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Introduction : Proton Exchange Membrane Fuel Cells
(PEMFC)

= Stack
Creates electricity/heat with hydrogen and oxygen
Operating between 60 and 80°C
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Introduction : Gas diffusion layer (GDL)

The GDL is a carbon fiber-based medium :
hydrophobic
170 to 400 µm of thickness
0,21 to 0,73 g/cm2 of density
70 and 80 % of porosity ; resulting pores between 20 and 50 µm

⇒ GDL = Thin porous medium
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Introduction : Gas diffusion layer (GDL)

The main challenges in a GDL are :
4 To diffuse reactant gas uniformally from the channel to the active layer
4 To keep the membrane hydrated for proton transfer
4 To evacuate excess water to avoid cell flooding and let oxygen reach the active layer =

Water management issue
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What kind of water transfer in the GDL ?

First option

+ Only vapor transfer ?
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What kind of water transfer in the GDL ?

Other options

Only vapor transfer ?
+ Only liquid transfer ? e.g. Pasaogullari et al., J. Elec. Soc. 151 (3), A399-A406 (2004)
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What kind of water transfer in the GDL ?

Other options

Only vapor transfer ?
Only liquid transfer ?

+ Transfer with condensation and evaporation ?
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Method : simulation of water transport using PNM

What numerical model ?

Classical 2-phase flow model based on generalized Darcy’s law and
macroscopic capillary pressure ?
But GDL is very thin (No length-scale separation)
⇒ Use of 3D Pore Network Model (PNM)
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Pore Network Model (PNM)

Allow invasion percolation process (pore with largest connected bond is invaded) or
invasion with viscous effects
Allow multiple injection points :

Ceballos et al., Phys. Rev. E 84, 056311 (2011)

Less time-consuming than direct simulation (e.g. Lattice Boltzmann methods)
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Properties

6× 50× 50 pores with a 40µm step ⇒ 240µm× 2mm× 2mm network
Cubic pores and bonds
Random distribution : [dpmin ; dpmax ] = [24µm ; 36µm] and [dtmin ; dtmax ] = [10µm ;
24µm]
Fully hydrophobic : contact angle between water and carbon fibers : Θ = 110◦
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Temperature field

Introduction

Introduction
Electrolysis ⇒ Heat flux Φ at the GDL/active layer interface
Non uniform temperature in the GDL ⇒ Colder zone ⇒ Possibility of condensation
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Temperature field

Calculation of temperature field with Finite-volume method
→ Two cases : a) Isotropic and b) Anisotropic thermal conductivity
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Temperature field

a) Isotropic thermal conductivity in the GDL → λ = 0.5W/(m.K)
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Temperature field

At 80℃, ∆Hliq

2F
= 1, 48. U and i are taken from the polarisation curve below.
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Temperature field

b) Thermal anisotropy in the GDL → λ = 0.5W/(m.K) in through-plane direction and λ = 5
or 50W/(m.K) in in-plane direction (for i = 1 A/cm2)
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Temperature field

b) Thermal anisotropy in the GDL → λ = 0.5W/(m.K) in through-plane direction and λ = 5
or 50W/(m.K) in in-plane direction (for i = 1 A/cm2)

+ Anisotropy tends to make the in-plane temperature uniform
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Hypothesis

Water production rate

Q = iA
2F

i : current density
A : cross-sectional area
F : Faraday constant

Is it possible to transfer this flux in vapor phase accross
the GDL ?
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Hypothesis

Estimation of Critical Relative Humidity
Critical RH = RH within the GDL marking the onset of condensation

Calculation of vapor partial pressure field by PN approach

In each pore i, mass conservation :
∑nbneighbours

j=1 qij = 0
qij = gij(xvi − xvj) is the local vapor flux from pore i to pore j
gij = cDw/adth

2
ij/a

c : mole concentration (= p/RT )
dthij : width of the throat between i and j
a : lattice distance
Dw/a : molar diffusion coefficient between air and water
xvi = pvi/pout : mole fraction of vapor in pore i
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Hypothesis

Example for i = 1 A/cm2 - RH channel = 50 %
RHlocal = pv(x,y,z)

pvs(T (x,y,z))

⇒ Isotropy : Maximum of local Relative Humidity at the GDL/AL interface
⇒ Anisotropy : Maximum of local Relative Humidity under the rib and at the GDL/AL interface
⇒ No condensation as long as local RH < 1 in the GDL



Introduction Pore Network Model Water transfer (∆T 6= 0) Conclusion

Hypothesis

Phase diagram
From many simulations varying i and RH channel
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Pore Network Model with condensation and evaporation

Pore Network Model with condensation and evaporation

If condensation is possible ⇒ 2 steps : nucleation and growth of liquid clusters
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Pore Network Model with condensation and evaporation

Step 1 : Nucleation
Identification of nucleation spots

1 Compute pv in each pore assuming no condensation
2 Identify each pore where RH is ≥ 1
3 Invade the pore where RH is ≥ 1 and is maximum
4 Back to step 1 until RH < 1 in each remaining pore
5 Initial state for growth step
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Pore Network Model with condensation and evaporation

Step 2 : Pore Network Simulation of liquid cluster growth
due to condensation

Growth stops when evaporation rate = condensation rate for each liquid cluster
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Results

Results (I) Isotropic Thermal Conductivity & i = 1 A/cm2
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Results

Results (I) Isotropic Thermal Conductivity & i = 1 A/cm2

→ Condensation happens at the AL/GDL interface and water spreads over the whole AL/GDL
interface
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Results

Results (II) ×10 Anisotropy & i = 1 A/cm2
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Results

Results (II) ×10 Anisotropy & i = 1 A/cm2

→ Condensation located under the rib and at the AL/GDL interface
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Results

Results (III) Slice saturation (Anisotropic case)
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Results

Comparison with previous works (PNM)

⇒ Patterns are very different... Can affect the O2 diffusion
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Results

Apparent O2 diffusion coefficient
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Conclusion

4 Most of previous works using PNM = Invasion Percolation in liquid phase from catalyst
layer

4 Temperature field is computed → Temperature variations within the GDL leading to
condensation under the rib and at the GDL/AL interface

4 Temperature field control is a key of water management
4 Thermal anisotropy has a strong impact on temperature
4 Thermal anisotropy has a beneficial impact on O2 transfer
4 Produced liquid water can be transferred through the GDL up to high RH channel
4 Liquid patterns due to condensation are different from patterns using PNM(IP from active

layer)
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Prospects

Coupling with non uniform current density at the GDL/AL interface
Compare with in situ vizualisations for automotive applications (’IMPALA’ project)

Acknowledgements :
Financial support from European Union’s Seventh Framework Program (FP7/2007-2013) for the Fuel Cells and Hydrogen Joint
Undertaking (project ’IMPALA’) is gratefully acknowledged



Introduction Pore Network Model Water transfer (∆T 6= 0) Conclusion

THANK YOU FOR YOUR ATTENTION
QUESTIONS ?


	Introduction
	Pore Network Model
	Water transfer (T =0)
	Temperature field
	Hypothesis
	Pore Network Model with condensation and evaporation
	Results

	Conclusion



