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Incremental stabilization and multi-agent synchronization
of discrete-time nonlinear systems

Samuele Zoboli, Daniele Astolfi, Vincent Andrieu, Giacomo Casadei and Luca Zaccarian

Abstract— In this paper, we propose a novel distributed state-
feedback design for robust synchronization of networks of iden-
tical discrete-time nonlinear agents under generic time-invariant
communication graphs. We focus on the class of almost differ-
entiable (possibly time-varying) dynamics that are linear in the
input. By generalizing results on synchronization of linear agents,
we build strong links between the solution to the synchronization
problem in the linear and nonlinear framework. This is also enabled
by the introduction of new results on design of incrementally
stabilizing controllers based on contraction analysis. Finally, we
propose numerically tractable sufficient conditions for the syn-
chronization of networks of non-smooth Lur’e systems.

Index Terms— Discrete-time, nonlinear systems, synchroniza-
tion, multi-agent systems, contraction, incremental stability.

I. INTRODUCTION

Multi-agent systems control has attracted a lot of attention from
our community. Many modern control problems can be formalized
as a network of interacting agents aiming at achieving some sort
of agreement [1]. In this paper, we focus on the problem of state
synchronization of a network of homogeneous systems (namely, all
the agents are identical), described by a time-varying discrete-time
nonlinear system that is linear in the control input.

The problem of synchronization presents mature results in the
linear framework, especially for continuous-time agent dynamics [2],
[3]. For discrete-time systems, major contributions can be found
in [4]–[6]. However, in this setting, further investigations are still
required to understand the relationship between the structure of a
network (i.e., the eigenvalues and eigenvectors associated with its
representation) and the possibility of finding a suitable synchronizing
control. As a matter of fact, the structure of the communication
graph has a significant impact on discrete-time networks compared to
continuous-time ones and, while graph normalization approaches like
[4], [7] have proven to be effective, they may not always be feasible.
Additionally, existing solutions for nonlinear dynamics are limited to
specific agent structures, such as Lur’e system forms [8] or linear
systems with saturated inputs [9]. Moreover, they commonly employ
observer design [10], [11] or data-based optimization techniques [12].

In this work, we propose solutions to the synchronization problem
based on discrete-time contraction analysis [13]–[16] and incremental
stability [8], [17]–[20]. There are two main motivations for this
choice. Firstly, contraction analysis allows us to study nonlinear
systems via linear systems-like arguments. Hence, we can take
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inspiration from the well-established linear systems literature [4] and
provide a link between the two scenarios. Secondly, incremental sta-
bility easily translates to synchronization of homogeneous networks.

As a matter of fact, trajectories of incrementally stable dynamics
“forget” their initial conditions, while offering strong robustness
properties. In particular, in a network where the agents are homo-
geneous, each one can be considered as a singular trajectory of the
same system starting from different initial conditions. As distances
between trajectories of incrementally stable systems asymptotically
decrease to zero, by designing a distributed controller making the
network dynamics incrementally stable we indirectly obtain robust
state synchronization. We remark that, differently from convergent
systems as in [15], incremental stability does not require the final
trajectory to remain bounded [13, Section 4.3]. The three main
contributions of this paper can be summarized as follows:

(i) We provide new results on simultaneous stabilization and robust
synchronization of identical discrete-time linear systems, arising
from the solution of a modified Algebraic Riccati Inequality
(MARI) [9], [21], [22]. In comparison with the results in [4], [5],
[7], we do not rely on the normalized Laplacian. In practice, we
assume that all the controllers have to be designed equally and
no further local degree of freedom is available. In other words,
we assume that the agents have access to aggregate information
solely, without any knowledge about their neighbors in the graph
nor their degree, which is the case in many applications, e.g.
[23], [24]. Thus, we provide conditions that include normalized
Laplacian as a subcase. In doing so, we obtain bounds linking
the connectivity properties of the graph with the simultaneous
stabilizability properties of the agents.

(ii) With respect to the works on incremental stability and con-
traction analysis [13], [16], [17], [25], we extend the current
results to dynamics that are time-varying and not differen-
tiable everywhere. We also propose quasi-convex conditions
to tackle the feedback-design problem with numerically ef-
ficient methods. In addition, compared to [16], we build on
these results to propose closed-form state-feedback controllers
providing uniform exponential incremental stability properties
for the closed-loop system. Recent works exploited control
contraction metrics [26], [27] for designing controllers for input-
affine nonlinear discrete-time systems based on optimization
routines [28], [29]. However, we highlight that they do not
provide a constructive design approach, as the solution relies
on nested optimizations at each time-instant.

(iii) We exploit the new results on contraction analysis and incre-
mental stability to provide new controller designs for robust syn-
chronization of identical discrete-time nonlinear agents. This is
done under the assumptions of almost differentiable dynamics,
linear input vector field, and generic connected communication
graphs (i.e., possibly directed and weighted). As in the linear
case, we relate the connectivity properties of the graph to the
simultaneous stabilizability properties of the agents.
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The paper is organized as follows. Section II introduces some prelim-
inary concepts of graph theory, presents the problem of exponential
synchronization, and further motivates the paper by highlighting
important differences between the continuous and the discrete-time
synchronization scenario. Section III presents the results for the linear
framework. Section IV extends the solution to nonlinear agents.
Finally, Section VI concludes the paper while the Appendix contains
the proofs of some technical lemmas.

Notation. We denote by R the set of real numbers, by R≥0 the set
of non-negative real numbers, by N the set of non-negative integers
and by C the set of complex numbers. Given a complex number z ∈
C, we use Re(z) and Im(z) to identify its real and imaginary parts
respectively. |x|M is a distance function between any point x ∈ Rn

and a closed set M ⊂ Rn, namely, |x|M := infz∈M |x− z|. Given
two symmetric matrices A,B ∈ Rn×n, we say A ⪯ B if the matrix
A−B is negative semidefinite. Similarly, we say A ≻ B if A−B
is positive definite. Moreover, we denote by Sn≻0 (resp. Sn⪰0) the set
of symmetric positive definite (resp. semi-definite) real matrices of
dimension n. Given a set of vectors x1, . . . , xN with N ∈ N and
arbitrary dimensions, we define col(x1, . . . , xN ) = [x⊤1 · · ·x⊤N ]⊤.
Given a square matrix A ∈ Rn×n, we use spec(A) to represent
its spectrum. Given a set of square matrices A1, . . . , AN with
N ∈ N we identify by by diag(A1, . . . , AN ) the block diagonal
matrix whose diagonal blocks are A1, . . . , AN respectively. Given
a positive integer n ∈ N, we identify by In the identity matrix
of dimension n. We use 1, resp. 0, to identify a column vector
of 1s, resp. 0s, of appropriate dimension. The symbol ⊗ denotes
the Kronecker product, which satisfies (A ⊗ B)⊤ = A⊤ ⊗ B⊤,
(A ⊗ B)(C ⊗ D) = (AC ⊗ BD) and for A,B,C symmetric,
A ⪯ B =⇒ (A ⊗ C) ⪯ (B ⊗ C) and (C ⊗ A) ⪯ (C ⊗ B).
For a square matrix A ∈ Rn×n, we define He {A} := A⊤ + A.
Finally, we denote with co the convex hull.

II. PROBLEM STATEMENT

In this section, we first present some preliminary concepts related
to graph theory and multi-agent networks. Then, we formulate the
problem of exponential synchronization. Finally, we highlight the
main differences between synchronization of continuous-time and
discrete-time agents. As explained later, solvability of the discrete-
time framework with a common control law requires extra conditions
related to the communication graph.

A. Highlights on graph theory

In multi-agent systems, a communication graph is typically de-
scribed by a triplet G = {V, E ,A} where V = {v1, v2, . . . , vN} is a
set of N ⊂ N vertices (or nodes), E ⊂ V ×V is the set of edges ϵjh
modeling the interconnection between such nodes, and A ∈ RN×N

is the adjacency matrix, whose entries ajh ≥ 0 weight the flow of
information from vertex j to vertex h. We denote by L ∈ RN×N

the Laplacian matrix of the graph, defined as

ℓjh = −ajh for j ̸= h, ℓjh =

N∑
i=1

aji for j = h,

where ℓjh is the (j, h)-th entry of L. We denote with Ni the set of in-
neighbors of node i, i.e. the set Ni := {j ∈ {1, . . . , N} | ϵij ∈ E}.
In this paper, we consider directed, weighted graphs. As such, the
Laplacian matrix is not assumed to be diagonalizable and admits
complex eigenvalues. We identify the Laplacian of the network as

L =

(
L11 L12

L21 L22

)
(1)

where L11 is a scalar, L12 is a N − 1 row vector, L21 is a N − 1
column vector and L22 is a (N − 1) × (N − 1) matrix. We define
connectivity following [30, Definition 5.1].

Definition 1 (Connected graph) A graph G is connected if there is
a node v such that, for any other node vk ∈ V \{v}, there is a path
from v to vk.

Based on this definition, we recall the following property from the
literature, see e.g., [30]–[32].

Lemma 1 A directed weighted graph G = {V, E ,A} is connected
if and only if its Laplacian matrix L has only one trivial eigenvalue
λ1 = 0 and all other eigenvalues λ2, . . . , λN have positive real
parts.

B. The problem of multi-agent synchronization
Consider a homogeneous network of discrete-time agents, where

the dynamics of each node is described by a nonlinear, possibly time-
varying, difference equation, linear in the input, of the form

x+i = f(xi, t) +Bui + wi, i = 1, . . . , N, (2)

where f : Rn×N → Rn, B ∈ Rn×m is full column rank, xi ∈ Rn,
ui ∈ Rm and wi ∈ Rn represent the state, the control input and
a disturbance affecting the dynamics of node i at timestep t ∈ N,
respectively, and x+i ∈ Rn represents the state of node i at timestep
t + 1. We define the state of the entire network x ∈ RNn and the
entire disturbance w ∈ RNn as

x := col(x1, . . . , xN ), w := col(w1, . . . , wN ). (3)

Our synchronization objective is to design a distributed feedback
control law of the form

ui =
∑
j∈Ni

aij

[
α(xi, t)− α(xj , t)

]
=

N∑
j=1

ℓijα(xj , t) (4)

for all i = 1, . . . , N , for some function α : Rn × N → Rm, that
stabilizes the dynamics (2) on the so-called synchronization manifold
M defined as

M := {x ∈ RNn | xi = xj , for all i, j ∈ {1, . . . , N}}, (5)

where the states of all the agents of the network agree with each
other. Furthermore, we require the control action ui to be equal to
zero on the synchronization manifold in the absence of disturbances,
namely when w = 0. In other words, when synchronization is
achieved, no correction term is needed for each individual agent.
As a consequence, independently stabilizing all the agents on a
desired equilibrium point is not a valid solution in general. Note
that the control law (4) satisfies this constraint by construction, due
to the properties of the Laplacian matrix. We consider also a full-
state information problem. Differently put, the i-th agent can use the
complete state information xj of its neighbors j ∈ Ni alongside its
own local information xi. We formalize our synchronization problem
as follows.

Problem 1 (Robust network synchronization) The distributed
feedback control law (4) solves the robust synchronization problem
for the network (3) if there exist a function α : Rn × N → Rm and
real numbers c ≥ 1, ρ ∈ (0, 1) and γ ≥ 0 such that, for any initial
condition (x(t0), t0) ∈ RNn × N, and any disturbance sequences
t 7→ wi(t), i ∈ {1, . . . , N}, the solutions to the closed-loop system

x+i = f(xi, t) +B

N∑
j=1

ℓijα(xj , t) + wi, i = 1, . . . , N.
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satisfy for all t ≥ t0

|x(t)|M ≤ c ρt−t0 |x(t0)|M + sup
t ∈ [t0, t]
i, j ∈ [1, N ]

γ|wi(t)− wj(t)|, (6)

where M is defined in (5).

C. Linear synchronization and gain margin

In order to understand the challenges of Problem 1, we start from
the linear scenario and recall a few fundamental synchronization
results. Consider a network of N ∈ N continuous-time linear systems
of the form

ẋi = Axi +Bui, (7)

with A in Rn×n, B in Rn×m and ui, selected, according to (4), as
a (linear) diffusive coupling of the form

ui = K

N∑
j=1

ℓijxj . (8)

It is well known (see, e.g. [30]) that the solution to the synchroniza-
tion problem only requires two assumptions: the stabilizabilty of the
pair (A,B) and the connectivity of the graph. This can be shown
with a a suitable change of coordinate recasting the synchronization
problem as a stabilization one. As a matter of fact, the synchroniza-
tion problem can be viewed as a simultaneous stabilization problem
for the complex valued matrices

A+ λiBK, i = 2, . . . , N (9)

with λi being the (non-zero) eigenvalues of the Laplacian matrix
L [30]. In continuous-time, the simultaneous stabilization of (9)
via a unique gain K can be achieved by exploiting the so-called
infinite-gain margin property1 [33]. In few words, stabilization of
the complex matrix (A + λBK), with λ being the eigenvalue of L
with the smallest (non-zero) real part, leads to the stabilization of all
other complex matrices, and so to synchronization.

It is natural to hope that such a result can be extended to the
discrete-time framework. Therefore, we consider a network of N ∈
N homogeneous agents whose dynamics can be described by a
difference equation of the form

x+i = Axi +Bui (10)

with control input ui defined as in (8). Similarly to the continuous-
time framework, the discrete-time synchronization problem can be
seen as the N−1 simultaneous stabilization problems of (9) (see [7]).
However, in the discrete-time framework, the infinite gain margin
property does not hold. Hence, the simultaneous stabilization of (9)
may not be achievable for arbitrary λi, thus imposing conditions
on the solvability of the synchronization problem, e.g. [4], [7]. In
practical terms, stabilization of the pencil matrix associated to (9) in
the discrete-time framework is achievable only for a set of eigenvalues
whose norm lies inside a compact set.

A possible workaround to the aforementioned limitations is pre-
sented in [4], [5]. The authors consider a normalized Laplacian
matrix, namely each row of the Laplacian matrix is differently
normalized based on the in-degree of each node. Such a normalization
allows containing the eigenvalues of L inside a suitable set where a
solution to the N − 1 simultaneous stabilization problems (9) exists.

In this paper, we aim at exploiting properties similar to the ones
in continuous-time to provide general conditions on the spectrum of
the Laplacian under which Problem 1 can be solved by controllers of

1Namely, if K stabilizes the pair (A,B), then κK is stabilizing feedback
for any κ ≥ 1.

the form (8). In the linear case, the resulting design is independent of
any normalization, thus being prone for extensions to a broad class
of networked problems, such as open networks [34] or switching
networks [35]. Normalization-based conditions can be recovered by
restricting the considered Laplacians to the set of normalized ones.
Furthermore, the proposed approach can be extended to the nonlinear
case.

III. SYNCHRONIZATION OF LINEAR SYSTEMS

Motivated by the limitation highlighted in Section II-C, we exploit
simultaneous stabilization tools for solving the linear multi-agent
synchronization problem. We revisit the results in [4] by providing
a solution with non-normalized information exchange. Our solution
allows for non-diagonalizable Laplacian matrices, thus recovering the
results of [36] as a corollary. We start by presenting necessary and
sufficient conditions for state synchronization. Then, we propose a
Riccati-based design allowing for simultaneous stabilization under
any Laplacian whose eigenvalues belong to a given compact set.
We also show that such a design possesses gain margin properties.
Finally, we specialize these results to the multi-agent framework.

A. Necessary and sufficient conditions

We start by presenting a general result for network synchronization
for linear systems. It is shown that the existence of a common
control law for systems associated with each non-zero eigenvalues of
the Laplacian is equivalent to solving the synchronization problem.
Hence, we extend [4, Lemma 1] to the case of general Laplacian
matrices. While this section focuses on the full-state information
case, we remark that it can be straightforwardly extended to the static
output-feedback scenario.

Theorem 1 For a network of N ∈ N agents described by dynamics

x+i = Axi +Bui + wi (11)

The diffusive control law ui defined in (8) solves Problem 1 if and
only if

(i) the interconnection graph (possibly directed, weighted) G is
connected or matrix A is Schur-Cohn stable2, and

(ii) the gain K is such that matrix (A+λBK) is Schur-Cohn stable
for any λ ∈ spec(L) \ {0}.

Proof: Sufficiency. Using the Kronecker notation, the closed-
loop network dynamics can be written as

x+ = ((IN ⊗A) + (L⊗BK))x+w, (12)

with x and w defined in (3). To show convergence to the synchro-
nization manifold M, define a virtual leader as the node providing
connectivity characterized in Definition 1. Without loss of generality,
assume z := x1 to be such a node. Recalling the Laplacian structure
(1), define N − 1 error coordinates e := col(e2, . . . , eN ) ∈ RNn

with ei := xi − z. Compactly, this reads as(
z
e

)
:= (T ⊗ In)x =

((
1 0⊤

−1 IN−1

)
⊗ In

)
x, . (13)

where we observe that T−1 =
(

1 0⊤
1 IN−1

)
so that, according to the

partitioning in (1), we have(
1 0⊤

−1 IN−1

)
L

(
1 0⊤

1 IN−1

)
=

(
0 L12

0 L22 − 1L12

)
.

2A matrix is said to be Schur-Cohn stable, or simply Schur stable, if all of
its eigenvalues are inside the unitary disk.
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Exploiting the structure of T , we obtain the error dynamics

e+ =
(
0 IN−1

)
×
(
((TT−1 ⊗A) + (TLT−1 ⊗BK))

(
z
e

)
+ (T ⊗ In)w

)
= Acl e+ w̃ , (14a)

where we defined the closed-loop matrix Acl as

Acl := (IN−1 ⊗A) + ((L22 − 1L12)⊗BK) (14b)

and w̃ := col(w̃2, . . . , w̃N ) ∈ RNn with w̃i := wi − w1. If Acl is
Schur-Cohn stable, the use of standard arguments for linear systems
yields

|e(t)| ≤ c ρt−t0 |e(t0)|+ sup
t∈[t0,t]

γ|w̃(t)|, (15)

for some c, γ > 0 and ρ ∈ (0, 1). Since T in (13) has a bounded
norm, we have, for some c1 > 0,

|e|2 =

∣∣∣∣(ze
)
−
(
z
0

)∣∣∣∣2 = inf
z⋆∈Rn

∣∣∣∣(ze
)
−
(
z⋆

0

)∣∣∣∣2
= inf

x⋆∈M
|(T ⊗ In)x− (T ⊗ In)x

⋆|2

≤ inf
x⋆∈M

|(T ⊗ In)|2|x− x⋆|2

≤ inf
x⋆∈M

c−1
1 |x− x⋆|2 = c−1

1 |x|2M

Also, since T is invertible, for some c2 > 0,

|x|2M = inf
x⋆∈M

|x− x⋆|2 = inf
x⋆∈M

|(T−1 ⊗ In)(T ⊗ In)(x− x⋆)|2

≤ inf
x⋆∈M

c2|(T ⊗ In)x− (T ⊗ In)x
⋆|2

≤ inf
z⋆∈Rn

c2

∣∣∣∣(ze
)
−
(
z⋆

0

)∣∣∣∣2 = c2|e|2.

Then, we obtain the following relations
√
c1|e| ≤ |x|M ≤

√
c2|e|, |w̃| ≤ sup

i,j∈[1,N ]
c3|wi − wj |, (16)

for some c1, c2, c3 > 0. As a consequence, if Acl is Schur-Cohn
stable, one obtains robust synchronization as in Problem 1. Therefore,
in the rest of the proof we set w̃ = 0 and we show that Acl in (14b)
is Schur-Cohn stable. Let TJ ∈ C(N−1)×(N−1) be a transformation
such that L = TJ (L22−1L12)T

−1
J is in Jordan canonical form. By

defining the resulting closed-loop matrix after change of coordinates

Âcl = (TJ ⊗ IN−1)Acl(T
−1
J ⊗ IN−1),

Schur-Cohn stability of Âcl implies Schur-Cohn stability of Acl. By
the properties of the Kronecker product and (14b), we have

Âcl = (IN−1 ⊗A) + (L ⊗BK). (17)

Since L is in its Jordan form, the former matrix is block triangular
with diagonal block equal to (A+ λBK) with λ in spec(L).

Hence, Schur-Cohn stability of Âcl holds if and only if the complex
matrix (A + λBK) is Schur-Cohn stable for all λ ∈ spec(L). Due
to the similarity transformations,

spec(L) = spec(L22 − 1L12) = spec(L) \ {λ1} ,

where λ1 = 0 is the eigenvalue associated to the eigenvector 1.
Consider now the case in item (i) where the graph is connected.
Then, by Lemma 1, L has only one zero eigenvalue and the gain K
is such that (A + λBK) is Schur-Cohn stable for all λ ∈ spec(L),
which implies Schur-Cohn stability of Acl in (14b). If instead A is
Schur-Cohn in item (i), then (A + λBK) is Schur-Cohn stable for

all eigenvalues λ of L (including the zero ones) and Acl in (14b) is
exponentially stable.

Necessity. Consider a Laplacian matrix of the form (1). Following
the lines of the sufficiency proof, the error dynamics between agents
and a virtual leader are described by (14a). We first study the
connectivity requirement. Suppose that synchronization is achieved,
A is unstable and at least one agent is not connected. Without loss
of generality, assume x1 to be such a node. Since it is not connected,
the Laplacian takes the form

L =

(
0 0⊤

0 L′

)
,

where L′ is the Laplacian matrix of the connected portion of the
graph. Then, by (14a) with w̃ = 0, we have

e+ = ((IN ⊗A) + (L′ ⊗BK))e .

Notice that L′ describes a connected graph. Then, by Lemma 1, it
has one zero eigenvalue. By performing similar steps to the ones in
the sufficiency proof, we define the transformed closed-loop matrix

Âcl = (IN−1 ⊗A) + (L′ ⊗BK),

where L′ is in Jordan form. Note that Âcl is Schur-Cohn stable if
and only if the complex matrix (A + λBK) is Schur-Cohn stable
for all λ ∈ spec(L′). However, spec(L′) includes a zero eigenvalue.
Hence, Âcl is stable if and only if A is Schur-Cohn stable, showing
the first item by establishing contradiction.

We now prove the necessity of item (ii). If the agents are syn-
chronized, the e subsystem in (14a) is asymptotically stable and the
matrix Âcl in (17) is Schur-Cohn. Since L contains all the nonzero
eigenvalues of L and Âcl is block-upper triangular, item (ii) must
hold, and this concludes the proof.

B. Gain margin computation via Riccati design

The results presented in Section III-A are not constructive. Fol-
lowing a similar approach to the one in [4], in this section we
provide a design procedure for pencil matrices stabilization, namely
we consider a single discrete-time agent. Then, in Section III-C, we
will apply this result to the case of networks.

Consider a discrete-time linear system described by

x+ = Ax+Bu , (18)

with x ∈ Rn, u ∈ Rm and, without loss of generality, B is
assumed to be full-column rank. The goal is to find a gain matrix
K ∈ Rm×n such that a state feedback control law u = Kx makes
the complex closed-loop matrix (A + λBK) Schur-Cohn for some
complex numbers λ. Inspired by [33, Definition 3.13], we formally
define this notion as follows.

Definition 2 (Complex gain margin for linear systems) The ma-
trix K is said to have a complex gain margin with radius r > 0
if A+ λBK is Schur-Cohn for any λ in {λ ∈ C : |λ− 1| ≤ r}.

To find the complex gain margin of a matrix K, we propose
a solution based on the discrete-time Modified Algebraic Riccati
Inequality (MARI) [9], [21], [22] defined as

A⊤PA− σA⊤PB(R+B⊤PB)−1B⊤PA ⪯ ρP , (19)

where R ∈ Sm⪰0, P ∈ Sn≻0 and generally σ ∈ (0, 1], ρ ∈ (0, 1).
Note that, since B is assumed to be full column rank, the matrix R+
B⊤PB is positive definite and, consequently, invertible. The main
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difference between the MARI (19) and the more common discrete-
time Algebraic Riccati Inequality (DARI)

A⊤PA−A⊤PB(R+B⊤PB)−1B⊤PA+Q ≺ P (20)

lies in the presence of the scalar σ. First, note that if R ≻ 0, then the
positive semi-definite matrix Q can be embedded in the right-hand
side of (19) by exploiting ρP ≺ P −Q, which holds for a suitable
ρ ∈ (0, 1) as long as P −Q ≻ 0. Inequality P −Q ≻ 0 holds when
R ∈ Sm≻0 because one can rearrange (20) as

A⊤[P − PB(R+B⊤PB)−1B⊤P ]A ≺ P −Q

and applying the block matrix inversion identity

(A+ BD−1C)−1 = A−1 −A−1B(D + CA−1B)−1CA−1 , (21)

with A−1 = P, D = R, C = B⊤, B = B, yields to

0 ≺ A⊤(P−1 +BR−1B⊤)−1A ≺ P −Q . (22)

Due to the discussion above, the DARI (20) is a special case of the
MARI (19) when σ = 1 and R is positive definite. As such, the
MARI allows for an extra degree of freedom. Its role is to weigh the
impact of the input on the solution to the inequality. In other words,
the smaller the σ, the less we can rely on the input to stabilize the
system. This is evident for the special case σ = 0, where the MARI
boils down to the Lyapunov inequality for autonomous discrete-time
systems.

We show next that the degree of freedom offered by the MARI
(19) allows stating sufficient conditions for the existence of a state
feedback gain K solving the simultaneous stabilization problem. This
result reinterprets the findings of [9, Theorem 1].

Proposition 1 Let the pair (A,B) be stabilizable and R ∈ Sm⪰0. Let
P ∈ Sn≻0 be a solution to the MARI (19) for some σ ∈ (0, 1] and
for some ρ ∈ (0, 1). Then the matrix

K = −(R+B⊤PB)−1B⊤PA , (23)

has a complex gain margin with radius r =
√
1− σ.

Proof: Consider the closed-loop matrix (A+ λBK) for some
arbitrary λ ∈ C and define the following matrix

Γ := (A⊤ + λ∗K⊤B⊤)P (A+ λBK), (24)

with P solution to (19) and superscript ∗ denoting the complex
conjugate. Substituting K in (23) into (24) and by defining Y :=
Y ⊤ = (R+B⊤PB)−1 for the sake of compactness, we obtain

Γ = (A⊤ − λ∗A⊤PBY B⊤)P (A− λBY B⊤PA).

Expanding the product and adding and subtracting
σA⊤PBY B⊤PA, by virtue of (19) and using λλ∗ = |λ|2,
λ+ λ∗ = 2Re(λ), we obtain

Γ ⪯ ρP +A⊤PBY ((σ − 2Re(λ)) In + |λ|2B⊤PBY )B⊤PA .

Since R ⪰ 0, by the definition of Y we obtain Y B⊤PBY ⪯
Y Y −1Y ⪯ Y which implies

Γ ⪯ ρP + (σ − 2Re(λ) + |λ|2)A⊤PBY B⊤PA.

Since Y ≻ 0, the second term at the right-hand side is negative
semidefinite if σ−2Re(λ)+ |λ|2 ≤ 0. Recall that |λ|2 = Re(λ)2+
Im(λ)2 and define the real scalars λR := Re(λ)− 1, λI := Im(λ).
From the previous inequality, Γ ⪯ ρP if

σ − 2(λR + 1) + (λR + 1)2 + λ2I ≤ 0 ⇐⇒ λ2R + λ2I ≤ 1− σ .

By the definition of λR and λI , these inequalities characterize the
circle of radius r =

√
1− σ centered at the point c = (1, 0) of the

complex plane. Therefore, if |λ − 1| ≤ r we have Γ ⪯ ρP and
consequently

(A⊤ + λ∗K⊤B⊤)P (A+ λBK)− P ⪯ −(1− ρ)P. (25)

By [37, Theorem 3.2], since P ∈ Sn≻0, the closed-loop matrix (A+
λBK) is Schur-Cohn stable, which concludes the proof.

Remark 1 Since the DARI can be seen as a special case of the
MARI with σ = 1, the gain margin radius r degenerates to zero. This
drastically reduces the set of simultaneously stabilizable matrices.

Remark 2 We remark that in [4] the use of the MARI is discouraged,
as it is stated that no standard algorithm exists to provide a solution.
Also, the authors state that it is not clear when such a solution
exists. However, we highlight that recent results showed that LMI
approaches provide useful tools for finding such a solution, see e.g.,
[21], [22]. Moreover, concerning the existence of positive definite
stabilizing solutions of the MARI (19), we refer to [9, Proposition
3]. In simple words, the authors of [9] prove the existence of at least
one stabilizing positive definite solution to the MARI for σ ∈ (σ, 1],
where σ > 0 depends on R, ρ and the most unstable eigenvalue of
A. In particular, stabilizing solutions were shown to exist when the
parameter is sufficiently close to 1 and R ≻ 0 (i.e., when we are
sufficiently close to the standard DARI), see [9], [21].

C. Main result on robust linear synchronization
In this section, we exploit Proposition 1 for discrete-time linear

network synchronization. We consider a network of systems (11) and
combine the results of Theorem 1 and Proposition 1 to design the
state-feedback gain K inducing synchronization over general time-
invariant graphs.

To this end, define the following quantities:

ηi :=

(
|λi|

Re(λi)

)2

= 1 +

(
Im(λi)

Re(λi)

)2

, i = 2, . . . , N, (26a)

η := max{η2, . . . , ηN}, η := min{η2, . . . , ηN}, (26b)

λ := max
i∈{2,...,N}

Re(λi), λ := min
i∈{2,...,N}

Re(λi), (26c)

for the non-zero eigenvalues λi, i = 2, . . . , N , of a connected
Laplacian matrix L. Our MARI-based design is effective whenever
the following inclusion holds for the graph-induced quantities (26)
and the MARI parameter σ ∈ (0, 1]:

ησ ∈

(
0, 1−

(η λ− η λ)2

(η λ+ η λ)2

]
. (27)

The following lemma establishes a useful implication of (27).

Lemma 2 Consider the quantities η, η, λ, λ in (26) and let σ ∈
(0, 1]. The following interval of the real axis

K :=

[
1−

√
1− η σ

η λ
,
1 +

√
1− η σ

η λ

]
(28)

is nonempty if and only if (27) holds.

The proof of Lemma 2 is given in Appendix A. We are ready to
present the main result on robust synchronization of linear systems.

Theorem 2 Consider the network (11) and suppose that L is a
Laplacian matrix describing a connected, directed and weighted
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communication graph. Let R ∈ Sm⪰0 and suppose that there exists
P ∈ Sn≻0 such that (19) holds for a selection of σ satisfying (27)
with η, η, λ, λ defined in (26). Then, the distributed control law ui in
(4), with α(x) = κKx and K selected as in (23), solves Problem 1
for any scalar gain κ ∈ K as defined in (28).

Before proving Theorem 2, we highlight the importance of bounds
(27) on σ in Proposition 2. First, differently from the continuous-
time scenario [30], the bounds on the scalar gain κ depend on the
imaginary part of the Laplacian eigenvalues via η and η. This is
expected, as discrete-time stability requires the eigenvalues to lay
inside the unit disc, which unlike the negative half-plane imposes
bounds on the imaginary part. Hence, in the case where there is at
least one complex eigenvalue, definitions (26) imply η > 1. As a
consequence, it is necessary that σ < 1 for a real solution to the
square roots in (28) to exist. In the case of real eigenvalues, ηi = 1
for all i = 1, . . . , N . Then, (28) simplifies to

κ ∈
[
1−

√
1− σ

λ
,
1 +

√
1− σ

λ

]
,

with condition (27) on σ simplified to

σ ∈
(
0, 1− (λ− λ)2

(λ+ λ)2

]
.

This last bound recovers the results in [6], where all eigenvalues of
L are supposed to be real. We emphasize that σ = 1 is a worst-case
value not leading to synchronization unless λ = λ, as in Remark 1.
Moreover, smaller values of σ lead to robust synchronization over
broader range of graphs. We now show the proof for Theorem 2.

Proof of Theorem 2: By Theorem 1, Problem 1 is solved
(equivalently, (6) holds) if the matrices (A+λiκBK) are Schur-Cohn
for all λi ∈ spec(L)\0. By Proposition 1, each one of these matrices
is Schur-Cohn if |κλi − 1|2 ≤ 1 − σ. By expanding the norm, we
conclude that the closed-loop matrix associated to λi is Schur-Cohn
if σ − 2κRe(λi) + κ2 |λi|2 ≤ 0. Solving for κ and recalling the
definition of ηi in (26), we obtain robust synchronization if

κ ∈
[
1−

√
1− ηi σ

ηi Re(λi)
,
1 +

√
1− ηi σ

ηi Re(λi)

]
∀i = 2, . . . , N, (29)

because we simultaneously stabilize all the closed-loop matrices.
First, note that from (26c) we have ηi ≥ 1. Moreover, ηi < ∞,
because all eigenvalues λi have positive real part. Then, since σ > 0,
for any i = 2, . . . , N it holds that

1 +
√
1− ησ

ηλ
≤ 1−

√
1− ηiσ

ηiRe(λi)
≤ 1−

√
1− ησ

ηλ
.

Consequently, for any κ ∈ K as per (28), condition (29) holds and
(6) holds, as to be proven. □

Remark 3 We highlight that, in combination with the results in [9],
condition (27) implies that there exist (σ, σ) ∈ (0, 1]2 such that
synchronizing solutions to the multi-agent problem based on MARI-
design exist for some σ satisfying σ ≥ σ and σ ≤ σ. However,
this set is not guaranteed to be nonempty. In other words, it may
happen that σ > σ. In particular, for unstable linear systems, the
lower bound σ depends on the choice of R, ρ in (19) and the most
unstable eigenvalue of A [9]. The upper bound σ depends on the
Laplacian eigenvalues. The first implication is that it may not be
possible to synchronize a network of arbitrarily unstable systems
under an arbitrary communication graph. Similarly, some choices
of convergence rate-control penalty pair (ρ,R) may not be suitable
for a given system-graph pair.

IV. SYNCHRONIZATION OF NONLINEAR SYSTEMS

As shown in Section III, the problem of synchronization can be
interpreted as a simultaneous stabilization problem by means of an
opportune change of coordinate. Hence, in this section, we first focus
on the general properties a single nonlinear system has to fulfill in
order to extend the results of Section III-B to the nonlinear case.
Successively, we exploit these properties to extend the results of
Section III-C to the nonlinear scenario.

A. The case of single nonlinear discrete agents

We consider time-varying discrete-time nonlinear system of the
form

x+ = φ(x, t) + w (30)

where the function φ : Rn × N → Rn is such that the following
mild property holds.

Property 1 Function φ : Rn × N → Rn is continuous in its first
argument and there exists a (possibly unbounded) set of matrices
Dφ ⊂ Rn×n such that, for each xa, xb ∈ Rn and all t ∈ N, there
exists an integrable function ψ : [0, 1] → Rn×n satisfying

φ(xa, t)− φ(xb, t) =

∫ 1

0
ψ(s) ds (xa − xb) (31a)

ψ(s) ∈ Dφ, ∀s ∈ [0, 1]. (31b)

The above definition allows considering a wide class of dynamical
systems. First, note that when n = 1, Property 1 boils down to
the requirement of φ being absolutely continuous. Trivially, such
a class of systems includes continuously differentiable ones with
Dφ containing all of their Jacobians. Moreover, Property 1 includes
functions that are differentiable almost everywhere (i.e. everywhere
but on a set of measure zero), such as piecewise smooth and
Lipschitz functions. In this case, Dφ contains all the possible Clarke
generalized gradients [38]. As a particular case, for linear systems of
the form (18), Dφ = {A}. When moving to nonlinear systems, this
allows the inclusion of some useful nonlinearities, such as saturations
and arctangents, by selecting Dφ as the vertices of the convex hull
of all possible Jacobians.

We now explore the design of stabilizers showing gain margin
properties in the nonlinear framework by means of incremental input-
to-state stability (δISS) arguments. Typically, δISS is obtained via
incremental Lyapunov functions [17]–[19], [25]. However, in [13,
Theorem 15], the equivalence between uniform global exponentially
δISS and global contractivity is shown for continuously differentiable
discrete-time dynamics. Hence, we aim at exploiting contraction to
obtain δISS.

A-1. Sufficient conditions for exponential δISS

While the first in-depth analysis of the relation between contrac-
tion, incremental stability and convergence in discrete-time appeared
in [13], to the authors’ knowledge the first results date back to [17].
We now generalize these existing results to the framework of non-
smooth dynamics whose vector fields satisfy Property 1. Moreover,
we extend recent advances of [25] to time-varying dynamics. We start
by recalling the definition of δISS for discrete-time systems, see e.g.
[18], [19], [25].

Definition 3 (Exponential δISS) System (30) is globally uniformly
Incrementally Input-to-State Stable with exponential convergence rate
(exponentially δISS) if there exist c, γ > 0 and ρ ∈ [0, 1) such that,
for all t ≥ t0 with t0 ∈ N and for any initial states x1(t0), x2(t0)
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and any pair of disturbance sequences t 7→ w1(t), t 7→ w2(t), the
resulting solutions x1(t), x2(t) of (30) satisfy

|x1(t)− x2(t)| ≤ cρt−t0 |x1(t0)− x2(t0)|
+ sup

t∈[t0,t]
γ|w1(t)− w2(t)| . (32)

We prove below a sufficient δISS condition extending the results
in [25, Theorem 2], [13, Theorem 14], [17, Theorem 6.1] to the case
of time-varying non-smooth vector fields satisfying Property 1.

Lemma 3 Consider system (30) and suppose that φ satisfies Prop-
erty 1 with a specific set-valued map Dφ. Moreover, suppose that
there exists P ∈ Sn≻0 and ρ ∈ (0, 1) satisfying

J⊤PJ ⪯ ρ2P , ∀J ∈ Dφ. (33)

Then, system (30) is exponentially δISS according to Definition 3.

The proof of Lemma 3 is given in Appendix B. Equipped with
sufficient conditions for contraction of non-smooth dynamics, we
conclude the subsection with some pedagogical examples, providing
a useful insight into the applicability of the result.

Example 1 Consider a system of the form

x+ = φ(x) = satr(Ax) , (34)

where r ∈ Rn
>0 and the vector saturation function sat(·) has compo-

nents sati(·) := max(min(·, ri),−ri). It can be easily verified that,
for all x ∈ Rn, the generalized Jacobian of φ [38] satisfies

∂φ(x) ⊂ co{∆A, ∆ ∈ ∆},

where ∆ := {∆ = diag(δ1, . . . , δn) : δi ∈ {0, 1}, ∀i = 1, . . . , n}
is a finite set of matrices representing the vertices of a polytope. More
generally, let V be a set of matrices V := {A1, . . . , Av} with v ∈ N,
such that ∂φ(x) ∈ co{V} for all x ∈ Rn. Then, it suffices to verify
(33) on V and convexity of the equivalent formulation(

ρ2P J⊤

J P−1

)
⪰ 0

(obtained via a Schur complement) ensures that (33) holds for Dφ =
co{V}. Similar reasonings can be followed for smooth monotone
saturation-like functions, such as arctangents or hyperbolic tangents.

Example 2 The study of incremental stability properties of neural
networks is gaining attention in the research community, e.g. [25],
[39], [40]. The presented contraction analysis tools can be valuable
to derive such properties. For example, a multilayer perceptron with
L ∈ N layers and ReLU activation functions can be described by the
following dynamics

x+ = yL

yℓ =Wℓ ν(yℓ−1) + bℓ, ℓ = 1, . . . , L

y0 = x

(35)

with the ReLU function ν(·) applied component-wise, i.e., ν(x)
has components νi(xi) := max(0, xi), yℓ, bℓ ∈ Rnℓ and Wℓ ∈
Rnℓ×nℓ−1 . Denoting by x 7→ φ(x) the function satisfying yL =
φ(x) recursively defined in (35), by the chain rule [38, Theorem
2.6.6], for all x ∈ Rn, we have

∂φ(x) ⊂ co{WL∆L−1WL−1 . . .∆1W1,

∆i ∈ ∆, ∀i = 1, . . . , L− 1},

with ∆ defined as in Example 1. Proceeding as in Example 1, we
can conclude exponential δISS properties of (35) by checking (37)
on a set V satisfying ∂φ(x) ∈ co{V} for all x ∈ Rn. Similar results
extend to more complex recurrent neural networks, as shown in [25].

A-2. Nonlinear robust feedback with gain margin design via
contraction

Paralleling the linear derivation in Section III-B, we now exploit
the results of Lemma 3 to design a feedback stabilizers u = α(x, t)
inducing exponential δISS (as defined in Definition 3) with respect
to w and for a nonlinear system of the form

x+ = f(x, t) +Bu+ w, (36)

where f : Rn × N → Rn satisfies Property 1 and B is full column
rank. Again, the result we obtain establishes a gain margin property
as defined below. We emphasize the similarity with (2), promising
that this construction will be used in Section IV-B to solve the robust
nonlinear synchronization problem.

Definition 4 (Gain margin for nonlinear systems) A function α :
Rn×N 7→ Rm is a δISS feedback with gain margin of radius r > 0 if,
for any real number κ ∈ [1−r, 1+r], system (36) with u = κα(x, t)
is exponentially δISS with respect to w.

The following proposition can be seen as a non-smooth nonlinear
counterpart of Proposition 1. We now state our first result for the
nonlinear framework.

Proposition 2 Let R ∈ Sm⪰0 and assume that f in (36) satisfies
Property 1 for some Df ⊂ Rn×n. Moreover, suppose that there
exists P ∈ Sn≻0 satisfying

J⊤QJ ⪯ ρ2P, ∀J ∈ Df, (37a)

Q := P − σPB
(
R+B⊤PB

)−1
B⊤P, (37b)

for some ρ ∈ (0, 1) and σ ∈ (0, 1]. Then for the system (36) the
function

u = α(x, t) = −κ
(
R+B⊤PB

)−1
B⊤Pf(x, t) (38)

is a δISS feedback with gain margin of radius r =
√
1− σ.

Proof: For the sake of compactness, let us start by defining

Y = Y ⊤ :=
(
R+B⊤PB

)−1
,

Ω = In −κBY B⊤P.

Since B is assumed to be full column rank, the matrix R+B⊤PB
is invertible, and Y exists. Then, Lemma 3 states that the closed-loop
(36), (38), which can be written as (30) with

φ(x, t) = f(x, t) +Bα(x, t) = Ωf(x, t), (39)

is exponentially δISS if

J⊤Ω⊤PΩJ ⪯ ρ2P, ∀J ∈ Df. (40)

By expanding the left-hand side in (40) and by adding and subtracting
σJ⊤PBY B⊤PJ , due to (40) we obtain the equality

J⊤Ω⊤PΩJ = J⊤PJ − σJ⊤PBY B⊤PJ

+ (σ − 2κ)J⊤PBY B⊤PJ + κ2J⊤PBY B⊤PBY B⊤PJ,

where we note that the first two terms at the right-hand side coincide
with J⊤QJ . Then inequality (37) implies, for all J ∈ Df

J⊤Ω⊤PΩJ ⪯ ρ2P+

J⊤PBY
(
(σ − 2κ)Y −1 + κ2B⊤PB

)
Y B⊤PJ

⪯ ρ2P + (κ2 − 2κ+ σ)J⊤PBY B⊤PJ,
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where we expanded Y −1 and added κ2R ⪰ 0 inside the brackets.
Since Y is positive definite, (40) holds and Lemma 3 applies if κ2−
2κ+ σ ≤ 0, which holds if and only if

1−
√
1− σ ≤ κ ≤ 1 +

√
1− σ ,

concluding the proof.

Remark 4 Consider the role of the parameter σ in (37b). On the
one hand, a strictly positive σ implies that the system can be made
exponentially δISS with the addition of an input acting in the correct
directions. On the other hand, σ = 0 implies that the autonomous
system x+ = f(x, t) is already contracting, while a negative σ would
mean that the autonomous system is sufficiently robust to withstand
inputs in the wrong directions. Then, the parameter σ in (37b) plays
a similar role to the one in the MARI (19). As a consequence, aside
from motivating our choice of bounding σ ∈ (0, 1], these facts show
that inequality (37) can be seen as a nonlinear version of the MARI
(19).

Remark 5 Our nonlinear δISS results parallel the linear ones on
robust stabilization via MARI-based design. Indeed, mimicking the
linear scenario, nonlinear feedbacks designed via Proposition 2
present a gain margin property, since any gain κ ∈ [1−

√
1− σ, 1+√

1− σ] is a good controller for system (36). This parallels the
continuous-time scenario in [41], where contractive laws based
on Riccati-like design show infinite-gain margin properties. Finally,
similarly to the MARI-based approach, the allowable range for κ is
centered at 1 for any σ. Then, if σ = 1, the range degenerates to a
single point κ = 1, and the gain margin property is lost.

Remark 6 Note that (37b) implies Q ∈ Sn≻0 if R ∈ Sm≻0. Indeed,
by (37b) and (21) with A = P , B = B, C = B⊤ and D = R, the
invertibility of R yields the equivalent formulation

Q = (1− σ)P + σ(P−1 +BR−1B⊤)−1.

Since σ ∈ (0, 1] and P ≻ 0, matrix Q is a σ-governed linear
interpolation between positive definite matrices and, thus, it is
positive.

B. Main result on nonlinear synchronization

We now exploit the δISS results of Proposition 2 to derive a
solution to the nonlinear multi-agent robust synchronization problem.
The idea is to exploit contraction properties to show convergence to
the synchronization manifold. The link between Proposition 1 and
Proposition 2 is evident. However, the Jordan transformation which
is the basis of the proof of Theorem 1 and, consequently, of Theorem
2 cannot be easily applied in the nonlinear scenario. Thus, in order to
exploit Proposition 2 for synchronization, we introduce the following
technical lemma, which we will be used in the proof to design an
appropriate transformation.

Lemma 4 Let the weighted graph G = {V, E ,A} be directed and
connected, with Laplacian L and L11, L12 defined as in (1). Then,
there exist M ∈ SN−1

≻0 and constants m,m, µ, µ > 0, ρM ∈ (0, 1]
such that

m IN−1 ⪯M ⪯ m IN−1, ρM ≤ m

m
(41a)

M(L22 − 1L12) + (L22 − 1L12)
⊤M ⪰ 2µM (41b)

(L22 − 1L12)
⊤M(L22 − 1L12) ⪯ µ2M. (41c)

The proof of Lemma 4 is given in Appendix C. We now present
the following main result on network synchronization of nonlinear
systems.

Theorem 3 Consider the network (2) and suppose that f satisfies
Property 1 for some Df ⊂ Rn×n and L is a Laplacian matrix
describing a connected, directed and weighted communication graph.
Let ρ ∈ (0, 1) and σ ∈ (0, 1] satisfy

ρ ≤ ρM , σ ≤ 1

ς
, ς :=

(
µ

µ

)2

, (42)

with ρM , µ, µ as in Lemma 4. If, for some R ∈ Sm⪰0, there exists P ∈
Sn≻0 satisfying (37a), (37b), then, the distributed control law ui =∑N

j=1 ℓijα(xj , t) in (4) with α defined as in (38) and κ satisfying

κ ∈

[(
1−

√
1− ςσ

)
ςµ

,

(
1 +

√
1− ςσ

)
ςµ

]
, (43)

solves Problem 1 for the network (2), namely, (6) holds.

Proof: Mimicking the linear framework, we show convergence
to the synchronization manifold M by focusing our analysis on the
error between agents. If these error dynamics are robustly stable
(ISS) with respect to an incremental version of w, then Problem 1
is solved. Bearing in mind the steps of the proof of Theorem 1,
without loss of generality, we define a virtual leader z = x1
and define N − 1 error coordinates with respect to such a leader
node, e := col(e2, . . . , eN ) ∈ RNn with ei := xi − z for all
i = 1, . . . , N . Similarly, we define the incremental disturbance
w̃ := col(w̃2, . . . , w̃N ) with w̃i := wi − w1. The error dynamics
are described, for all i = 2, . . . , N , by

e+i = f(z + ei, t)− f(z, t) +B

N∑
j=1

(
ℓij − ℓ1j

)
α(z + ej , t) + w̃i.

(44)
Since by definition of the Laplacian entries

∑N
j=1 ℓij = 0 for any

agent i, we can subtract B
∑N

j=1

(
ℓij − ℓ1j

)
α(z, t) = 0 from the

right-hand side so that (44) becomes

e+i = f̃(ei, t) +B

N∑
j=2

ℓ̃ij α̃(ej , t) + w̃i

f̃(ei, t) := f(z + ei, t)− f(z, t)

α̃(ej , t) := α(z + ej , t)− α(z, t)

ℓ̃ij := ℓij − ℓ1j .

(45)

Overall, the closed-loop system can be written in compact form as

e+ = φ(e, t) + w̃, (46)

where we defined

φ(e, t) :=


f̃(e2, t) +B

∑N
j=2 ℓ̃2j α̃(ej , t)
...

f̃(eN , t) +B
∑N

j=2 ℓ̃Nj α̃(ej , t)

 . (47)

Now, select the following candidate Lyapunov function

V (e) = e⊤(M ⊗ P )e, (48)

with M defined in Lemma 4. Note that, due to the properties
of the Kronecker product, since M ≻ 0 and P ≻ 0, M ⊗ P



9

is symmetric and positive-definite. Now, for each value of z and
e = col(e2, . . . , eN ), define the function Ft : R → RNn as

Ft(s) :=


f̃s(s, e2, t) +B

∑N
j=2 ℓ̃2j α̃s(s, ej , t)
...

f̃s(s, eN , t) +B
∑N

j=2 ℓ̃Nj α̃s(s, ej , t)

 , (49)

parametrized by t ∈ N, with the definitions

f̃s(s, ei, t) := f(z + sei, t)− f(z, t), (50a)

α̃s(s, ej , t) :=α(z + sej , t)− α(z, t), (50b)

=− κY B⊤P f̃s(s, ei, t),

where we used (38) and Y :=
(
R+B⊤PB

)−1
. From (49)-(50)

we have Ft(0) = 0 and from (31) we get

φ(e, t) = Ft(1) = Ft(1)− Ft(0) =

∫ 1

0
∂F (s)ds e, (51)

where

∂F (s) := [I(N−1)n −κ((L22 − 1L12)⊗BY B⊤P )]Ψ(s), (52)

Ψ(s) := diag
(
ψ̃2(s) . . . , ψ̃N (s)

)
, (53)

ψ̃i(s) ∈ Df, ∀i = 2, . . . , N (54)

are obtained from (49) by proceeding as in (14). Since V (e+) =
2(e+)⊤(M ⊗P )e+−V (e+) , subtracting ρV (e) on both sides, by
combining (46) and (51), we obtain

V (e+)− ρV (e) = 2 (e+)⊤(M ⊗ P )

∫ 1

0
∂F (s) ds e

−
[
(e+)⊤(M ⊗ P )e+ + ρ e⊤(M ⊗ P )e

] ∫ 1

0
ds

+ 2(e+)⊤(M ⊗ P )w̃.

Then, by collecting everything under the integral and defining the
extended error vector ξ = col(e, e+) we obtain

V (e+)−ρV (e) = −
∫ 1

0
ξ⊤Υ(s)ξ ds+2(e+)⊤(M⊗PB)w̃, (55a)

Υ(s) :=

(
ρ(M ⊗ P ) −∂F⊤(s)(M ⊗ P )

−(M ⊗ P )∂F (s) (M ⊗ P )

)
. (55b)

Since P ≻ 0, M ≻ 0, and M ⊗ P is invertible, we can study the
positive definiteness of Υ(s) via its Schur complement

Υ̂(s) = ρ(M ⊗ P )− ∂F⊤(s)(M ⊗ P )∂F (s) .

By using the definition of ∂F (s) in (52) and the properties of
Kronecker products, we obtain

Υ̂(s) = ρ(M ⊗ P )−Ψ(s)⊤(Ta +He {Tb}+ Tc)Ψ(s) (56)

where we defined

Ta :=M ⊗ P,

Tb := −κ(M(L22 − 1L12)⊗ PBY B⊤P ),

Tc := κ2[(L22 − 1L12)
⊤M(L22 − 1L12)⊗ PBY B⊤PBY B⊤P ].

For Tb, by the properties of the Kronecker product, since PBY B⊤P
is symmetric we obtain

He {Tb} = −κ(He {M(L22 − 1L12)} ⊗ PBY B⊤P ).

Consequently, by Lemma 4 and using again the properties of the
Kronecker product, the following holds

He {Tb} ⪯ −2κµ(M ⊗ PBY B⊤P ). (57)

Similarly, since R ⪰ 0, by exploiting the Kronecker product and by
using again Lemma 4, we get

Tc ⪯ κ2µ2[M ⊗ PBY (R+B⊤PB)Y B⊤P ]

⪯ κ2µ2(M ⊗ PBY B⊤P ).
(58)

Using (57) and (58), matrix Υ̂ in (56) can be bounded as

Υ̂(s) ⪰ ρ(M ⊗ P )−Ψ(s)⊤(M ⊗ P )Ψ(s)

P = P + (κ2µ2 − 2κµ)PBY B⊤P
(59)

Now, consider P . By addition and subtraction, it can be rewritten as

P = P − σPBY B⊤P + (κ2µ2 − 2κµ+ σ)PBY B⊤P.

Then, if κ2µ2 − 2κµ+ σ ≤ 0, namely if

µ

µ2

1−

√√√√1−

(
µ

µ

)2

σ

 ≤ κ ≤
µ

µ2

1 +

√√√√1−

(
µ

µ

)2

σ

 ,

which holds due to the selection in (43), we obtain

P ⪯ P − σPBY B⊤P = Q, (60)

with Q defined in (37b). Using (41a) from Lemma 4 and (60), Υ̂(s)
in (59) satisfies

Υ̂(s) ⪰ mρ(IN−1 ⊗P )−mΨ(s)⊤(IN−1 ⊗Q)Ψ(s).

Recalling from (53) the block-diagonal structure of Ψ(s) and exploit-
ing (37), we obtain

Υ̂(s) ⪰ mρ(IN−1 ⊗P )−mdiag({ψ̃i(s)
⊤Qψ̃i(s)}Ni=2)

⪰ mρ(IN−1 ⊗P )−mdiag({ρ2P}Ni=2)

= mρ(IN−1 ⊗P )−mρ2(IN−1 ⊗P )

⪰ ρ(m−mρ)(IN−1 ⊗P )

⪰ ρ(m−mρM )(IN−1 ⊗P ) ⪰ 0,

where we used 0 < ρ ≤ ρM = mm−1. Since Υ̂(s) ⪰ 0 for each
s ∈ [0, 1], we conclude that also Υ(s) defined in (55b) satisfies
Υ(s) ⪰ 0 for all s ∈ [0, 1], and (55a) implies

V (e+)− ρV (e) ≤ 2(e+)⊤(M ⊗ P )w̃ (61)

By the generalized Young’s inequality and by considering the fac-
torization M ⊗ P =

√
M ⊗ P

⊤√
M ⊗ P = (

√
M ⊗ P )2 (with√

M ⊗ P denoting the unique positive square root of M ⊗ P ≻ 0),
we have

2(e+)⊤(M ⊗ P )w̃ = 2(e+)⊤(
√
M ⊗ P )2w̃

≤ (1−√
ρ)V (e+) +

1

1−√
ρ
w̃⊤(M ⊗ P )w̃.

Then, since ρ ∈ (0, 1), inequality (61) implies

V (e+)−√
ρV (e) ≤ 1

√
ρ(1−√

ρ)
w̃⊤(M ⊗ P )w̃,

thus proving exponential ISS properties of the e dynamics due to
the quaratic form of (48). Finally, similarly to the linear scenario
of Theorem 1, relations (16) hold and robust synchronization as in
Problem 1 is obtained, thus concluding the proof.

Remark 7 Note that the contraction inequality (37a) in the context of
Theorem 3 is tightly related to the structure of the Laplacian matrix
and its eigenvalues. To appreciate this link, consider the network
graph to be undirected and leader-connected. Under these conditions,
the Laplacian L in (1) satisfies L11 = 0, L12 = 0. Then, L22 =
L⊤
22 ≻ 0 and we can select M = IN−1 and µ (resp. µ) in Lemma 4
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as the smallest (resp. largest) eigenvalue of L22. Consequently, the
admissible values of σ are related to the condition number of L22.
Moreover, by picking M = IN−1, the contraction rate ρ disentangles
from the network structure, as m = m = 1. Indeed, from (41a) we
can select ρM = 1 and, consequently, condition (42) in Theorem 3
imposes no constraints on ρ ∈ (0, 1), as in Lemma 3.

To the best of the authors’ knowledge, while a general contraction-
based approach appeared in [42], there is no result paralleling The-
orem 3 in the continuous-time framework, nor there is a Lyapunov-
based result addressing robust exponential synchronization of nonlin-
ear agents under general weighted, directed graphs. The main issue
in continuous-time arises when considering a Lyapunov function of
the form (48). Indeed, it is not trivial to perform continuous-time
parallel steps similar to those at the end of the proof of Theorem 3,
which exploit Demidovich-like conditions [43, Theorem 1] to derive
upper bounds on the Lyapunov decrease.

V. GEVPS FOR EXPONENTIAL δISS
We now discuss numerically efficient formulations of the results

of Section IV, and apply them to specific classes of systems. LMI-
based conditions for robust stabilization are a valuable tool for control
design for discrete-time nonlinear systems, see e.g. [8], [16], [20],
[44]. Hence, inspired by these works and recent LMI approaches
for solving MARI inequalities [21], [22], we propose LMI-based
conditions to obtain the solution of the MARI-like inequality (37).
Our numerically efficient formulation provides a viable solution to
the design problem of robustly synchronizing controllers.

First, we introduce an equivalent formulation for (37). The pa-
rameters of the proposed reformulation can be obtained by solving
a generalized eigenvalue problem (GEVP). Then, we focus our
attention on the case where the set of possible open-loop Jacobians of
the system dynamics (36) is polytopic. Finally, we target the specific
case of Lur’e systems.

A. Formulation as a GEVP

We start by reformulating Proposition 2 as an LMI problem. This
provides convex analysis conditions for constructing matrix P . Given
this new formulation, the convergence rate ρ and the parameter σ in
(37) can be estimated as part of a GEVP.

Proposition 3 Let R ∈ Sm≻0, σ ∈ (0, 1], ρ ∈ (0, 1). The following
LMIs in the decision variables W and Σ

W ≻ 0, Σ ≻ 0,

(
ρW WJ⊤

JW ρΣ

)
⪰ 0, (62a)(

W + σBR−1B⊤ − Σ BR−1B⊤

BR−1B⊤ 1
σ

(
W

(1−σ)
+BR−1B⊤

)) ⪰ 0, (62b)

hold if and only if conditions (37) hold with P = W−1 ≻ 0.
Moreover, (62) is a generalized eigenvalue problem in (σ, ρ,R),
namely, if it is feasible for (σ, ρ, R̄), then it is feasible for any
(σ, ρ,R) such that σ ≥ σ, ρ ≥ ρ, R ⪯ R̄ and, conversely, if it
is infeasible for (σ, ρ,R), then it is infeasible for any (σ, ρ,R) such
that σ ≤ σ, ρ ≤ ρ, R ⪰ R.

Proof: Consider the last LMI of (62). Since W ≻ 0 and
R−1 ≻ 0, then its (2, 2) entry is positive definite. Then, by the
Schur complement, (62b) holds if and only if

W + σBR−1B⊤ − Σ ⪰
σ(1− σ)BR−1B⊤(W + (1− σ)BR−1B⊤)−1BR−1B⊤,

which can be rearranged as

Σ ⪯W + σB
(
R−1 − (1− σ)R−1B⊤

× (W + (1− σ)BR−1B⊤)−1BR−1
)
B⊤. (63)

By the matrix inversion lemma (21) with A = R, B =
√
1− σB⊤,

C =
√
1− σB, D =W , inequality (63) is equivalent to

Σ ⪯W + σB(R+ (1− σ)B⊤W−1B)−1B⊤.

Left and right multiplication of both sides by W−1 ≻ 0 yields the
equivalent condition

W−1ΣW−1 ⪯W−1 − σW−1B(−(R+B⊤W−1B)

+ σB⊤W−1B)−1B⊤W−1. (64)

Once again, by the matrix inversion lemma (21) applied with A =W ,
B =

√
σB, C =

√
σB⊤, D = −(R + B⊤W−1B), inequality (64)

is equivalent to

W−1ΣW−1 ⪯ (W − σB(R+B⊤W−1B)−1B⊤)−1.

By left and right multiplying both sides by W , we obtain the
equivalent inequality

Σ ⪯W (W − σB(R+B⊤W−1B)−1B⊤)−1W. (65)

Since (ABC)−1 = C−1B−1A−1 for any invertible matrices A, B,
C, inequality (65) is equivalent to

Σ ⪯ (W−1(W − σB(R+B⊤W−1B)−1B⊤)W−1)−1

⪯ (P − σPB(R+B⊤PB)−1B⊤P )−1 = Q−1, (66)

where we used P =W−1 and the definition of Q in (37b). Consider
now the right LMI in (62a). By left and right multiplication by the
matrix

T =

(
W−1 0
0 In

)
=

(
P 0
0 In

)
,

we have (
ρP J⊤

J ρΣ

)
=

(
ρW−1 J⊤

J ρΣ

)
⪰ 0.

Then, by the Schur complement, we obtain the equivalent condition
ρW−1 − ρ−1J⊤Σ−1J ⪰ 0, which, with the selection P = W−1,
can be written as

J⊤Σ−1J ⪯ ρ2P. (67)

Summarizing, we proved the equivalence of (62) with the four
inequalities P ≻ 0, Σ ≻ 0, (66) and (67), where we emphasize
that, under (62), Q−1 exists due to the positive definiteness of Q
implied by R ≻ 0, as established in Remark 6. More specifically,
(62) is equivalent to

P ≻ 0, Σ ≻ 0, Σ−1 ⪰ Q, J⊤Σ−1J ⪯ ρ2P. (68)

To complete the first part of the proof, we show that (68) is equivalent
to (37). If (37) holds, then Q ≻ 0 and (68) holds with Σ = Q−1. If
(68) holds, then

J⊤QJ ⪯ J⊤Σ−1J ⪯ ρ2P,

thus completing the first part of the proof. To prove that (62) is a
GEVP in (σ, ρ,R), let us denote by W̄ , Σ̄ the solution of (62) with
(σ̄, ρ̄, R̄). If σ ≥ σ > 0, 0 ≺ R ⪯ R̄, we obtain

Q̄ = P̄ − σP̄B(R̄+B⊤P̄B)−1B⊤P̄

⪰ P̄ − σP̄B(R+B⊤P̄B)−1B⊤P̄ = Q,
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where P̄ = W̄−1 ≻ 0. Then, by (68) and since Σ̄−1 ⪰ Q̄ and
ρ ≥ ρ, the following inequalities hold

P̄ ≻ 0, Σ̄ ≻ 0, Σ̄−1 ⪰ Q, J⊤Σ̄−1J ⪯ ρ̄2P̄ .

Due to the equivalence between inequalities (68) and (62), we
conclude that P = P̄ is solution to (62) with (σ, ρ,R). Similar
reasonings prove infeasibility of (68) for any (σ, ρ,R) such that
σ ≤ σ, ρ ≤ ρ, R ⪰ R if (68) is infeasible for (σ, ρ,R).

Combined with Proposition 2, Proposition 3 requires the satisfac-
tion of (62) for all J ∈ Df . This may turn out to be impracticable, as
Df could be infinite dimensional. However, under some additional
assumptions on system (36), we can follow a polytopic approach
similar to the one in Examples 1 and 2. Hence, we propose the
following result addressing the case where the open-loop system
Jacobian belongs to a polytopic set defined by a finite number of
vertices.

Corollary 1 Let R ∈ Sm≻0 and assume that f in (36) satisfies
Property 1 for some Df ⊂ Rn×n. Moreover, suppose there exists
a finite set of matrices V := {A1, . . . , Av} ⊂ Rn×n such that
Df ⊆ co{V}. If there exist matrices W,Σ ∈ Sn≻0 and scalars
ρ ∈ (0, 1), σ ∈ (0, 1] satisfying (62) for all J ∈ V , the control
law u = α(x, t) with α defined in (38) and P = W−1 makes the
closed-loop exponentially δISS with respect to w with gain margin
of radius r =

√
1− σ.

B. Lur’e systems

We further specialize our result to the case of Lur’e systems.
Namely, we now consider nonlinear discrete-time systems of the form

x+ = f(x) +Bu = Ax+ Fϕ(Cx) +Bu, (69)

where C ∈ Rp×n, F ∈ Rn×p and the square nonlinearity ϕ :
Rp → Rp is a pool of p, possibly different, feedback nonlinear
elements ϕ(y) := diag(ϕ1(y1), . . . , ϕp(yp)) whose components
ϕi, i = 1, . . . , p, satisfy Property 1 for some intervals Dϕi ⊂ R,
i = 1, . . . , p. We assume that each function ψi belongs to an
incremental sector [0, ωi], with ωi ≥ 0, in the following classical
sense:

(ϕi(s1)−ϕi(s2))(ϕi(s1)−ϕi(s2)−ωi(s1−s2)) ≤ 0, ∀s1, s2 ∈ R.
(70)

By the non-smooth mean value theorem [38, Theorem 2.3.7], we may
combine bounds (70) into

He
{
JϕS(Jϕ − Ω)

}
⪯ 0 (71)

which holds for all diagonal Jϕ ∈ Dϕ = diag(Dϕ1, . . . ,Dϕp),
for any diagonal S ∈ Sp⪰0 and for some diagonal Ω =

diag(ω1, . . . , ωp) ∈ Sp⪰0. We then have the following result.

Proposition 4 Let R ∈ Sm≻0 and suppose that ϕ in (69) satisfies (70)
for some Ω = diag(ω1, . . . , ωp). If there exist symmetric matrices
W,Σ, a diagonal matrix S ∈ Sp⪰0 and scalars ρ ∈ (0, 1), σ ∈ (0, 1]
satisfying (62b) and

W ≻ 0, Σ ≻ 0,

ρW WA⊤ WC⊤

AW ρΣ −FΩ⊤S

CW −SΩF⊤ 2S

 ⪰ 0, (72)

then the control law u = α(x, t) with α defined in (38) and P =
W−1 makes the closed-loop (69)-(38) exponentially δISS with respect
to w with gain margin of radius r =

√
1− σ.

1 2 3

456

1

3
1

1
2

11

1

Fig. 1: Communication graph considered in Section V-C

Proof: Due to [38, Theorem 2.3.7], (71) holds for any diagonal
S ∈ Sp⪰0 and any Jϕ ∈ Dϕ. Define the matrix Λ⊤ :=

(
In 0 0
0 In FJϕ

)
with any diagonal Jϕ ∈ Dϕ. It is easy to verify that (71) implies

Λ⊤

0 0 0

0 0 −FΩ⊤S

0 −SΩF⊤ 2S

Λ = Λ⊤ΠΛ ⪯ 0. (73)

Consider now (72), which implies

Λ⊤

ρW WA⊤ WC⊤

AW ρΣ −FΩ⊤S

CW −SΩF⊤ 2S

Λ = Λ⊤(Ξ + Π)Λ ⪰ 0,

where we defined

Ξ :=

ρW WA⊤ WC⊤

AW ρΣ 0
CW 0 0

 . (74)

By (73), we then have

Λ⊤ΞΛ ⪰ Λ⊤(Ξ + Π)Λ ⪰ 0,

thus showing Λ⊤ΞΛ ⪰ 0. Then, the expansion of the product leads
to

Λ⊤ΞΛ =

(
ρW W (A+ FJϕC)⊤

(A+ FJϕC)W ρΣ

)
⪰ 0,∀Jϕ ∈ Dϕ.

By Proposition 3, the assumption (62b) implies that conditions (37)
hold with P = W−1 ≻ 0 for any J ∈ Df = A + FDϕC. The
proof is concluded by Proposition 2.

C. Numerical example

In what follows, we propose a simple numerical example to vali-
date the results of Theorem 3 with the construction in Proposition 4.
Consider a network of N = 6 agents connected according to the
weighted, directed graph in Figure 1 and evolving according to the
planar Lur’e dynamics (69) as follows

x+i = Axi + Fϕ(Cxi) +Bui, i = 1, . . . , 6,

where

A =

(
1.1 0.1
−0.3 0.5

)
, B =

(
2
0.3

)
, C =

(
1 −1

)
, F =

(
−0.1
0.7

)
,

and ϕ(·) = sat10(·) = max(min(·, 10),−10). It is simple to verify
that Jϕ ∈ {0, 1} and the Laplacian matrix is

L =



3 −1 0 0 −2 0
−1 2 0 0 0 −1
0 0 1 −1 0 0
0 0 0 1 −1 0
0 −3 −1 0 4 0
0 0 0 0 −1 1

.
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Conditions (71), (72) and (62b) are easily solved with ρ = 0.9,
σ = 0.285, S = Ω = 1 and provide

W =

(
0.0408 −0.1747
−0.1747 1.1273

)
, Σ =

(
0.0388 −0.1294
−0.1294 0.8495

)
.

Then, we select a control law of the form (4) with α as in (38),
R = 1 and κ = 0.2. It is interesting to notice that, by solving (41)
via semi-definite programming, ρ, σ and κ fall outside the required
bounds. This shows the conservativeness of our Lyapunov analysis,
that is aimed at obtaining a very general result. Finally, we simulate
the proposed closed-loop under the action of a random Gaussian
noise w ∈ N (0, 0.5). Robust exponential convergence to a non-trivial
trajectory with initial conditions sampled from a normal distribution
N (0, 100) are presented in Figure 2 and Figure 3. As expected,
Figure 3 shows an exponential decrease of the average error between
the agents, which converges to a bounded value in the presence of
additive noise.

VI. CONCLUSIONS

In this paper, we explored the design of incrementally stabilizing
feedbacks for discrete-time nonlinear systems and their application to
multiagent synchronization under generic connected communication
graphs. Starting from the linear scenario, we provided constructive
designs for robust stabilization and sufficient convex conditions for
network synchronization. We exploited new contraction analysis
results and focused on Euclidean metrics. The analysis is focused
on input-linear systems. An interesting direction that will be the
subject of future research is the generalization to different input-
vector fields, by means of non-quadratic Lyapunov functions or
Riemannian metrics.

Acknowledgement. We thank Mattia Giaccagli for providing the
main steps of the proof of Lemma 4.

APPENDIX

A. Proof of Lemma 2

It is trivial that (27) implies ησ ≤ 1 and then the square root in
(2) is well defined. To complete the proof, we show that the bound

1−
√
1− ησ

ηλ
≤ 1 +

√
1− ησ

ηλ
(75)

holds if and only if (27) is satisfied, namely if and only if

η σ ≤ 1−
(η λ− η λ)2

(η λ+ η λ)2
=

4η η λλ

(η λ+ η λ)2
=

(
2η λ

η λ+ η λ

)2
η λ

η λ
,

which, due to the positivity of the squared term, is equivalent to(
η λ+ η λ

2η λ

)2

η σ −
η λ

η λ
≤ 0 . (76)

Thus, we must show that (75) ⇐⇒ (76). By the lower bound of
(27), η σ > 0. Then, multiplying (76) by η σ paired with addition
and subtraction of 1−η σ at the right-hand side yields the equivalent
inequality

1− η σ ≥

(
η λ+ η λ

2η λ

)2

(η σ)2 + 1−
(
1 +

η λ

η λ

)
η σ

≥

(
1−

η λ+ η λ

2η λ
η σ

)2

. (77)

By taking the square root, (77) is equivalent to√
1− η σ ≥ 1−

η λ+ η λ

2η λ
η σ, (78)

where the right-hand side is non-negative because η λ ≤ η λ and
η σ ≤ 1. Exploiting the expansion η σ = (1 −

√
1− η σ)(1 +√

1− η σ) > 0, inequality (78) is equivalent to

η λ

η λ
≥
(
1−

√
1− η σ

) 2

η σ
− 1 ≥ 1 + (1− η σ)− 2

√
1− η σ

η σ

≥
(
1−

√
1− η σ

)2
(1−

√
1− η σ)(1 +

√
1− η σ)

≥ 1−
√
1− η σ

1 +
√
1− η σ

,

which coincides with (75), thus completing the proof.

B. Proof of Lemma 3

Consider the candidate Lyapunov function V : Rn × Rn → R≥0

defined as

V (x1, x2) := (x1 − x2)
⊤P (x1 − x2),

for any two states x1, x2 ∈ Rn. Given any selection of x1, x2 and
w1, w2 ∈ Rn, define function Φ̃ : R → Rn as

Φ̃(s) = φ(sx1 + (1− s)x2, t) + sw1 + (1− s)w2 .

We have

x+1 − x+2 = Φ̃(1)− Φ̃(0) = φ(x1, t)− φ(x2, t) + w1 − w2 .

In view of (31), we obtain

V + = V (x+1 , x
+
2 )

= (x+1 − x+2 )⊤P

[∫ 1

0
ψ(s) ds (x1 − x2) + w1 − w2

]
(79)

for some ψ(s) ∈ Dφ, for all s ∈ [0, 1]. Then, adding and subtracting
ρ2V (x1, x2) and V (x+1 , x

+
2 ) to the right-hand side of (79) yields

V (x+1 , x
+
2 )− ρ2V (x1, x2)

= 2(x+1 − x+2 )⊤P

[∫ 1

0
ψ(s) ds (x1 − x2) + w1 − w2

]

− (x+1 − x+2 )⊤P (x+1 − x+2 )

∫ 1

0
ds

− ρ2(x1 − x2)
⊤P (x1 − x2)

∫ 1

0
ds

=

∫ 1

0
ξ⊤Υ(s)ξ ds+ 2(x+1 − x+2 )⊤P (w1 − w2)

where we defined ξ := col(x1 − x2, x
+
1 − x+2 ) and

Υ(s) :=

(
−ρ2P ψ⊤(s)P
Pψ(s) −P

)
.

By performing steps similar to the ones in [45, Theorem 1], due to
(33) and a Schur complement, Υ(s) ⪯ 0 for all s ∈ [0, 1]. As a
consequence, since ρ ∈ (0, 1), we obtain

V (x+1 , x
+
2 )− ρ2V (x1, x2) ≤ 2(x+1 − x+2 )⊤P (w1 − w2) .

By the generalized Young’s inequality and by considering the decom-
position P =

√
P

⊤√
P , we have

2(x+1 − x+2 )⊤P (w1 − w2) ≤

(1− ρ)V (x+1 , x
+
2 ) +

1

1− ρ
(w1 − w2)

⊤P (w1 − w2) .
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Fig. 2: Trajectories during transient. a-b) state components with noise. c) mean error wrt agent 1 with and without noise.
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Fig. 3: Long-term mean error wrt agent 1 in logarithmic scale.

Then, by combining the previous inequalities we obtain

V (x+1 , x
+
2 )− ρV (x1, x2) ≤

|P |
ρ(1− ρ)

|w1 − w2|2 .

As ρ ∈ (0, 1) and P ≻ 0, the function V is a dissipation-form
incremental Lyapunov function [19, Definition 7]. Then, the result
follows by [19, Theorem 8]. Finally, by using standard arguments
(i.e. [13, Theorem 14]) one can conclude the exponential behavior of
solutions.

C. Proof of Lemma 4
Since the graph is connected, Lemma 1 ensures that the Laplacian

L, as in (1), has one zero eigenvalue and N − 1 eigenvalues with
positive real part. Consider the transformation

T = T−1 :=

(
1 0
1 − IN−1

)
and consider the change of coordinates on the Laplacian defined by

L := TLT−1 = T

(
0 −L12

0 −L22

)
=

(
0 −L12

0 L22 − 1L12

)
,

where we exploited L1 = 0 (see Section II-A). Since T is full
rank, by similarity transformation spec(L) = spec(L), namely, it has
one zero eigenvalue and N − 1 eigenvalues with positive real part.
Then, due to the block-triangular structure of L, all the eigenvalues
of L22 − 1L12 have positive real part. Define L̃ := 1L12 − L22.
Since all eigenvalues of L̃ have negative real part, by the Lyapunov
equation there exists M ∈ SN−1

≻0 satisfying

ML̃+ L̃⊤M = − IN−1 ≺ 0.

In turn, this implies M(−L̃) + (−L̃)⊤M ≻ 0. As a consequence,
there exists a sufficiently small scalar µ > 0 such that (41b) holds. We
now move to the other inequalities in Lemma 4. Since M ∈ SN−1

≻0 ,

(41a) and (41c) trivially hold with of m and m being the smallest
and largest eigenvalues of M respectively, ρM = mm−1 and a
sufficiently large µ.
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[19] D. N. Tran, B. S. Rüffer, and C. M. Kellett, “Incremental stability
properties for discrete-time systems,” in 2016 IEEE 55th Conference
on Decision and Control (CDC). IEEE, 2016, pp. 477–482.

[20] M. E. Gilmore, C. Guiver, and H. Logemann, “Semi-global incremen-
tal input-to-state stability of discrete-time Lur’e systems,” Systems &
Control Letters, vol. 136, p. 104593, 2020.

[21] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. I. Jordan,
and S. S. Sastry, “Kalman filtering with intermittent observations,” IEEE
Transactions on Automatic Control, vol. 49, no. 9, pp. 1453–1464, 2004.
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