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ABSTRACT  30 

BACKGROUND 31 

Cumulative environmental exposures and social deprivation increase health vulnerability and limit the 32 

capacity of populations to adapt to climate change.  33 

OBJECTIVE 34 

Our study aimed at providing a fine-scale characterization of exposure to heat, air pollution, and lack of 35 

vegetation in continental France between 2000 and 2018, describing spatiotemporal trends and 36 

environmental hotspots (i.e., areas that cumulate the highest levels of overexposure), and exploring any 37 

associations with social deprivation.  38 

METHODS 39 

The European (EDI) and French (FDep) social deprivation indices, the normalized difference vegetation 40 

index, daily ambient temperatures, particulate matter (PM2.5 and PM10), nitrogen dioxide, and ozone 41 

(O3) concentrations were estimated for 48,185 French census districts. Reference values were chosen to 42 

characterize (over-)exposure. Hotspots were defined as the areas cumulating the highest overexposure 43 

to temperature, air pollution, and lack of vegetation. Associations between heat overexposure or hotspots 44 

and social deprivation were assessed using logistic regressions. 45 

RESULTS 46 

Overexposure to heat was higher in 2015-2018 compared with 2000-2014. Exposure to all air pollutants 47 

except for O3 decreased during the study period. In 2018, more than 79% of the urban census districts 48 

exceeded the 2021 WHO air quality guidelines. The evolution of vegetation density between 2000 and 49 

2018 was heterogeneous across continental France. In urban areas, the most deprived census districts 50 

were at a higher risk of being hotspots (odds ratio (OR): 10.86, 95% CI: 9.87-11.98 using EDI and OR: 51 

1.07, 95% CI: 1.04-1.11 using FDep).  52 

SIGNIFICANCE 53 

This nationwide fine-scale study provides a framework to identify environmental hotspots and reveals 54 

social inequalities in the cumulative exposure to heat, air pollutants, and lack of vegetation, in France. 55 

This approach lends support to the inclusion of environmental and social inequities in adaptation 56 

strategies to climate change. 57 

KEYWORDS: temperature, particulate matter, green spaces, social deprivation, hotspots, 58 

environmental justice 59 

 60 
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IMPACT STATEMENT 61 

We studied cumulative environmental exposures and social deprivation in French census districts. The 62 

2015-2018 period showed the highest overexposure to heat between 2000 and 2018. In 2018, the air 63 

quality did not meet the 2021 WHO guidelines in most census districts and 8.6 million people lived in 64 

environmental hotspots. Highly socially deprived urban areas had a higher risk of being in a hotspot. 65 

This study proposes for the first time, a methodology to identify hotspots of exposure to heat, air 66 

pollution, and lack of vegetation and their associations with social deprivation at a national level. 67 

 68 

GRAPHICAL ABSTRACT 69 

  70 
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INTRODUCTION 71 

In the context of rapid climate change, heat exposure associated with the cumulative exposure to 72 

multiple environmental factors and social deprivation can increase health vulnerabilities and limit the 73 

capacity of exposed populations to adapt to climate change. This not only raises serious public health 74 

concerns but is also a source of injustice, as unequal exposure to environmental risks and unequal access 75 

to environmental goods such as parks and forests result in environmental inequities.  76 

In Europe, areas with cumulative exposure to multiple environmental stressors tend to be more deprived 77 

(1, 2). Depending on their location, the deprived or poorer areas may be more exposed to heat (3), have 78 

lower green space availability (4, 5), and/or be more exposed air pollution (4, 6, 7). 79 

Exposure to heat and air pollution has multiple synergistic health effects such as cardiovascular or 80 

respiratory morbidity and negative reproductive outcomes (8-11). Vegetation plays a protective role 81 

against heat (12, 13) and air pollution (14) and has numerous health benefits on mental health, cognitive 82 

function, cardiovascular morbidity, and pregnancy outcomes among others (15). In addition, 83 

socioeconomic characteristics influence the population’s ability to avoid or adapt to these environmental 84 

health hazards (2). 85 

In accordance with a holistic planetary health approach, reducing cumulative exposure to environmental 86 

risks and social deprivation should be at the heart of both public health policies and climate policies. A 87 

preliminary step in this direction is to produce comprehensive data to describe, analyze, and compare 88 

environmental exposures in time and space. However, to our knowledge, no study to date has 89 

investigated cumulative exposure to heat, air pollution, lack of vegetation, and social deprivation at a 90 

fine geographical scale and at the national level. Describing cumulative exposure at a national level 91 

allows the characterization of poorly studied territories and the targeting of heat adaptation interventions 92 

to the areas and populations most at risk.  93 

Existing studies mostly focus on air pollution and, to a lesser extent, on vegetation, and are limited to 94 

city-level or regional analyses (16). However, air pollution, vegetation, and heat are interdependent. 95 

Vegetation contributes to air and surface cooling and thermal comfort through solar radiation absorption, 96 

evapotranspiration, evaporation, albedo modification, and radiative shading (17). It also reduces ambient 97 

air pollution by increasing the deposition of particulate matter (PM) and absorbing gaseous pollutants 98 

(14, 18) as well as by promoting non-motorized transport (18). Vegetation can also act as a physical 99 

barrier against pollutants, thus reducing their dispersion. However, this barrier effect may 100 

simultaneously increase pollutant concentrations on roads and reduce exposure to air pollution on the 101 

other side of this barrier (18). Vegetation also emits biogenic volatile organic compounds (bVOC), 102 

which can react with other chemical species that form secondary particles. For example, isoprene 103 

emissions associated with NOx contribute to ozone (O3) formation. Monoterpenes and sesquiterpenes 104 

can increase PM2.5 and PM10 concentrations (14). Heat increases air pollution through ozone formation 105 
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due to UV radiation in the presence of nitrogen dioxide (NO2) (19). Air pollutants such as O3 have a 106 

negative effect on vegetation growth by affecting the metabolic function of leaves (20). More broadly, 107 

the presence of vegetation and favorable meteorological conditions have a positive impact on human 108 

behavior and thus indirectly influence air pollution. Describing cumulative exposure to heat, air 109 

pollution, and lack of vegetation could thus help support adaptation policies.  110 

Our study aimed to characterize fine-scale exposure to heat, air pollution, and lack of vegetation across 111 

continental France between 2000 and 2018, to describe spatiotemporal trends and environmental 112 

hotspots (i.e., areas that cumulate the highest levels of overexposure), and to explore any associations 113 

with social deprivation. 114 

 115 

MATERIALS AND METHODS 116 

Study area and period  117 

Drawing on the 2021 geography reference files, we analyzed the 48,185 IRIS of the 34,477 118 

municipalities located in the 94 departments of continental France for the period 2000-2018. An IRIS is 119 

a sub-municipal geographical unit equivalent to a census district (21). Large municipalities (> 5,000 120 

inhabitants) are divided into several IRIS, while smaller municipalities constitute their own IRIS. IRIS 121 

is the smallest geographical unit for which French census data are available. 122 

Data  123 

Urbanization 124 

The 2021 urbanization level of each municipality and IRIS were obtained from the National Institute of 125 

Statistics and Economic Studies (INSEE). INSEE distinguishes between urban and rural municipalities 126 

depending on their population density. Densely populated municipalities and municipalities of 127 

intermediate density were defined as urban municipalities. Low-density and sparsely populated 128 

municipalities were considered rural municipalities (22). 129 

Population 130 

Population data (i.e., number of inhabitants) were obtained from INSEE at the IRIS level for the period 131 

2014-2018 and at the municipality level for 2006-2018 (23). The population at the IRIS level for 2006-132 

2013 was estimated using the evolution percentage of the population at the municipality level. The 133 

evolution percentage 𝐸 for the year 𝑖 and municipality 𝑗 was thus: 134 

𝐸𝑖,𝑗 =
𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑖,𝑗

𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑖+1,𝑗
 135 
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Where 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 was the number of inhabitants. Then, the estimated population 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑒𝑠𝑡 for 136 

each IRIS 𝑘 was calculated as follows:  137 

𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑒𝑠𝑡𝑖,𝑗,𝑘 = 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑖+1,𝑗 × 𝐸𝑖,𝑗 138 

Due to the lack of harmonized data prior to 2006, we assumed that the population of each IRIS was 139 

constant between 2000 and 2006.  140 

Climate types 141 

We used the classification of the French meteorological information system, Météo-France, which 142 

categorizes French municipalities into eight different climates (Supplementary Figure 1): mountain 143 

climate, semi-continental climate and climate of mountainous margins, modified oceanic climate, 144 

transitional oceanic climate, oceanic climate, moderate Mediterranean climate, southwest basin climate, 145 

and Mediterranean climate (24).  146 

Temperature 147 

Daily minimum, mean, and maximum temperatures from 2000 to 2018 were obtained from a multi-148 

resolution model with a 200 m² resolution for large urban areas (> 50,000 inhabitants) and 1 km² across 149 

the rest of continental France (25). These estimates were generated using spatiotemporal models based 150 

on Météo-France weather station data, satellite land surface temperature data, and additional spatial and 151 

temporal predictors such as the normalized difference vegetation index (NDVI), elevation, and land 152 

cover. Hough et al. provides more in-depth modeling methodologies and performance results (25). Daily 153 

exposure to minimum, mean, and maximum temperatures for each IRIS was estimated by calculating 154 

the area-weighted average gridded temperature data.  155 

Vegetation 156 

To approximate the level of vegetation, we used the NDVI, a greenness indicator ranging from -1 to +1, 157 

with higher values indicating denser vegetation. The NDVI was derived from Landsat satellite images 158 

with a 30 m spatial resolution (26). Mean summer (i.e., from June 1 to August 31 each year) NDVI was 159 

computed for each year between 2000 and 2018.  160 

For each IRIS, the annual mean summer NDVI was estimated by calculating the area-weighted average 161 

of the gridded NDVI data.  162 

Air pollution concentrations 163 

Daily mean PM2.5 and PM10 concentrations from 2000 to 2018 were obtained at a 1 km² resolution across 164 

continental France from a multi-stage ensemble model combining air quality monitoring data, satellite-165 

derived aerosol optical depth, and other spatiotemporal predictors such as meteorological parameters, 166 

NDVI, and elevation (27). The increases observed in 2008-2009 for PM2.5 and in 2007 for PM10 were 167 
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due to a change in the measurement techniques used by the national air quality monitoring stations to 168 

include semi-volatile PM (27, 28). We used daily mean NO2 and daily maximum O3 concentrations 169 

estimated by the French Institute for Industrial Environment and Risks (INERIS) based on models 170 

combining background measurements of air quality monitoring stations and modeling of the chemistry 171 

transport model with a spatial resolution of around 4 km for the period 2000-2017 and around 2 km for 172 

2018 (29).  173 

For each IRIS, daily exposure to PM2.5, PM10, NO2, and O3 was estimated by calculating the area-174 

weighted average of the gridded concentration data.  175 

Social deprivation  176 

We used the 2015 version of two deprivation indices: the European Deprivation Index (EDI) (30) and 177 

the French Deprivation Index (FDep) (31) at the IRIS level. Both indices are composite measures based 178 

on a combination of census data to characterize the socioeconomic environment of the IRIS.  179 

The EDI is a European index constructed using Eurostat data and capable of measuring relative 180 

deprivation in a transcultural way across all European countries. Its French version is a weighted 181 

combination of ten census variables grouped into two dimensions: a material dimension (non-182 

homeowners, households without a car, households with more than two occupants, overcrowded 183 

dwellings with more than one person per room) and a social dimension (unemployment, foreigners, 184 

unskilled workers, low education level, single-parent households, unmarried status) (32). The FDep is 185 

computed using principal component analysis from four census variables: median household income, 186 

proportion of secondary school graduates (15 years and over), proportion of laborers in the active 187 

population, and proportion of unemployment in the active population. 188 

The first quintile of FDep and EDI represents the least deprived IRIS, while the fifth quintile the most 189 

deprived.  190 

We considered both indicators, because a clear concordance between them has not yet been 191 

demonstrated (33, 34), and there is currently no recommendation favoring one of them (32). 192 

Reference values to describe relative exposure to environmental factors 193 

Relative exposure to heat, air pollution, and lack of vegetation was assessed by defining the reference 194 

values to harmonize the description of exposures, thus facilitating the interpretation of temperature and 195 

NDVI exposure across climate types. These indicators are summarized in Supplementary Table 1.  196 

Heat 197 

A climatological approach based on 10-day means was used to develop a reference for each IRIS. 10-198 

day temperature means smoothed the data while accounting for climatic variability over time. The 199 
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reference 10-day mean, minimum, and maximum temperatures 𝑑𝑚 were computed over the period 200 

2000-2018 for each department and each type of climate as follows:  201 

𝑑𝑚 =
∑

∑ 𝑇𝑙,𝑚,𝑛
10
𝑙=1

10
2018
𝑛=2000

19
 202 

Where 𝑇 was the daily temperature (i.e., Tmean, Tmin, or Tmax) for the 𝑙th day (from 1 to 365), period 203 

of 10 days 𝑚 (from 1 to 37), and year 𝑛 (from 2000 to 2018). Then, the daily difference between daily 204 

temperatures and the corresponding 10-day reference values ∆𝑇𝑙,𝑚,𝑛 (i.e., relative temperature indicators 205 

ΔTmean, ΔTmin, or ΔTmax) for each IRIS was thus:  206 

∆𝑇𝑙,𝑚,𝑛 = 𝑇𝑙,𝑚,𝑛 − 𝑑𝑚 207 

This approach allowed us to identify the IRIS overexposed to heat compared to other IRIS with similar 208 

geographical and climatological conditions. This also provides a proxy to identify the urban heat island.  209 

ΔTmean, ΔTmin, and ΔTmax were averaged by season: in this dataset, summer from June 21 to 210 

September 22, autumn from September 23 to December 21, winter from December 22 to March 19, and 211 

spring from March 20 to June 20.  212 

Lack of vegetation 213 

For each type of climate, reference values were defined as the median values of the mean summer NDVI 214 

in rural areas, as rural areas were assumed to be closer to the most vegetated areas than urban areas. 215 

Lack of vegetation was then assessed each year for each IRIS by calculating the difference between the 216 

mean summer NDVI and the reference value (ΔNDVI).  217 

Air pollution 218 

To identify the IRIS overexposed to air pollution, the WHO air quality guidelines developed to protect 219 

public health were used as reference values (35). 220 

The annual and summer mean differences between daily mean PM2.5, PM10, and NO2 concentrations and 221 

annual WHO air quality guideline values (5 µg/m3, 15 µg/m3, and 10 µg/m3, respectively) were 222 

calculated (ΔPM2.5, ΔPM10, ΔNO2) for each IRIS. For O3, the summer mean difference between daily 223 

maximum concentrations and WHO air quality guideline values for the peak season (60 µg/m3) was 224 

calculated (ΔO3) for each IRIS. 225 

Cumulative exposure indicator and identification of environmental hotspots  226 

A cumulative exposure indicator with four classes was created for each IRIS and each year 227 

(Supplementary Table 1) based on the distribution quartiles of the environmental factors according to 228 

the period (2000-2004, 2005-2009, 2010-2014, 2015-2018) and urbanization level (urban/rural). 229 
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Hotspots (class 4) were defined as IRIS with the highest overexposure to all factors: (i) summer ΔTmean 230 

in the last quartile, (ii) at least one of the four air pollution indicators (annual ΔPM2.5, annual ΔPM10, 231 

annual ΔNO2, or summer ΔO3) in the last quartile, and (iii) summer ΔNDVI in the first quartile. IRIS of 232 

class 1 had the lowest exposure quartiles for all factors. IRIS of class 2 and class 3 were in the upper 233 

quartiles for one and two factors, respectively.  234 

Statistical analysis  235 

Descriptive analysis and temporal evolution of indicators  236 

The number and percentage of IRIS by deprivation index quintiles were described according to 237 

urbanization level. The evolution of summer ΔTmean, summer ΔTmin, summer ΔTmax, summer 238 

ΔNDVI, annual ΔNO2, summer ΔO3, annual ΔPM2.5, and annual ΔPM10 concentrations was described 239 

between 2000 and 2018. Analyses were stratified by urbanization level (urban/rural) and by 4- to 5-year 240 

periods (2000-2004, 2005-2009, 2010-2014, 2015-2018). Heat indicators (ΔTmean, ΔTmin, ΔTmax) 241 

were described by season and climate type.  242 

Spearman correlation coefficients for the exposure indicators (summer ΔTmean, summer ΔTmin, 243 

summer ΔTmax, annual and summer ΔPM2.5, annual and summer ΔPM10, annual and summer ΔNO2, 244 

summer ΔO3, and summer ΔNDVI) and between EDI and FDep were computed for the entire period 245 

2000-2018 and by urbanization level. 246 

Exposure indicators (summer ΔTmean, summer ΔNDVI, annual ΔPM2.5, annual ΔPM10, annual ΔNO2, 247 

and summer ΔO3) were described according to the deprivation index quintiles and the cumulative 248 

exposure indicator class, with a focus on hotspots.  249 

Associations between environmental exposure and social deprivation 250 

Associations between environmental exposure indicators and social deprivation were studied by (i) 251 

regressing hotspots (yes/no) (main analysis) and then (ii) regressing the cumulative exposure indicator 252 

(four classes) against each social deprivation index (EDI and FDep) by quintiles using (i) binary logistic 253 

regressions and (ii) non-ordinal polytomous logistic regressions.  254 

Given that heat exposure arouses special interest in climate adaptation policies and that its reduction can 255 

only be achieved through indirect actions such as planting vegetation or reducing air pollution, we used 256 

non-ordinal polytomous logistic regressions to investigate the association between the categorized 257 

summer ΔTmean and the categorized indicators summer ΔNDVI, ΔPM2.5, ΔNO2, and ΔO3 adjusted for 258 

deprivation indices (EDI and FDep) and year (Supplementary Table 1). We included an interaction term 259 

between social deprivation indices and environmental exposure indicators. 260 

All analyses were stratified by urbanization level. 261 

 262 
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RESULTS 263 

Descriptive analysis and temporal evolution of indicators 264 

Overall, 64% of the 48,185 IRIS were classified as rural, and the main climate type was the modified 265 

oceanic climate (Supplementary Figure 1). Highly socially deprived IRIS (quintile 5) were more likely 266 

to be in urban areas than in rural areas, especially using the EDI (40.3% of urban IRIS vs. 7.5% of rural 267 

IRIS) (Table 1).  268 

Table 1. Distribution of IRIS by quintiles and urbanization level 269 

 EDI FDep 

 
Urban IRIS 

n (%) 

Rural IRIS 

n (%) 

Urban 

n (%) 

Rural IRIS 

n (%) 

Quintile 1 
2,118 

(12.1 %) 

7,346 

(24.0 %) 

5,882 

(33.5 %) 

3,743 

(12.2 %) 

Quintile 2 
2,011 

(11.5 %) 

7,436 

(24.3 %) 

3,069 

(17.5 %) 

6,503 

(21.2 %) 

Quintile 3 
2,223 

(12.7 %) 

7,169 

(23.3 %) 

2,383 

(13.6 %) 

7,203 

(23.5 %) 

Quintile 4 
2,988 

(17.0 %) 

6,383 

(20.8 %) 

2,102 

(12.0 %) 

7,500 

(24.5 %) 

Quintile 5 
7,067 

(40.3 %) 

2,296 

(7.5 %) 

3,954 

(23.0 %) 

5,687 

(18.6 %) 

Missing 
1,135 

(6.5 %) 

13 

(<0.01 %) 

152 

(0.01%) 
7 (<0.01 %) 

Total 17,542 30,643 17,542 30,643 

 270 

Concerning the exposure indicators, the summers of 2003, 2006, 2016, and 2018 had the highest mean 271 

ΔTmean in both urban and rural areas and across all climate types (Figures 1A and 2; Supplementary 272 

Figure 2). More generally, for all seasons and across all periods, mean ΔTmean, ΔTmin, and ΔTmax 273 

were higher in urban IRIS than in rural IRIS (Supplementary Table 2). The 2015-2018 period showed 274 

the highest summer ΔTmean, ΔTmin, and ΔTmax for both urban and rural areas.  275 
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A 
 

B 
 

C 

 

Figure 1. Evolution of (A) mean summer ΔTmean and ΔNDVI, (B) mean annual ΔNO2 and ΔO3 276 

evolution and (C) mean annual ΔPM2.5 and ΔPM10 between 2000 and 2018 in urban and rural IRIS in 277 

continental France.         corresponds to the inclusion of semi-volatile particulate matter. 278 

279 
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 280 

Figure 2. Mean summer ΔTmean between 2000 and 2018 in continental France 281 

Summer mean ΔNDVI was characterized by a decrease in 2003 and a marked spatial heterogeneity 282 

between 2000 and 2018 (Figure 1A; Supplementary Figure 3). During this period, ΔNO2 dropped by 283 

55.9% in urban IRIS (from 18.5 µg/m3 in 2000 to 8.1 µg/m3 in 2018) and by 89.8% in rural IRIS (from 284 

8.4 µg/m3 in 2000 to 0.86 µg/m3 in 2018) (Figure 1B). For ΔO3, two sharp increases were observed in 285 

2003 and 2018 (Figure 1B). In 2018, almost all IRIS (93.7%) in urban areas exceeded the WHO air 286 

quality guideline levels (> 10 µg/m3) for NO2 compared with 59.3% in rural areas. For O3, all IRIS were 287 

above these guidelines in 2018 (> 60 µg/m3). On average, ΔNO2 and ΔO3 were higher in urban areas 288 

than in rural areas (Supplementary Figure 4). 289 

Since 2009, ΔPM2.5 and ΔPM10 have steadily decreased in urban and rural areas (Figure 1C). Mean 290 

ΔPM2.5 dropped by 54.6% (from 13.0 µg/m3 in 2009 to 5.9 µg/m3 in 2018) in urban IRIS and by 67.9% 291 

(from 9.4 µg/m3 in 2009 to 3.0 µg/m3 in 2018) in rural IRIS. Despite these reductions, 99.9% and 78.7% 292 

of urban IRIS and 97.6% and 20.0% of rural IRIS exceeded the WHO air quality guidelines for PM2.5 293 

and PM10, respectively, in 2018 (> 5 µg/m3 and > 15 µg/m3). On average, ΔPM2.5 and ΔPM10 294 

concentrations were higher in urban areas than in rural areas (Supplementary Figure 5).  295 

In both urban and rural areas, the different summer ΔT indicators were positively correlated with 296 

summer ΔO3 and negatively (or close to 0) correlated with ΔPM and ΔNO2 (Supplementary Figure 6). 297 

Summer ΔNDVI was negatively correlated with all pollutant and temperature indicators. In urban IRIS, 298 

EDI and FDep showed different correlation patterns with the environmental exposure indicators. 299 

According to EDI, the most deprived IRIS in urban areas were more exposed to heat (summer ΔTmean), 300 

air pollution (annual ΔPM2.5, ΔPM10, and ΔNO2), and lack of vegetation (summer ΔNDVI). For 301 

example, mean ΔTmean and annual ΔPM2.5 were respectively +0.68 °C and +9.6 µg/m3 in highly 302 
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socially deprived IRIS (quintile 5) versus +0.35 °C and +8.35 µg/m3 in the least deprived IRIS (quintile 303 

1). Summer ΔO3 remained stable across EDI quintiles. This pattern was not observed in rural areas. 304 

With FDep, a U-shaped relationship was observed in urban areas in which the least and most deprived 305 

IRIS were more exposed to air pollution (annual ΔPM2.5, ΔPM10, and ΔNO2) and lack of vegetation 306 

(summer ΔNDVI). In rural areas, a higher FDep was associated with a lower exposure to all air 307 

pollutants (Supplementary Figures 7 and 8).  308 

In terms of cumulative exposure, most IRIS (70.0%) were class 2 (i.e., in the strongest quartiles for one 309 

factor) (Supplementary Table 3). On average, 6.8% of rural IRIS were classified as hotspots (i.e., IRIS 310 

in the strongest quartiles for all factors) (1,554,243 inhabitants) versus 7.2% of urban IRIS 311 

(3,052,728 inhabitants) (Figure 3). While the percentage of hotspots was rather stable in urban areas 312 

(6.0% to 8.0%), it was the highest in 2000-2004 (11.3%) in rural areas (mainly due to 2003, which 313 

recorded the highest number of hotspots for the entire period 2000-2018) and then increased again in 314 

2015-2018 (6.5%) compared with 2005-2014 (4.7%).  315 

Figure 3. Spatial distribution of IRIS hotspots by year, annual average population living in an IRIS 316 

hotspot, and percentage of IRIS hotspots by period and urbanization level between 2000 and 2018 in 317 

continental France 318 
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Exposures were higher in urban hotspots than in rural hotspots (Supplementary Figure 9). For example, 319 

IRIS hotspots were exposed to mean summer ΔTmean of +1.9 °C in urban areas and +1.7 °C in rural 320 

areas compared with non-hotspots. For annual ΔPM2.5, summer ΔO3, and summer ΔNDVI in urban and 321 

rural hotspots, these differences were respectively +2.7 µg/m3 versus +0.92 µg/m3, +15.60 µg/m3 versus 322 

+17.91 µg/m3, and -0.20 versus -0.15. The mean percentages of IRIS overexposed to each environmental 323 

exposure indicator according to the cumulative exposure indicator class and urbanization level are 324 

presented in Supplementary Table 4. 325 

Associations between environmental exposure and social deprivation 326 

In urban areas, increased deprivation was strongly associated with the risk of being in a hotspot 327 

(p < 0.001) based on EDI (Figure 4). With FDep, this association was only observed for highly socially 328 

deprived IRIS (quintile 5) (p < 0.001) with a U-shaped relationship between social deprivation and the 329 

risk of living in a hotspot. In rural areas, higher social deprivation was negatively associated with the 330 

risk of being in a hotspot for both EDI and FDep.  331 

 332 

Figure 4. Associations between hotspots and non-hotspots and deprivation indices (EDI and FDep) 333 

between 2000 and 2018 in urban and rural areas in continental France. OR (95% CI) estimated by 334 

binary logistic regressions. 335 
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Using EDI and in urban areas, the risk of cumulating several exposures increased with social 336 

deprivation, regardless of the cumulative exposure class (Supplementary Figure 10). In rural areas, a U-337 

shaped relationship was observed. Using FDep, a U-shaped relationship was observed in urban areas, 338 

whereas a decreasing risk with social deprivation was found in rural areas. 339 

In summer, IRIS were more likely to have a medium or high exposure to heat if they also had a medium 340 

or high exposure to a lack of vegetation or to O3 in both urban and rural areas (models 1 and 2, Table 2). 341 

In rural areas, they were more likely to have a medium or high exposure to heat if they also had a medium 342 

or high exposure to PM2.5 (models 1 and 2). In urban areas, IRIS were less likely to have a medium or 343 

high exposure to heat if they had a high exposure to NO2 or medium exposure to PM2.5. In both urban 344 

and rural areas, highly socially deprived IRIS (quintile 5) were at a lower risk of being exposed to high 345 

heat. 346 

Table 2. Associations between (over-)exposure to heat (∆Tmean) and deprivation indices (EDI and 347 

FDep), lack of vegetation, and air pollutants during summer between 2000 and 2018 in urban and rural 348 

areas of continental France (OR [95% CI]a) 349 

 Urban areas Rural areas 

 

Medium 

overexposure to 

heat 

High 

overexposure to 

heat 

Medium 

exposure to  

heat 

High  

exposure to  

heat 

Model 1      

EDI     

  Quintile 1 Ref. Ref. Ref. Ref. 

  Quintile 2 1.82 [1.43; 2.31] 2.77 [1.91; 4.01] 1.53 [1.28; 1.82] 2.66 [2.05; 3.46] 

  Quintile 3 1.33 [1.05; 1.70] 0.67 [0.46; 0.98] 1.70 [1.43; 2.02] 1.16 [0.89; 1.50] 

  Quintile 4 0.90 [0.71; 1.14] 0.27 [0.19; 0.40] 0.68 [0.56; 0.83] 0.27 [0.20; 0.36] 

  Quintile 5 1.88 [1.51; 2.33] 0.91 [0.64; 1.29] 1.04 [0.71; 1.52] 0.31 [0.18; 0.52] 

∆NDVI exposure (lack of vegetation) 

  Low  Ref. Ref. Ref. Ref. 

  Medium  2.31 [2.17; 2.46] 3.69 [3.39; 4.02] 1.21 [1.16; 1.26] 1.53 [1.44; 1.62] 

  High  10.8 [9.63; 12.0] 52.8 [46.2; 60.4] 1.15 [1.11; 1.20] 1.58 [1.49; 1.68] 

∆PM2.5 exposure     

  Low  Ref. Ref. Ref. Ref. 

  Medium  0.62 [0.55; 0.70] 0.49 [0.42; 0.57] 3.35 [3.07; 3.65] 10.0 [8.86; 11.4] 

  High  0.61 [0.53; 0.70] 0.51 [0.43; 0.60] 6.38 [5.81; 7.01] 18.7 [16.3; 21.6] 

∆NO2 exposure     

  Low  Ref. Ref. Ref. Ref. 
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  Medium  0.69 [0.63; 0.76] 0.45 [0.40; 0.51] 0.84 [0.80; 0.89] 0.75 [0.70; 0.80] 

  High  0.53 [0.47; 0.59] 0.27 [0.24; 0.32] 0.71 [0.68; 0.74] 0.81 [0.75; 0.87] 

∆O3 exposure     

  Low  Ref. Ref. Ref. Ref. 

  Medium  2.79 [2.37; 3.29] 10.4 [7.83; 13.9] 2.89 [2.57; 3.26] 9.02 [7.57; 10.7] 

  High  6.06 [5.12; 7.17] 60.3 [45.2; 80.6] 3.07 [2.72; 3.46] 2.10 [1.76; 2.50] 

Model 2      

FDep     

  Quintile 1 Ref. Ref. Ref. Ref. 

  Quintile 2 0.96 [0.80; 1.15] 1.88 [1.43; 2.47] 0.93 [0.73; 1.17] 0.42 [0.29; 0.59] 

  Quintile 3 0.80 [0.65; 0.98] 0.59 [0.42; 0.84] 0.69 [0.55; 0.86] 0.19 [0.14; 0.27] 

  Quintile 4 0.42 [0.33; 0.52] 1.22 [0.88; 1.69] 0.73 [0.59; 0.91] 0.15 [0.11; 0.21] 

  Quintile 5 0.60 [0.50; 0.73]  0.11 [0.08; 0.15] 0.73 [0.57; 0.92] 0.20 [0.14; 0.29] 

∆NDVI exposure (lack of vegetation) 

   Low  Ref. Ref. Ref. Ref. 

   Medium  2.59 [2.46; 2.73] 5.83 [5.43; 6.26] 1.34 [1.27; 1.42] 1.54 [1.42; 1.68] 

   High  4.95 [4.67; 5.24] 27.6 [25.6; 29.9] 0.99 [0.93; 1.05] 1.56 [1.43; 1.70] 

∆PM2.5 exposure     

  Low  Ref. Ref. Ref. Ref. 

  Medium  0.58 [0.53; 0.64] 0.73 [0.64; 0.83] 4.67 [4.12; 5.30] 8.95 [7.42; 10.8] 

  High  1.01 [0.91; 1.12] 1.18 [1.03; 1.35] 7.84 [6.86; 8.96] 6.10 [5.16; 7.22] 

∆NO2 exposure     

  Low  Ref. Ref. Ref. Ref. 

  Medium  1.03 [0.95; 1.12] 1.33 [1.20; 1.48] 0.78 [0.73; 0.82] 1.39 [1.27; 1.52] 

  High  0.59 [0.54; 0.64] 0.38 [0.34; 0.43] 0.89 [0.83; 0.95] 2.40 [2.16; 2.67] 

∆O3 exposure     

  Low  Ref. Ref. Ref. Ref. 

  Medium  1.64 [1.49; 1.81] 2.78 [2.34; 3.30] 1.03 [0.87; 1.22] 0.56 [0.43; 0.72] 

  High  3.08 [2.78; 3.40] 25.0 [21.0; 29.8] 1.08 [0.92; 1.28] 1.79 [1.39; 2.31] 

a OR (95% CI) estimated by non-ordinal polytomous logistic models. 350 

 351 

DISCUSSION 352 

Our findings showed that overexposure to heat was higher for the period 2015-2018 compared with the 353 

other periods, which is consistent with the climatic trends observed in France (36, 37). The year 2003 354 

showed a sharp increase in summer ΔTmean and air pollutants and a decrease in summer ΔNDVI. This 355 
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year was marked by a severe heatwave in Europe and France, which led to 15,000 excess deaths in 356 

France alone (38). These abnormally high temperatures explain the decrease in NDVI due to the drought, 357 

the increase in O3 concentrations (20), and more generally, the rise in all air pollutants. This increase in 358 

air pollutants was probably due to the generation of O3 (20), the lower absorption of pollutants by 359 

drought-affected vegetation, and the soil mineral dust resuspension caused by the drought, limited 360 

dispersion, and washing of particulate matter. Until 2018, we also observed a continuous and large 361 

decrease in air pollutant concentrations for PM and NO2 (two- to tenfold reduction on average depending 362 

on the pollutant and urbanization level), which reflects the impact of successive action plans in various 363 

sectors to improve air quality in France (39). However, most IRIS still exceeded the most recent WHO 364 

air quality guidelines in 2018 (20% to 100% of IRIS depending on the pollutant and urbanization level).  365 

On average, more than 4 million people lived in hotspots, i.e., areas cumulating adverse overexposure 366 

to all environmental determinants. This study confirmed that between 2000-2018, urban IRIS were 367 

generally more exposed to heat during summer and to air pollution throughout the year, while they had 368 

less vegetation than rural IRIS. Differential exposure was greater in urban areas than in rural areas, 369 

showing that environmental inequities were stronger in the urban environment. In urban areas, greater 370 

deprivation was strongly associated with the risk of living in a hotspot or having more cumulative 371 

exposure but only when using the EDI and not the FDep. In rural areas, the associations were more 372 

consistent but inverted: greater deprivation measured by both the EDI and FDep was associated with a 373 

lower risk of living in a hotspot. With the cumulative exposure indicator in rural areas, a U-shaped 374 

relationship and a lower risk of cumulative exposure were observed with the EDI and FDep, 375 

respectively.  376 

In urban areas, our results support the findings of several studies that have identified associations 377 

between heat, air pollution, or low vegetation/green space availability and social deprivation, with higher 378 

exposure levels being linked to the most deprived populations (3-7, 40). However, some studies found 379 

reverse associations, showing, for example, that less deprived populations have greater exposure or that 380 

both the least and the most deprived populations have a greater exposure to air pollution (6, 40).  381 

The differences observed between the two deprivation indices, which have already been discussed in 382 

other studies (33, 34), can be explained by several reasons related to their construction methods. First, 383 

the EDI was built to allow comparability between European countries (30), whereas the FDep was 384 

created to characterize spatial socioeconomic heterogeneity in France (31). Second, these two indices 385 

were estimated using different statistical methods. The EDI combines ten ecological weighted 386 

socioeconomic and material variables based on census studies (30), whereas the FDep is based on four 387 

ecological variables from principal component analysis (31). Finally, the components included in the 388 

two indices also differ. For example, the EDI includes “the proportion of non-homeowners,” “the 389 

proportion of households without a car,” and “the proportion of primary residences with more than one 390 
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person per room,” although these items do not reflect socioeconomic deprivation in the same way in 391 

rural and urban areas (33, 34, 41). For example, urban areas often have well-developed public transport 392 

systems, which limits the need to own a car. By contrast, rural areas often lack public transport, and thus 393 

not owning a car can reflect social deprivation, as it limits mobility. Nevertheless, the variable 394 

“proportion of households without a car” does not contribute the most to this index. Overcrowded 395 

dwellings and homeownership may also have different associations with social deprivation in rural 396 

compared with urban areas. The variables contributing the most are overcrowded households and single-397 

parent households (42). The apparent protective effect of social deprivation (as estimated by the EDI 398 

and FDep) in rural areas can be explained by the specific spatial distribution of environmental exposures 399 

and social deprivation. For example, low-density areas located far from attractive poles of activity tend 400 

to be more vegetated and less affected by urban heat islands and air pollution, although their low housing 401 

costs may attract residents with higher social deprivation scores. At the same time, IRIS closer to urban 402 

poles or attractive areas (e.g., tourist zones) may be more exposed to deleterious environmental factors 403 

but may also attract residents with a higher socioeconomic status. 404 

In urban areas, highly socially deprived IRIS were less likely to be highly exposed to heat using the 405 

EDI. IRIS overexposed to heat were also overexposed to a lack of vegetation in both rural and urban 406 

areas. Surprisingly, in urban areas, high exposure to NO2 or PM2.5 was negatively associated with 407 

medium or high exposure to heat. Medium and high exposure to O3 was associated with medium or high 408 

exposure to heat.  409 

Our methods have several limitations. First, we estimated the relative exposure of each IRIS population 410 

based on the area-weighted average of temperatures, air pollution, and NDVI rather than the population-411 

weighted average. This may have under- or overestimated the exposure in some IRIS. Using the IRIS 412 

as a spatial unit may also mischaracterize some levels of exposure, because rural IRIS have larger areas 413 

and somewhat smaller populations compared with IRIS in towns and cities.  414 

Second, the reference values for temperature were calculated over the period 2000-2018, including the 415 

2003 heatwave, which was the most severe and deadliest heatwave episode in France’s history, as well 416 

as other particularly warm years (2006, 2018). This could have increased the reference values and thus 417 

lead to an underestimation of the relative exposure to temperature. Likewise, it might have 418 

underestimated the number of hotspots for the 2000-2004 period.  419 

Several limitations can be attributed to the use of the FDep and EDI. First, we used a constant value for 420 

each index and IRIS over the entire study period, since annual values using 2021 geography references 421 

were not available, and little change was found in the EDI values in 2009, 2013, and 2017 and the FDep 422 

values between 2011 and 2017. Second, these indicators seem less adapted to rural areas, which might 423 

introduce an approximation bias into their representativeness of rural and urban areas (32). Finally, the 424 

EDI was not computed for large, sparsely populated IRIS with forests and leisure parks.  425 
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We assumed that population density was stable over the entire study period. Given the lack of data at 426 

the IRIS level before 2014, we assumed that all IRIS in a given municipality changed population at the 427 

same annual rate as the municipality. We also assumed that the population of each IRIS was constant 428 

prior to 2006 due to the lack of harmonized census data for this period.  429 

Finally, ΔPM2.5 was underestimated before 2008-2009 and ΔPM10 before 2007, because the semi-430 

volatile PM fraction was not yet measured. This underestimation represents about 30% of the annual 431 

mean of PM10 (43, 44). No such evaluation was performed for PM2.5. Consequently, the number of IRIS 432 

overexposed to PM might have been slightly underestimated before 2009 in our study. Our exposure 433 

indicators are proxies for population exposure and do not reflect the true daily exposure, which likely 434 

varies between individuals in each IRIS. For example, a poor resident of an IRIS living in poorly 435 

ventilated and insulated housing in a dense neighborhood and working in an outdoor job will be more 436 

exposed to heat and air pollution than a wealthier resident of the same IRIS, even though both would be 437 

assigned the same exposure level (40).  438 

Our study has several strengths. Characterizing the socioeconomic and environmental burden of 439 

populations at a fine scale and in a comparable manner highlights the environmental justice issues and 440 

public health concerns of environmental exposures. To our knowledge, this is the first study to identify 441 

hotspots of exposure to heat, air pollution, and lack of vegetation and their associations with social 442 

deprivation. For instance, population-weighted summer temperatures and population-weighted NDVI at 443 

the national level are currently monitored by the Lancet countdown as relevant indicators of climate 444 

change impacts and adaptation policies, respectively (45). However, the Lancet countdown fails to 445 

consider co-exposure, and the indicators are not always comparable across space. For instance, a given 446 

temperature and a given NDVI have different impacts depending on the underlying climate and type of 447 

vegetation.  448 

We used exposure data at a fine spatiotemporal scale over a long period of time and across continental 449 

France. These data were aggregated at the finest spatial administrative level available in France. We 450 

used relative exposure indicators for NDVI and temperature to ensure comparability across areas and 451 

climate types, while for air pollutants, we assessed exposure relative to the WHO guidelines that relate 452 

to the underlying health risks. This approach is useful to study the effect of heat, air pollution, and lack 453 

of vegetation on health outcomes.  454 

This study provides the first overview of fine-scale exposure to heat stress and its co-exposures at a 455 

national level. Hotspots, which represent the areas with the strongest environmental inequities, were 456 

identified. This approach can support the inclusion of environmental inequities into adaptation strategies 457 

to climate change. 458 

 459 
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