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Environmental and social inequities in continental France: An analysis of exposure to heat, air pollution, and lack of vegetation
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Cumulative environmental exposures and social deprivation increase health vulnerability and limit the capacity of populations to adapt to climate change.

OBJECTIVE

Our study aimed at providing a fine-scale characterization of exposure to heat, air pollution, and lack of vegetation in continental France between 2000 and 2018, describing spatiotemporal trends and environmental hotspots (i.e., areas that cumulate the highest levels of overexposure), and exploring any associations with social deprivation.

METHODS

The European (EDI) and French (FDep) social deprivation indices, the normalized difference vegetation index, daily ambient temperatures, particulate matter (PM2.5 and PM10), nitrogen dioxide, and ozone (O3) concentrations were estimated for 48,185 French census districts. Reference values were chosen to characterize (over-)exposure. Hotspots were defined as the areas cumulating the highest overexposure to temperature, air pollution, and lack of vegetation. Associations between heat overexposure or hotspots and social deprivation were assessed using logistic regressions.

RESULTS

Overexposure to heat was higher in 2015-2018 compared with 2000-2014. Exposure to all air pollutants except for O3 decreased during the study period. In 2018, more than 79% of the urban census districts exceeded the 2021 WHO air quality guidelines. The evolution of vegetation density between 2000 and 2018 was heterogeneous across continental France. In urban areas, the most deprived census districts were at a higher risk of being hotspots (odds ratio (OR): 10.86, 95% CI: 9.87-11.98 using EDI and OR:

1.07, 95% CI: 1.04-1.11 using FDep).

SIGNIFICANCE

This nationwide fine-scale study provides a framework to identify environmental hotspots and reveals social inequalities in the cumulative exposure to heat, air pollutants, and lack of vegetation, in France. This approach lends support to the inclusion of environmental and social inequities in adaptation strategies to climate change.

IMPACT STATEMENT

We studied cumulative environmental exposures and social deprivation in French census districts. The 2015-2018 period showed the highest overexposure to heat between 2000 and 2018. In 2018, the air quality did not meet the 2021 WHO guidelines in most census districts and 8.6 million people lived in environmental hotspots. Highly socially deprived urban areas had a higher risk of being in a hotspot.

This study proposes for the first time, a methodology to identify hotspots of exposure to heat, air pollution, and lack of vegetation and their associations with social deprivation at a national level.

GRAPHICAL ABSTRACT INTRODUCTION

In the context of rapid climate change, heat exposure associated with the cumulative exposure to multiple environmental factors and social deprivation can increase health vulnerabilities and limit the capacity of exposed populations to adapt to climate change. This not only raises serious public health concerns but is also a source of injustice, as unequal exposure to environmental risks and unequal access to environmental goods such as parks and forests result in environmental inequities.

In Europe, areas with cumulative exposure to multiple environmental stressors tend to be more deprived [START_REF] Ganzleben | Leaving no one behindunderstanding environmental inequality in Europe[END_REF][START_REF] Eea | Unequal exposure and unequal impacts: social vulnerability to air pollution, noise and extreme temperatures in Europe[END_REF]. Depending on their location, the deprived or poorer areas may be more exposed to heat [START_REF] Hsu | Disproportionate exposure to urban heat island intensity across major US cities[END_REF], have lower green space availability [START_REF] Venter | Environmental justice in a very green city: Spatial inequality in exposure to urban nature, air pollution and heat in Oslo, Norway[END_REF][START_REF] Schüle | Social Inequalities in Environmental Resources of Green and Blue Spaces: A Review of Evidence in the WHO European Region[END_REF], and/or be more exposed air pollution [START_REF] Venter | Environmental justice in a very green city: Spatial inequality in exposure to urban nature, air pollution and heat in Oslo, Norway[END_REF][START_REF] Padilla | Air quality and social deprivation in four French metropolitan areas-A localized spatio-temporal environmental inequality analysis[END_REF][START_REF] Brunt | Air pollution, deprivation and health: understanding relationships to add value to local air quality management policy and practice in Wales, UK[END_REF].

Exposure to heat and air pollution has multiple synergistic health effects such as cardiovascular or respiratory morbidity and negative reproductive outcomes [START_REF] Ebi | Hot weather and heat extremes: health risks[END_REF][START_REF] Eea | Healthy environment, healthy lives: how the environment influences health and wellbeing in Europe[END_REF][START_REF] Son | Temperature-related mortality: a systematic review and investigation of effect modifiers[END_REF][START_REF] Analitis | Synergistic Effects of Ambient Temperature and Air Pollution on Health in Europe: Results from the PHASE Project[END_REF]. Vegetation plays a protective role against heat [START_REF] Pascal | Greening is a promising but likely insufficient adaptation strategy to limit the health impacts of extreme heat[END_REF][START_REF] Schinasi | Modification of the association between high ambient temperature and health by urban microclimate indicators: A systematic review and meta-analysis[END_REF] and air pollution [START_REF] Kumar | The nexus between air pollution, green infrastructure and human health[END_REF] and has numerous health benefits on mental health, cognitive function, cardiovascular morbidity, and pregnancy outcomes among others [START_REF] Who | Urban green spaces and health. A review of evidence[END_REF]. In addition, socioeconomic characteristics influence the population's ability to avoid or adapt to these environmental health hazards [START_REF] Eea | Unequal exposure and unequal impacts: social vulnerability to air pollution, noise and extreme temperatures in Europe[END_REF].

In accordance with a holistic planetary health approach, reducing cumulative exposure to environmental risks and social deprivation should be at the heart of both public health policies and climate policies. A preliminary step in this direction is to produce comprehensive data to describe, analyze, and compare environmental exposures in time and space. However, to our knowledge, no study to date has investigated cumulative exposure to heat, air pollution, lack of vegetation, and social deprivation at a fine geographical scale and at the national level. Describing cumulative exposure at a national level allows the characterization of poorly studied territories and the targeting of heat adaptation interventions to the areas and populations most at risk.

Existing studies mostly focus on air pollution and, to a lesser extent, on vegetation, and are limited to city-level or regional analyses [START_REF] Lalloué | Data analysis techniques: a tool for cumulative exposure assessment[END_REF]. However, air pollution, vegetation, and heat are interdependent.

Vegetation contributes to air and surface cooling and thermal comfort through solar radiation absorption, evapotranspiration, evaporation, albedo modification, and radiative shading [START_REF] Jay | Reducing the health effects of hot weather and heat extremes: from personal cooling strategies to green cities[END_REF]. It also reduces ambient air pollution by increasing the deposition of particulate matter (PM) and absorbing gaseous pollutants [START_REF] Kumar | The nexus between air pollution, green infrastructure and human health[END_REF][START_REF] Markevych | Exploring pathways linking greenspace to health: Theoretical and methodological guidance[END_REF] as well as by promoting non-motorized transport [START_REF] Markevych | Exploring pathways linking greenspace to health: Theoretical and methodological guidance[END_REF]. Vegetation can also act as a physical barrier against pollutants, thus reducing their dispersion. However, this barrier effect may simultaneously increase pollutant concentrations on roads and reduce exposure to air pollution on the other side of this barrier [START_REF] Markevych | Exploring pathways linking greenspace to health: Theoretical and methodological guidance[END_REF]. Vegetation also emits biogenic volatile organic compounds (bVOC), which can react with other chemical species that form secondary particles. For example, isoprene emissions associated with NOx contribute to ozone (O3) formation. Monoterpenes and sesquiterpenes can increase PM2.5 and PM10 concentrations [START_REF] Kumar | The nexus between air pollution, green infrastructure and human health[END_REF]. Heat increases air pollution through ozone formation due to UV radiation in the presence of nitrogen dioxide (NO2) [START_REF] Corso | Agir pour le climat et la qualité de l'air pour la santé de tous[END_REF]. Air pollutants such as O3 have a negative effect on vegetation growth by affecting the metabolic function of leaves [START_REF] Monks | Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer[END_REF]. More broadly, the presence of vegetation and favorable meteorological conditions have a positive impact on human behavior and thus indirectly influence air pollution. Describing cumulative exposure to heat, air pollution, and lack of vegetation could thus help support adaptation policies.

Our study aimed to characterize fine-scale exposure to heat, air pollution, and lack of vegetation across continental France between 2000 and 2018, to describe spatiotemporal trends and environmental hotspots (i.e., areas that cumulate the highest levels of overexposure), and to explore any associations with social deprivation.

MATERIALS AND METHODS

Study area and period

Drawing on the 2021 geography reference files, we analyzed the 48,185 IRIS of the 34,477 municipalities located in the 94 departments of continental France for the period 2000-2018. An IRIS is a sub-municipal geographical unit equivalent to a census district (21). Large municipalities (> 5,000 inhabitants) are divided into several IRIS, while smaller municipalities constitute their own IRIS. IRIS is the smallest geographical unit for which French census data are available.

Data

Urbanization

The 2021 urbanization level of each municipality and IRIS were obtained from the National Institute of

Statistics and Economic Studies (INSEE). INSEE distinguishes between urban and rural municipalities

depending on their population density. Densely populated municipalities and municipalities of intermediate density were defined as urban municipalities. Low-density and sparsely populated municipalities were considered rural municipalities [START_REF]La grille communale de densité à 4 niveaux 2022[END_REF].

Population

Population data (i.e., number of inhabitants) were obtained from INSEE at the IRIS level for the period 2014-2018 and at the municipality level for 2006-2018 [START_REF]Recensement de la population[END_REF]. The population at the IRIS level for 2006-2013 was estimated using the evolution percentage of the population at the municipality level. The evolution percentage 𝐸 for the year 𝑖 and municipality 𝑗 was thus:

𝐸 𝑖,𝑗 = 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑖,𝑗 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑖+1,𝑗
Where 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 was the number of inhabitants. Then, the estimated population 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑒𝑠𝑡 for each IRIS 𝑘 was calculated as follows:

𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑒𝑠𝑡 𝑖,𝑗,𝑘 = 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑖+1,𝑗 × 𝐸 𝑖,𝑗 Due to the lack of harmonized data prior to 2006, we assumed that the population of each IRIS was constant between 2000 and 2006.

Climate types

We used the classification of the French meteorological information system, Météo-France, which categorizes French municipalities into eight different climates (Supplementary Figure 1 [START_REF] Joly | Les types de climats en France, une construction spatiale[END_REF].

Temperature

Daily minimum, mean, and maximum temperatures from 2000 to 2018 were obtained from a multiresolution model with a 200 m² resolution for large urban areas (> 50,000 inhabitants) and 1 km² across the rest of continental France [START_REF] Hough | A multi-resolution air temperature model for France from MODIS and Landsat thermal data[END_REF]. These estimates were generated using spatiotemporal models based on Météo-France weather station data, satellite land surface temperature data, and additional spatial and temporal predictors such as the normalized difference vegetation index (NDVI), elevation, and land cover. Hough et al. provides more in-depth modeling methodologies and performance results [START_REF] Hough | A multi-resolution air temperature model for France from MODIS and Landsat thermal data[END_REF]. Daily exposure to minimum, mean, and maximum temperatures for each IRIS was estimated by calculating the area-weighted average gridded temperature data.

Vegetation

To approximate the level of vegetation, we used the NDVI, a greenness indicator ranging from -1 to +1, with higher values indicating denser vegetation. The NDVI was derived from Landsat satellite images with a 30 m spatial resolution [START_REF] Robinson | A Dynamic Landsat Derived Normalized Difference Vegetation Index (NDVI) Product for the Conterminous United States[END_REF]. Mean summer (i.e., from June 1 to August 31 each year) NDVI was computed for each year between 2000 and 2018.

For each IRIS, the annual mean summer NDVI was estimated by calculating the area-weighted average of the gridded NDVI data.

Air pollution concentrations

Daily mean PM2.5 and PM10 concentrations from 2000 to 2018 were obtained at a 1 km² resolution across continental France from a multi-stage ensemble model combining air quality monitoring data, satellitederived aerosol optical depth, and other spatiotemporal predictors such as meteorological parameters, NDVI, and elevation [START_REF] Hough | Gaussian Markov random fields improve ensemble predictions of daily 1 km PM2.5 and PM10 across France[END_REF]. The increases observed in 2008-2009 for PM2.5 and in 2007 for PM10 were due to a change in the measurement techniques used by the national air quality monitoring stations to include semi-volatile PM [START_REF] Hough | Gaussian Markov random fields improve ensemble predictions of daily 1 km PM2.5 and PM10 across France[END_REF][START_REF] Favez | Characterization and contribution to PM2.5 of semi-volatile aerosols in Paris (France)[END_REF]. We used daily mean NO2 and daily maximum O3 concentrations estimated by the French Institute for Industrial Environment and Risks (INERIS) based on models combining background measurements of air quality monitoring stations and modeling of the chemistry transport model with a spatial resolution of around 4 km for the period 2000-2017 and around 2 km for 2018 [START_REF] Real | Historical reconstruction of background air pollution over France for 2000-2015[END_REF].

For each IRIS, daily exposure to PM2.5, PM10, NO2, and O3 was estimated by calculating the areaweighted average of the gridded concentration data.

Social deprivation

We used the 2015 version of two deprivation indices: the European Deprivation Index (EDI) [START_REF] Pornet | Construction of an adaptable European transnational ecological deprivation index: the French version[END_REF] and the French Deprivation Index (FDep) [START_REF] Rey | Ecological association between a deprivation index and mortality in France over the period 1997 -2001: variations with spatial scale, degree of urbanicity, age, gender and cause of death[END_REF] at the IRIS level. Both indices are composite measures based on a combination of census data to characterize the socioeconomic environment of the IRIS.

The EDI is a European index constructed using Eurostat data and capable of measuring relative deprivation in a transcultural way across all European countries. Its French version is a weighted combination of ten census variables grouped into two dimensions: a material dimension (nonhomeowners, households without a car, households with more than two occupants, overcrowded dwellings with more than one person per room) and a social dimension (unemployment, foreigners, unskilled workers, low education level, single-parent households, unmarried status) [START_REF] Gorza | Outils élaborés dans la cadre du programme « Inégalités sociales de santé[END_REF]. The FDep is computed using principal component analysis from four census variables: median household income, proportion of secondary school graduates (15 years and over), proportion of laborers in the active population, and proportion of unemployment in the active population.

The first quintile of FDep and EDI represents the least deprived IRIS, while the fifth quintile the most deprived.

We considered both indicators, because a clear concordance between them has not yet been demonstrated [START_REF] Barry | Ability of municipality-level deprivation indices to capture social inequalities in perinatal health in France: A nationwide study using preterm birth and small for gestational age to illustrate their relevance[END_REF][START_REF] Temam | Ability of ecological deprivation indices to measure social inequalities in a French cohort[END_REF], and there is currently no recommendation favoring one of them [START_REF] Gorza | Outils élaborés dans la cadre du programme « Inégalités sociales de santé[END_REF].

Reference values to describe relative exposure to environmental factors

Relative exposure to heat, air pollution, and lack of vegetation was assessed by defining the reference values to harmonize the description of exposures, thus facilitating the interpretation of temperature and NDVI exposure across climate types. These indicators are summarized in Supplementary Table 1.

Heat

A climatological approach based on 10-day means was used to develop a reference for each IRIS. 10day temperature means smoothed the data while accounting for climatic variability over time. The reference 10-day mean, minimum, and maximum temperatures 𝑑 𝑚 were computed over the period 2000-2018 for each department and each type of climate as follows:

𝑑 𝑚 = ∑ ∑ 𝑇 𝑙,𝑚,𝑛 10 𝑙=1 10 2018 𝑛=2000
19

Where 𝑇 was the daily temperature (i.e., Tmean, Tmin, or Tmax) for the 𝑙 th day (from 1 to 365), period of 10 days 𝑚 (from 1 to 37), and year 𝑛 (from 2000 to 2018). Then, the daily difference between daily temperatures and the corresponding 10-day reference values ∆𝑇 𝑙,𝑚,𝑛 (i.e., relative temperature indicators ΔTmean, ΔTmin, or ΔTmax) for each IRIS was thus:

∆𝑇 𝑙,𝑚,𝑛 = 𝑇 𝑙,𝑚,𝑛 -𝑑 𝑚
This approach allowed us to identify the IRIS overexposed to heat compared to other IRIS with similar geographical and climatological conditions. This also provides a proxy to identify the urban heat island. 

Lack of vegetation

For each type of climate, reference values were defined as the median values of the mean summer NDVI in rural areas, as rural areas were assumed to be closer to the most vegetated areas than urban areas.

Lack of vegetation was then assessed each year for each IRIS by calculating the difference between the mean summer NDVI and the reference value (ΔNDVI).

Air pollution

To identify the IRIS overexposed to air pollution, the WHO air quality guidelines developed to protect public health were used as reference values [START_REF] Who | WHO global air quality guidelines. Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide[END_REF].

The annual and summer mean differences between daily mean PM2.5, PM10, and NO2 concentrations and annual WHO air quality guideline values (5 µg/m 3 , 15 µg/m 3 , and 10 µg/m 3 , respectively) were calculated (ΔPM2.5, ΔPM10, ΔNO2) for each IRIS. For O3, the summer mean difference between daily maximum concentrations and WHO air quality guideline values for the peak season (60 µg/m 3 ) was calculated (ΔO3) for each IRIS.

Cumulative exposure indicator and identification of environmental hotspots

A cumulative exposure indicator with four classes was created for each IRIS and each year 

Statistical analysis

Descriptive analysis and temporal evolution of indicators

The number and percentage of IRIS by deprivation index quintiles were described according to urbanization level. 

Associations between environmental exposure and social deprivation

Associations between environmental exposure indicators and social deprivation were studied by (i) regressing hotspots (yes/no) (main analysis) and then (ii) regressing the cumulative exposure indicator (four classes) against each social deprivation index (EDI and FDep) by quintiles using (i) binary logistic regressions and (ii) non-ordinal polytomous logistic regressions.

Given that heat exposure arouses special interest in climate adaptation policies and that its reduction can only be achieved through indirect actions such as planting vegetation or reducing air pollution, we used non-ordinal polytomous logistic regressions to investigate the association between the categorized summer ΔTmean and the categorized indicators summer ΔNDVI, ΔPM2.5, ΔNO2, and ΔO3 adjusted for deprivation indices (EDI and FDep) and year (Supplementary Table 1). We included an interaction term between social deprivation indices and environmental exposure indicators.

All analyses were stratified by urbanization level.

RESULTS

Descriptive analysis and temporal evolution of indicators

Overall, 64% of the 48,185 IRIS were classified as rural, and the main climate type was the modified oceanic climate (Supplementary Figure 1). Highly socially deprived IRIS (quintile 5) were more likely to be in urban areas than in rural areas, especially using the EDI (40.3% of urban IRIS vs. 7.5% of rural IRIS) (Table 1). 1B). In 2018, almost all IRIS (93.7%) in urban areas exceeded the WHO air quality guideline levels (> 10 µg/m 3 ) for NO2 compared with 59.3% in rural areas. For O3, all IRIS were above these guidelines in 2018 (> 60 µg/m 3 ). On average, ΔNO2 and ΔO3 were higher in urban areas than in rural areas (Supplementary Figure 4).

Since 2009, ΔPM2.5 and ΔPM10 have steadily decreased in urban and rural areas (Figure 1C). Mean ΔPM2.5 dropped by 54.6% (from 13.0 µg/m 3 in 2009 to 5.9 µg/m 3 in 2018) in urban IRIS and by 67.9% (from 9.4 µg/m 3 in 2009 to 3.0 µg/m 3 in 2018) in rural IRIS. Despite these reductions, 99.9% and 78.7% of urban IRIS and 97.6% and 20.0% of rural IRIS exceeded the WHO air quality guidelines for PM2.5 and PM10, respectively, in 2018 (> 5 µg/m 3 and > 15 µg/m 3 ). On average, ΔPM2.5 and ΔPM10 concentrations were higher in urban areas than in rural areas (Supplementary Figure 5).

In both urban and rural areas, the different summer ΔT indicators were positively correlated with summer ΔO3 and negatively (or close to 0) correlated with ΔPM and ΔNO2 (Supplementary Figure 6).

Summer ΔNDVI was negatively correlated with all pollutant and temperature indicators. In urban IRIS, EDI and FDep showed different correlation patterns with the environmental exposure indicators.

According to EDI, the most deprived IRIS in urban areas were more exposed to heat (summer ΔTmean), air pollution (annual ΔPM2.5, ΔPM10, and ΔNO2), and lack of vegetation (summer ΔNDVI). For example, mean ΔTmean and annual ΔPM2.5 were respectively +0.68 °C and +9.6 µg/m 3 in highly socially deprived IRIS (quintile 5) versus +0.35 °C and +8.35 µg/m 3 in the least deprived IRIS (quintile 1). Summer ΔO3 remained stable across EDI quintiles. This pattern was not observed in rural areas.

With FDep, a U-shaped relationship was observed in urban areas in which the least and most deprived IRIS were more exposed to air pollution (annual ΔPM2.5, ΔPM10, and ΔNO2) and lack of vegetation (summer ΔNDVI). In rural areas, a higher FDep was associated with a lower exposure to all air pollutants (Supplementary Figures 7 and8).

In terms of cumulative exposure, most IRIS (70.0%) were class 2 (i.e., in the strongest quartiles for one factor) (Supplementary Table 3). On average, 6.8% of rural IRIS were classified as hotspots (i.e., IRIS in the strongest quartiles for all factors) (1,554,243 inhabitants) versus 7.2% of urban IRIS (3,052,728 inhabitants) (Figure 3). While the percentage of hotspots was rather stable in urban areas Exposures were higher in urban hotspots than in rural hotspots (Supplementary Figure 9). For example, IRIS hotspots were exposed to mean summer ΔTmean of +1.9 °C in urban areas and +1.7 °C in rural areas compared with non-hotspots. For annual ΔPM2.5, summer ΔO3, and summer ΔNDVI in urban and rural hotspots, these differences were respectively +2.7 µg/m 3 versus +0.92 µg/m 3 , +15.60 µg/m 3 versus +17.91 µg/m 3 , and -0.20 versus -0.15. The mean percentages of IRIS overexposed to each environmental exposure indicator according to the cumulative exposure indicator class and urbanization level are presented in Supplementary Table 4.

Associations between environmental exposure and social deprivation

In urban areas, increased deprivation was strongly associated with the risk of being in a hotspot (p < 0.001) based on EDI (Figure 4). With FDep, this association was only observed for highly socially deprived IRIS (quintile 5) (p < 0.001) with a U-shaped relationship between social deprivation and the risk of living in a hotspot. In rural areas, higher social deprivation was negatively associated with the risk of being in a hotspot for both EDI and FDep. Using EDI and in urban areas, the risk of cumulating several exposures increased with social deprivation, regardless of the cumulative exposure class (Supplementary Figure 10). In rural areas, a Ushaped relationship was observed. Using FDep, a U-shaped relationship was observed in urban areas, whereas a decreasing risk with social deprivation was found in rural areas.

In summer, IRIS were more likely to have a medium or high exposure to heat if they also had a medium or high exposure to a lack of vegetation or to O3 in both urban and rural areas (models 1 and 2, Table 2).

In rural areas, they were more likely to have a medium or high exposure to heat if they also had a medium or high exposure to PM2.5 (models 1 and 2). In urban areas, IRIS were less likely to have a medium or high exposure to heat if they had a high exposure to NO2 or medium exposure to PM2.5. In both urban and rural areas, highly socially deprived IRIS (quintile 5) were at a lower risk of being exposed to high heat. a OR (95% CI) estimated by non-ordinal polytomous logistic models.

DISCUSSION

Our findings showed that overexposure to heat was higher for the period 2015-2018 compared with the other periods, which is consistent with the climatic trends observed in France [START_REF] Sorel | Normales climatiques 1991-2020[END_REF][START_REF] Ribes | An updated assessment of past and future warming over France based on a regional observational constraint[END_REF]. The year 2003 showed a sharp increase in summer ΔTmean and air pollutants and a decrease in summer ΔNDVI. This year was marked by a severe heatwave in Europe and France, which led to 15,000 excess deaths in France alone [START_REF] Fouillet | Excess mortality related to the August 2003 heat wave in France[END_REF]. These abnormally high temperatures explain the decrease in NDVI due to the drought, the increase in O3 concentrations [START_REF] Monks | Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer[END_REF], and more generally, the rise in all air pollutants. This increase in air pollutants was probably due to the generation of O3 [START_REF] Monks | Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer[END_REF], the lower absorption of pollutants by drought-affected vegetation, and the soil mineral dust resuspension caused by the drought, limited dispersion, and washing of particulate matter. Until 2018, we also observed a continuous and large decrease in air pollutant concentrations for PM and NO2 (two-to tenfold reduction on average depending on the pollutant and urbanization level), which reflects the impact of successive action plans in various sectors to improve air quality in France (39). However, most IRIS still exceeded the most recent WHO air quality guidelines in 2018 (20% to 100% of IRIS depending on the pollutant and urbanization level).

On average, more than 4 million people lived in hotspots, i.e., areas cumulating adverse overexposure to all environmental determinants. This study confirmed that between 2000-2018, urban IRIS were generally more exposed to heat during summer and to air pollution throughout the year, while they had less vegetation than rural IRIS. Differential exposure was greater in urban areas than in rural areas,

showing that environmental inequities were stronger in the urban environment. In urban areas, greater deprivation was strongly associated with the risk of living in a hotspot or having more cumulative exposure but only when using the EDI and not the FDep. In rural areas, the associations were more consistent but inverted: greater deprivation measured by both the EDI and FDep was associated with a lower risk of living in a hotspot. With the cumulative exposure indicator in rural areas, a U-shaped relationship and a lower risk of cumulative exposure were observed with the EDI and FDep, respectively.

In urban areas, our results support the findings of several studies that have identified associations between heat, air pollution, or low vegetation/green space availability and social deprivation, with higher exposure levels being linked to the most deprived populations [START_REF] Hsu | Disproportionate exposure to urban heat island intensity across major US cities[END_REF][START_REF] Venter | Environmental justice in a very green city: Spatial inequality in exposure to urban nature, air pollution and heat in Oslo, Norway[END_REF][START_REF] Schüle | Social Inequalities in Environmental Resources of Green and Blue Spaces: A Review of Evidence in the WHO European Region[END_REF][START_REF] Padilla | Air quality and social deprivation in four French metropolitan areas-A localized spatio-temporal environmental inequality analysis[END_REF][START_REF] Brunt | Air pollution, deprivation and health: understanding relationships to add value to local air quality management policy and practice in Wales, UK[END_REF][START_REF] Deguen | Social inequalities resulting from health risks related to ambient air quality-A European review[END_REF]. However, some studies found reverse associations, showing, for example, that less deprived populations have greater exposure or that both the least and the most deprived populations have a greater exposure to air pollution [START_REF] Padilla | Air quality and social deprivation in four French metropolitan areas-A localized spatio-temporal environmental inequality analysis[END_REF][START_REF] Deguen | Social inequalities resulting from health risks related to ambient air quality-A European review[END_REF].

The differences observed between the two deprivation indices, which have already been discussed in other studies [START_REF] Barry | Ability of municipality-level deprivation indices to capture social inequalities in perinatal health in France: A nationwide study using preterm birth and small for gestational age to illustrate their relevance[END_REF][START_REF] Temam | Ability of ecological deprivation indices to measure social inequalities in a French cohort[END_REF], can be explained by several reasons related to their construction methods. First, the EDI was built to allow comparability between European countries [START_REF] Pornet | Construction of an adaptable European transnational ecological deprivation index: the French version[END_REF], whereas the FDep was created to characterize spatial socioeconomic heterogeneity in France [START_REF] Rey | Ecological association between a deprivation index and mortality in France over the period 1997 -2001: variations with spatial scale, degree of urbanicity, age, gender and cause of death[END_REF]. Second, these two indices were estimated using different statistical methods. The EDI combines ten ecological weighted socioeconomic and material variables based on census studies [START_REF] Pornet | Construction of an adaptable European transnational ecological deprivation index: the French version[END_REF], whereas the FDep is based on four ecological variables from principal component analysis [START_REF] Rey | Ecological association between a deprivation index and mortality in France over the period 1997 -2001: variations with spatial scale, degree of urbanicity, age, gender and cause of death[END_REF]. Finally, the components included in the two indices also differ. For example, the EDI includes "the proportion of non-homeowners," "the proportion of households without a car," and "the proportion of primary residences with more than one person per room," although these items do not reflect socioeconomic deprivation in the same way in rural and urban areas [START_REF] Barry | Ability of municipality-level deprivation indices to capture social inequalities in perinatal health in France: A nationwide study using preterm birth and small for gestational age to illustrate their relevance[END_REF][START_REF] Temam | Ability of ecological deprivation indices to measure social inequalities in a French cohort[END_REF][START_REF] Gilthorpe | Rural/urban differences in the association between deprivation and healthcare utilisation[END_REF]. For example, urban areas often have well-developed public transport systems, which limits the need to own a car. By contrast, rural areas often lack public transport, and thus not owning a car can reflect social deprivation, as it limits mobility. Nevertheless, the variable "proportion of households without a car" does not contribute the most to this index. Overcrowded dwellings and homeownership may also have different associations with social deprivation in rural compared with urban areas. The variables contributing the most are overcrowded households and singleparent households [START_REF] Merville | Can an Ecological Index of Deprivation Be Used at the Country Level? The Case of the French Version of the European Deprivation Index (F-EDI)[END_REF]. The apparent protective effect of social deprivation (as estimated by the EDI and FDep) in rural areas can be explained by the specific spatial distribution of environmental exposures and social deprivation. For example, low-density areas located far from attractive poles of activity tend to be more vegetated and less affected by urban heat islands and air pollution, although their low housing costs may attract residents with higher social deprivation scores. At the same time, IRIS closer to urban poles or attractive areas (e.g., tourist zones) may be more exposed to deleterious environmental factors but may also attract residents with a higher socioeconomic status.

In urban areas, highly socially deprived IRIS were less likely to be highly exposed to heat using the EDI. IRIS overexposed to heat were also overexposed to a lack of vegetation in both rural and urban areas. Surprisingly, in urban areas, high exposure to NO2 or PM2.5 was negatively associated with medium or high exposure to heat. Medium and high exposure to O3 was associated with medium or high exposure to heat.

Our methods have several limitations. First, we estimated the relative exposure of each IRIS population based on the area-weighted average of temperatures, air pollution, and NDVI rather than the populationweighted average. This may have under-or overestimated the exposure in some IRIS. Using the IRIS as a spatial unit may also mischaracterize some levels of exposure, because rural IRIS have larger areas and somewhat smaller populations compared with IRIS in towns and cities. introduce an approximation bias into their representativeness of rural and urban areas [START_REF] Gorza | Outils élaborés dans la cadre du programme « Inégalités sociales de santé[END_REF]. Finally, the EDI was not computed for large, sparsely populated IRIS with forests and leisure parks.

We assumed that population density was stable over the entire study period. Given the lack of data at the IRIS level before 2014, we assumed that all IRIS in a given municipality changed population at the same annual rate as the municipality. We also assumed that the population of each IRIS was constant prior to 2006 due to the lack of harmonized census data for this period.

Finally, ΔPM2.5 was underestimated before 2008-2009 and ΔPM10 before 2007, because the semivolatile PM fraction was not yet measured. This underestimation represents about 30% of the annual mean of PM10 [START_REF] Malherbe | Analyse de tendances nationales en matière de qualité de l'air[END_REF][START_REF] Bessagnet | Bilan de la première année de mesure des PM10 ajustées en France et évaluation des outils de modélisation[END_REF]. No such evaluation was performed for PM2.5. Consequently, the number of IRIS overexposed to PM might have been slightly underestimated before 2009 in our study. Our exposure indicators are proxies for population exposure and do not reflect the true daily exposure, which likely varies between individuals in each IRIS. For example, a poor resident of an IRIS living in poorly ventilated and insulated housing in a dense neighborhood and working in an outdoor job will be more exposed to heat and air pollution than a wealthier resident of the same IRIS, even though both would be assigned the same exposure level [START_REF] Deguen | Social inequalities resulting from health risks related to ambient air quality-A European review[END_REF].

Our study has several strengths. Characterizing the socioeconomic and environmental burden of populations at a fine scale and in a comparable manner highlights the environmental justice issues and public health concerns of environmental exposures. To our knowledge, this is the first study to identify hotspots of exposure to heat, air pollution, and lack of vegetation and their associations with social deprivation. For instance, population-weighted summer temperatures and population-weighted NDVI at the national level are currently monitored by the Lancet countdown as relevant indicators of climate change impacts and adaptation policies, respectively [START_REF] Countdown | Lancet Countdown: Tracking Progress on Health and Climate change[END_REF]. However, the Lancet countdown fails to consider co-exposure, and the indicators are not always comparable across space. For instance, a given temperature and a given NDVI have different impacts depending on the underlying climate and type of vegetation.

We used exposure data at a fine spatiotemporal scale over a long period of time and across continental

France. These data were aggregated at the finest spatial administrative level available in France. We used relative exposure indicators for NDVI and temperature to ensure comparability across areas and climate types, while for air pollutants, we assessed exposure relative to the WHO guidelines that relate to the underlying health risks. This approach is useful to study the effect of heat, air pollution, and lack of vegetation on health outcomes.

This study provides the first overview of fine-scale exposure to heat stress and its co-exposures at a national level. Hotspots, which represent the areas with the strongest environmental inequities, were identified. This approach can support the inclusion of environmental inequities into adaptation strategies to climate change.

Figure 1 .

 1 Figure 1. Evolution of (A) mean summer ΔTmean and ΔNDVI, (B) mean annual ΔNO2 and ΔO3 evolution and (C) mean annual ΔPM2.5 and ΔPM10 between 2000 and 2018 in urban and rural IRIS in continental France.corresponds to the inclusion of semi-volatile particulate matter.
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 2 Figure 2. Mean summer ΔTmean between 2000 and 2018 in continental France
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 6 0% to 8.0%), it was the highest in 2000-2004 (11.3%) in rural areas (mainly due to 2003, which recorded the highest number of hotspots for the entire period 2000-2018) and then increased again in 2015-2018 (6.5%) compared with 2005-2014 (4.7%).

Figure 3 .

 3 Figure 3. Spatial distribution of IRIS hotspots by year, annual average population living in an IRIS hotspot, and percentage of IRIS hotspots by period and urbanization level between 2000 and 2018 in continental France

Figure 4 .

 4 Figure 4. Associations between hotspots and non-hotspots and deprivation indices (EDI and FDep)

  Second, the reference values for temperature were calculated over the period 2000-2018, including the 2003 heatwave, which was the most severe and deadliest heatwave episode in France's history, as well as other particularly warm years (2006, 2018). This could have increased the reference values and thus lead to an underestimation of the relative exposure to temperature. Likewise, it might have underestimated the number of hotspots for the 2000-2004 period. Several limitations can be attributed to the use of the FDep and EDI. First, we used a constant value for each index and IRIS over the entire study period, since annual values using 2021 geography references were not available, and little change was found in the EDI values in 2009, 2013, and 2017 and the FDep values between 2011 and 2017. Second, these indicators seem less adapted to rural areas, which might

  (class 4) were defined as IRIS with the highest overexposure to all factors: (i) summer ΔTmean in the last quartile, (ii) at least one of the four air pollution indicators (annual ΔPM2.5, annual ΔPM10, annual ΔNO2, or summer ΔO3) in the last quartile, and (iii) summer ΔNDVI in the first quartile. IRIS of class 1 had the lowest exposure quartiles for all factors. IRIS of class 2 and class 3 were in the upper quartiles for one and two factors, respectively.

	Hotspots

(Supplementary Table

1

) based on the distribution quartiles of the environmental factors according to the period

(2000-2004, 2005-2009, 2010-2014, 2015-2018) 

and urbanization level (urban/rural).

  The evolution of summer ΔTmean, summer ΔTmin, summer ΔTmax, summer

	ΔNDVI, annual ΔNO2, summer ΔO3, annual ΔPM2.5, and annual ΔPM10 concentrations was described
	between 2000 and 2018. Analyses were stratified by urbanization level (urban/rural) and by 4-to 5-year
	periods (2000-2004, 2005-2009, 2010-2014, 2015-2018). Heat indicators (ΔTmean, ΔTmin, ΔTmax)
	were described by season and climate type.

Spearman correlation coefficients for the exposure indicators (summer ΔTmean, summer ΔTmin, summer ΔTmax, annual and summer ΔPM2.5, annual and summer ΔPM10, annual and summer ΔNO2, summer ΔO3, and summer ΔNDVI) and between EDI and FDep were computed for the entire period 2000-2018 and by urbanization level. Exposure indicators (summer ΔTmean, summer ΔNDVI, annual ΔPM2.5, annual ΔPM10, annual ΔNO2, and summer ΔO3) were described according to the deprivation index quintiles and the cumulative exposure indicator class, with a focus on hotspots.

Table 1 .

 1 Distribution of IRIS by quintiles and urbanization levelConcerning the exposure indicators, the summers of 2003, 2006, 2016, and 2018 had the highest mean ΔTmean in both urban and rural areas and across all climate types (Figures1A and 2; Supplementary Figure2). More generally, for all seasons and across all periods, mean ΔTmean, ΔTmin, and ΔTmax were higher in urban IRIS than in rural IRIS (Supplementary Table2). The 2015-2018 period showed the highest summer ΔTmean, ΔTmin, and ΔTmax for both urban and rural areas.

		EDI		FDep	
		Urban IRIS	Rural IRIS	Urban	Rural IRIS
		n (%)	n (%)	n (%)	n (%)
	Quintile 1	2,118 (12.1 %)	7,346 (24.0 %)	5,882 (33.5 %)	3,743 (12.2 %)
	Quintile 2	2,011 (11.5 %)	7,436 (24.3 %)	3,069 (17.5 %)	6,503 (21.2 %)
	Quintile 3	2,223 (12.7 %)	7,169 (23.3 %)	2,383 (13.6 %)	7,203 (23.5 %)
	Quintile 4	2,988 (17.0 %)	6,383 (20.8 %)	2,102 (12.0 %)	7,500 (24.5 %)
	Quintile 5	7,067 (40.3 %)	2,296 (7.5 %)	3,954 (23.0 %)	5,687 (18.6 %)
	Missing	1,135 (6.5 %)	13 (<0.01 %)	152 (0.01%)	7 (<0.01 %)
	Total	17,542	30,643	17,542	30,643

Table 2 .

 2 Associations between (over-)exposure to heat (∆Tmean) and deprivation indices (EDI and FDep), lack of vegetation, and air pollutants during summer between 2000 and 2018 in urban and rural areas of continental France (OR [95% CI] a )

		Urban areas	Rural areas
		Medium	High	Medium	High
		overexposure to	overexposure to	exposure to	exposure to
		heat	heat	heat	heat
	Model 1				
	EDI				
	Quintile 1	Ref.	Ref.	Ref.	Ref.
	Quintile 2	1.82 [1.43; 2.31] 2.77 [1.91; 4.01] 1.53 [1.28; 1.82] 2.66 [2.05; 3.46]
	Quintile 3	1.33 [1.05; 1.70] 0.67 [0.46; 0.98] 1.70 [1.43; 2.02] 1.16 [0.89; 1.50]
	Quintile 4	0.90 [0.71; 1.14] 0.27 [0.19; 0.40] 0.68 [0.56; 0.83] 0.27 [0.20; 0.36]
	Quintile 5	1.88 [1.51; 2.33] 0.91 [0.64; 1.29] 1.04 [0.71; 1.52] 0.31 [0.18; 0.52]
	∆NDVI exposure (lack of vegetation)			
	Low	Ref.	Ref.	Ref.	Ref.
	Medium	2.31 [2.17; 2.46] 3.69 [3.39; 4.02] 1.21 [1.16; 1.26] 1.53 [1.44; 1.62]
	High	10.8 [9.63; 12.0] 52.8 [46.2; 60.4] 1.15 [1.11; 1.20] 1.58 [1.49; 1.68]
	∆PM2.5 exposure				
	Low	Ref.	Ref.	Ref.	Ref.
	Medium	0.62 [0.55; 0.70] 0.49 [0.42; 0.57] 3.35 [3.07; 3.65] 10.0 [8.86; 11.4]
	High	0.61 [0.53; 0.70] 0.51 [0.43; 0.60] 6.38 [5.81; 7.01] 18.7 [16.3; 21.6]
	∆NO2 exposure				
	Low	Ref.	Ref.	Ref.	Ref.
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