2%), and 
retirees (12.1%). The top three occupations of TB patients 
were farmers (50.3%), domestic and unemployed (18.6%), 
and others (8.0%) in Jilin Province; workers (22.5%), 
farmers (15.3%), and others (10.6%) in Xiamen; farmers 
(87.2%), retirees (4.5%), and students (2.2%) in Chuxiong 
Prefecture (Fig. 4C). The ranking of students with TB was 

sixth, sixth, eighth and third in Wuhan, Jilin, Xiamen, and 
Chuxiong Prefecture, respectively.

The number of reported TB cases in Wuhan City and 
Jilin Province showed a decreasing annual trend, while 
the number of reported TB cases in Xiamen City and 
Chuxiong Prefecture showed a slight fluctuation trend 
(Fig.  5). The incidence in the student population was 

Fig. 4 Age, gender, and occupation distributions: A Wuhan City, B Jilin Province, C Xiamen City, and D Chuxiong Prefecture

Fig. 5 Temporal distribution by month: A Wuhan City, B Jilin Province, C Xiamen City, and D Chuxiong Prefecture
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distinctly low during the winter holidays (January–Febru-
ary, approximately 30 days) and summer vacation (July–
August, approximately 60 days), with one or two distinct 
peaks after returning to school (the remaining months of 
the year). There were slight differences between regions 
in the time of occurrence of these peaks: Wuhan (March 
and September–October), Xiamen (March and Octo-
ber), Jilin (April and September), and Chuxiong (April 
and October). However, for the non-student population, 
there were no clear lows or peaks.

Most cases had either positive or negative pathogen 
results (87.3%),  and  the ratio was 1∶1.13. The propor-
tion of cases without pathogenic findings was 12.6%; 
rifampicin resistant results accounted for 0.1%. The num-
ber of pathogen positive and negative cases was essen-
tially the same in Jilin Province, while the other three 
regions reported more pathogen negative cases than 
positive. The proportion of patients without pathogenic 
findings was the lowest in Xiamen City and the highest 
in Chuxiong Prefecture. Very few cases of resistance to 
rifampicin were reported in any region (Fig. 6).

Curve fitting
We conducted goodness-of-fit tests for the two models 
based on the case datasets from the four regions (Wuhan 
City, Jilin Province, Chuxiong Prefecture, and Xiamen 
City) (Figs.  7 and 8). R2 values were calculated for the 
four model groups (pathogen positive cases in the stu-
dent group, Ip1; pathogen negative cases in the student 
group, In1; pathogen positive cases in the non-student 
group, Ip2; and pathogen negative cases in the non-stu-
dent group, In2). The values showed that, although the 
two established TB models fitted well with the trend of 
TB incidence rates (Table 2), Model A had better fitting 
results than Model B.

Transmissibility for interactions among the four groups
The results of Reff among and between the different popu-
lations in each region are shown in Fig. 9.

In Wuhan City, the median Reff for TB among the 
mixed population was 1.79 (IQR: 1.56–2.02). Most TB 
transmissions occurred due to the high transmission in 
non-student populations, including among non-student 
populations [median Reff22 was 1.57 (IQR: 1.41–1.72)] and 
non-student-to-student populations [median Reff21 was 
0.14 (IQR: 0.11–0.15)], with a median Reff2 of 1.71(IQR: 
1.54–1.87). The values of Reff22 and Reff21 slowly descended 
from 2005 to 2018. The values of Reff12 and Reff11 were 
nearly zero excluding in 2006 (Reff12 was 6.39, Reff11 was 
0.19) and 2013 (Reff11 was 0.58) (Table 3).

In Jilin Province, the median Reff for TB among the 
mixed population was 1.75 (IQR: 1.37–2.02). Most 
TB transmission occurred due to the high transmis-
sion in the non-student population, including among 
non-student populations [median Reff22 was 1.57, (IQR: 
1.27–1.77)] and from non-student-to-student popula-
tions [median Reff21 was 0.09, (IQR: 0.07–0.11)], with a 
median Reff2 of 1.66 (IQR: 1.35–1.89). The Reff21 and Reff12 
values maintained stable fluctuations at values lower than 
1 from 2007 to 2019. The value of Reff11 was nearly zero 
excluding in 2009, when it reached 1.19 (Reff(asc) 1.17, 
Reff(des) 0.02) (Table 4).

In Chuxiong Prefecture, the median Reff of TB among 
the mixed population was 1.68 (IQR: 1.20–1.96). Most 
TB transmissions occurred due to the high transmis-
sion in non-student populations with a median Reff22 
1.59 (IQR: 1.14–1.80), and the other three values (Reff11, 
Reff21, Reff12) were nearly zero each year. The values of Reff2 
and Reff1 fluctuated smoothly from 2008 to 2018, with a 
median Reff2 of 1.63 (IQR: 1.17–1.82) and a median Reff1 of 
0.05 (IQR: 0.02–0.09), respectively (Table 5).

In Xiamen City, we excluded data analysis in 2019 for 
only 3 months data collection from January to March, 
which was not a valid TB representation for the entire 
year. Except that the median Reff for TB among the mixed 
population was 1.67 (IQR: 1.40–1.93). Most TB transmis-
sions of occurred due to the high transmission in non-
student populations, with a median Reff22 of 1.58 (IQR: 
1.32–1.80). Reff2 values slowly decreased between 2005 
and 2018, with a median Reff2 of 1.61 (IQR: 1.35–1.85). 
Although there were several values of Reff12 higher than 
0.10 in student-non-student transmission (Reff (des) in 
2005, 2012, 2016, and Reff (asc) in 2006, 2008, 2010), the 
overall transmissibility was annual decreasing with a 
median Reff12 of 0.04 (IQR: 0.00–0.07) (Table 6).

A similar transmission relationship among and between 
student and non-student populations was calculated in 
Model B. However, the model revealed exceedingly high 
values of Reff over many years in the four regions, which 
indicates that the findings of Model B may be unsuitable 
to show the characteristics of TB. Additional details of 
the results are provided in Additional file  3: Tables S3, 

Fig. 6 Proportions of patients reporting pulmonary tuberculosis in 
the four study areas
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Additional file  4: Table  S4, Additional file  5: Table  S5, 
Additional file 6: Table S6.

Cumulative incidence rate after the knock‑out‑pathways, 
β11, β12, β22, and β21
According to the knock-out results (Fig. 10), the number 
of TB cases among students was significantly reduced 
by more than half (60–70%) when the transmissibility of 
non-student-to-student populations (β21) was knocked 
out. When TB transmission among non-students (β22) 
was blocked, the number of TB cases was reduced by 
approximately 67% (65–70%) among non-students and 

by approximately 28% (25–30%) among students. There 
was only a 5% reduction (2–12%) among students when 
TB transmission among students (β11) was blocked, and 
TB reported cases had barely changed (less than 1%) 
while TB transmission from non-student-to-students 
(β12) was blocked.

Discussion
This study is the first to address the occupational-specific 
transmission dynamics of TB and emphasise the impor-
tance of control between student groups, which can 

Fig. 7 Plot of goodness-of-fit results for the non-seasonal model (Model A)
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increase our understanding of the characteristics of TB 
transmission in different occupational groups.

Analysis of epidemiological characteristics
The incidence rate of TB decreased in the study regions, 
which is in good agreement with previous global reports 
[3], but was unevenly distributed between these four 
regions. This phenomenon may be attributed to sev-
eral reasons. First, the inclusion of previously untreated 
patients in the management after several years of contin-
uous active screening led to a certain decline in the num-
ber of subsequent patient detection cases. Second, since 

2017, a nationwide survey of underreporting and under-
registration of TB [58] and a diagnostic review [59] were 
carried out, which improved the quality of TB reporting 
and diagnosis in each region. However, the reported inci-
dence rate of TB is still higher in areas less economically 
developed than in the west, such as Chuxiong Prefecture, 
although the attention and support of governments and 
health administrations, as well as the support for precise 
health poverty alleviation have been undertaken at all 
levels [9].

Remarkably, the reported incidence of TB in the stu-
dent population has increased. The reported data also 

Fig. 8 Plot of goodness-of-fit results for the seasonal model (Model B)
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confirmed that the proportion of student patients has 
increased from 4.0% in 2015 to 6.2% in 2019, with a dif-
ference of 2.2% [9]. This is mainly due to the fact that 
early warning of individual cases of TB in schools has 
been included in the National Automatic Early Warn-
ing System for Infectious Diseases since July 2018 [60]. 
Furthermore, disease control agencies at all levels have 
strengthened the information verification process of 
school-age patients and improved the sensitivity of the 

surveillance of student patients [61]. Schools have also 
strengthened medical examinations and handled clusters 
of TB outbreaks [62]. Our results highlight an obvious 
incidence peak among students at the beginning of the 
semester. There are several explanations for this observa-
tion. Students are in close contact with social residents 
and are exposed to TB patients in the community dur-
ing holidays. Considering LTBI [8, 63], students infected 
with MTB on vacation do not become ill immediately, 

Table 2 Goodness-of-fit test results of the two models (Models A and B) in the study areas

Correlation between the simulated and observed data was tested using R2 and p values. We divided all the compartments representing active diseases (I) into four 
occupational compartments: pathogen positive students (Ip1 subscript), pathogen positive non-students (Ip2 subscript), pathogen negative students (In1 subscript) and 
pathogen negative non-students (In2 subscript)

Region Ip1 In1 Ip2 In2

R2 P R2 P R2 P R2 P

Model A

 Wuhan City 0.882 < 0.001 0.55 < 0.001 0.49 < 0.001 0.857 < 0.001

 Jilin Province 0.939 < 0.001 0.834 < 0.001 0.781 < 0.001 0.823 < 0.001

 Xiamen City 0.105 < 0.001 0.156 < 0.001 0.202 < 0.001 0.708 < 0.001

 Chuxiong Prefecture 0.971 < 0.001 0.971 < 0.001 0.752 < 0.001 0.619 < 0.001

Model B

 Wuhan City 0.236 < 0.001 0.083 < 0.001 0.337 < 0.001 0.761 < 0.001

 Jilin Province 0.961 < 0.001 0.615 < 0.001 0.489 < 0.001 0.559 < 0.001

 Xiamen City 0.039 0.009 0.009 0.202 0.239 < 0.001 0.399 < 0.001

 Chuxiong Prefecture 0.978 < 0.001 0.977 < 0.001 0.952 < 0.001 0.818 < 0.001

Fig. 9 The chart of effective regeneration number plotted according to the two models



Page 15 of 22Chen et al. Infectious Diseases of Poverty          (2022) 11:117  

but become ill after returning to school when they are 
exposed to several inducements, including high pressure 
and cold, among others. Farmers always had the highest 
reported incidence rates. However, this is not surpris-
ing if we consider that the rural population represents 
most of the total population of China, and the allocation 
of medical and health resources in rural areas is inad-
equate, resulting in unequal access to medical resources 
for urban and rural residents [13]. Furthermore, it may be 
related to the lower level of education of farmers, poorer 
living conditions, and lack of awareness of health protec-
tion [64].

The diagnosis results in the study areas, which had 
a low pathogen positive rate of less than 50%. A previ-
ous report showed the pathogen positive rate for PTB 
reported in China in 2020 was 57%, up from 45.03% in 
2019 [3]. However, a gap still exists when this is com-
pared with surveillance results based on laboratory path-
ogenic diagnostic evidence in other countries worldwide. 
Both the TB laboratory diagnostic and the TB imaging 
detection capacity need to be improved in primary care 
institutions in China, which is consistent with the out-
comes of one diagnostic and therapeutic survey on TB 
sentinel medical institutions [65] and on the current 

Table 3 Reff of Model A between students and non-students (Wuhan City)

Reff11 denotes the transmissibility of MTB from student cases to student cases. Reff 12 denotes the transmissibility of MTB from student cases to non-student cases. Reff 

21 denotes the transmissibility of MTB from non-student cases to student cases. Reff 22 denotes the transmissibility of MTB from the non-student cases to non-student 
cases. Reff1 represents the transmissibility of the population of students with active TB cases (sum of Reff11 and Reff 12), whereas Reff 2 represents the transmissibility of the 
population of non-student active TB cases (sum of Reff 22 and Reff 21)

asc denotes the ascending Reff (Reff(asc)). des denotes the descending Reff (Reff(des))

Year Reff11 Reff 12 Reff 22 Reff 21 Reff1 Reff2

2005 (asc) 0.04 0.00 2.12 0.24 0.04 2.37

2005 (des) 0.08 0.00 1.73 0.13 0.08 1.87

2006 (asc) 0.05 0.36 1.62 0.16 0.41 1.79

2006 (des) 0.14 0.00 1.75 0.16 0.14 1.91

2007 (asc) 0.06 0.00 1.86 0.14 0.07 2.00

2007(des) 0.04 0.00 1.49 0.13 0.04 1.62

2008 (asc) 0.02 0.00 2.27 0.42 0.02 2.68

2008 (des) 0.02 0.00 1.41 0.14 0.02 1.55

2009 (asc) 0.10 0.00 1.79 0.27 0.10 2.05

2009 (des) 0.00 0.00 1.12 0.14 0.00 1.26

2010 (asc) 0.06 0.00 1.75 0.20 0.06 1.94

2010 (des) 0.03 0.00 1.20 0.12 0.03 1.32

2011 (asc) 0.03 0.00 1.62 0.15 0.03 1.77

2011(des) 0.02 0.00 1.43 0.11 0.02 1.54

2012 (asc) 0.02 0.00 1.57 0.10 0.03 1.67

2012 (des) 0.02 0.00 1.45 0.08 0.02 1.53

2013 (asc) 0.55 0.01 1.61 0.08 0.56 1.69

2013 (des) 0.03 0.00 1.57 0.12 0.03 1.69

2014 (asc) 0.02 0.00 1.59 0.12 0.02 1.71

2014 (des) 0.02 0.00 1.25 0.12 0.02 1.37

2015 (asc) 0.00 0.02 1.57 0.15 0.02 1.72

2015 (des) 0.02 0.00 1.29 0.09 0.02 1.38

2016 (asc) 0.00 0.00 1.62 0.13 0.00 1.75

2016 (des) 0.06 0.00 1.41 0.15 0.06 1.56

2017 (asc) 0.11 0.01 1.71 0.16 0.11 1.87

2017 (des) 0.00 0.03 1.36 0.12 0.03 1.47

2018 (asc) 0.00 0.07 1.56 0.04 0.07 1.60

2018 (des) 0.02 0.00 1.21 0.07 0.02 1.28

Median 0.06 0.02 1.57 0.14 0.07 1.71

P25 0.02 0.00 1.41 0.11 0.02 1.54

P75 0.06 0.00 1.72 0.15 0.07 1.87
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status of TB diagnostic capacity at county-level TB sen-
tinel medical institutions in China [66]. To achieve the 
goal of "reaching a pathogenic positivity rate of more 
than 50% by 2022" as required by the Action Plan to Stop 
TB (2019–2022) [67], it is still necessary to continue to 
strengthen the quality of laboratory work [68].

Analysis of TB transmission dynamics characteristics 
In this study, two mathematical models of TB were con-
structed according to the transmission characteristics of 
TB: Models A and B. Although there may be seasonal 
fluctuations in the actual incidence of TB in some areas, 
Model A fitted better than Model B. Therefore, we believe 
that the analysis results of Model A can better reflect the 
real situation of TB incidence.

Therefore, the following interpretations were made 
according to the results of the Reff calculation of Model A 
and results of a knock-out analysis:

A) Overall, the average values of Reff in the four regions 
showed that a single TB case could effectively spread 
to one or two people. TB transmissibility among non-
students (Reff2) was 23.30 times (IQR: 1.94–7.24) higher 
than among students (Reff1). TB transmission remained 
dominant in the non-student population. This find-
ing also existed in the knock-out analysis. Transmission 
among non-students increased the number of reported 
TB cases in all four groups (67% in non-students and 28% 
in students). The non-student population was large, and 
included 17 occupations, different locations with active 
cases, and a wide range of age groups. In high-burden 

Table 4 Reff of Model A between students and non-students (Jilin Province)

Reff11 denotes the transmissibility of MTB from student cases to student cases. Reff 12 denotes the transmissibility of MTB from student cases to non-student cases. Reff 

21 denotes the transmissibility of MTB from non-student cases to student cases. Reff 22 denotes the transmissibility of MTB from the non-student cases to non-student 
cases. Reff1 represents the transmissibility of the population of students with active TB cases (sum of Reff11 and Reff 12), whereas Reff 2 represents the transmissibility of the 
population of non-student active TB cases (sum of Reff 22 and Reff 21)

asc denotes the ascending Reff (Reff(asc)). des denotes the descending Reff (Reff(des))

Year Reff11 Reff 12 Reff 22 Reff 21 Reff1 Reff2

2007 (asc) 0.00 0.00 1.27 0.03 0.00 1.30

2007 (des) 0.01 0.00 1.22 0.11 0.01 1.33

2008 (asc) 0.05 0.00 1.80 0.18 0.05 1.98

2008 (des) 0.00 0.00 1.23 0.11 0.00 1.35

2009 (asc) 1.17 0.02 1.60 0.00 1.19 1.60

2009 (des) 0.02 0.09 1.16 0.09 0.10 1.26

2010 (asc) 0.02 0.00 1.53 0.12 0.02 1.65

2010 (des) 0.00 0.02 1.25 0.09 0.02 1.34

2011 (asc) 0.05 0.00 1.99 0.15 0.05 2.14

2011 (des) 0.02 0.00 1.28 0.08 0.02 1.36

2012 (asc) 0.03 0.00 1.68 0.10 0.03 1.78

2012 (des) 0.02 0.00 1.25 0.06 0.02 1.31

2013 (asc) 0.03 0.00 1.84 0.09 0.03 1.93

2013 (des) 0.03 0.00 1.68 0.09 0.03 1.76

2014 (asc) 0.04 0.00 2.02 0.11 0.04 2.12

2014 (des) 0.02 0.07 1.54 0.05 0.10 1.59

2015 (asc) 0.04 0.00 2.04 0.10 0.04 2.13

2015 (des) 0.02 0.00 1.56 0.06 0.02 1.62

2016 (asc) 0.04 0.00 2.16 0.13 0.04 2.30

2016 (des) 0.03 0.00 1.58 0.06 0.03 1.64

2017 (asc) 0.03 0.00 2.02 0.09 0.03 2.11

2017 (des) 0.03 0.00 1.54 0.09 0.03 1.63

2018 (asc) 0.02 0.08 1.60 0.06 0.10 1.66

2018 (des) 0.02 0.00 1.48 0.11 0.02 1.59

2019 (asc) 0.00 0.40 1.40 0.09 0.40 1.49

2019 (des) 0.02 0.00 1.04 0.09 0.02 1.13

Median 0.07 0.03 1.57 0.09 0.09 1.66

P25 0.02 0.00 1.27 0.07 0.02 1.35

P75 0.03 0.00 1.77 0.11 0.05 1.89
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areas, such as China, most TB transmission occurs out-
side the home (< 20% of household transmission) which 
is not necessarily attributable to known close contacts 
[69, 70]. The probability of TB transmission to others 
by a TB patient is determined by many factors, includ-
ing socioeconomic, environmental, high or low regional 
disease burden, infectiousness of the case, MTB strain, 
and host susceptibility. Determining the specific site of 
TB transmission outside the home is difficult. The poten-
tial for airborne transmission even during brief contact, 
combined with variable incubation periods, makes it 
exceptionally difficult to establish a specific TB trans-
mission link. Despite these challenges, certain specific 
settings have been identified as important contributors 
to TB risk, such as nasal transmission [71–74], hospi-
tal-associated transmission [75], homeless shelters [76], 
prisons [77, 78], public transportation [79], churches 
[80], schools [69, 81] and slums [82–84]. This is pre-
cisely because the places where students study and live 
are close, providing good conditions for the spread of 

TB; therefore, the implementation of TB control policies 
in schools is especially important. The presence of these 
factors has contributed to the high rates of acquired TB 
in this group over the years.

Furthermore, the concentration of TB transmission in 
certain settings and subpopulations also leads to hetero-
geneity of transmission, which can serve to increase Reff 
and may make it more difficult to control transmission 
[85]. Moreover, adults in their most active age groups are 
more likely to be infected with TB due to their close con-
tact with each other [86]. To explain why transmission 
among the non-student populations increased the num-
ber of infected patients among non-students, it may be 
assumed that household and unnoticed transmissions in 
the community contribute simultaneously [87].

B) The results from knock-out analysis indicated that 
non-student-to-student transmission increased the num-
ber of reported TB cases in the student group (either 
pathogen positive or negative), and transmission among 
non-students increased the number of reported TB cases 

Table 5 Reff of Model A between students and non-students (Chuxiong Prefecture)

Reff11 denotes the transmissibility of MTB from student cases to student cases. Reff 12 denotes the transmissibility of MTB from student cases to non-student cases. Reff 

21 denotes the transmissibility of MTB from non-student cases to student cases. Reff 22 denotes the transmissibility of MTB from the non-student cases to non-student 
cases. Reff1 represents the transmissibility of the population of students with active TB cases (sum of Reff11 and Reff 12), whereas Reff 2 represents the transmissibility of the 
population of non-student active TB cases (sum of Reff 22 and Reff 21)

asc denotes the ascending Reff (Reff(asc)). des denotes the descending Reff (Reff(des))

Year Reff11 Reff 12 Reff 22 Reff 21 Reff1 Reff2

2008 (des) 0.01 0.00 0.80 0.02 0.01 0.82

2009 (asc) 0.02 0.01 1.96 0.02 0.03 1.98

2009 (des) 0.00 0.04 0.87 0.02 0.05 0.89

2010 (asc) 0.02 0.00 1.97 0.03 0.02 2.01

2010 (des) 0.00 0.00 1.04 0.02 0.01 1.06

2011 (asc) 0.01 0.00 1.52 0.04 0.01 1.56

2011 (des) 0.00 0.08 1.11 0.01 0.08 1.12

2012 (asc) 0.02 0.00 1.26 0.03 0.02 1.29

2012 (des) 0.01 0.05 1.72 0.02 0.06 1.74

2013 (asc) 0.00 0.01 0.24 0.05 0.02 0.29

2013 (des) 0.00 0.09 1.71 0.02 0.09 1.73

2014 (asc) 0.02 0.00 1.14 0.04 0.02 1.17

2014 (des) 0.00 0.09 1.78 0.04 0.09 1.82

2015 (asc) 0.03 0.02 2.82 0.13 0.05 2.95

2015 (des) 0.03 0.00 1.73 0.05 0.03 1.78

2016 (asc) 0.06 0.00 3.58 0.09 0.06 3.66

2016 (des) 0.00 0.13 1.52 0.02 0.13 1.54

2017 (asc) 0.00 0.16 1.80 0.00 0.16 1.80

2017 (des) 0.00 0.09 1.58 0.03 0.09 1.61

2018 (asc) 0.03 0.00 2.01 0.12 0.04 2.12

2018 (des) 0.00 0.09 1.26 0.04 0.09 1.30

Median 0.01 0.04 1.59 0.04 0.05 1.63

P25 0.00 0.00 1.14 0.02 0.02 1.17

P75 0.02 0.09 1.80 0.04 0.09 1.82
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in all the four groups. There may be several reasons for 
this. First, the home–school transmission route may be 
one of the reasons. TB is actively transmitted by house-
hold exposure [88], and a prospective case–control study 
found that previous exposure to TB in a household could 
cause an infected student to spread TB to their class-
mates [89]. Second, we believe that the school commu-
nity transmission route is important due to increased 
exposure to other occupations during vacations.

C) Although TB transmission is spread mainly by non-
students, the transmissibility of student-to-non-students 
in some years and in some regions, is particularly high, 
such as the Reff12 of Chuxiong Prefecture in 2016 (Reff12: 

0.13), 2017 (Reff12: 0.16), and that of Wuhan City in 2006 
(Reff12: 0.36), etc. This could be due to TB outbreaks in 
schools [90]. Once TB transmission occurs in schools, 
the spread of TB will exceed beyond the public due to 
the frequent contact between students and cause wide-
spread TB in schools. Due to this particularity of TB 
school transmission, the TB reporting system of China is 
more sensitive to the population of student occupation. 
A national single-case warning system is used to iden-
tify the student tuberculosis patients. When a student is 
diagnosed, close contacts screening, isolation and treat-
ment of the TB patients are implemented in the short-
est time. These measures make the control of student 

Table 6 Reff of Model A between students and non-students (Xiamen City)

Reff11 denotes the transmissibility of MTB from student cases to student cases. Reff 12 denotes the transmissibility of MTB from student cases to non-student cases. Reff 

21 denotes the transmissibility of MTB from non-student cases to student cases. Reff 22 denotes the transmissibility of MTB from the non-student cases to non-student 
cases. Reff1 represents the transmissibility of the population of students with active TB cases (sum of Reff11 and Reff 12), whereas Reff 2 represents the transmissibility of the 
population of non-student active TB cases (sum of Reff 22 and Reff 21)

asc denotes the ascending Reff (Reff(asc)). des denotes the descending Reff (Reff(des))

Year Reff11 Reff 12 Reff 22 Reff 21 Reff1 Reff2

2005 (asc) 0.04 0.00 2.21 0.03 0.04 2.24

2005 (des) 0.00 0.22 2.03 0.03 0.22 2.06

2006 (asc) 0.02 0.11 2.71 0.01 0.13 2.72

2006 (des) 0.02 0.00 1.77 0.05 0.02 1.83

2007 (asc) 0.04 0.00 1.81 0.04 0.04 1.84

2007 (des) 0.03 0.01 2.00 0.04 0.04 2.04

2008 (asc) 0.00 0.15 1.86 0.03 0.15 1.89

2008 (des) 0.03 0.00 1.54 0.03 0.03 1.57

2009 (asc) 0.00 0.09 1.75 0.02 0.09 1.77

2009 (des) 0.04 0.01 1.69 0.05 0.05 1.73

2010 (asc) 0.04 0.15 1.60 0.03 0.19 1.62

2010 (des) 0.03 0.01 1.33 0.02 0.04 1.36

2011 (asc) 0.03 0.00 2.01 0.05 0.03 2.06

2011 (des) 0.01 0.00 1.39 0.03 0.01 1.42

2012 (asc) 0.02 0.00 1.36 0.02 0.02 1.39

2012 (des) 0.00 0.12 1.31 0.03 0.12 1.34

2013 (asc) 0.06 0.00 1.79 0.08 0.06 1.87

2013 (des) 0.02 0.00 1.28 0.02 0.02 1.29

2014 (asc) 0.01 0.04 1.16 0.01 0.05 1.18

2014 (des) 0.01 0.02 1.19 0.03 0.03 1.22

2015 (asc) 0.02 0.00 1.48 0.02 0.02 1.50

2015 (des) 0.01 0.02 1.21 0.05 0.03 1.27

2016 (asc) 0.02 0.01 1.34 0.02 0.03 1.37

2016 (des) 0.00 0.10 1.11 0.01 0.10 1.12

2017 (asc) 0.02 0.00 1.38 0.02 0.02 1.40

2017 (des) 0.01 0.06 1.43 0.01 0.07 1.45

2018 (asc) 0.02 0.01 1.32 0.02 0.03 1.35

2018 (des) 0.02 0.00 1.22 0.02 0.02 1.25

Median 0.02 0.04 1.58 0.03 0.06 1.61

P25 0.01 0.00 1.32 0.02 0.03 1.35

P75 0.03 0.07 1.80 0.03 0.07 1.85



Page 19 of 22Chen et al. Infectious Diseases of Poverty          (2022) 11:117  

TB outbreaks much more effective, and then reduce the 
tuberculosis cases of this outbreak. But in the real world, 
if the epidemic was not dealt with promptly, a widespread 
TB outbreak in schools will be inevitable.

Prevention and control of TB among students
The relevant authorities must continue to strengthen 
the prevention and control of TB in student populations 
in the future [91]. There are shortcomings at all levels, 
including schools, medical institutions and TB control 
institutions, and improvements are needed. For schools, 
the implementation of a system to trace the causes of 
absence from school to detect patients in a timely and 
proactive manner is effective. Medical institutions should 
keep the epidemic information channels open with 
schools and TB control institutions, and provide timely 
information about confirmed students to schools and TB 
control institutions. TB prevention and control institu-
tions should perform timely information verification and 
close contact follow-up after the detection of the infected 
student.

In addition, we suggest that more attention should be 
paid to men, farmers, and young and middle-aged peo-
ple; and the bacteriological diagnosis of TB should be 
strengthened. More data collection from social con-
tact surveys is required to provide information on how 

individual behaviors drive disease dynamics at the popu-
lation level.

In particularly, several limitations may have influenced 
the results obtained. The first is selection bias due to 
inconsistency at the administrative levels in our study 
areas, which includes three cities and one province. The 
second is that we only included cases that were diagnosed 
as “bacteriologically confirmed positive or negative” and 
excluded those that were diagnosed as “rifampicin resist-
ant” when processing the initial data. The latter could 
also contribute to TB transmission. Furthermore, com-
plete immunity does not occur in patients with TB after 
recovery. However, partial immunity has been observed 
in previously infected individuals, which can prevent 
reinfection (risk ratio = 0.5) [92]. The last limitation of 
our methodology is that it was not possible to subdivide 
the 17 non-student occupations to better articulate the 
mechanisms of transmission between different occupa-
tions and quantify the impact of different non-student 
occupations on the student population.

Conclusions
This study has the potential to improve our understand-
ing of the features of TB transmission in different occu-
pational groups. The transmission of MTB was high in 
non-student populations, and that in the non-student 
population was 23.30 times higher than in the student 

Fig. 10 Knockout analysis in the four study areas: A Wuhan City, B Jilin Province, C Xiamen City, and D Chuxiong Prefecture. The subscripts refer 
to the occupation of the students (1 subscript) or non-students (2 subscript). The initial state is denoted as the default. The performance of the 
knockout for each of the transmission pathway was determined by setting the beta value to zero. For example,  kb11 stands for getting rid of the 
student-to-students’ transmission pathway
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population. It had the strongest influence among non-
student groups. It not only increases the incidence of 
TB among non-students, but also among students. 
The incidence of TB among students has been on the 
rise and is the fourth highest in occupational distribu-
tion (especially in economically developed areas with 
a high number of students), despite the incidence of 
TB in China showing a downward trend annually. The 
TB outbreak among students can rapidly improve the 
transmissibility of TB in a short time, which will affect 
the prevalence of TB in other groups. TB screening 
should be performed rigorously at the beginning of the 
school semesters, when returning to school, to detect 
patients with LTBI. This implies the need for the imple-
mentation of more control measures such as strength-
ening the school TB management efforts and timely 
management of identified TB-infected students, after 
the academic year begins.
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