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Abstract. In this paper, we establish the existence of global-in-time weak solutions for the

Landau-Lifschitz-Gilbert equation with magnetostriction in the case of mixed boundary conditions.

From this model, we derive by asymptotic method a two-dimensional model for thin ferromagnetic

plates taking into account magnetostrictive effects.
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1 Introduction

Ferromagnetic materials are characterized by a spontaneous magnetization, even in the
absence of an external magnetic field. This magnetization influences the shape of the ma-
terials, and conversely, a deformation of the material leads to a change in magnetization.
This phenomenon, called magnetostriction, is used for industrial applications, for example
in magnetostrictive motion or pressure sensors or ultrasonic transducers. for these applica-
tions, the devices are often thin plates of ferromagnetic material (see [22, 25]).

In this paper, starting from the 3D model describing the time behavior of the magne-
tization of a material taking into account the magnetostriction, our goal is to obtain and
justify by asymptotic method a two-dimensional model of thin ferromagnetic plate. Note
that asymptotic studies of this type are carried out in [3, 15, 16, 17, 19] for ferromagnetic
films without taking magnetostriction into account.

We first describe the three-dimensional model coupling Landau-Lifschitz-Gilbert with
elasticity equations (see [21]).

1.1 Three dimensional model

We denote by Ω, the domain occupied by the ferromagnetic material, and by m(t,x) ∈ R3

the magnetic moment at time t and at point x = (x1,x2,x3) ∈ Ω. We assume that the
material is saturated, so that m satisfies the saturation constraint |m(t,x)| = ms a.e.,
where ms is a constant expressed in A.m−1. The dynamics of m is described by the
Landau-Lifschitz-Gilbert equation (see [1], [7], [10] and [20]):

∂m

∂t
− α

ms
m× ∂m

∂t
= −(1 + α2)γm×Heff in R+ ×Ω,

∂nm = 0 on R+ × ∂Ω,

(1.1)

where × is the cross product in R3, γ is the gyromagnetic ratio (expressed in A.s.kg−1), α
is the dimensionless damping coefficient and n the outward unit normal vector on ∂Ω. The
effective field Heff (expressed in T = kg.s−2.A−1) is given by:

Heff =
A

m2
s

∆m + µ0hd(m) + µ0Ψ(m) + (Λm : σ)m, (1.2)

where
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� A is the exchange constant (expressed in J.m−1),

� µ0 = 4π.10−7kg.m.s−2.A−2 is the vacuum permeability,

� Ψ is an anisotropic linear term satisfying:

Ψ(m) = −∇Φ(m), (1.3)

where Φ : R3 → R is a non negative quadratic form,

� the demagnetizing field hd(m) is calculated from m solving the static Maxwell equa-
tion coupled with the law of Faraday:

curl hd(m) = 0 and div(hd(m) + m) = 0, (1.4)

where m is the extension of m by zero outside Ω,

� in the magnetostrictive term, σ is the stress tensor (2-tensor expressed in kg.m−1.s−2),
Λm is a 4-tensor expressed in m2.A−2, and : is the contraction operator (see below).

Notation 1.1. Let Λ be a 4-tensor in R3. Let ξ be a 3 × 3 matrix. We denote Λ : ξ the
3× 3 matrix which entries are given by:

(Λ : ξ)ij =
3∑

k=1

3∑
l=1

Λijklξkl.

Let ξ and ζ be two 3× 3 matrices. We denote ξ : ζ the scalar given by:

ξ : ζ =
3∑
i=1

3∑
j=1

ξijζij .

The Landau-Lifschitz-Gilbert Equation (1.1) is coupled with the wave elasticity equa-
tion:

ρ
∂2u

∂t2 − divσ = 0. (1.5)

In (1.5), ρ is the mass density (expressed in kg.m−3), u is the displacement field and the
stress tensor σ is given by σ = Λe : εe, where

� Λe is a 4-tensor (expressed in kg.m−1s−2),

� the total strain εe is a 3 × 3 matrix obtained from the linearized strain tensor ε(u)
and the magnetostrictive strain tensor εm by the relation ε(u) = εe + εm, with

εij(u) =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
and εm = Λm : m⊗m, (1.6)

where m⊗m = m ·
tm is the 3×3 matrix which entries are given by (m⊗m)ij = mimj .

The 4-tensors Λe and Λm are supposed to be symmetric and positive, as defined below:
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Definition 1.1. Let Λ be a 4-tensor in R3. This tensor is said to be symmetric if:

∀(i, j, k, l) ∈ {1, 2, 3}4, Λijkl = Λjikl = Λijlk = Λklij .

This tensor is said to be positive if there exists λ∗ ∈ R∗+ such that for all symmetric matrix
ξ of entries ξij, we have: ∑

ijkl

Λijklξijξkl ≥ λ∗
∑
ij

|ξij |2.

We assume that the material is clamped on Γ1 ⊂ ∂Ω and that a surface force f (ex-
pressed in N.m−2) is applied on Γ2 = ∂Ω \ Γ1, so that the following boundary conditions
hold: 

u = 0 on Γ1,

σ ·n = f on Γ2,
(1.7)

In order to obtain a dimensionless model, we write

m(t,x) = msm(
t

τ
,
x

`
) and u(t,x) = `u(

t

τ
,
x

`
), (1.8)

where the characteristic time τ and the exchange length ` are respectively given by:

τ =
1

γµ0ms
and `2 =

A

µ0m2
s

.

We denote by t = t/τ the dimensionless time and by x = (x1, x2, x3) = x/` the dimension-
less position. We define:

Ω = Ω/`, Γ1 = Γ1/` and Γ2 = Γ2/`. (1.9)

The dimensionless demagnetizing field is given by:

curl hd(m) = 0 and div(hd(m) +m) = 0, (1.10)

where m is the extension of m by zero outside Ω.
We introduce the dimensionless tensors λm and λe such that:

Λm =
1

m2
s

λm and Λe = µ0m
2
sλ

e, (1.11)

and we define the dimensionless surface force f ∈ L2(Γ2) and density ρ by

f = µ0m
2
sf and ρ =

ρ γ2A

m2
s

. (1.12)

We denote then by σ the dimensionless stress tensor given by:

σ(t, x) =
1

µ0m2
s

σ(τt, `x) = (λe : ε(u)− λe : (λm : m⊗m)) (t, x), (1.13)

with

εij(u) =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (1.14)
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We obtain then the following dimensionless model: m(t, x) and u(t, x) are defined for
t ∈ R+ and x ∈ Ω and satisfy:

∂m

∂t
− αm× ∂m

∂t
= −(1 + α2)m×Heff in R+ × Ω,

Heff = ∆m+ hd(m) + Ψ(m) + (λm : σ)m,

σ = λe : εe with εe = ε(u)− λm : m⊗m,

ρ
∂2u

∂t2
− div σ = 0 in R+ × Ω,

(1.15)

with the following boundary conditions
∂nm = 0 on R+ × ∂Ω,

u(t, x) = 0 on R+ × Γ1,

σ ·n = f on R+ × Γ2,

(1.16)

where n is the unit outward normal vector on ∂Ω. We remark that from the assumptions
on Λe, there exists a constant λe∗ > 0 such that for all symmetric 2-tensor ξ:∑

ijkl

λe
ijklξijξkl ≥ λe∗

∑
ij

|ξij |2. (1.17)

Note that α and ρ are dimensionless constants whose values do not affect the math-
ematical analysis of the equations. We therefore take them equal to 1. We define the
space

V (Ω) = {v ∈ H1(Ω;R3); v = 0 on Γ1}. (1.18)

For m ∈ H1(Ω;S2), v ∈ V (Ω) and w ∈ L2(Ω;R3), we define the energy E(m, v,w) by:

E(m, v,w) =

∫
Ω
|∇m(x)|2dx+ 2

∫
Ω

Φ(m(x))dx+

∫
R3

|hd(m)(x)|2dx

+
1

2

∫
Ω

[
λe :

(
ε(v(x))− λm : m(x)⊗m(x)

)]
:
(
ε(v(x))− λm : m(x)⊗m(x)

)
dx

+
1

2

∫
Ω
|w(x)|2dx−

∫
Γ2

f(s) · v(s) dΓs.

(1.19)
We aim to solve the Cauchy problem coupling (1.15)-(1.16) with the following initial

conditions: 

m(t = 0) = m0 in Ω,

u(t = 0) = u0 in Ω,

∂u

∂t
(t = 0) = u1 in Ω,

(1.20)

where m0 ∈ H1(Ω;S2), u0 ∈ V (Ω) and u1 ∈ L2(Ω;R3). We define the notion of weak
solutions for the previous Cauchy problem:

4



Definition 1.2. We say that (m,u) is a weak solution for (1.15)-(1.16)-(1.20) if

1. m ∈ L∞(R+;H1(Ω;R3)),
∂m

∂t
∈ L2(R+;L2(Ω;R3)) and m(0, · ) = m0,

2. m satisfies the saturation constraint

|m(t, x)| = 1 for almost every (t, x) ∈ R+ × Ω, (1.21)

3. u ∈ L∞(R+;V (Ω)),
∂u

∂t
∈ L∞(R+;L2(Ω;R3)) and u(0, · ) = u0,

4. for all χ ∈ C∞c (R+;H1(Ω;R3)),∫
R+×Ω

(
∂m

∂t
−m× ∂m

∂t

)
·χ = 2

∫
R+×Ω

3∑
i=1

m× ∂m

∂xi
·

∂χ

∂xi

−2

∫
R+×Ω

m× (hd(m) + Ψ(m) + (λm : σ)m) ·χ,

with σ = λe : ε(u)− λe : (λm : m⊗m),

(1.22)

5. for all χ ∈ C∞c (R+;V (Ω)),∫
R+×Ω

∂u

∂t
·

∂χ

∂t
−
∫
R+×Ω

σ : ε(χ) +

∫
R+×Γ2

f ·χ+

∫
Ω
u1χ(0, x) = 0, (1.23)

6. for all t ≥ 0,

E(m(t, · ), u(t, · ),
∂u

∂t
(t, · )) +

∫ t

0

∫
Ω

∣∣∣∣∂m∂t (τ, x)

∣∣∣∣2 dτ dx ≤ E(m0, u0, u1) (1.24)

where E is defined by (1.19) (energy inequality).

1.2 Statement of the results

First, we establish the existence of global-in-time weak solutions for the Cauchy problem
(1.15)-(1.16)-(1.20). Such a result is proved in [10] for homogeneous Dirichlet boundary con-
ditions for the deformation. With the same method, we address mixed boundary conditions
and we obtain the following theorem:

Theorem 1.1. Let m0 ∈ H1(Ω;S2), u0 ∈ V (Ω), u1 ∈ L2(Ω) and f ∈ L2(Γ2). Then, there
exists a weak solution (m,u) for (1.15)-(1.16)-(1.20).

In a second time, we aim to obtain a reduced two-dimensional model for thin ferromag-
netic plate. Let ω ⊂ R2 be a smooth open domain. We assume that

∂ω = C1 ∪ C2, with C1 ∩ C2 = ∅ (1.25)

such that the one-dimensional measure of C1 is non vanishing. We consider the thin plate
Ωη given by:

Ωη = ω×]− η, η[, (1.26)
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whose boundary splits as ∂Ω = Γη1 ∩ Γη2 with

Γη1 = C1×]− η, η[, and Γη2 = Γηb ∪ Γη+ ∪ Γη−,

with Γηb = C2×]− η, η[, Γη+ = ω̄ × {+η}, Γη− = ω̄ × {−η}.
(1.27)

Figure 1: Ωη = ω×]− η, η[

We assume that this plate is clamped on Γη1.

We define the spaces:

V (Ωη) = {v ∈ H1(Ωη;R3) ; v = 0 on Γη1},

W(ω) =
{
v = (vi) ∈ H1(ω)×H1(ω)×H2(ω) ; vi = 0 on C1 and ∂1v3 = ∂2v3 = 0 on C1

}
.

(1.28)

Notation: for y = (y1, y2, y3) ∈ R3, we denote yT = (y1, y2).

Let h ∈ L2(C2;R3) and g+ and g− in L2(ω;R3). We define the η-depending boundary
data on Γη2 by:
∀xT ∈ ω, ∀α ∈ {1, 2}, fηα(xT ,±η) = g±α (xT ) and fη3 (xT ,±η) = η2g±3 (xT ),

∀ (xT , x3) ∈ C2×]− η, η[, ∀α ∈ {1, 2}, fηT (xT , x3) = hT (xT ) and fη3 (xT , x3) = ηh3(xT ).
(1.29)

Let m0 ∈ H1(ω;S2(0, 1)), ũ0 ∈ W(ω) and u1 ∈ L2(ω;R3). We assume that the third
component of u1 vanishes: u1,3 = 0 on ω. We define the η-depending initial data by: for
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x = (xT , x3) ∈ Ωη,

mη
0(xT , x3) = m0(xT ),

∀α ∈ {1, 2}, uη0,α(xT , x3) = ũ0,α(xT )− x3

η
∂αũ0,3(xT ),

uη0,3(xT , x3) =
1

η
ũ0,3(xT ),

uη1(xT , x3) = u1(xT ).

(1.30)

We consider (mη, uη) the weak solution of (1.15)-(1.16)-(1.20), given by Theorem 1.1,
with initial data mη

0, uη0, uη1 and external force fη previously defined. We rescale this
solution in order to work on the fixed domain Ω1 = ω×]− 1, 1[: for (xT , x3) ∈ Ω1, we set:

Mη(t, xT , x3) = mη(t, xT , ηx3), Hη(t, xT , x3) = (hd(m
η))(t, xT , ηx3),

∀α ∈ {1, 2}, Uηα(t, xT , x3) = uηα(t, xT , ηx3), Uη3 (t, xT , x3) = ηuη3(t, xT , ηx3).
(1.31)

We obtain the following convergence result, announced in [18] in the isotropic case:

Theorem 1.2. Using the notations above, when η tends to zero, there exists a subsequence
still denoted (Mη, Hη, Uη)η such that Mη tends to M in L∞(0, T ;H1(Ω1)) weak *, Hη tends
to H in L∞(0, T ;L2(Ω1)) strongly, Uη tends to U in L∞(0, T ;V (Ω1)) weak *. In addition,
M does not depend on its third variable and there exists ũ ∈ W(ω) such that:

Uα(xT , x3) = ũα(xT )− x3∂αũ3 for α ∈ {1, 2}, and U3(xT , x3) = ũ3(xT ).

The limit (M, ũ) is a weak solution for the following initial and boundary value problem:

∂M

∂t
−M × ∂M

∂t
= −2M ×Heq in R+ × ω

with Heq = ∆M − (M, ~e3)~e3 + Ψ(M) + (λm : σ̃)M,

∂2ũT
∂t2

− d̃iv σ̃ = −1

2
(g+
T + g−T ) in R+ × ω,

σ̃ = λeq : (ε(ũT )− λm : M ⊗M) ,

M(0, · ) = m0, ũT (0, · ) = ũ0,T and
∂ũT
∂t

(0, · ) = u1,T ,

∂nM = 0 on ∂ω, ũT = 0 on C1, and σ̃.n = hT on C2,

(1.32)

where λeq is a 4-tensor only depending on the coefficients of λe (see below), and where d̃ivS
is defined by (

d̃ivS
)
α

=
2∑

β=1

∂βSαβ. (1.33)
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The new tensor λeq arising in the two-dimensional model (1.32) is defined as follows:
we denote by G the set of symmetric real 3× 3 matrices and by Gn the set of the matrices
D = (dij) ∈ G such that dαβ = 0 for (α, β) ∈ {1, 2}2. We define the linear operator
K : G −→ Gn by:

∀D ∈ G, (K(D))ij =


0 if (i, j) ∈ {1, 2}2,

(λe : D)ij =
∑

(k,l)∈{1,2,3}2
λe
ijkldkl if i = 3 or j = 3.

(1.34)

We claim that the restriction of K to Gn is a bijection from Gn to itself (see the proof in
subsection 3.4). We denote by T : Gn −→ Gn the inverse of K|Gn . Then λeq is given by:

∀D ∈ G, λeq : D = λe :
(
D − T (K(D))

)
. (1.35)

We remark that the resulting model (1.32) is indeed two-dimensional, but it does not
describe the behavior of the normal deformations. We remark also that in this regime, the
magnetization is not influenced by the normal deformations, so that our model is closed.

This paper is organized as follows: Theorem 1.1 is proved in section 2. We follows the
method due to Alouges and Soyeur [2] and generalized in [11]. First, we prove the existence
of solution for a penalized system, in which the saturation constraint is relaxed. Then, we
take the limit when the penalization constant tends toward zero. In [10], global existence
for (1.15)-(1.20) is obtained in the case of a clamped sample, that is with u = 0 on ∂Ω. Our
proof is very close to the proof in [10]. We reproduce it for the convenience of the reader in
order to present a self-contained paper.

Theorem 1.2 is established in section 3. In order to avoid working on a domain depending
on η, we perform a rescaling inspired both by [9] for the magnetization and by [14] for the
deformation. The thickness parameter η appears then as a stiff term in the equations.
Nevertheless, we are able to obtain a limit model thanks to the energy inequality and by
choosing convenient test functions in the rescaled weak formulation.

1.3 Index of symbols and notations.

In the table below, for each notation used hereafter, we mention the equation number (or
the page number) on which it is defined.
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: p. 2
× p. 1
⊗ p. 2
A p. 22
C1 Eq. (1.25)
C2 Eq. (1.25)

d̃iv Eq. (1.33)
E Eq. (1.19)
EN Eq. (2.6)
Eη Eq. (3.9)
f Eq. (1.12)
fη Eq. (1.29)
g± Eq. (1.29)
G p. 8
Gn p. 8
GT p. 25
h p. 6
hd Eq. (1.10)
Hη Eq. (1.31)
Heff Eq. (1.15)

Hζ
eff Eq. (2.1)

HN
eff Eq. (2.5)

Heq Eq. (1.32)
K Eq. (1.34)
m Eq. (1.8)
m0 Eq. (1.20)
mη

0 Eq. (1.30)
mη p. 7

mζ Eq. (2.1)
mN Eq. (2.5)
M p. 7
Mη Eq. (1.31)
n p. 4
PN p. 10
T p. 8
u Eq. (1.8)
u0 Eq. (1.20)
u1 Eq. (1.20)
uN Eq. (2.5)
uη0 Eq. (1.30)
uη1 Eq. (1.30)
uζ Eq. (2.1)
ũ Eq. (1.32)
ũ0 p. 7
Uη Eq. (1.31)
V (Ω) Eq. (1.18)
V (Ωη) Eq. (1.28)
VKL(Ω1) Eq. (3.1)
VN p. 10
V(ω) Eq. (3.1)
WN p. 11
W(ω) Eq. (1.28)
x p. 3
xi p. 3
yT p. 6
Γ1 Eq. (1.9)

Γ2 Eq. (1.9)
Γη1 Eq. (1.27)
Γη2 Eq. (1.27)
Γηb Eq. (1.27)
Γη+ Eq. (1.27)
Γη− Eq. (1.27)
ε(u) Eq. (1.14)
εe p. 4
εe
N Eq. (2.5)
ε(η, ξ) Eq. (3.2)
εe Eq. (3.17)
ζ p. 9
η p. 6
λe Eq. (1.11)
λm Eq. (1.11)
λeq Eq. (1.35)
ΠN p. 11
ρ Eq. (1.12)
σ Eq. (1.13)
σζ Eq. (2.1)
σN Eq. (2.5)
σ̃ Eq. (1.32)
Φ Eq. (1.3)
Ψ Eq. (1.3)
ω p. 6
Ω ; Eq. (1.9)
Ωη p. 6

2 Weak solutions for the Landau-Lifschitz-Gilbert equation
with magnestostriction

Let m0 ∈ H1(Ω) with values in the unit sphere S2, u0 ∈ V (Ω), u1 ∈ L2(Ω) and f ∈ L2(Γ2).

2.1 Penalized system

As in [2] and [10], we relax the saturation contraint and for ζ > 0, we consider the following
penalized system:
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∂mζ

∂t
+mζ × ∂mζ

∂t
− 2Hζ

eff +
1

ζ
(|mζ |2 − 1)mζ = 0 in R+ × Ω,

Hζ
eff = ∆mζ + hd(m

ζ) + Ψ(mζ) + (λm : σζ)mζ ,

σζ = λe : ε(uζ)− λe : (λm : mζ ⊗mζ),

∂2uζ

∂t2
− div σζ = 0 in R+ × Ω,

mζ(t = 0) = m0, uζ(t = 0) = u0,
∂uζ

∂t
(t = 0) = u1,

∂nm
ζ = 0 on R+ × ∂Ω, uζ(t, x) = 0 on R+ × Γ1, σζ .n = f on R+ × Γ2.

(2.1)

For a fixed penalization parameter ζ > 0, we construct by Galerkine method a weak
solution for (2.1) such that

1. mζ ∈ L∞(R+;H1(Ω;R3)) and
∂m

∂t

ζ

∈ L2(R+;L2(Ω;R3)),

2. uζ ∈ L∞(R+;V (Ω))) and
∂uζ

∂t
∈ L∞(R+;L2(Ω;R3)),

3. for all t ≥ 0, we have the following energy inequality:

E(mζ(t), uζ(t),
∂uζ

∂t
(t)) +

1

4ζ

∫
Ω

(
|mζ(t, x)|2 − 1

)2
dx

+

∫ t

0

∫
Ω

∣∣∣∣∂mζ(s, x)

∂t

∣∣∣∣2 dsdx ≤ E(m0, u0, u1).

We recall that since the surface measure of Γ1 is positive, the Korn inequality below
is valid (see [13], Theorem 6.3-4 page 292): there exists a constant c(Ω) such that for all
v ∈ V (Ω), ∫

Ω
ε(v) : ε(v) ≥ c(Ω)

∫
Ω
|v|2. (2.2)

This inequality yields that ‖ · ‖V (Ω) =
(∫

Ω ε( · ) : ε( · )
) 1

2 is a norm on V (Ω) equivalent to the

norm ‖ · ‖H1(Ω) =
(∫

Ω | · |
2 + |∇ · |2

) 1
2 , and then it is also equivalent to the norm | · |1,Ω =(∫

Ω |∇ · |2
) 1

2 .

2.1.1 First step: Galerkin approximation

For m, we use a Galerkin basis (e1, e2, . . .) of eigenvectors of −∆ with homogeneous Neu-
mann conditions at the boundary.{

−∆ei = αiei in Ω,
∂nei = 0 on ∂Ω.

(2.3)
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We denote by VN = span(e1, . . . , eN ) and by PN the orthogonal projection map onto VN .

For u, we use a the Galerkin basis (φ1, φ2, . . .) of eigenvectors of −div(λe : ε) with
homogeneous mixed conditions at the boundary:

−div(λe : ε(φj)) = bjφj in Ω,
φj = 0 on Γ1,
(λe : ε(φj)) ·n = 0 on Γ2.

(2.4)

We denote by WN =span(φ1, . . . , φN ) and by ΠN the orthogonal projection map into WN .

For a fixed N , we consider the following Cauchy problem: Find mN : [0, TN [→ VN and
uN : [0, TN [→WN , such that ∀ g1 ∈ VN and g2 ∈WN , we have

∫
Ω

∂mN

∂t
· g1 +

∫
Ω
mN ×

∂mN

∂t
· g1 − 2

∫
Ω
HN

eff · g1 +
1

ζ

∫
Ω

(|mN |2 − 1)mN · g1 = 0 in R+,

HN
eff = ∆mN + hd(mN ) + Ψ(mN ) + (λm : σN )mN ,

σN = λe : εe
N with εe

N = ε(uN )− λm : mN ⊗mN ,∫
Ω

d2uN
dt2

· g2 +

∫
Ω

(λe : σN ) : ε(g2)−
∫

Γ2

f · g2 = 0 in R+,

mN (t = 0) = PN (m0), uN (t = 0) = ΠN (u0),
∂uN
∂t

(t = 0) = ΠN (u1).

(2.5)
The quantities mN , uN , σN and εe

N depend on ζ. We don’t mention this dependance to
lighten the notations. By the Cauchy-Lipschitz theorem, as in subsection 2.1 in [10], there
exists a unique solution (mN , uN ) for (2.5) whose maximal existence time is denoted by TN .

2.1.2 Energy estimate on the Galerkin approximation

We denote by EN (t) the following quantity:

EN (t) := E(mN (t, · ), uN (t, · ),
∂uN
∂t

(t, · )),

=

∫
Ω
|∇mN (t, x)|2dx+ 2

∫
Ω

Φ(mN (t, x))dx+

∫
R3

|hd(mN (t, · ))(x)|2dx

+
1

2

∫
Ω

[λe : εe
N (t, x)] : εe

N (t, x)dx+
1

2

∫
Ω
|∂uN
∂t

(t, x)|2dx

−
∫

Γ2

f(s) ·uN (t, s) dΓs.

(2.6)

Using the symmetry of λe, we have:

d

dt
EN = 2

∫
Ω
∇mN : ∇∂mN

∂t
+ 2

∫
Ω
∇Φ(mN ) ·

∂mN

∂t
+ 2

∫
R3

hd(mN ) ·hd(
∂mN

∂t
)

+

∫
Ω

(λe : εe
N ) :

∂εe
N

∂t
+

∫
Ω

∂2uN
∂t2

·

∂uN
∂t
−
∫

Γ2

f ·

∂uN
∂t

.
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Since −hd is an orthogonal projection for the L2(R3)-inner product, we have:∫
R3

hd(mN ) ·hd(
∂mN

∂t
) = −

∫
Ω
hd(mN ) ·

∂mN

∂t
.

In addition, using the symmetry of λm, we have:

∂εe
N

∂t
= ε(

∂uN
∂t

)− 2λm : mN ⊗
∂mN

∂t
.

Using that σN = λe : εe
N , by the symmetry of λe and λm, we have:

σN : (λm : mN ⊗
∂mN

∂t
) = [(λm : σN )mN ] ·

∂mN

∂t
.

Therefore, we have:

d

dt
EN = 2

∫
Ω
∇mN : ∇∂mN

∂t
− 2

∫
Ω

Ψ(mN ) ·

∂mN

∂t
− 2

∫
Ω
hd(mN ) ·

∂mN

∂t

−2

∫
Ω

[(λm : σN )mN ] ·

∂mN

∂t

∫
Ω

∂2uN
∂t2

·

∂uN
∂t

+

∫
Ω
σN : ε(

∂uN
∂t

)−
∫

Γ2

f ·

∂uN
∂t

.

Taking g1 =
∂mN

∂t
and g2 =

∂uN
∂t

in (2.5), we obtain that

d

dt

(
EN +

1

4ζ

∫
Ω

(|mN |2 − 1)2

)
+

∫
Ω

∣∣∣∣∂mN

∂t

∣∣∣∣2 = 0,

and integrating from t = 0 to t = T , we get that for all T < TN

EN (T ) +
1

4ζ

∫
Ω

(|mN |2 − 1)2 +

∫ T

0

∫
Ω

∣∣∣∣∂mN

∂t

∣∣∣∣2 = EN (0) +
1

4ζ

∫
Ω

(|PN (m0)|2 − 1)2. (2.7)

2.1.3 Limit in the Galerkin Approximation

We claim the following proposition:

Proposition 2.1. For all fixed ζ > 0, the right-hand-side of (2.7) tends to E(m0, u0, u1)
when N tends to +∞.

Proof. (see also [10]) Since the e′is form an hilbertian basis in L2(Ω), PN (m0) tends to m0

in L2(Ω). Writing that:∫
Ω
|∇PN (m0)|2 = −

∫
0

∆PN (m0) ·PN (m0) since ∂nPN (m0) = 0 on ∂Ω,

= −
∫

0
∆PN (m0) ·m0 since PN is self-adjoint and VN is stable by ∆,

=

∫
Ω
∇PN (m0) ·∇m0,

(2.8)
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we obtain that the sequence (∇PN (m0))N is bounded in L2(Ω) by ‖∇m0‖L2(Ω), so this
sequence tends to ∇m0 in L2(Ω) weak, and since (2.8) yields that ‖∇PN (m0)‖L2(Ω) tends
to ‖∇m0‖L2(Ω), we obtain that:

Pn(m0) −→ m0 strongly in H1(Ω) and in L4(Ω) by Sobolev embedding. (2.9)

In the same way and using the boundary conditions in (2.4), we have:∫
Ω

(λe : ε(ΠN (u0))) : ε(ΠN (u0)) =

∫
Ω

(λe : ε(ΠN (u0))) : ε(u0). (2.10)

Since λe is positive, by Cauchy–Schwartz type inequality, we have:∫
Ω

(λe : ε(ΠN (u0))) : ε(ΠN (u0))

≤
(∫

Ω
(λe : ε(ΠN (u0))) : ε(ΠN (u0))

) 1
2
(∫

Ω
(λe : ε(u0)) : ε(u0)

) 1
2

,

so that, the sequence (ε(ΠN (u0)))N is bounded in L2(Ω), so converges weakly to ε(u0) in
L2(Ω). Using (2.10) and the positivity of λe, we obtain that:

ε(ΠN (u0)) −→ ε(u0) strongly in L2(Ω), (2.11)

and by Korn inequality (2.2),

ΠN (u0) −→ u0 strongly in H1(Ω). (2.12)

Therefore, using that Φ is quadratic, hd is continuous in L2, ΠN (u1) tends to u1 in
L2(Ω), (2.9), (2.11) and (2.12), we obtain that

EN (0) +
1

4ζ

∫
Ω

(|PN (m0)|2 − 1)2 −→ E(m0, u0, u1) +
1

4ζ

∫
Ω

(|m0|2 − 1)2 when N → +∞,

and since m0 satisfies the saturation constraint |m0| = 1 a.e., we have:

EN (0) +
1

4ζ

∫
Ω

(|PN (m0)|2 − 1)2 −→ E(m0, u0, u1) when N → +∞. (2.13)

We establish the following lemma:

Lemma 2.1. There exists a constant C such that for all u ∈ V (Ω) and for all m ∈
H1(Ω;R3),

1

2

∫
Ω

[λe : (ε(u)− λm : m⊗m)] : (ε(u)− λm : m⊗m) ≥ λe∗

4
‖ε(u)‖2L2(Ω) − C‖m‖

4
L4(Ω).

where λe∗ is the coercivity constant appearing in (1.17).
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Proof. From (1.17), we have:

[λe : (ε(u)− λm : m⊗m)] : (ε(u)− λm : m⊗m) ≥ λe∗ |ε(u)− λm : m⊗m|2 ,

≥ λe∗ ∣∣|ε(u)| − |λm : m⊗m|
∣∣2 ,

≥ λe∗

2 |ε(u)|2 − λe∗|λm : m⊗m|2

using that (a− b)2 ≥ 1

2
a2 − b2. By integrating on Ω and using that there exists a constant

K such that |λm : m⊗m|2 ≤ K|m|4, we conclude the proof of Lemma 2.1.

By the previous lemma, we obtain that

1

2

∫
Ω

[λe : (ε(uN )− λm : mN ⊗mN )] : (ε(uN )− λm : mN ⊗mN ) ≥
1

4
λe∗‖ε(uN )‖2L2(Ω) − C‖mN‖4L4(Ω).

Moreover, since the trace application H1(Ω) → H
1
2 (Γ) is linear continuous, using also

that the H1(Ω) is equivalent to ‖ε(uN )‖L2(Ω) by the Korn inequality (2.2)). there exist a
constant c such that ∣∣∣∣∫

Γ2

f ·uNdΓ

∣∣∣∣ ≤ c‖f‖L2(Γ2)‖ε(uN )‖L2(Ω).

So we obtain that:

EN +
1

4ζ

∫
Ω

(|mN |2 − 1)2 ≥ ‖∇mN‖2L2(Ω) +
1

2

∥∥∥∥∂uN∂t
∥∥∥∥2

L2(Ω)

+
1

4
λe∗‖ε(uN )‖2L2(Ω)

−C‖mN‖4L4(Ω) − c‖f‖L2(Γ2)‖ε(uN )‖L2(Ω) +
1

4ζ

∫
Ω

(|mN |2 − 1)2.

Using that (|ξ|2 − 1)2 ≥ 1
2 |ξ|

4 − 1, we have:

1

8ζ

∫
Ω

(|mN |2 − 1)2 ≥ 1

16ζ
‖mN‖4L4(Ω) −

1

8ζ
meas(Ω).

Thus, if ζ is small enough,

1

8ζ

∫
Ω

(|mN |2 − 1)2 ≥ C‖mN‖4L4(Ω) −
1

8ζ
meas Ω.

so that:

EN +
1

4ζ

∫
Ω

(|mN |2 − 1)2 ≥ ‖∇mN‖2L2(Ω) +
1

2

∥∥∥∥∂uN∂t
∥∥∥∥2

L2(Ω)

+
1

4
λe∗‖ε(uN )‖2L2(Ω)

+
1

8ζ

∫
Ω

(|mN |2 − 1)2 − 1

8ζ
meas(Ω)− c‖f‖L2(Γ2)‖ε(uN )‖L2(Ω).

(2.14)
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By (2.7) and (2.13), for a fixed ζ small enough, the left-hand-side of (2.14) is uniformly
bounded with respect to N , so there exists K such that for all N ,

‖∇mN‖L∞(0,TN ;L2(Ω)) + ‖mN‖L∞(0,TN ;L4(Ω)) + ‖∂mN

∂t
‖L2(0,TN ;L2(Ω)) ≤ K,

‖∂uN
∂t
‖L∞(0,TN ;L2(Ω)) + ‖ε(uN )‖L∞(0,TN ;L2(Ω)) ≤ K.

This implies directly that TN = +∞. In addition, since the bounds do not depend on
N , we can assume that there exists a sub-sequence still denoted by (mN , uN )N , and there
exists (mζ , uζ) such that for all T > 0:

(i) mN ⇀mζ in L∞(0, T ;H1(Ω)) weak∗,

(ii) mN −→ mζ in L∞(0, T ;L4(Ω)) strong (by applying the Aubin-Simon Lemma,
see [4] and [24], or [5] Theorem II.5.16),

(iii)
∂mN

∂t
⇀

∂mζ

∂t
in L2(0, T ;L2(Ω)) weak,

(iv) uN ⇀ uζ in L∞(0, T ;V (Ω)) weak ∗,

(v)
∂uN
∂t

⇀
∂uζ

∂t
in L∞(0, T ;L2(Ω)) weak ∗ .

(2.15)
From (ii) and (iv) in (2.15), since σN = λe : (ε(uN )− λm : mN ⊗mN ),

σN ⇀ σζ = λe : (ε(uζ)− λm : mζ ⊗mζ) in L∞(0, T ;L2(Ω)) weak ∗ . (2.16)

Using Aubin-Simon Lemma, mN (resp. uN ) tends to mζ (resp. uζ) in C0([0, T ];L2(Ω)).
Since PN (m0) = mN (0) (resp. ΠN (u0) = uN (0)) tends to m0 (resp. u0) in L2(Ω), by the
uniqueness of the limit, we obtain:

mζ(t = 0) = m0 and uζ(t = 0) = u0.

In order to obtain the equations satisfied by mζ and uζ , we fix N0 and we consider
g1 ∈ VN0 , g2 ∈ WN0 and τ : R+ → R, a smooth function with compact support included
in [0, T ]. For all N ≥ N0, g1 ∈ VN and g2 ∈ WN , so we can take these test functions in
(2.5). Multiplying by τ(t) and integrating on the time interval [0, T ], we obtain using an
integration by part in the space variable in the first equation, we obtain that for all N ≥ N0:

∫
[0,T ]×Ω

(
∂mN

∂t
+mN ×

∂mN

∂t

)
· g1(x)τ(t) + 2

∫
[0,T ]×Ω

∇mN ·∇g1(x)τ(t)

−2

∫
[0,T ]×Ω

(hd(mN ) + Ψ(mN ) + (λm : σN )mN ) · g1(x)τ(t)

+
1

ζ

∫
[0,T ]×Ω

(|mN |2 − 1)mN · g1(x)τ(t) = 0 in R+.

(2.17)
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Using (i)-(iii) in (2.15) and (2.16), using also the strong convergence in L∞(0, T ;L4(Ω)) for
the non linear terms (ii), we obtain when N tends to +∞ that:∫

[0,T ]×Ω

(
∂mζ

∂t
+mζ × ∂mζ

∂t

)
· g1(x)τ(t) + 2

∫
[0,T ]×Ω

∇mζ
·∇g1(x)τ(t)

−2

∫
[0,T ]×Ω

(
hd(m

ζ) + Ψ(mζ) + (λm : σζ)mζ
)

· g1(x)τ(t)

+
1

ζ

∫
[0,T ]×Ω

(|mζ |2 − 1)mζ
· g1(x)τ(t) = 0 in R+.

(2.18)

Concerning the wave equation in (2.5), using an integration by part both in the variables

t and x, using that
∂uN
∂t

(0) = ΠN (u1) and that τ(T ) = 0, we obtain that for all N ≥ N0:

−
∫

[0,T ]×Ω

∂uN
∂t

· g2(x)
∂τ

∂t
−
∫

Ω
ΠN (u1)g2(x)τ(0) +

∫
[0,T ]×Ω

(λe : σN ) : ε(g2)(x)τ(t)

−
∫

[0,T ]×Γ2

f · g2(x)τ(t) = 0.

(2.19)
Using (iv)-(v) in (2.15), (2.16), and that ΠN (u1)→ u1 in L2(Ω), we obtain that:

−
∫

[0,T ]×Ω

∂uζ

∂t
· g2(x)

∂τ

∂t
−
∫

Ω
u1g2(x)τ(0) +

∫
[0,T ]×Ω

(λe : σζ) : ε(g2)(x)τ(t)

−
∫

[0,T ]×Γ2

f · g2(x)τ(t) = 0.

(2.20)

The obtained limit equations (2.18)-(2.20) are true for all g1 ∈
⋃
N0

VN0 , g2 ∈
⋃
N0

WN0

and τ ∈ C∞(R+;R) of compact support, and by density arguments, we obtain that: for all
χ ∈ C1(R+;H1(Ω)) with supp χ ⊂ [0, T ],∫

[0,T ]×Ω

(
∂mζ

∂t
+mζ × ∂mζ

∂t

)
·χ(t, x) + 2

∫
[0,T ]×Ω

∇mζ
·∇χ(t, x)

−2

∫
[0,T ]×Ω

(
hd(m

ζ) + Ψ(mζ) + (λm : σζ)mζ
)

·χ(t, x)

+
1

ζ

∫
[0,T ]×Ω

(|mζ |2 − 1)mζ
·χ(t, x) = 0 in R+,

(2.21)

and for all χ ∈ C1(R+;V (Ω)) with supp χ ⊂ [0, T ],

−
∫

[0,T ]×Ω

∂uζ

∂t
·

∂χ

∂t
(t, x)−

∫
Ω
u1χ(0, x) +

∫
[0,T ]×Ω

(λe : σζ) : ε(χ)(t, x)

−
∫

[0,T ]×Γ2

f ·χ(t, x) = 0.

(2.22)
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Finally, using weak convergence and convexity arguments for the quadratic terms in
E , using strong convergence in L∞(0, T ;L4(Ω)) for the penalisation term in (2.7), by the
convergence at initial time (2.13), we obtain that (mζ , uζ) satisfies the following energy
formula

E(mζ(t, · ), uζ(t, · ),
∂uζ

∂t
(t, · )) +

1

4ζ

∫
Ω

(|mζ | − 1)2 +

∫ t

0

∫
Ω

∣∣∣∣∣∂m∂t ζ
∣∣∣∣∣
2

≤ E(m0, u0, u1). (2.23)

2.2 Limit when ζ tends to zero

We remark that the right side of the estimate of energy (2.23) does not depend on ζ, then,
by using the same arguments as in the previous section, we obtain uniform bounds with
respect to ζ for the following quantities:

• ∂mζ

∂t
in L2(R+;L2(Ω)),

• ∇mζ in L∞(R+;L2(Ω)),

• mζ in L∞(R+;L4(Ω)),

• ε(uζ) in L∞(R+;L2(Ω)),

• ∂uζ

∂t
in L∞(R+;L2(Ω)).

Therefore, there exists a subsequence still noted (mζ , uζ)ζ , such that for all T > 0,

• mζ ⇀m in L∞(0, T ;H1(Ω)) weak ∗,

• mζ −→ m in L∞(0, T ;L4(Ω)) strong (by applying the Aubin-Simon lemma [5] Theo-
rem II.5.16),

• ∂mζ

∂t
⇀

∂m

∂t
in L2(0, T ;L2(Ω)) weak,

• uζ ⇀ u in L∞(0, T ;V (Ω)) weak ∗,

• ∂uζ

∂t
⇀

∂u

∂t
in L∞(0, T ;L2(Ω)) weak ∗.

Since

E(mζ(t, · ), uζ(t, · ),
∂uζ

∂t
(t, · )) ≥ −‖f‖L2(Γ2)‖uζ‖L∞(0,T ;L2(Γ2)),

since uζ is uniformly bounded in L∞(0, T ;H1(Ω)), we obtain by (2.23) that
1

4ζ

∫
Ω

(|mζ |2−1)2

is bounded uniformly with respect to ζ. So

∫
Ω

(|mζ |2 − 1)2 → 0 as ζ tends to zero, and

since mζ → m in L∞(0, T ;L4(Ω)) strong, then we obtain that m satisfies the saturation
constraint (1.21).
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Now, using the strong and weak convergence and by taking the limit of (2.23) as ζ → 0,
we obtain that for all t > 0

E(m(t), u(t),
∂u

∂t
(t)) +

∫ t

0

∫
Ω

∣∣∣∣∂m∂t (s, x)

∣∣∣∣2 dx ≤ E(m0, u0, u1). (2.24)

In order to show that (m,u) satisfies the Landau-Lifschitz-Gilbert equation, we take
the test function (t, x) 7→ mζ(t, x)×χ(t, x) in (2.21), where χ ∈ C∞c (R+;H1(Ω)) compactly
supported in [0, T [ (as in [10], [2] and [11]), then by making the limit as ζ goes to zero, we
obtain ∫

R+×Ω

(
∂m

∂t
−m× ∂m

∂t

)
χ(t, x)dt dx = 2

∫
R+×Ω

3∑
i=1

m× ∂m

∂xi
·

∂χ

∂xi

−2

∫
R+×Ω

m× (hd(m) + Ψ(m)) ·χ

−2

∫
R×+Ω

m×
(

(λm : (λe : (ε(u)− λm : m⊗m)))m
)
·χ.

Furthermore, taking the limit when ζ tends to zero in (2.22) with a test function χ ∈
C∞c (R+;V (Ω)), we obtain∫

R+×Ω

∂u

∂t
·

∂χ

∂t
−
∫
R+×Ω

(λe : ε(u)) : ε(χ) +

∫
Ω
u1χ(0, x)dx+

∫
R+×Γ2

f ·χ

= −
∫
R+×Ω

(λe : (λm : m⊗m)) : ε(χ).

Consequently, (m,u) is a global in time weak solution of (1.15)-(1.16)-(1.20), which
concludes the proof of Theorem 1.1 .

3 Proof of Theorem 1.2

We define the following spaces:

V(ω) = {v ∈ H1(ω) ; v = 0 on C1},

W(ω) =
{
v = (vi) ∈ H1(ω)×H1(ω)×H2(ω), vi = 0 on C1 and ∂1v3 = ∂2v3 = 0 on C1

}
,

VKL(Ω1) =
{
ξ ∈ H1(Ω1) ; ξ = 0 on Γ1

1 and εi3(ξ) = 0 in Ω1 for i ∈ {1, 2, 3}
}
.

(3.1)
We recall without proof the following result, proved in details in [12] (of Th. 1.4.1.).

Lemma 3.1. The application I defined as follows:

I :W(ω) −→ VKL(Ω1)

v 7−→
(
(vα − x3∂αv3), v3

)
,

is an isomorphism.
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Let m0 ∈ H1(ω ;S2(0, 1)), ũ0 ∈ W(ω) and u1 ∈ L2(ω;R3) such that (u1)3 = 0. We
define mη

0 ∈ H1(Ωη;S
2), uη0 ∈ V (Ωη) and uη1 ∈ L2(Ωη;R3) by (1.30).

Let g+ and g− ∈ L2(ω) and h ∈ L2(C2). From these data, we define on Γη2 the η-
depending boundary data fη by (1.29).

We consider then the solution for the initial and boundary value problem (1.15)-(1.16)-
(1.20) with these initial and boundary data, and we define the rescaled variables Mη, Uη

and Hη by (1.31).

For ξ ∈ C∞(R+;V (Ω1)), we denote by ε(η, ξ) the 2-tensor given by:

εαβ(η, ξ) = εαβ(ξ) for α, β ∈ {1, 2},
εα3(η, ξ) =

1

η
εα3(ξ) for α ∈ {1, 2},

ε33(η, ξ) =
1

η2
ε33(ξ),

(3.2)

So that we have:
ε(uη) = ε(η, Uη). (3.3)

Now we rewrite the properties satisfied by mη and uη (see Definition 1.2) for the rescaled
variables. We obtain that:

� Mη ∈ L∞(R+;H1(Ω1;R3)),
∂M

∂t

η

∈ L2(R+;L2(Ω1;R3)), and |Mη(t, x)| = 1 for a.e.

(t, x) ∈ R+ × Ω1,

� Mη(0, x1, x2, x3) = mη
0(0, x1, x2, ηx3) = m0(x1, x2) in the trace sense,

� Uη ∈ L∞(R+;V (Ω1)) and
∂Uη

∂t
∈ L∞(R+;L2(Ω1)),

� Uη(0, x1, x2, x3) = u0(x1, x2) in the trace sense,

� for all χ ∈ C∞c (R+;H1(Ω1;R3)), we define χη ∈ C∞c (R+;H1(Ωη;R3)) by:

χη(t, xη1, x
η
2, x

η
3) = χ(t, x1, x2,

x3

η
)

Taking χη as a test function in (1.22), we obtain that:∫
R+×Ω1

(
∂Mη

∂t
−Mη × ∂Mη

∂t

)
χ = 2

∫
R+×Ω1

2∑
α=1

Mη × ∂αMη
· ∂αχ

+
2

η2

∫
R+×Ω1

Mη × ∂3M
η
· ∂3χ− 2

∫
R+×Ω1

Mη × (Hη + Ψ(Mη)) ·χ

−2

∫
R+×Ω1

Mη ×
(
λm : (λe : (ε(η, Uη)− λm : Mη ⊗Mη))

)
Mη

·χ,

(3.4)

� for all ξ ∈ C∞(R+;V (Ω1)), we define ξη ∈ C∞(R+;V (Ωη)) by:

ξηα(t, x1, x2, x3) = ξα(t, x1, x2,
x3

η
) for α = 1, 2,

ξη3 (t, x1, x2, x3) =
1

η
ξ3(t, x1, x2,

x3

η
).

. (3.5)
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We remark then that
ε(ξη) = ε(η, ξ). (3.6)

Taking ξη as a test function in (1.23), using that the third component of u1 = 0, we
obtain that: ∫

R+×Ω1

2∑
α=1

∂Uηα
∂t

∂ξα
∂t

+
1

η2

∫
R+×Ω1

∂Uη3
∂t

∂ξ3

∂t
+

∫
Ω1

u1 · ξ(0, x)

−
∫
R+×Ω1

(
λe : (ε(η, Uη)− λm : Mη ⊗Mη)

)
: ε(η, ξ)

+

∫
R+×Γ1

−

g− · ξ +

∫
R+×Γ1

+

g+
· ξ +

∫
R+×Γ1

2

h · ξ = 0.

(3.7)

� for all t > 0, from (1.24), we have

Eη(t) +

∫ t

0

∫
Ω1

∣∣∣∣∂Mη

∂t

∣∣∣∣2 ≤ Eη(0), (3.8)

where

Eη(t) :=
1

η
E(mη, uη,

∂uη

∂t
),

=

∫
Ω1

2∑
α=1

|∂αMη|2 +
1

η2

∫
Ω1

|∂3M
η|2 + 2

∫
Ω1

Φ(Mη) +

∫
R3

|Hη|2

+
1

2

∫
Ω1

[λe : (ε(η, Uη)− λm : Mη ⊗Mη)] : (ε(η, Uη)− λm : Mη ⊗Mη)

+
1

2

∫
Ω1

(
2∑

α=1

∣∣∣∣∂Uηα∂t
∣∣∣∣+

1

2η2

∣∣∣∣∂Uη3∂t
∣∣∣∣2
)
−
∫

Γ1
−

g− ·Uη −
∫

Γ1
+

g+
·Uη −

∫
Γ1
2

h ·Uη.

(3.9)

3.1 Uniform bound and limit when η tends to zero

Since Mη(0) does not depend on x3, we have:

Eη(0) :=
1

η
E(mη

0, u
η
0, u

η
1) =

∫
ω

[
2∑

α=1

|∂αm0|2 + 2Φ(m0)

]
dxT +

∫
R3

|Hη(0)|2dx

+
1

2

∫
Ω1

[λe : (ε(η, Uη(0))− λm : m0 ⊗m0)] : (ε(η, Uη(0))− λm : m0 ⊗m0)

+
1

2

∫
ω
|u1,T |2dxT −

∫
ω

(
g− + g+

)
dxT ·u0 −

∫
Γ1
2

h ·u0.

Since εi3(Uη(0)) = 0 for i ∈ {1, 2, 3}, ε(η, Uη(0)) does not depend on η. In addition,∫
R3

|Hη(0)|2dx =
1

η

∫
R3

|hd(mη(0))|2 ≤ 1

η

∫
Ωη

|mη(0)|2 ≤ 2meas(ω).

Therefore, there exists a constant C1, independent of η, such that:

∀η > 0, Eη(0) ≤ C1. (3.10)
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Using (3.10) and the same arguments as in the proof of Lemma 2.1, using also the
saturation constraint satisfied by Mη, we obtain that there exists a constant C such that
for all η,

1

2

∫
Ω1

[λe : (ε(η, Uη)− λm : Mη ⊗Mη)] : (ε(η, Uη)− λm : Mη ⊗Mη) ≥

λe∗

4
‖ε(η, Uη)‖2L2(Ω1) − C.

(3.11)

By continuity of the trace from H1(Ω) into H
1
2 (∂Ω), we have∫

Γ1
−

g− ·Uη +

∫
Γ1
+

g+
·Uη +

∫
Γ1
2

h ·Uη ≤ C2‖Uη‖H1(Ω1), (3.12)

where C2 is a constant depending only on Ω1.
Now, using the energy inequality (3.8), and inequalities (3.11), (3.12) and the fact that
Φ(Mη) is non negative, for all t > 0, we have

2∑
α=1

‖∂αMη‖2L2(Ω1) +
1

η2
‖∂3M

η‖2L2(Ω1) + ‖Hη‖2L2(R3) +

∫ t

0

∫
Ω1

∣∣∣∣∂Mη

∂t

∣∣∣∣2
+
λe∗

4
‖ε(η, Uη)‖2L2(Ω1) − C1 − C2‖Uη‖H1(Ω1)

+
2∑

α=1

∥∥∥∥∂Uηα∂t
∥∥∥∥2

L2(Ω1)

+
1

η2

∥∥∥∥∂Uη3∂t
∥∥∥∥2

L2(Ω1)

≤ Eη(0),

(3.13)

Using Definition (3.2) and Korn inequality 2.2 we can prove that

‖ε(η, ξ)‖L2(Ω1) ≥ ‖ε(ξ)‖L2(Ω1) ≥ c‖ξ‖H1(Ω) for all ξ ∈ V (Ω1). (3.14)

Hence, applying inequality (3.14) on (3.13), we obtain that, for all T > 0 and η in a
neighborhood of zero, there exists a constant C independent of η such that

� ‖∂M
η

∂t
‖L2(0,T ;L2(Ω1)) ≤ C,

� ‖∂1M
η‖L∞(0,T ;L2(Ω1)) + ‖∂2M

η‖L∞(0,T ;L2(Ω1)) ≤ C,

�

1

η
‖∂3M

η‖L∞(0,T ;L2(Ω1)) ≤ C,

� ‖Uη‖L∞(0,T ;L2(Ω1)) ≤ C,

� ‖∂U
η
1

∂t
‖L∞(0,T ;L2(Ω1)) + ‖∂U

η
2

∂t
‖L∞(0,T ;L2(Ω1)) ≤ C,

�

1

η
‖∂U

η
3

∂t
‖L∞(0,T ;L2(Ω1)) ≤ C,

� ‖ε(η, Uη)‖L2(Ω1) ≤ C,

� ‖Hη‖L∞(0,T ;L2(R3)) ≤ C.
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So, we can extract subsequences, still denoted (Mη, Uη) and Hη, such that when η tends
to zero:

Mη ⇀M in L∞(0, T ;H1(Ω1)) weak ∗, ∂Mη

∂t
⇀

∂M

∂t
in L2(0, T ;L2(Ω1)) weak ,

Uη ⇀ U in L∞(0, T ;V (Ω1)) weak ∗, ∂Uη

∂t
⇀

∂U

∂t
in L∞(0, T ;L2(Ω1)) weak ∗,

ε(η, Uη) ⇀ A in L∞(0, T ;L2(Ω1)) weak ∗, ∂Uη3
∂t
→ 0 in L∞(0, T ;L2(Ω1)),

Hη ⇀ H in L∞(0, T ;L2(R3)) weak ∗ .
(3.15)

Using the Aubin-Simon lemma (see [5], Theorem II.5.16, or the original papers [4] and
[24]), we can prove that Mη →M in L∞(0, T ;Lr(Ω1))∩C0([0, T ];L2(Ω1)) strong for r < 6.
In addition, we can extract a subsequence, still denoted by (Mη)η, such that Mη → M
almost everywhere in [0, T ]× Ω1. Hence M verifies the saturation constraint

|M | = 1 a.e. in R+ × Ω1,

and by continuity in time with values in L2(Ω1), M(0, x) = m0(x) in the trace sense.
Furthermore, we have ∂3M

η → 0 in L∞(0, T ;L2(Ω1)) strong, so M only depends on

(t, x1, x2) ∈ R+ × ω and does not depend on x3. In addition,
∂U3

∂t
= 0.

3.2 Limit in the Landau-Lifschitz Equation

In order to characterize H, the weak limit of Hη, we apply Lemma 2.A in [8] to obtain:

H(t, x, y, z) =


−

 0
0

M3(t, x, y)

 for (x, y, z) ∈ Ω1,

0 for x /∈ R3 \ Ω1.

(3.16)

Let χ̃ ∈ C∞c (R+;D(ω̄)), and define χ in R+×Ω1 by χ(t, x1, x2, x3) = χ̃(t, x1, x2). Then,
χ ∈ C∞c (R+;H1(Ω)) and ∂3χ = 0, so we can take χ as a test function in (3.4). Using the
strong convergence of Mη in L∞(0, T ;L4(Ω1)) and the weak convergence of ∂M

∂t

η
and ∇Mη

in L2(0, T × Ω1), by weak ∗ convergence of E(η;Uη) in L∞(0, T ;L2(Ω1)), we obtain that∫
R+×Ω1

(
∂M

∂t
−M × ∂M

∂t

)
χ̃ = −2

∫
R+×Ω1

2∑
α=1

M × ∂αM · ∂αχ̃

−2

∫
R+×Ω1

M × (−M3e3 + Ψ(M)) · χ̃− 2

∫
R+×Ω1

M × (λm : (λe : A))M · χ̃

+2

∫
R+×Ω1

M ×
(
(λm : (λe : (λm : M ⊗M)))M

)
· χ̃,

We denote Ā :=
1

2

∫ 1

−1
Adx3, so that Ā is a symmetric 2-tensor. We define σ̃ by:

σ̃ = λe : εe, with εe = Ā− λm : M ⊗M. (3.17)
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Since χ̃ and M do not depend on x3, we obtain that:∫
R+×ω

(
∂M

∂t
−M × ∂M

∂t

)
· χ̃ = −2

∫
R+×ω

2∑
α=1

M × ∂αM · ∂αχ̃

−2

∫
R+×ω

M × (−M3e3 + Ψ(M)) · χ̃

−2

∫
R+×ω

M × (λm : (λe : σ̃))M · χ̃.

(3.18)

3.3 Limit in the elasticity wave Equation

We remark that ( 1
ηεα3(Uη))η for α ∈ {1, 2} and ( 1

η2
ε33(Uη))η are bounded in L∞(0, T ;L2(Ω)),

because (ε(η, Uη))η is bounded, this gives that εi3(Uη) −→ 0 strongly in L∞(0, T ;L2(Ω)),
for all T > 0, i.e. εi3(U) = 0 for i ∈ {1, 2, 3}. Therefore, U ∈ L∞(R+;VKL(Ω1)), then by
Lemma 3.1, there exist ũ ∈ L∞(R+;V (ω)) such that

Uα(t, x1, x2, x3) = ũα(t, x1, x2)− x3∂αũ3 for α ∈ {1, 2},
U3(t, x1, x2, x3) = ũ3(t, x1, x2).

(3.19)

For abbreviation, we write ũT = (ũ1, ũ2). Using that Uη ⇀ U in L∞(0, T ;V (Ω1)) weak
∗, since for all (α, β) ∈ {1, 2}2, (ε(η, Uη))αβ = (ε(Uη))αβ, we obtain at the weak limit that:

Aαβ = εαβ(U) for (α, β) ∈ {1, 2}2. (3.20)

Taking the average in the variable x3 ∈ [−1, 1] and using (3.19), we obtain that:

Āαβ = εαβ(ũT ) for (α, β) ∈ {1, 2}2. (3.21)

For v ∈ C∞(R+;W(ω)), we define ξ ∈ C∞(R;VKL(Ω1)) by

ξα(x1, x2, x3) = vα(x1, x2)− x3∂αv3(x1, x2) for α = 1, 2,
ξ3(x1, x2, x3) = v3(x1, x2).

(3.22)

Then, εi3(ξ) = 0 for i ∈ {1, 2, 3}, so that ε(η, ξ) = ε(ξ). With ξ as a test function in the
weak formulation (3.7), we obtain∫

R+×Ω1

2∑
α=1

∂Uηα
∂t

∂ξα
∂t

+
1

η2

∫
R+×Ω1

∂Uη3
∂t

∂ξ3

∂t
−
∫
R+×Ω1

(λe : ε(η, Uη)) : ε(ξ)

+

∫
R+×Γ1

−

g− · ξ +

∫
R+×Γ1

+

g+
· ξ +

∫
R+×Γ1

2

h · ξ +

∫
Ω1

u1 · ξ(0, x)

=

∫
R+×Ω1

(λe : (λm : Mη ⊗Mη)) : ε(ξ),

(3.23)

Taking v = (v1, v2, 0) in (3.23), where v1 and v2 are in C∞(R+;V(ω)), we obtain:∫
R+×Ω1

2∑
α=1

∂Uηα
∂t

∂vα
∂t
−
∫
R+×Ω1

(λe : ε(η, Uη)) : ε(ξ)

+

∫
R+×ω

(g+ + g−)T · vT +

∫
R+×Γ1

2

hT · vT +

∫
Ω1

u1,T · vT (0, x)

=

∫
R+×Ω1

∑
(α,β)∈{1,2}2

(λe : (λm : Mη ⊗Mη))αβ : εαβ(v).
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By taking the limit when η tends to zero, we obtain that, for all vT ∈ C∞(R+;V(ω)):∫
R+×ω

∂ũT
∂t

∂vT
∂t
−
∫
R+×ω

2∑
αβ=1

(λe : Ā)αβεαβ(vT ) +
1

2

∫
R+×ω

(g+
T + g−T ) · vT +

∫
R+×C2

hT · vT

+

∫
R+×ω

u1T vT (0, x) = −
∫
R+×ω

2∑
αβ=1

(λe : (λm : M ⊗M))αβεαβ(v),

and therefore, using notation (3.17), we have:∫
R+×ω

∂ũT
∂t

∂vT
∂t
−
∫
R+×ω

2∑
αβ=1

σ̃αβεαβ(v) +
1

2

∫
R+×ω

(g+
T + g−T ) · vT +

∫
R+×C2

hT · vT

+

∫
R+×ω

u1T vT (0, x) = 0.

(3.24)

3.4 Characterization of σ̃

For all ξ ∈ C∞(R+;V (Ω1)), multiplying (3.7) by η2 and taking the limit when η tends to
zero, we obtain that

∫
R+×Ω1

∂U3

∂t
·

∂ξ

∂t
−
∫
R+×Ω1

(λe : A)33ε33(ξ) = −
∫
R+×Ω1

(λe : (λm : M ⊗M))33ε33(ξ). (3.25)

We remark that
∂U3

∂t
= 0, so the first integral in (3.25) vanishes. For ϕ ∈ D(R+ × ω), we

choose ξ such that:
ξα = 0 for α = 1, 2
ξ3 = x3 ϕ,

then e33(ξ) = ϕ, and (3.25) implies∫
R+×ω

(λe : Ā)33ϕ =

∫
R+×ω

(λe : (λm : M ⊗M))33ϕ,

since M and ϕ are independent of x3. Then

(λe : Ā)33 = (λe : (λm : M ⊗M))33 in L2(R+ × ω).

Fix α ∈ {1, 2} and choose ξ such that ξα = x3ϕ, and ξi = 0 for i 6= α, where ϕ ∈
D(R+×ω), then eα3(ξ) = 1

2ϕ and ε33(ξ) = 0. Replacing ξ by its value in (3.7), multiplying
the obtained equation by η and η → 0, we get:∫

R+×Ω1

(λe : A)α3ϕ =

∫
R+×Ω1

(λe : (λm : M ⊗M))α3ϕ.

This is true for all ϕ ∈ D(R+ × ω), then by using the fact that ϕ and M are independent
of x3, we obtain

(λe : Ā)α3 = (λe : (λm : M ⊗M))α3 in L2(R+ × ω). (3.26)
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Therefore, we obtain that:

∀i ∈ {1, 2, 3}, σ̃i3 = σ̃3i = 0. (3.27)

We define I and J by:

I = {(i, j) ∈ {1, 2}2} an J = {(i, j) ∈ {1, 2, 3}2, i = 3 or j = 3}.

We denote by G the set of symmetric real 3×3 matrices endowed with the scalar product
:. We denote by Gn the set of the matrices D = (dij) ∈ G such that dαβ = 0 for (α, β) ∈ I,
and by GT the set of the matricies D = (dij) ∈ G such that dij = 0 for (i, j) ∈ J , so that

G = GT ⊕⊥ Gn. (3.28)

For D ∈ G, we define K(D) ∈ Gn by:

(K(D))ij =


0 if (i, j) ∈ I,

(λe : D)ij =
∑

(k,l)∈{1,2,3}2
λe
ijkldkl if (i, j) ∈ J.

We remark that K is linear and that its restriction to Gn is a bijection from Gn to itself.
Indeed, if D ∈ Gn with K(D) = 0, we have:

0 =
∑

(i,j)∈J

(K(D))ijDij since K(D) = 0,

=
∑

(i,j)∈J

(λe : D)ijDij ,

=
∑

(i,j)∈{1,2,3}2
(λe : D)ijDij since Dij = 0 if (i, j) ∈ I,

= (λe : D) : D.

So by positivity of λe, if K(D) = 0 with D ∈ Gn, then D = 0. So K is bijective from Gn into
Gn. We denote by T : Gn −→ Gn the inverse of K|Gn . We split εe as εe = εeT + εen where:

(εeT )ij =


0 if (i, j) ∈ J,

ε(ũT )ij − (λm : M ⊗M)ij if (i, j) ∈ I,

and

(εen)ij =


0 if (i, j) ∈ I,

Āij − (λm : M ⊗M)ij if (i, j) ∈ J.

By (3.27), K(εeT + εen) = 0, so K(εen) = −K(εeT ). Since εen ∈ G, we obtain that:

εen = −T (K(εeT )).

Therefore,
σ̃ = λe : (εeT − T (K(εeT ))).
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We denote by λeq the 4-tensor defined by:

for D ∈ G, λeq : D = λe : (D − T (K(D))) ,

so that we have:
σ̃ = λeq :

(
ε(ũT )− λm : M ⊗M

)
.

Remark 3.1. In the isotropic case, that is for λe given by

∀S ∈ G, (λe : S)ij =
E

1 + ν

(
Sij +

ν

1− 2ν
(trS)δij

)
,

where E is the young modulus and ν ∈ [0, 1
2 [ is the Poisson coefficient, we obtain that σ̃ is

deduced from εeT by:

σ̃ij =


0 if i = 3 or j = 3,

E

1 + ν

(
(εeT )ij +

ν

1− ν
(t̃r εeT )δij

)
if (i, j) ∈ {1, 2}2,

where t̃r εeT = (εeT )11 + (εeT )22. This particular case was studied in [18].

4 Conclusion

We have obtained the following 2d-model for thin ferromagnetic plates with magnetostric-
tion:

� M ∈ L∞(R+;H1(ω;S2)), ∂tM ∈ L2(R+ × ω),

� ũT ∈ L∞(R+;H1(ω;R2)) with ũT = 0 on R+ × C1 and ∂tũT ∈ L∞(R+;L2(ω;R2))

� For all χ̃ ∈ C∞(R+;H1(ω;R3)),∫
R+×ω

(
∂M

∂t
−M × ∂M

∂t

)
χ̃ = −2

∫
R+×ω

2∑
α=1

M × ∂αM · ∂αχ̃

−2

∫
R+×ω

M × (−M3e3 + Ψ(M) + (λm : σ̃)M) · χ̃.

� For all vT ∈ C∞(R+;V(Ω;R2)),∫
R+×ω

∂ũT
∂t

∂vT
∂t
−
∫
R+×ω

2∑
αβ=1

σ̃αβεαβ(vT ) +
1

2

∫
R+×ω

(g+
T + g−T ) · vT

+2

∫
R+×C2

hT · vT +

∫
R+×ω

u1T vT (0, x) = 0.

� σ̃ = λe : (εeT − T (K(εeT ))) with εeT = ε(ũT )− λm : M ⊗M .
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We remark that the equation in vT is hyperbolic since the equivalent tensor λeq is
positive on GT . Indeed, if D ∈ GT , then:

(λeq : D) : D = (λe : (D − T (K(D)))) : D.

We remark that λe : (D − T (K(D))) ∈ GT and T (K(D)) ∈ Gn. Thus,

(λeq : D) : D = (λe : (D − T (K(D)))) : (D − T (K(D)))

≥ λe∗‖D − T (K(D))‖2

≥ λe∗‖D‖2 since GT ⊥ Gn.

It is well known that in 3d, the weak solutions for the Landau Lifschitz equation are
not unique (see [2]). The uniqueness is only proved for regular solutions (at least with
H2 regularity in the space variable). For the 2D-model coupling , the uniqueness of weak
solutions remains an open problem. Although, using J L Lions’ theorem, we can show
that if M is fixed, then the solution of the initial and boundary value hyperbolic problem
satisfied by ũT is unique (see Theorem 10.14 in [6] and [23]).

In conclusion, the model we obtain will be easier to study and to simulate since it is
bi-dimensional and since the 2d demagnetizing field is local. It would be interesting to
characterize the normal deformations in the 2d model, even though they have no influence
on magnetization in the regime we studied.
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