Supplementary Information

Environmental and social inequities in continental France: An analysis of exposure to heat, air pollution, and lack of vegetation

Lucie Adélaïde^{a,b}, Ian Hough^{b,c}, Emie Seyve^{b,d}, Itai Kloog^{c,e}, Grégory Fifre^f, Guy Launoy^{g,h}, Ludivine Launay^{g,i,j}, Mathilde Pascal^{*a}, Johanna Lepeule^{*b}

* These authors contributed equally to this work.

^aSanté publique France, 12 rue du Val d'Osne, 94415 Saint-Maurice Cedex, France

^bUniversité Grenoble Alpes, Inserm, CNRS, IAB, Site Santé, Allée des Alpes, 38700 La Tronche, France

^cDepartment of Geography and Environmental Development, Ben-Gurion University of the Negev, Be'er Sheva, Israel

^dUniversité de Paris Cité, Inserm, INRAE, Centre of Research in Epidemiology and StatisticS (CRESS), 75000 Paris, France

^eDepartment of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA

^fMétéo-France, 73 avenue de Paris, 94165 Saint-Mandé Cedex, France

^gU1086 Inserm Anticipe, Avenue Général Harris, 14076 Caen Cedex, France

^hUniversity Hospital of Caen, 14076 Caen Cedex, France

ⁱPlateforme MapInMed, US PLATON, Avenue Général Harris, 14076 Caen Cedex, France

^jCentre François Baclesse, Avenue Général Harris, 14076 Caen Cedex, France

Corresponding authors:

Lucie Adélaïde, <u>lucie.adelaide@santepubliquefrance.fr</u>, Santé publique France, 12 rue du Val d'Osne, 94415 Saint-Maurice Cedex, France

Johanna Lepeule, <u>johanna.lepeule@univ-grenoble-alpes.fr</u>, Université Grenoble Alpes, Inserm, CNRS, IAB, Site Santé, Allée des Alpes, 38700 La Tronche, France

Contents

Supplementary Figures

Supplementary Figure 1. Climate types in continental France and distribution of IRIS byurbanization level and climate type3

Supplementary Figure 2. Distribution of Δ Tmean by climate type and season between 2000 and 2018 in continental France 4

Supplementary Figure 3. Mean summer ANDVI between 2000 and 2018 in continental France6

Supplementary Figure 4. Distribution of ΔNO_2 (a, b) and ΔO_3 (c, d) concentrations between2000 and 2018 in urban IRIS (a, c) and rural IRIS (b, d) in continental France7

Supplementary Figure 5. Distribution of $\Delta PM_{2.5}(a, b)$ and $\Delta PM_{10}(c, d)$ concentrations between 2000 and 2018 in urban IRIS (a, c) and rural IRIS (b, d) in continental France 8

Supplementary Figure 6. Correlations between exposure indicators and social deprivation between 2000 and 2018 in urban (a) and rural (b) areas in continental France 9

Supplementary Figure 7. Distribution of each exposure indicator by European Deprivation Index (EDI) quintiles, period, and urbanization level 10

Supplementary Figure 8. Distribution of each exposure indicator by French Deprivation Index (FDep) quintiles, period, and urbanization level 13

Supplementary Figure 9. Distribution of each exposure indicator by class of the cumulative exposure indicator, period, and urbanization level 16

Supplementary Figure 10. Associations between the cumulative exposure indicator classes and the deprivation indices (EDI and FDep) between 2000 and 2018 in urban and rural areas in continental France (OR [95% CI]) 19

Supplementary Tables

Supplementary Table 1. Summary of the indicators	20
Supplementary Table 2. Mean Δ Tmean, Δ Tmin, and Δ Tmax by period, season, and un	banization
level in continental France	23
Supplementary Table 3. Percentage of IRIS in each class of the cumulative exposur by period and urbanization level	e indicator 24
Supplementary Table 4. Mean percentages of IRIS overexposed to each environmenta	ll exposure
indicator by cumulative exposure indicator class and urbanization level	25

Supplementary Figure 1. Climate types* in continental France and distribution of IRIS by

urbanization level and climate type

Climate type	Urban areas n (%)	Rural areas n (%)		
Mountain	606 (3.4)	3,686 (12.0)		
Semi-continental climate and climate of mountainous margins	1,459 (8.3)	5,214 (17.0)		
Modified oceanic	6,856 (39.1)	8,906 (29.1)		
Transitional oceanic	3,589 (20.4)	5,994 (19.6)		
Oceanic	1,611 (9.2)	3,383 (11.0)		
Moderate Mediterranean	402 (2.3)	1,036 (3.4)		
Southwest basin	911 (5.2)	1,366 (4.4)		
Mediterranean	2,037 (11.6)	1,048 (3.4)		
Missing (no interpolation)	71 (0.4)	10 (0.03)		
Total	17,652	30,643		

*Adapted from Joly D, Brossard T, Cardot H, Cavailhes J, Hilal M, Wavresky P. Les types de climats en France, une construction spatiale. Cybergeo: European Journal of Geography. 2010 **Supplementary Figure 2.** Distribution of Δ Tmean by climate type and season between 2000 and 2018 in continental France

Supplementary Figure 3. Mean summer \triangle NDVI between 2000 and 2018 in continental France

Supplementary Figure 4. Distribution of ΔNO_2 (a, b) and ΔO_3 (c, d) concentrations between 2000 and 2018 in urban IRIS (a, c) and rural IRIS (b, d) in continental France

Supplementary Figure 5. Distribution of $\Delta PM_{2.5}(a, b)$ and $\Delta PM_{10}(c, d)$ concentrations between 2000 and 2018 in urban IRIS (a, c) and rural IRIS (b, d) in continental France

Supplementary Figure 6. Correlations between exposure indicators and social deprivation between 2000 and 2018 in urban (a) and rural (b) areas in continental France

Supplementary Figure 7. Distribution of each exposure indicator by European Deprivation Index (EDI) quintiles, period, and urbanization level

Supplementary Figure 8. Distribution of each exposure indicator by French Deprivation Index (FDep) quintiles, period, and urbanization level

Supplementary Figure 9. Distribution of each exposure indicator by class of the cumulative exposure indicator, period, and urbanization level

Supplementary Figure 10. Associations between the cumulative exposure indicator classes and the deprivation indices (EDI and FDep) between 2000 and 2018 in urban and rural areas in continental France (OR [95% CI]*)

*OR (95% CI) estimated using non-ordinal polytomous logistic models

Supplementary Table 1. Summary of the indicators

	Relative exposure indicators						
Name	Definition	Type of indicators	Categories				
	Difference between the daily	Continuous	/				
ΔTmean	temperature and the corresponding 10-day reference	Quartiles (ΔTmean only)	During summer, by period (2000-2004, 2005-2 2010-2014, 2015-2018), and urbanization lev (urban/rural)				
ΔTmin	each climate type		Low	≤ 0			
ΔImax	Overexposure if $\Delta Tmean/\Delta Tmin/$	Categorized (ATmean only):	Medium*	Urban:]0 ; 0.96[Rural:]0 ; 0.75[
	$\Delta Tmax > 0$	exposure to neat during summer	High	Urban: ≥ 0.96 Rural: ≥ 0.75			
		Continuous					
	Difference between mean summer NDVI and median values of mean summer NDVI values in rural areas for each climate type	Quartiles	By period (2000-20 2015-2018) and urb	04, 2005-2009, 2010-2014, anization level (urban/rural)			
ANDVI			Low	≥ 0			
		Categorized: exposure to lack of vegetation during	Medium*	Urban:]-0.18 ; 0[Rural:]-0.065 ; 0[
	<i>Overexposure if</i> $\Delta NDVI < 0$	summer	High	Urban: ≤ -0.18 Rural: ≤ -0.065			
		Continuous		/			
	Difference between daily mean PM _{2.5} concentrations and annual WHO air quality guideline values (5 µg/m ³)	Quartiles	By period (2000-20 2015-2018) and urb	04, 2005-2009, 2010-2014, anization level (urban/rural)			
ΔPM _{2.5}			Low	$\mathrm{Urban:} \leq 1.84^\dagger \ \mathrm{Rural:} \leq 0.45^\dagger$			
	$(0 \mu g m)$ Overexposure if $\Lambda PM_{25} > 0$	Categorized	Medium*	Urban:]1.84 ; 6.50[Rural:]0.45 ; 4.89[
	2 . 2. orp osmoly <u>21</u> . 12.5 × 0		High	Urban: ≥ 6.50 Rural: ≥ 4.89			
ΔPM_{10}		Continuous		/			

	Difference between daily mean PM ₁₀ concentrations and annual	Quartiles	By period (2000-200- 2015-2018) and urbar	4, 2005-2009, 2010-2014, nization level (urban/rural)
	WHO air quality guideline values (15 μ g/m ³) Overexposure if $\Delta PM_{10} > 0$	Categorized	Not	studied
		Continuous		/
	Difference between daily mean NO ₂ concentrations and annual	Quartiles	By period (2000-200- 2015-2018) and urbar	4, 2005-2009, 2010-2014, nization level (urban/rural)
	WHO air quality guideline values		Low	≤ 0
	$(10 \mu g/m^3)$	Categorized	Medium*	Urban:]0 ; 6.89[Rural:]0 ; 2.35[
	<i>Overexposure if</i> $\Delta NO_2 > 0$		High	Urban: ≥ 6.89 Rural: ≥ 2.35
		Continuous		/
	Difference between daily maximum O ₃ concentrations during summer and peak season	Quartiles	During by period (200 2014, 2015-2018) (urb	00-2004, 2005-2009, 2010- and urbanization level an/rural)
ΔO_3	WHO air quality guideline values (60 µg/m^3)		Low	Urban: $\leq 15.78^{\dagger}$ Rural: $\leq 16.26^{\dagger}$
	Overexposure if $\Delta O_3 > 0$	Categorized	Medium*	Urban:]15.78 ; 32.34[Rural:]16.3 ; 31.22[
			High	Urban: ≥ 32.34 Rural: ≥ 31.22
	Cum	ulative exposure indicator		
Hotspots Class 4	The three following conditions are all met: i) summer Δ Tmean in the last quartile; ii) at least one of the four air pollutants (annual Δ PM _{2.5} , annual Δ PM ₁₀ , annual Δ NO ₂ , or summer Δ O ₃) in the last quartile; iii) summer Δ NDVI in the first quartile.			

Class 3	IRIS in the strongest quartiles for two factors	Two of the following conditions are met: i) summer Δ Tmean in the last quartile; ii) at least one of the four air pollutants (annual Δ PM _{2.5} , annual Δ PM ₁₀ , annual Δ NO ₂ , or summer Δ O ₃) in the last quartile; iii) summer Δ NDVI in the first quartile.
Class 2	IRIS in the strongest quartiles for one factor	One of the following conditions is met: i) summer Δ Tmean in the last quartile; ii) at least one of the four air pollutants (annual Δ PM _{2.5} , annual Δ PM ₁₀ , annual Δ NO ₂ , or summer Δ O ₃) in the last quartile; iii) summer Δ NDVI in the first quartile.
Class 1	IRIS in the lowest exposure quartiles for all factors	The three following conditions are met: i) summer Δ Tmean in the first quartile; ii) all four air pollutants (annual Δ PM _{2.5} , annual Δ PM ₁₀ , annual Δ NO ₂ , and summer Δ O ₃) in the first quartile; iii) summer Δ NDVI in the last quartile.

*Upper bounds correspond to the median in overexposed IRIS for Δ Tmean, Δ PM_{2.5}, Δ NO₂, and Δ O₃. Lower bounds correspond to the median in overexposed IRIS for Δ Tmean, Δ PM_{2.5}, Δ NO₂, and Δ O₃. Lower bounds correspond to the median in overexposed IRIS for Δ NDVI.

- **Supplementary Table 2.** Mean Δ Tmean, Δ Tmin, and Δ Tmax by period, season, and urbanization
- 7 level in continental France

Urban IRIS*					Rural IRIS *				
		2000-	2005-	2010-	2015-	2000-	2005-	2010-	2015-
		2004	2009	2014	2018	2004	2009	2014	2018
	$\Delta Tmean$	0.46	0.45	0.36	1.19	-0.09	-0.24	-0.31	0.73
Summer	$\Delta Tmin$	0.86	0.84	0.62	1.33	-0.08	-0.13	-0.26	0.47
	$\Delta Tmax$	0.19	0.03	0.03	1.39	-0.02	-0.33	-0.38	0.89
	Δ Tmean	0.22	0.36	0.65	0.46	-0.23	-0.28	0.13	0.16
Autumn	∆Tmin	0.63	0.44	0.83	0.48	-0.02	-0.31	0.20	-0.14
	$\Delta Tmax$	-0.21	0.02	0.32	0.78	-0.38	-0.30	0.06	0.44
	Δ Tmean	0.79	0.15	0.17	0.62	0.38	-0.39	-0.35	0.41
Winter	$\Delta Tmin$	1.03	0.14	0.30	0.91	0.44	-0.53	-0.34	0.48
	$\Delta Tmax$	0.54	-0.10	-0.15	0.62	0.39	-0.28	-0.40	0.31
Spring	Δ Tmean	0.35	0.73	0.36	0.66	-0.19	0.09	-0.26	0.25
	∆Tmin	0.71	0.97	0.51	0.92	-0.12	0.13	-0.30	0.20
	$\Delta Tmax$	0.04	0.39	0.13	0.73	-0.19	0.06	-0.25	0.21

10 **Supplementary Table 3.** Percentage of IRIS in each class of the cumulative exposure indicator by

	Urban areas					Rural	areas	
	Class 1	Class 2	Class 3	Class 4	Class 1	Class 2	Class 3	Class 4
	% (n)	% (n)	% (n)	% (n)	% (n)	% (n)	% (n)	% (n)
2000 2004	1.16	65.94	25.24	7.66	0.72	72.66	15.29	11.33
2000-2004	(1,014)	(57,839)	(22,138)	(6,719)	(1,096)	(111,327)	(23,430)	(17,362)
2005 2000	0.56	68.77	22.84	7.83	0.13	68.47	26.69	4.72
2005-2009	(494)	(60,319)	(20,031)	(6,866)	(194)	(104,900)	(40,889)	(7,232)
2010 2014	0.77	68.96	22.99	7.27	0.31	72.81	22,15	4,73
2010-2014	(678)	(60,489)	(20,164)	(6,379)	(475)	(111,559)	(33,932)	(7,249)
2015-2018	1.36	67.37	25.15	6.12	0.54	71.37	21,64	6,45
	(953)	(47,272)	(17,646)	(4,297)	(659)	(87,476)	(26,532)	(7,905)

11 period and urbanization level

12 Class 4: hotspots with IRIS in the strongest quartiles for all three factors

13 Class 3: IRIS in the strongest quartiles for two factors

14 Class 2: IRIS in the strongest quartiles for one factor

15 Class 1: IRIS in the lowest exposure quartiles for all factors

17 Supplementary Table 4. Mean percentages of IRIS overexposed to each environmental exposure

	Urban areas				Rural areas			
	Class 1	Class 2	Class 3	Class 4	Class 1	Class 2	Class 3	Class 4
Summer								
ΔTmean	59.76%	64.29%	74.26%	100%	14.05%	38.91%	61.09%	100%
> 0								
Summer								
ΔNDVI	40.69%	83.22%	98.19%	100%	0%	39.13%	78.54%	100%
< 0								
$\Delta PM_{2.5}$	00 00%	00 00%	00 08%	00 07%	00 87%	00/6%	00 8/1%	00 76%
> 0	99.9970	<i>99.997</i> 0	<i>99.99/0 99.90/0</i>	<i>))</i> .)170	<i>))</i> .0270	<i>99</i> .4070	99.04%	99.70%
ΔPM_{10}	70 80%	0/ 00%	08 51%	00 / 8%	13 57%	71 54%	83 73%	81 87%
> 0	79.80%	94.00%	90.31%	99.40%	45.5770	/1.34%	03.2370	01.0770
ΔNO_2	02 17%	08 70%	00 87%	00 00%	75 50%	02 07%	05 20%	07 80%
> 0	72.17%	<i>30.19%</i>	77.01%	77.79%	75.50%	92.07%	93.29%	97.00%
Summer	100%	100%	100%	100%	100%	100%	100%	100%
$\Delta O_3 > 0$	100%	100%	100%	100%	100%	100%	100%	100%

18 indicator by cumulative exposure indicator class and urbanization level