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Context 

µ = µ 0 ⇒ U = -K•∇p µ 0 ⇒ U ∝ ∆p ⇒ 1 µ = µ β γn-1 ⇒ U = - K( U )•∇p µ 0 ⇒ U ∝ ∆p 1/n ⇒ 2 γc 1 2 γ µ Fig: Non-Newtonian rheology
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Rheology

◮ Time-independent fluids, no yield stress. Common models are,

◮ plateau + power-law, µ =    µ 0 if γ < γc , µ 0 γ γc n-1 else,
(1) ◮ Carreau, ◮ generalized Newtonian. ◮ Choice of plateau + power-law (and tried others).

◮ This leads at a macro scale to,

U ∝ ∆p ∆p 1/n (2)
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Numerical set up

◮ Equations: 0 = -∇p + ∇ • [ν( γ)(∇U + ∇U T )], ∇ • U = 0 .
◮ FVM with OpenFOAM, 2 nd order schemes.

◮ Permeameter, no-slip conditions.

◮ Grid convergence study, 80 millions meshes, 10 5 hours of CPU time, use of HPC. 
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Numerical results -Varying n

Varying n: k ∝ U 1-n is equivalent to U ∝ ∆p 1/n .
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Numerical results -Varying γc

Varying γc : U c ∝ γc . This leads to, U c = φ × γc ℓ eff .

◮ Rheology: embedded in γc .

◮ Topology: embedded in ℓ eff .

◮ Use of φ.
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10 0 U m.s -1 k * γc = 10 0 s -1 γc = 10 1 s -1 γc = 10 2 s -1 Fig: Dimensionless permeability k * = k/k 0 versus
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Transition's model

Is ℓ eff = √ k 0 so surprising? γeq = α 4 ( U /φ) 8k 0 /φ ⇐⇒ U c = 1 √ 2φα × φ γc k 0 (4)
This would mean that without complex physical phenomena, ℓ eff = √ k 0 is a good estimation for the ℓ eff . 
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  Fig: Power-law fluid flowing through a Bentheimer sandtone

  Fig: A few rheological model
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  Fig: Dimensionless permeability k * = k/k 0 versus U for the C1 case. Rheological parameters : fixing γc and varying n.

  Fig: PDF of γ * at U * = 1 for media C1.Legend : for γc = 10 0 s -1 , for γc = 10 1 s -1 , for γc = 10 2 s -1

  U for the C1 case. Rheological parameters : fixing n and varying γc .
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◮ Identify a critical pore throat volume with PDF.

The non-Newtonian phenomena start in the pore throats and then extend in the larger pore (lower shear rate). 
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Transition's model

◮ Equivalent to: predict ℓ eff .

◮ Validation by comparison between the model and U c calculation (cross-over method).

Model for ℓ eff :

◮ Use of √ k 0 . For Newtonian fluids, √ k 0 is a pure topological parameter (even if PDE are needed). We have tried:

◮ Use of Kozeny-Carman formulation and equivalent diameter, Kozeny 1927;Plessis et al. 1994;Sadowski 1963.

◮ Use of volume or surface of the medium (V part , V medium , S part ), Li et al. 2011;Ozahi et al. 2008.

Best results using simply ℓ eff = √ k 0 . Leading to: