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Thin Ferromagnetic plates with Magnetostriction

Mouna Kassan!?, Gilles Carbou? and Mustapha Jazar!

I LaMA, Laboratoire de Mathématiques et Applications, Lebanese University, Tripoli, Lebanon.
2 Universite de Pau et des Pays de I’Adour, E2S UPPA, CNRS, LMAP, Pau, France

Abstract. In this paper, we establish the existence of global-in-time weak solutions for the
Landau-Lifschitz-Gilbert equation with magnetostriction in the case of mixed boundary conditions.
From this model, we derive by asymptotic method a two-dimensional model for thin ferromagnetic
plates taking into account magnetostrictive effects.
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1 Introduction

Ferromagnetic materials are characterized by a spontaneous magnetization, even in the
absence of an external magnetic field. This magnetization influences the shape of the ma-
terials, and conversely, a deformation of the material leads to a change in magnetization.
This phenomenon, called magnetostriction, is used for industrial applications, for example
in magnetostrictive motion or pressure sensors or ultrasonic transducers. for these applica-
tions, the devices are often thin plates of ferromagnetic material (see [22, 25]).

In this paper, starting from the 3D model describing the time behavior of the magne-
tization of a material taking into account the magnetostriction, our goal is to obtain and
justify by asymptotic method a two-dimensional model of thin ferromagnetic plate. Note
that asymptotic studies of this type are carried out in [3, 15, 16, 17, 19] for ferromagnetic
films without taking magnetostriction into account.

We first describe the three-dimensional model coupling Landau-Lifschitz-Gilbert with
elasticity equations (see [21]).

1.1 Three dimensional model

We denote by €, the domain occupied by the ferromagnetic material, and by m(t,x) € R3
the magnetic moment at time t and at point x = (x1,X2,x3) € Q. We assume that the
material is saturated, so that m satisfies the saturation constraint |m(t,x)| = ms a.e.,
where my is a constant expressed in A.m~!. The dynamics of m is described by the
Landau-Lifschitz-Gilbert equation (see [1], [7], [10] and [20]):

om amxa—m:—(l—l—&Z)'ymxHeﬂr in R x 0,

ot my ot (1.1)

Opm =0 onRT x 99,
where x is the cross product in R3, « is the gyromagnetic ratio (expressed in A.s.kg_l), Q

is the dimensionless damping coefficient and n the outward unit normal vector on 0€2. The
effective field Heg (expressed in T = kg.s72.A71) is given by:

A
He = WAm + pohg(m) + po¥(m) + (A™ : o)m, (1.2)

s

where



A is the exchange constant (expressed in J.m™1),

o g = 4m.107"kg.m.s72. A2 is the vacuum permeability,

e U is an anisotropic linear term satisfying:
U(m) =-V®o(m), (1.3)
where ® : R? — R is a non negative quadratic form,

e the demagnetizing field hy(m) is calculated from m solving the static Maxwell equa-
tion coupled with the law of Faraday:

curl hy(m) =0 and div(hg(m)+m) =0, (1.4)
where m is the extension of m by zero outside €2,

e in the magnetostrictive term, o is the stress tensor (2-tensor expressed in kg.m~1.s72),
A™ is a 4-tensor expressed in m?.A~2, and : is the contraction operator (see below).

Notation 1.1. Let A be a 4-tensor in R3. Let € be a 3 x 3 matriz. We denote A : € the
3 X 3 matriz which entries are given by:

3
(A:8)ij =D Mg

3
k=11=1

Let € and ¢ be two 3 x 3 matrices. We denote & : ¢ the scalar given by:

3 3
£:0=) Y &G

i=1 j=1

The Landau-Lifschitz-Gilbert Equation (1.1) is coupled with the wave elasticity equa-
tion: o2
pa—t';—divazo. (1.5)
In (1.5), p is the mass density (expressed in kg.m™3), u is the displacement field and the
stress tensor o is given by o = A€ : €€, where

e A°is a 4-tensor (expressed in kg.m~'s~?),

e the total strain €€ is a 3 x 3 matrix obtained from the linearized strain tensor &(u)
and the magnetostrictive strain tensor e™ by the relation e(u) = €© + ™, with

1 (8111 811]‘

(u) = = m_ Am.
gij(u) 2 \ax; +8xi> and € AY :m®m, (1.6)

t

where m®m = m - ‘m is the 3x3 matrix which entries are given by (m®m);; = m;m,;.

The 4-tensors A® and A™ are supposed to be symmetric and positive, as defined below:



Definition 1.1. Let A be a 4-tensor in R®. This tensor is said to be symmetric if:
V(i 5,k 1) € {1,2,3}, Aiji = Njiw = Nijie = Apaij-

This tensor is said to be positive if there exists \* € R*T such that for all symmetric matriz

& of entries &;;, we have:
Z Nijr&ijém > A* Z €552

ijkl ij

We assume that the material is clamped on I'y C 9€2 and that a surface force f (ex-
pressed in N.m~2) is applied on T's = 9Q \ T'y, so that the following boundary conditions

hold:
u=0 on Iy,

(1.7)
o-n=Ff onTy,
In order to obtain a dimensionless model, we write
t t
m(t,x) = mom(=, %) and  u(t,x) = Cu(”, %), (1.8)

where the characteristic time 7 and the exchange length ¢ are respectively given by:

A
and (%= 5
YHoMs Moty

T =
We denote by ¢ = t/7 the dimensionless time and by = = (z1,x2,z3) = x/{ the dimension-
less position. We define:
Q=Q/0, Ty=T1/¢ and Ty=Ty/L. (1.9)
The dimensionless demagnetizing field is given by:
curl hgim) =0 and  div(hg(m)+m) =0, (1.10)

where T is the extension of m by zero outside ).
We introduce the dimensionless tensors A™ and \¢ such that:

1
A™ = — X" and A€ = pgm?2)°, (1.11)

2
mg

and we define the dimensionless surface force f € L?(I's) and density p by

2A
f=pomif and p= p:nz . (1.12)
S
We denote then by o the dimensionless stress tensor given by:
o(t,x) = ——ao(tt,lx) = (N :e(u) = X : (AN :m®m))(t,x), 1.13
()uomi( ) = (A% e(u) ( ) (t, ) (1.13)
with L /6 3
Us ’LL]'
i == . 1.14
w5 =3 (52 +52) (1.14)



We obtain then the following dimensionless model: m(t,z) and u(¢,x) are defined for
t € R* and x € Q and satisfy:
aé:fl—amx %T::—(l—i—aQ)mxHeﬁ in R x Q,
Heg = Am + hg(m) + ¥(m) + (A™ : o)m,
(1.15)
o=X:e% with e*=¢(u)—A":mem,

0%u
arTe
with the following boundary conditions

Op,m =0 on RT x 99,

—dive =0in RT x Q,

u(t,z) =0 on RT x I'y, (1.16)

o-n=fonR" xTy,

where n is the unit outward normal vector on 0€2. We remark that from the assumptions
on A®, there exists a constant A°* > 0 such that for all symmetric 2-tensor &:

Z Nim&ig€rr = A7 Z [ (1.17)

ijkl ij
Note that o and p are dimensionless constants whose values do not affect the math-
ematical analysis of the equations. We therefore take them equal to 1. We define the

space
V(Q) ={ve H(Q;R?; v=0o0nT}. (1.18)

For m € H'(£;8%), v € V(Q) and w € L?(£;R3), we define the energy &(m,v,w) by:
E(m, v,w) = / Vin(2)|2dz + 2/ B(m(z))dz +/ (ha(m) () 2dz
Q Q R3

1

-3 /Q D (stwla) = A @) @ m(@))] + (o) — X m(e) @ m(x) ) d

+g [ wta) P - RIORET
(1.19)

We aim to solve the Cauchy problem coupling (1.15)-(1.16) with the following initial

conditions:
m(t =0) =mg in Q,

0 .
8—1;(75 =0) =wu; in Q,

where mg € H'(Q;52), up € V() and u; € L*(Q;R3). We define the notion of weak
solutions for the previous Cauchy problem:



Definition 1.2. We say that (m,u) is a weak solution for (1.15)-(1.16)-(1.20) if

om
ot

2. m satisfies the saturation constraint

1. m € L®(RT; HY(Q; R?)), € L*(R*; L2( R?)) and m(0, -) = mo,

Im(t,z)| = 1 for almost every (t,x) € RT x Q, (1.21)
3. u e L®R*V(Q)), gt € LR L*(Q;R?)) and u(0, -) = uo,

4. for all x € C*(RT; HY(Q;RY)),

om om ox
/]R*xﬂ (at_mxat> /R+ngmxaxz'ami

i / m x (ha(m) + U(m) + (\™ : 0)m) -y, (1.22)
R+t xQ

with o = A° 1 e(u) — A°: (A" : m@m),

5. for all x € CX(RT;V(Q)),

ou 0
/ au. X—/ O’:E(X)+/ f-X-F/UlX(Oax):O? (1.23)
R+xQ at 8t R+ xQ Rt xTI'y Q

6. forallt >0,

E(m(t, ), ult, -) , ) dT dx < E(mo, ug, uy) (1.24)

where & is defined by (1.19) (energy inequality).

1.2 Statement of the results

First, we establish the existence of global-in-time weak solutions for the Cauchy problem
(1.15)-(1.16)-(1.20). Such a result is proved in [10] for homogeneous Dirichlet boundary con-
ditions for the deformation. With the same method, we address mixed boundary conditions
and we obtain the following theorem:

Theorem 1.1. Let mg € H*(Q;52), ug € V(Q), u1 € L3(Q) and f € L*(T2). Then, there
exists a weak solution (m,u) for (1.15)-(1.16)-(1.20).

In a second time, we aim to obtain a reduced two-dimensional model for thin ferromag-
netic plate. Let w C R? be a smooth open domain. We assume that

Ow=CUCy, withCinNCy=0 (1.25)

such that the one-dimensional measure of C; is non vanishing. We consider the thin plate
(1, given by:
Qy = wx] —n,1, (1.26)



whose boundary splits as 9Q = I'] NT'7 with

'Y =Cix]—n,n[, and T'j=T]Ul'lur?,
(1.27)

with T} = Cox] —n,n[, Tl =wx{+n}, T" =ox{-n}

Figure 1: Q, = wx]| —n,n|

We assume that this plate is clamped on I'].
We define the spaces:

V() ={ve H (Q;R%) ; v=0o0nT7}

W(w) = {v=(v;) € H(w) x H'(w) x H*(w); v; = 0 on C; and d1v3 = dov3 = 0 on C; }.
(1.28)
Notation: for y = (y1,¥2,y3) € R3, we denote yr = (y1, y2).

Let h € L?(C2;R3) and gt and g~ in L?(w;R?). We define the n-depending boundary
data on I'J by:
Vor €w, Vo€ {1,2}, fd(er, £n) = g3 (er) and  f(wr, +n) = g5 (a1),

V(xr,x3) € Cox| —n,n[, Va € {1,2}, fl(xr,x3) = hy(zr) and f(zr, 23) = nha(er).
(1.29)

Let mg € H'(w;5?%(0,1)), @ip € W(w) and u; € L?(w;R3). We assume that the third
component of u; vanishes: u;3 = 0 on w. We define the n-depending initial data by: for



x = (v, 23) € Qp,

(- mg(zr, z3) = mo(z7),

- xT ~
Va e {1,2}, Ug,a(l’T,x?,) = U a(zT) — ;38(1'&073(15’1‘),
(1.30)

1.
ug 3(Tr, 23) = 5U0,3($T)7

ul(zr, x3) = wi(zr).

We consider (m",u") the weak solution of (1.15)-(1.16)-(1.20), given by Theorem 1.1,
with initial data m{, u], u] and external force f" previously defined. We rescale this
solution in order to work on the fixed domain Q; = wx] — 1,1[: for (zp,z3) € Q1, we set:

Mt xr, x3) = m"(t,xr,nr3), H"(t,v7,23) = (ha(m"))(t, 27, M23),
(1.31)
Vo S {172}7 Ug(tu xTax?)) == ’U,Z(t,.%'T,T]l’?,), Ug(tv xT,I'?,) = nug(ta $T777=T3)-

We obtain the following convergence result, announced in [18] in the isotropic case:

Theorem 1.2. Using the notations above, when n tends to zero, there exists a subsequence
still denoted (M", H",U"), such that M" tends to M in L>(0,T; H*(Q1)) weak *, H" tends
to H in L°°(0,T; L*(21)) strongly, U" tends to U in L>=(0,T;V (1)) weak *. In addition,
M does not depend on its third variable and there exists 4 € W(w) such that:

Un(xp,23) = Ua(xp) — 230003 for a € {1,2}, and Us(zp,x3) = as(zr).

The limit (M, a) is a weak solution for the following initial and boundary value problem:

( OM OM
T Mx —=-2Mx HY inR"xw
ot ot

with H = AM — (M, €3)é; + U(M) + (A™ : 5) M,

Pur — . 1
a:QT —dive = =5 (97 +97) in RT xw,

(1.32)
o=\ (e(up) = N":M@M),

our

M(()? ) = mO)ﬂT(Og ) = ’&107T and W

(Oa ) = u1,T,

{ OnM =0 o0n 0w, ur=0o0nCy, and o.n=~hr onCs,

where A* is a 4-tensor only depending on the coefficients of A° (see below), and where div S
1s defined by

(aiv S>a - i:agsaﬁ. (1.33)
A=1



The new tensor A°? arising in the two-dimensional model (1.32) is defined as follows:
we denote by G the set of symmetric real 3 x 3 matrices and by G,, the set of the matrices
D = (d;;) € G such that dos = 0 for (o, 3) € {1,2}%. We define the linear operator
K:G— G, by:

0 if (4,5) € {1,2}?,

VD e g, (K(D))i; = (1.34)

(A :D)ij= > Audw ifi=3orj=3
(k,1)e{1,2,3}2

We claim that the restriction of K to G, is a bijection from G, to itself (see the proof in
subsection 3.4). We denote by 7 : G, — G,, the inverse of IC|gn. Then A°? is given by:

VDeG, X9:D=):(D-T((D)). (1.35)

We remark that the resulting model (1.32) is indeed two-dimensional, but it does not
describe the behavior of the normal deformations. We remark also that in this regime, the
magnetization is not influenced by the normal deformations, so that our model is closed.

This paper is organized as follows: Theorem 1.1 is proved in section 2. We follows the
method due to Alouges and Soyeur [2] and generalized in [11]. First, we prove the existence
of solution for a penalized system, in which the saturation constraint is relaxed. Then, we
take the limit when the penalization constant tends toward zero. In [10], global existence
for (1.15)-(1.20) is obtained in the case of a clamped sample, that is with « = 0 on 9. Our
proof is very close to the proof in [10]. We reproduce it for the convenience of the reader in
order to present a self-contained paper.

Theorem 1.2 is established in section 3. In order to avoid working on a domain depending
on 7, we perform a rescaling inspired both by [9] for the magnetization and by [14] for the
deformation. The thickness parameter 7 appears then as a stiff term in the equations.
Nevertheless, we are able to obtain a limit model thanks to the energy inequality and by
choosing convenient test functions in the rescaled weak formulation.

1.3 Index of symbols and notations.

In the table below, for each notation used hereafter, we mention the equation number (or
the page number) on which it is defined.



: p. 2 ms Eq. (2.1) [o Eq. (1.9)
X p. 1 my Eq. (2.5) ry Eq. (1.27)
® p. 2 M p. 7 Iy Eq. (1.27)
A p. 22 M" Eq. (1.31) ry Eq. (1.27)
C1 Eq. (1.25) n p. 4 r Eq. (1.27)
Ca Eq. (1.25) Py p. 10 Ind Eq. (1.27)
div Eq. (1.33) T p. 8 e(u)  Eq. (1.14)
& Eq. (1.19) u Eq. (1.8) o p. 4

En Eq. (2.6) uo Eq. (1.20) £y Eq. (2.5)
en Eq. (3.9) uy Eq. (1.20) | €(n.§) Ea. (3.2)
f Eq. (1.12) un Eq. (2.5) €° Eq. (3.17)
fn Eq. (1.29) ug Eq. (1.30) ¢ p- 9

gt Eq. (1.29) uf Eq. (1.30) n p. 6

g p. 8 u’ Eq. (2.1) A° Eq. (1.11)
Gn p. 8 a Eq. (1.32) A Eq. (1.11)
gr p. 25 g p. 7 A% Eq. (1.35)
h p. 6 un Eq. (1.31) Uy p. 11

hq Eq. (1.10) V(Q) Eq. (1.18) p Eq. (1.12)
H" Eq. (1.31) V(Q,  Eq. (1.28) o Eq. (1.13)
Hog Eq. (1.15) Vikr(Q1) Eq. (3.1) o¢ Eq. (2.1)
HS Eq. (2.1) Vi p. 10 oy Eq. (25)
HI Eq. (2.5) V(w) Eq. (3.1) o Eq. (1.32)
Hed Eq. (1.32) Wy p. 11 P Eq. (1.3)
K Eq. (1.34) W(w) Eq. (1.28) v Eq. (1.3)
m Eq. (1.8) T p- 3 w p. 6

mo Eq. (1.20) T p. 3 Q ;Eq. (1.9)
mg Eq. (1.30) yr p. 6 Q, p. 6

m" p. 7 I Eq. (1.9)

2 Weak solutions for the Landau-Lifschitz-Gilbert equation
with magnestostriction

Let mo € H!(Q) with values in the unit sphere S?, ug € V/(Q), u1 € L*(Q) and f € L?(T's).

2.1 Penalized system

As in [2] and [10], we relax the saturation contraint and for ¢ > 0, we consider the following
penalized system:



1
E(]mc\z —1)m* =0in RT x Q,

Hgﬁ = AmS + hg(mS) + ¥ (mS) + (A™ : 6¢)m¢,

oms
Il 2 op¢
ar T Ty off T

o¢ =2 e(ul) — A (W™ mS @mS),

o (2.1)
. A +
92 —dive* =0inR x Q,
oub
mC(t:O):mo, UC(t:O):UO, aiué(tzo) = Uy,

OymS =0on RT x99, ul(t,z)=0onR* xT';, o%n=fonRT xTy.

For a fixed penalization parameter { > 0, we construct by Galerkine method a weak
solution for (2.1) such that
¢

1. m¢ € L®(R+; H(Q;R?)) and %T e L3R L3(Q; R?)),

8“’4 oo (m+. 72 3
2. u¢ € L®(R*;V(Q))) and 5 €L (RT: L*(Q; RY)),
3. for all t > 0, we have the following energy inequality:

us
E£(mE (1), ul (1), %(t)) + 41@‘/9 (ISt 2))” - 1)2dx

S

We recall that since the surface measure of I'; is positive, the Korn inequality below
is valid (see [13], Theorem 6.3-4 page 292): there exists a constant c¢(€2) such that for all
v eV(Q),

2

¢
(%za(ts,x) dsdx < E(myg, ug, u1).

N v C 'U2. .
/Qa@).a()z <9>/Q| (2.2)

1
This inequality yields that || - [,y = ([oe(+) : €(+))? is a norm on V(£2) equivalent to the
1
norm || - 1) = (Jo |- [*+1V-[*)2, and then it is also equivalent to the norm |-[1o =

1
(JoIV-P)2.
2.1.1 First step: Galerkin approximation

For m, we use a Galerkin basis (e, e2,...) of eigenvectors of —A with homogeneous Neu-
mann conditions at the boundary.

{ —Ae; = qze; in €, (2.3)

Ope; = 0 on 0f).

10



We denote by Vy = span(ey,...,en) and by Py the orthogonal projection map onto V.

For u, we use a the Galerkin basis (¢1, ¢2,...) of eigenvectors of —div(\® : &) with
homogeneous mixed conditions at the boundary:

—div(A® : e(¢;)) = bjp; in Q,
gf)j =0on Fl, (24)
(A°:e(¢j))-n=0o0nTs.

We denote by Wy =span(¢1, ..., ¢n) and by Iy the orthogonal projection map into Wy.

For a fixed N, we consider the following Cauchy problem: Find my : [0, Ty[— Vx and
~N : [0, Tn[— Wy, such that Vg1 € Vi and g2 € Wy, we have

8m
=N 91+/mN><

91—2/ Hgl+</<rmN|2—1>mN-gI=omR+,
(9]

HY = Amy + ha(my) + P (my) + (A™ : on)my,

on = X e with ) = e(un) — A™ : my ® my,

d*u ‘
/dt2N‘92+/()\eiffN)i€(92)— frg2=0in R,
Q 9] Iy

8uN(
ot

mpy(t =0) = Py(mg), un(t=0)=IIn(uo), t=0) =In(u1).

(2.5)

The quantities my, uy, on and €% depend on (. We don’t mention this dependance to
lighten the notations. By the Cauchy-Lipschitz theorem, as in subsection 2.1 in [10], there
exists a unique solution (my,uy) for (2.5) whose maximal existence time is denoted by Ty.

2.1.2 Energy estimate on the Galerkin approximation

We denote by En(t) the following quantity:

Extt) = Emu(t, )un(t, ), (e, ),

= /Q\VmN(t,x)\Qda:—i—2/Q¢>(mN(t,x))dx+/, \ha(mn (t, -))(x)|*dx

R5
(2.6)

+;/Q[/\ St )] s e (b, m)da + = /ya“N (t, )2 da

f(s)-un(t,s)dls.

Using the symmetry of A®, we have:

é)mN)
ot

—SN— /VmN V+2/V‘1> my) ‘1'2/ ha(my) - ha(
R3

e. e '86% 8UN 8UN aUN

11



Since —hy is an orthogonal projection for the L?(R3)-inner product, we have:

omn omny
/R3 ha(mny) - hq( T ):—/th(mN)~(%.

In addition, using the symmetry of A™, we have:

88‘;‘\[ . a’LLN m 8mN
ot —5(7(% )—2)\ mN@i@t .

Using that oy = \®: %, by the symmetry of A° and A\™, we have:

omy

on: (A" imy @ ——) = [(\": on)my] o

Therefore, we have:

75N_ /VmN vamv_z/q,(mN)_M_Q/hdmN).am
Q Q

ot ot
m omp Puy Ouy -, Oun oun
_Q/Q[(A ronmal =55 | e o +/QN‘E( TR AT
Taking g1 = ag;N and gy = 3;;\[ n (2.5), we obtain that

$<5N+4c/mN|2_1> /}MN -

and integrating from t = 0 to t = T, we get that for all T < Ty

8mN 1

En(T) + =En(0) + i

(Jm* ~ (|1Pv(mo)l* = 1)%. (2.7)
Q Q

1
4¢
2.1.3 Limit in the Galerkin Approximation

We claim the following proposition:

Proposition 2.1. For all fized ¢ > 0, the right-hand-side of (2.7) tends to E(my, ug,u1)
when N tends to +oo.

Proof. (see also [10]) Since the els form an hilbertian basis in L2(2), Py (mg) tends to mq
in L?(Q). Writing that:

/ IVPx(mo))? = —/APN(mO) - Py(mg)  since 0, Pn(mg) = 0 on 09,
Q 0
= - / APn(mg)-mgp  since Py is self-adjoint and Vi is stable by A,
0

= /QVPN(mo) -Vmyg,
(2.8)

12



we obtain that the sequence (VPy(mg))n is bounded in L?(Q) by [[Vmg| 12(q), so this
sequence tends to Vmyg in L?(£2) weak, and since (2.8) yields that [V Py (mo)l| L2 tends
to [[Vmo||12(q), we obtain that:

Py, (mg) — mg strongly in H'(Q) and in L*(Q2) by Sobolev embedding. (2.9)

In the same way and using the boundary conditions in (2.4), we have:

/ (A° : (T (o)) : &(TTn (ug)) = / (A° : e(TTx (o)) : (o). (2.10)
Q

Q

Since A° is positive, by Cauchy—Schwartz type inequality, we have:

/Q (X : (TIy (o)) : (T x (o)

< ([ s etmstuo) ety ) ([ 00 ctu e<uo>)é |

so that, the sequence (e(Ily(ug)))n is bounded in L?(Q), so converges weakly to e(ug) in
L?(2). Using (2.10) and the positivity of A°, we obtain that:

NI

e(Tlx(ug)) — e(ug)  strongly in L*(£2), (2.11)
and by Korn inequality (2.2),
My (ug) — up  strongly in H(€Q). (2.12)

Therefore, using that ® is quadratic, hyq is continuous in L2, Iy (u;) tends to uj in
L3(9), (2.9), (2.11) and (2.12), we obtain that

1

En(0) + K/,

1

(| P (mo)[* —1)% — E(mo, uo,ur) + i (Imol> =1)*  when N — o0,
Q

and since mg satisfies the saturation constraint |mg| =1 a.e., we have:

1

5]\](0) + E 0

(‘PN(mQ)|2 — 1)2 — 5(m0,uO,U1) when N — +o00. (2.13)

O]

We establish the following lemma:
Lemma 2.1. There exists a constant C such that for all w € V(Q) and for all m €
H' (2 R%),

1 ex

3 | = A m e m] s (ela) = A m @ m) > ) — Cllml oy

where A** is the coercivity constant appearing in (1.17).
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Proof. From (1.17), we have:
A (e(u) =A™ :m@m)]: (e(u) =A™ :m@m) > X*[e(u) — A" : m@m|?,

> 2 [le(u)] — A m@ml|?,

> X e(u)? — A A - m @ m)?

1
using that (a — b)2 > §a2 — b2, By integrating on © and using that there exists a constant

K such that |A™ : m ® m|? < K|m|*, we conclude the proof of Lemma 2.1. O

By the previous lemma, we obtain that

1

3 /Q A (e(uny) = A" :my @ mpy)] : (e(uny) — A" :my @ my) >

A lem)llZzig) = Clmallzag):

Moreover, since the trace application H'(Q) — H %(F) is linear continuous, using also
that the H'(Q) is equivalent to |le(un)l|12(q) by the Korn inequality (2.2)). there exist a
constant ¢ such that

‘ / f-uNdr\ < ellf Lz leCun) 2
2
So we obtain that:

1 ou
En+ 2= [ (Imul? = 1)? = [ VmnFaq) + atN

4¢ Jo

+ A lle(urm)iz o)

2 ' 12(Q)

~Cllmyll7a) — el fllzzwy)le(un)llzz ) + Q(\mNI2 - 1)%

1
4¢
Using that (]2 — 1)2 > 3|¢[* — 1, we have:

1
8C/ ‘mNP—l _IGCHmN”L4 Q) gmeas(ﬁ).

Thus, if ¢ is small enough,

1 1
g /Q(|mN|2 - 1)2 > CHmNH%A(Q) — —meas ().

8¢
so that:
1 ||Oun 1
2 2 2 ex 2
EN + Q (Imn["=1)" = [Vmnl2) + 3 ‘ 9t | oo + 1)\ lle(un)ll72(q)
1 1
+§ /Q(|mN|2 _ 1)2 _ gmeas(Q) — C||f||L2(F2)||5(UN)||L2(Q).

(2.14)
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By (2.7) and (2.13), for a fixed ¢ small enough, the left-hand-side of (2.14) is uniformly
bounded with respect to N, so there exists K such that for all NV,

omy
VMl oo 0,7n;2200)) + Il o nac) + =5~ 2o mvsr2 ) < K,

oupn
’\WHLOO(O,TN;H(Q)) + ”5(UN)HL°°(O,TN;L2(Q)) < K.

This implies directly that Ty = 4+o00. In addition, since the bounds do not depend on
N, we can assume that there exists a sub-sequence still denoted by (my,un)n, and there
exists (mS,u¢) such that for all T > 0:

(1)  my — mSin L>®(0,T; H(Q)) weakx,

(1)  mpy — mS in L=(0,T; L*(2)) strong (by applying the Aubin-Simon Lemma,
see [4] and [24], or [5] Theorem I1.5.16),

omy N oms

(4ii) - T 0 L*(0,T; L*(Q)) weak,

(iv) uy — uS in L%(0,T; V() weak *,

¢
(v) ag—év — 86% in L°°(0,T; L*(Q)) weak * .
(2.15)
From (éi) and (iv) in (2.15), since oy = X°: (e(un) — A™ : my @ my),
on = 0% =X (e(u®) — A" i mC @mS) in L®(0,T; L3(Q)) weak . (2.16)

Using Aubin-Simon Lemma, my (resp. uy) tends to m¢ (resp. u¢) in C°([0,T]; L*(9)).
Since Py(mg) = mn(0) (resp. Hy(ug) = un(0)) tends to mg (resp. ug) in L?(2), by the
uniqueness of the limit, we obtain:

mS(t = 0) = mg and u(t = 0) = uo.

In order to obtain the equations satisfied by m¢ and u¢, we fix Ny and we consider
g1 € Vn,, g2 € Wy, and 7 : RT — R, a smooth function with compact support included
in [0,7]. For all N > Ny, g1 € Vy and g € Wy, so we can take these test functions in
(2.5). Multiplying by 7(t) and integrating on the time interval [0, 7], we obtain using an
integration by part in the space variable in the first equation, we obtain that for all N > Njy:

o 0
/ <mN o X mN) g1 (@)r(t) + 2 / Vmy - Vi (2)7(0)
0.7)x0 \ Ot ot [0,T]x8



Using (i)-(447) in (2.15) and (2.16), using also the strong convergence in L>(0,T; L*(Q)) for
the non linear terms (ii), we obtain when N tends to +oo that:

oms oms
/ ( m +mS x > ~g1(x)T(t) + 2/ vmS Vi (x)7(t)
o1]x \ Ot ot 0,7]xQ

) / (hd(m<)+\y(m<)+(Am : aé‘)mC) g1 (z)7(t) (2.18)
[0,7]x$2

1

+2 - (\mcl2 — 1)ymS - gi(z)7(t) = 0 in R™.

Concerning the wave equation in (2.5), using an integration by part both in the variables

t and x, using that aa—tN(O) = IIn(u1) and that 7(7') = 0, we obtain that for all N > Ny:
8uN 67’ e
- ~g2(x) = — | Ty (u1)g2(x)7(0) + (A" on) : e(g2)(@)7 (1)
0,T]x ot ot Jo 0,7]xQ
—/ f-g2(x)T(t) = 0.
[O,T]XFQ
(2.19)

Using (iv)-(v) in (2.15), (2.16), and that IIy(u1) — u; in L?(Q), we obtain that:

out or e o .
_/[Oﬂ -92(:1:)6%—/Qu192(:1:)7'(0)+/[07T]XQ()\ :0%) 1 e(ge)(z)T(t)

xQ ot
—/ f - ga()r(t) = 0.
[0,7]xTy

The obtained limit equations (2.18)-(2.20) are true for all g1 € Uy, Ving, 92 € Un, Wn,
and 7 € C*°(R™;R) of compact support, and by density arguments, we obtain that: for all
x € CL(RY; HY(Q)) with supp x C [0,T],

oms omS
/ ( m +mS x m> x(t, ) + 2/ \LTO Vx(t,x)
o1]x0 \ Ot ot [0,7]x

—2/ (halm®) + W) + (A : 6 m) x(t,) (2.21)
0,7]xQ

(2.20)

1

(\m<| — 1)m® - x(t,z) =0 in R,
C [0,7]x

and for all x € C1(R*;V(Q)) with supp x C [0,7],

ous (9
—/ W OX (G gy /um@@+/ (X %) 1 () (1, )
0,7] %0 ot ot Q 0,7]xQ

[ rada=o
[O,T]XFZ

(2.22)
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Finally, using weak convergence and convexity arguments for the quadratic terms in
&, using strong convergence in L>(0,T; L*(Q)) for the penalisation term in (2.7), by the
convergence at initial time (2.13), we obtain that (m¢,u¢) satisfies the following energy
formula

u’ ¢
Em (e, ), Gt ) + 5 [ =12 [ ]

2.2 Limit when ( tends to zero

2
¢
%ZL < E(mo, up, ur). (2.23)

We remark that the right side of the estimate of energy (2.23) does not depend on (, then,
by using the same arguments as in the previous section, we obtain uniform bounds with
respect to ¢ for the following quantities:

oms
ot

VmS in L®(R*; L2(Q)),

in L*(R*; L*(Q)),

m¢ in L=®(RT; L(Q)),

£(u€) in L (R*; L3(12)),

ous
: [ee) +.72
* 5 in L>®°(R™; L7()).

Therefore, there exists a subsequence still noted (mS, uC)C, such that for all 7" > 0,
e mS —min L>®(0,T; H(Q)) weak *,

e mS — m in L>=(0,T; L*(2)) strong (by applying the Aubin-Simon lemma [5] Theo-
rem 11.5.16),
oms UL

omr 9.2 .72
5 5 n L#(0,T; L*(R2)) weak,

e uS — uin L®(0,T; V() weak *,

ous ou . 9
* 5 " g b L>(0,T; L7 (2)) weak .
Since

ou’
E(m(t, -),ul(t, -), ﬁ(t, ) = =Nl 2@ lu | e 0,7:02(rs))

1
since v is uniformly bounded in L>(0, T; H'(Q)), we obtain by (2.23) that s / (Jm¢|?—1)2
Q

is bounded uniformly with respect to (. So / (Jm¢)?> = 1) = 0 as ¢ tends to zero, and
Q

since m¢ — m in L°°(0,T; L*(Q)) strong, then we obtain that m satisfies the saturation
constraint (1.21).
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Now, using the strong and weak convergence and by taking the limit of (2.23) as { — 0,
we obtain that for all ¢ > 0

etmio)u, o)+ [ [

2
O (s0)| die < (o, ug, ). (2.21)

In order to show that (m,u) satisfies the Landau-Lifschitz-Gilbert equation, we take
the test function (¢, z) — mS(t,x) x x(t,z) in (2.21), where x € C°(R*; H'(£2)) compactly
supported in [0,77 (as in [10], [2] and [11]), then by making the limit as { goes to zero, we

obtain
3

om om om  Ox
—- = — t,x)dtdr = 2 .
/R+XQ<8t mx 8t>X( ,fL‘) v /IR+XQ;mX 8([)1 83:1

-2 /R+Xﬂm X (hq(m) +¥(m)) - x
_z/wm o (5 (O (elu) =A™ :m © m)))m) - x.

Furthermore, taking the limit when ¢ tends to zero in (2.22) with a test function x €
CX(RT;V(Q)), we obtain

ou 0
/ gu 99X —/ (AN :e(u)) :e(x) +/ u1x(0, z)dx +/ X
rRtxo O Ot R+ xQ Q R+ xTs

= — A (A" imem)) e(x).
Rt xQ

Consequently, (m,u) is a global in time weak solution of (1.15)-(1.16)-(1.20), which
concludes the proof of Theorem 1.1 .

3 Proof of Theorem 1.2

We define the following spaces:

V(w)={ve H(w); v=00nC},
W(w) = {v=(v;) € H(w) x H'(w) x H*(w), v; = 0 on C; and d1v3 = dyvg =0 on C1 },
Vikr(£1) = {f € HY); E=00nT} and g;5(¢) =0 in Q fori € {1,2,3}}.

(3.1)
We recall without proof the following result, proved in details in [12] (of Th. 1.4.1.).

Lemma 3.1. The application I defined as follows:

I Ww) — Vio(th)
v — ((va — 2304v3),v3),

18 an isomorphism.
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Let mog € HY(w;5%(0,1)), 9 € W(w) and u; € L*(w;R?) such that (u;)3 = 0. We
define m{ € H'(,; 5%), ul € V() and u] € L*(Q,;R?) by (1.30).

Let gt and g~ € L?*(w) and h € L?(C3). From these data, we define on I'j the 7-
depending boundary data f" by (1.29).

We consider then the solution for the initial and boundary value problem (1.15)-(1.16)-
(1.20) with these initial and boundary data, and we define the rescaled variables M7, U"
and H" by (1.31).

For £ € C®(R*;V(£1)), we denote by &(n,£) the 2-tensor given by:

eap(n,§) =eqp(§) for o, f € {1,2},

ca3(n,§) = ?17&13(5) for o € {1,2}, (3.2)

e33(n,§) = 7712533(5)7

So that we have:
e(u) = e(n, U"). (3.3)

Now we rewrite the properties satisfied by m” and u” (see Definition 1.2) for the rescaled
variables. We obtain that:
oM™

o M" e L*®(RT; H' (Q1;RY)), 5

(t,l‘) € Rt x O,

€ L*(RT; L?(Q1;R3)), and |[M"(t,z)| = 1 for a.e.

o M"(0,z1,22,x3) = m{(0, 21,22, nx3) = mo(x1,22) in the trace sense,

ou” co(m+. 72
U € L2(R* V() and = - € L¥(RY3 L7 (),

U0, x1,x9,x3) = ug(z1,2) in the trace sense,

for all xy € C°(RT; HY(Q1;R3)), we define x7 € C°(RT; H'(Q,; R?)) by:

xr3
Xn(ta x7177 xga Cﬁg) = X(ta x1,x2, ;)

Taking x" as a test function in (1.22), we obtain that:

2
oM™ BM”)
~ M7 x X:z/ > M7 % 9o M" - Dax
/]R+><Ql( ot ot R+

2
+= M" x 93 M" - Dy — 2/ M" x (H" + % (M")) - x (3.4)
" JR+x0y R+x0
—2 M x (A™ (X (e(n, U™ =A™ : M @ M"))M"- x,
R+><Ql

o forall { € C¥(RT;V (1)), we define £ € C*°(R*; V(€,)) by:

52(t3x17x271‘3) - ga(t,ﬂfl,ﬂfQ, E) for o = ]-a 25
n

1 I3
&l(t, w1, w0, 3) = 553@717171‘2,?)-
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We remark then that
e(€") =, ). (3.6)

Taking &7 as a test function in (1.23), using that the third component of u; = 0, we
obtain that:

2
AU D€, / U3 d¢3 /
+ = =3 =4 uy-€(0,z
/R+X91; at ot n? Jriwa, O O Jo, (0.)

- (X (e(n, UM = N M7 @ M")) : £(n, €) (3.7)
R+ x4

+/ g‘-£+/ g+-£+/ h-&=0.
R+xI't R+xFi R+xI'}

e for all t > 0, from (1.24), we have

oM™ |?

//Q1 £7(0), (3.8)
where
e = 15<mn iy
/ Z|8 M+ = / 195 M| +2/ S(M) + / P
o=t
+2/Ql [A°: (e, U") = A" : M@ M) : (e(n,U") = A™ : M" @ M")
/ (g’w 1 a(;]t’? 2)_/1_‘1_9—.Un_/1"}'_g+.Un_/F%h.Un‘

(3.9)

3.1 Uniform bound and limit when 7 tends to zero

Since M"(0) does not depend on z3, we have:

2
gy = ;S(mg,ug,u?) :/ [Z |8amol? + 2<I>(m0)] dxr + /]1@3 |H"(0)|?dx

a=1

+ 1 /Q = (e(n, U(0)) — A™ : mo ® mo)] : (e(1, U7(0)) — A™ < o © mo)

2
/P(g_-%g+)me~ug——j[ h-u@
w F%
Since €;3(U"(0)) = 0 for i € {1,2,3}, (n,U"(0)) does not depend on 7. In addition,

/R |E ) = }7 /R hamrO)) < - / m"(0)? < 2meas(w).

nJa,

_l’_

Therefore, there exists a constant C'1, independent of 7, such that:

¥ >0, £7(0) < CY. (3.10)
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Using (3.10) and the same arguments as in the proof of Lemma 2.1, using also the
saturation constraint satisfied by M", we obtain that there exists a constant C' such that
for all n,

1
/ A (e(n,UT) = A" : M"®@ M) : (e(n,U") =A™ : M"® M") >
2 Jou o (3.11)
N e
By continuity of the trace from H'(f2) into H %(89), we have
g_'Un‘i‘/ g+~U77+/ hUHSOQHUnHHl(Q )s (312)
Tt Tt r} '

where Cs is a constant depending only on 2;.
Now, using the energy inequality (3.8), and inequalities (3.11), (3.12) and the fact that
®(M™M) is non negative, for all t > 0, we have

2 PYVCIE

> 10aM ey + 51060 sy + 1 ey + [ [ |5

— 1

)\e
+ ||€(TI,U”)||L2(Q1 — C1 = Co|U"[ 11y (3.13)
2 2 2
ouUy ouy
+) = H < £(0),
a=1 ot LQ(Ql L? (Q1)
Using Definition (3.2) and Korn inequality 2.2 we can prove that

le(m, 20 = @2y = cllélln ) for all § € V(€2). (3.14)

Hence, applying inequality (3.14) on (3.13), we obtain that, for all 7" > 0 and 7 in a
neighborhood of zero, there exists a constant C' independent of 7 such that

oM"
. HW”LQ(O,T;LQ(QQ) <,

101 M| oo 0,7522(00)) + 102M | oo 0,7:12(01)) < C,

1
5”33M77||L°°(0,T;L2(Ql)) <G,

UM oo 0,102 (021)) < Cs

aUn aUT]
1,.0U]
o g le=oraz@y < €,

le(, Un)HL?(Ql) <C,

HH| oo (0,122 (m3)) < C-
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So, we can extract subsequences, still denoted (M7, U") and H", such that when 7 tends
to zero:

oM"  OM
M7 — M in L>(0,T; H'(Q1)) weak *, = L*(0,T; L*(Q1)) weak ,

oun U
UM — U in L=(0,T; V(1)) weak *, w5 o o L>®(0,T; L*()) weak *,

7
e(n,U") — A in L*(0,T; L?(£21)) weak x, aaif — 0 in L®(0,T; L*()),
H" — H in L>(0,T; L*(R%)) weak *.
(3.15)
Using the Aubin-Simon lemma (see [5], Theorem II1.5.16, or the original papers [4] and
[24]), we can prove that M" — M in L®°(0,T; L" (1)) NC°([0, T]; L*(£)) strong for r < 6.
In addition, we can extract a subsequence, still denoted by (M"),, such that M7 — M
almost everywhere in [0, 7] x ©;. Hence M verifies the saturation constraint

M| =1 a.e. in RT x Q,

and by continuity in time with values in L?(Q;), M(0,z) = mq(z) in the trace sense.
Furthermore, we have 93M" — 0 in L>(0,T; L?()) strong, so M only depends on

U.
(t,71,72) € RT x w and does not depend on x3. In addition, 23 .

ot

3.2 Limit in the Landau-Lifschitz Equation

In order to characterize H, the weak limit of H", we apply Lemma 2.A in [8] to obtain:

0
- 0 for (J,‘,y7 Z) €,
H(t,%,y,Z) = Mg(t,l[),y) (316)
0 for x ¢ R3\ Q.

Let ¥ € C°(RT; D(@)), and define x in RY x Q1 by x(¢, 21, 22, 23) = X(t, 71, 22). Then,
X € C(RT; HY(Q)) and d3x = 0, so we can take x as a test function in (3.4). Using the
strong convergence of M" in L>(0,T; L*(Q4)) and the weak convergence of %7]\;[77 and VM
in L2(0,T x Q1), by weak * convergence of £(n;U") in L>(0,T; L?(€)), we obtain that

2
oM oM\ _ / -
— — M x — =-2 M x 0,M -0,
/]R+><Ql ( ot ot )X ]R+><91; X

—2/ M x (—Mzez +VU(M)) - x —2 M x (A" : (N A)M -x
R+XQ1 R+><Ql
+2 Mx (A : (X : (A" : MeM)))M)-X,
R+><Ql
_ 1t -
We denote A := 5 / Adzs, so that A is a symmetric 2-tensor. We define ¢ by:
-1

G=A:¢, withe®=A4-\": M ® M. (3.17)
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Since ¥ and M do not depend on x3, we obtain that:

oM oMY : )
/R+><w (at_MXat> .X__Q/H{+XWZMX80M.8OCX

a=1
—2 M x (—Mses + U(M)) - ¥ (3.18)
Rt xw
-2 M x (X" :(X\:0))M-x
R+ xw

3.3 Limit in the elasticity wave Equation

We remark that (%5043(U’7))77 for o € {1,2} and (n%egg(U”))77 are bounded in L>(0,T; L*(Q)),
because (g(n,U™")), is bounded, this gives that e;3(U") — 0 strongly in L>(0,T; L*(Q2)),
for all T > 0, i.e. ;3(U) =0 for i € {1,2,3}. Therefore, U € L>®(R*; Vi1(£1)), then by
Lemma 3.1, there exist @ € L>°(R"; V(w)) such that

Ua(t,x1,m2,23) = Un(t, 1, 22) — x30us for a € {1,2},

- 3.19
Us(t,z1,x2,23) = us(t,x1,2). (3.19)

For abbreviation, we write r = (u1,U2). Using that U7 — U in L*(0,T;V (£21)) weak
%, since for all (o, B) € {1,2}2, ((n,U"))ap = ((U"))ap, we obtain at the weak limit that:
Anp = cap(U)  for (a, B) € {1,2}2 (3.20)
Taking the average in the variable x3 € [—1,1] and using (3.19), we obtain that:
Aup = eaplir) for (o, B) € {1,2}2. (3.21)
For v € C®°(RT; W(w)), we define £ € C°(R; Vk,(1)) by

Ea(1,22,23) = vo(z1,22) — 230,03(21, 22) for @ = 1,2,
§3(wy, w2, 23) = v3(x1, 22).

Then, €;3(§) = 0 for i € {1,2,3}, so that £(n,&) = €(£). With £ as a test function in the
weak formulation (3.7), we obtain

2
oU d¢, 1 (9U§7 Oy /
a2 ot ot A e(n,Um)) :
/R+><Q1oél ot ot n? /]R'*'Xﬂl ot ot R+><Ql( e(n,U")) : €(§)

— (A®: (A™: M@ M) : e(€),
Rt x4

(3.22)

Taking v = (v1,v2,0) in (3.23), where v; and vg are in C®°(R*; V(w)), we obtain:

2
OU.l dv, /
I A\ ,Uﬂ -
/l%"'XQlaZl ot 0Ot R+Xﬂl( (77 )) (5)

+/ (g++g_)T~UT+/ hT-UT+/ ULT%}T(O,QS)
Rt xw Rt xTI} Q1

_/ S A MY M")as  Eap(v).
REXD (4 8){1,2)
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By taking the limit when 71 tends to zero, we obtain that, for all v € C*°(R™;V(w)):

2

aﬁTaUT / = 1/ + — /
=Lz T 22 A)agta + = +g7) v+ hp -
/wa 5 Bt wa%::l( Jag€ap(vr) + 5 RWW(QT 97) - vr e, 11T
2
+/ urrvr (0, ) = —/ DO (A M@ M))apeas(v),
Rt xw R

Fxw af=1

and therefore, using notation (3.17), we have:

2
81]7‘81)7“ / ~ 1/ + _ /
—_— - E apap(v) + = 9r +97)-vr + ht -vr
/R*Xw ot ot R o 015() 2 R*Xw( T T) R+ xCo

txXw a,B:l
—i—/ uppvr(0,2) = 0.
Rt xw
(3.24)

3.4 Characterization of o

For all £ € C*®°(R*; V(Q1)), multiplying (3.7) by n? and taking the limit when 7 tends to
zero, we obtain that

oUs 0
oo [ o Mm@ == [0 0" M e M) em(©): (329
Rtx, O Ot Jrexo R+ %0y
oUs . . .
We remark that 5 = 0, so the first integral in (3.25) vanishes. For ¢ € D(R" x w), we

choose £ such that:
éa=0fora=1,2

§3 = 3¢,
then e33(§) = ¢, and (3.25) implies

[0 me= [0 0m M),
R+ xw Rt xw
since M and ¢ are independent of x3. Then

(X A)zg = (X°: (W™ : M ® M))s3 in L*(RT x w).

Fix a € {1,2} and choose ¢ such that & = x3p, and & = 0 for i # «, where ¢ €
D(R* x w), then ey3(&) = %g@ and e33(¢) = 0. Replacing £ by its value in (3.7), multiplying
the obtained equation by 1 and n — 0, we get:

/ (A : A)azp = / (A7 (A" M ® M))agp.
R+ xQ; Rt xh

This is true for all ¢ € D(RT x w), then by using the fact that ¢ and M are independent
of x3, we obtain

A A)az =N (N : M ® M))ysz in LA(RT x w). (3.26)
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Therefore, we obtain that:
Vie{1,2,3}, 03 =03 =0. (3.27)
We define I and J by:
I={(i,j)€{1,2}>} an J={(i,j) €{1,2,3}% i=3orj=3}

We denote by G the set of symmetric real 3 x 3 matrices endowed with the scalar product
:. We denote by G,, the set of the matrices D = (d;;) € G such that dog = 0 for (o, ) € I,
and by Gr the set of the matricies D = (d;;) € G such that d;; = 0 for (4, j) € J, so that

G=Graotg,. (3.28)
For D € G, we define (D) € G,, by:
0if (i,5) eI,
A\ D)= > Xdu if (4,5) € J.
(k,l)e{1,2,3}2

We remark that C is linear and that its restriction to G, is a bijection from G,, to itself.
Indeed, if D € G,, with (D) = 0, we have:

0= Y (K(D));;Dy; since K(D) =0,
(i,9)ed
= > (X:D)yDy,
(i,5)ed
= > (X°:D);;Dyj since Dy = 0if (i,5) € 1,
(i,5)€{1,2,3}2
= (A°:D):D.

So by positivity of A, if (D) = 0 with D € G, then D = 0. So K is bijective from G, into
Gn. We denote by T : G, — G,, the inverse of /C|gn. We split € as € = €, + €, where:

0if (i,5) € J,
(e7)ij =
E(QTLT)Z'j — (Am T M® M)zg if (Z,]) (S I,
and
0if (i, §) e 1,
(€n)ij =

Aij — ()\m : M®M)ZJ if (Z,j) e J
By (3.27), K(e%- +€5) =0, so K(€,) = —K(€5). Since €}, € G, we obtain that:
€n = =T (K(e7))-

Therefore,



We denote by A°? the 4-tensor defined by:
for De G, \*1:D=X°:(D-T(K(D))),
so that we have:
o=\ (6(12T) — A" M®M).
Remark 3.1. In the isotropic case, that is for A® given by

v

1—-2v

E
VSE g, ()\e . S)z] = m <SZ+

where E is the young modulus and v € |0, %[ is the Poisson coefficient, we obtain that o is

deduced from €7 by:
0ifi=3o0rj=3,
5@']' = E

1+v

(60 + s s ) o ) € (1.2

where tr €5 = (¢5:)11 + (€5)22. This particular case was studied in [18].

4 Conclusion

We have obtained the following 2d-model for thin ferromagnetic plates with magnetostric-
tion:

M € L®(RT; HY(w; §?)), oM € L*(RT x w),

ar € L®(RT; HY(w;R?)) with @y = 0 on RT x C; and Oyt € L®°(RT; L2(w; R?))

For all ¥ € C®°(RT; H(w;R?)),

2
oM oM
- — M _— v = —2 M 8aM'8a~
/R"'Xw ( ot . ot )X /]R""Xwaz:l * X

2 M x (—Mzes + U(M) + (\™ : 5)M) - %.

Rt xw

For all vy € C®(RT; V(;R?)),

7 2
our Ovr / N 1 / X .
/R+><w ot Ot R Z Uaﬁsaﬂ(vT) + 5 R+XW(QT +9T) (%

+xw af=1

+2/ hr-vp + / ulTvT(O, :U) =0.
R+ xCo Rt xw

o 0 =\: (5 —T(K(e7))) with € = e(tr) =A™ : M @ M.
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We remark that the equation in vr is hyperbolic since the equivalent tensor A°? is
positive on Gr. Indeed, if D € Gp, then:

(X9:D):D=(\:(D-T(K(D)))):D.
We remark that A\®: (D — T(K(D))) € Gr and T(K(D)) € G,,. Thus,
(X9:D): D= (A*:(D—-T(K(D)))):(D-T(K(D)))

> A*|D = T(K(D))|?

v

A\*||D||? since G L G,,.

It is well known that in 3d, the weak solutions for the Landau Lifschitz equation are
not unique (see [2]). The uniqueness is only proved for regular solutions (at least with
H? regularity in the space variable). For the 2D-model coupling , the uniqueness of weak
solutions remains an open problem. Although, using J L Lions’ theorem, we can show
that if M is fixed, then the solution of the initial and boundary value hyperbolic problem
satisfied by @7 is unique (see Theorem 10.14 in [6] and [23]).

In conclusion, the model we obtain will be easier to study and to simulate since it is
bi-dimensional and since the 2d demagnetizing field is local. It would be interesting to
characterize the normal deformations in the 2d model, even though they have no influence
on magnetization in the regime we studied.
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