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In this paper, we consider partial sums of martingale differences weighted by random variables drawn uniformly on the sphere, and globally independent of the martingale differences. Combining Lindeberg's method and a series of arguments due to Bobkov, Chistyakov and Götze, we show that the Kolmogorov distance between the distribution of these weighted sums and the limiting Gaussian is "super-fast" of order (log n) 2 /n, under conditions allowing us to control the higher-order conditional moments of the martingale differences. We give an application of this result to the least squares estimator of the slope in the linear model with Gaussian design.

Introduction

Let (X k ) k∈Z be a strictly stationary process on a probability space (Ω, F, P) such that E(X 0 ) = 0 and E(X 2 0 ) = 1. Consider the weighted sums

X, θ := θ 1 X 1 + • • • + θ n X n := S n (θ) ,
where X = (X 1 , . . . , X n ), θ = (θ 1 , . . . , θ n ) is defined on (Ω, F, P), is independent of (X k ) k∈Z and has uniform distribution µ n-1 on the unit sphere S n-1 of R n (n ≥ 2). Let (F i ) i∈Z be a non decreasing stationary filtration in F such that X 0 is F 0 -adapted. In this paper, we shall often use the notation E (X) to mean E(X|F ). Assume that E i-1 (X i ) = 0 P-almost surely: in other words (X k ) k∈Z is a sequence of martingale differences adapted to (F i ) i∈Z . By the properties of the uniform distribution on the sphere, we have that max 1≤i≤n |θ i | → 0, P-a.s.

Therefore, if we assume in addition that E(X 2 0 |F -∞ ) = 0, according to Hannan [12, p. 284], S n (θ) converges in distribution to a standard Gaussian random variable. Actually [START_REF] Hannan | Central limit theorems for time series regression[END_REF]Theorem 1] implies the following conditional version of the central limit theorem (CLT): κ θ P Sn(θ) , P G ) → 0 P-a.s., as n → ∞, where G ∼ N (0, 1) and

κ θ P Sn(θ) , P G ) = sup t∈R P |θ (S n (θ) ≤ t) -P(G ≤ t) .
Above the notation P |θ (resp. E |θ ) means the conditional probability (resp. the conditional expectation) with respect to θ.

In this paper, we are interested in rates in this CLT in terms of the Kolmogorov distance. When (X k ) k∈Z forms a sequence of independent centered random variables in L 4 with variance one, from Corollary 3.8 in Klartag and Sodin [START_REF] Klartag | Variations on the Berry-Esseen theorem[END_REF], it follows that

E κ θ (P Sn(θ) , P G ) ≤ cM 4,n n where M 4,n = 1 n n k=1 E(X 4 k ) . (1.1) 
This proves that, when M 4,n is uniformly bounded (which is the case in the setting of independent and identically distributed (iid) r.v.'s), projecting the variables on the sphere allows to derive a much faster rate than in the usual Berry-Esseen theorem, where the rate is 1/ √ n. In a recent paper, Bobkov et al. [START_REF] Bobkov | Normal approximation for weighted sums under a second-order correlation condition[END_REF] have extended this interesting phenomenon to isotropic random vectors (meaning that the coordinates are uncorrelated with variance one) having a symmetric distribution, and under a suitable second order correlation condition. They obtained a similar 1/n-rate modulo a logarithmic factor. More precisely, their second order correlation condition reads as: there exists a constant Λ such that, for any collection a ij ∈ R,

Var n i,j=1 a ij X i X j ≤ Λ n i,j=1 a 2 ij . (1.2) 
Theorem 1.1 in [START_REF] Bobkov | Normal approximation for weighted sums under a second-order correlation condition[END_REF] asserts that if (X k ) k∈Z is a sequence of uncorrelated centered random variables with variance one, satisfying (1.2) and such that (X 1 , • • • , X n ) has a symmetric distribution then E κ θ (P Sn(θ) , P G ) ≤ c log n n Λ .

(1.3)

As shown in [START_REF] Bobkov | Normal approximation for weighted sums under a second-order correlation condition[END_REF], condition (1.2) can be verified for random vectors which satisfy a Poincaré-type inequality with positive constant (see [START_REF] Bobkov | Normal approximation for weighted sums under a second-order correlation condition[END_REF]Proposition 3.4]). Moreover, if we assume that (X k ) k∈Z is a sequence of martingale differences such that sup i≥1 E(X 4 i ) < ∞, one can check that condition (1.2) is satisfied provided that

k≥1 γ(k) < ∞ , (1.4) 
with γ(k) = max(γ 2,2 (k), γ 1,3 (k)) where

γ 2,2 (k) = sup ≥u≥0 X u X (E (X 2 k+ ) -E(X 2 k+ )) 1 , (1.5) 
and

γ 1,3 (k) = sup ,v≥0 X E (X k+ X 2 k+v+ ) -E(X k+ X 2 k+v+ ) 1 . (1.6) 
For instance, if (X k ) k∈Z is additionally strictly stationary and strongly mixing, condition (1.4) is satisfied provided that k≥0 α 2 (k) 0

Q 4 (u)du < ∞ (see Section 2.2.1 for a definition of the coefficients α 2 (k) and of the quantile function Q). The most stringent condition in the assumptions made in [2, Theorem 1.1] is probably the fact that the distribution of (X 1 , • • • , X n ) is assumed to be symmetric. In [START_REF] Bobkov | Concentration and Gaussian Approximation for Randomized Sums[END_REF]Chapter 17.4] the authors consider the case of non-symmetric distributions. Their Proposition 17.4.1 states that if (X k ) k∈Z is a sequence of uncorrelated centered random variables with variance one, satisfying (1.2) then we can still provide an explicit bound for E κ θ P Sn(θ) , P G and that a certain term has to be added to the right-hand side of (1.3). This additional term is log n n

1/4 E X, Y X 2 e + Y 2 e 1/2 , (1.7) 
where Y is an independent copy of X and X 2 e = X, X denotes the euclidian norm of X. As proved in [START_REF] Bobkov | Concentration and Gaussian Approximation for Randomized Sums[END_REF]Chapter 17.5], the term (1.7) can be upper-bounded by C(log n) 1/4 /n provided (X 1 , . . . , X n ) satisfies a Poincaré-type inequality. For instance, when n = 1, for this Poincaré-type inequality to be satisfied it is necessary that P X 1 has an absolutely continuous component. Now in case of random vectors (n ≥ 2), the required Poincaré-type inequality is quite complicated to obtain except in the case where the random variables are independent with marginal distributions satisfying a Poincaré-type inequality (see [START_REF] Bobkov | Concentration and Gaussian Approximation for Randomized Sums[END_REF]).

The aim of this paper is to provide a new method allowing us to show that sequences (X k ) k∈Z of martingale differences satisfy an upper bound of the type (1.1) (up to some logarithmic term) without requiring that the law of the vector (X 1 , . . . , X n ) is symmetric, nor satisfies a Poincarétype inequality. More precisely, as stated and proved in Section 3, an upper bound of the type (1.1) will be achieved with the help of the Lindeberg method, where the random variables θ i X i will be replaced one by one by random variables Y i (θ) taking only two values with some desired characteristics (in particular they are independent conditionnally to θ). Then, following the approach of Klartag and Sodin [START_REF] Klartag | Variations on the Berry-Esseen theorem[END_REF], we shall compare the distribution of n i=1 Y i (θ) with a normal distribution. We select this method because Stein's method, which is also successfully used in some situations to get sharp Berry-Esseen bounds, would require strong assumptions on the conditional moments of the martingale differences (see for instance [START_REF] Röllin | On quantitative bounds in the mean martingale central limit theorem[END_REF]). The rate we achieve is "super fast" of order (log n) 2 /n. It should be mentioned that, in the absence of the randomization considered in this section and in the presence of dependence, it is very rare to achieve a Berry-Esseen upper bound of order n -1/2 for stationary sequences. Especially, for a martingale with stationary and ergodic differences, constant conditional variance and finite third moments, the upper bound in the classical Berry-Esseen inequality cannot be better than n -1/4 , (see [START_REF] Grams | Rates of Convergence in the Central Limit Theorem for Dependent Variables[END_REF] and [START_REF] Bolthausen | Exact Convergence Rates in Some Martingale Central Limit Theorems[END_REF]).

In Section 4, we shall see that, with additional computations, our result applies to the ordinary least square estimator of the slope in the linear regression model with Gaussian design and martingale differences errors.

In a Berry-Esseen bound the constants are important. However, in this paper, due to the difficulty and complexity of the problem, we shall not compute the constants exactly. For any two positive sequences of random variables a n and b n we denote by a n b n the fact that there is a universal positive constant c such that a n ≤ cb n for all n.

The paper is organized as follows. In Section 2.1 we present the result for martingales and comment on the method of proof. Section 2.2 is devoted to applications to martingales differences satisfying a mixing-type condition, functions of Markov chains and ARCH(∞) models. The proof on the general martingale result is given in Section 3. Finally, in Section 4, we present the application to linear regression with Gaussian design and give its proof.

2 Normal approximation for weighted sums of martingale differences

Main Result

In what follows we assume that (X i ) i∈Z is a strictly stationary sequence of martingale differences. Assume moreover that X 0 4 < ∞ and X 0 2 = 1. Let us introduce the weak dependence coefficients we will use in this paper. For any positive integer v, let

γ 0,2 (v) = E 0 (X 2 v ) -E(X 2 v ) 1 , γ 1,2 (v) = X 0 (E 0 (X 2 v ) -E(X 2 v )) 1 .
Recall also the coefficients γ 2,2 (v) and γ 1,3 (v) as defined in the introduction that can be rewritten as follows in the stationary setting:

γ 2,2 (v) = sup ≥0 X 0 X (E (X 2 v+ ) -E(X 2 v+ )) 1 , γ 1,3 (v) = sup ≥0 X 0 E 0 (X v X 2 v+ ) -E(X v X 2 v+ ) 1 . Define then γ(v) = max(γ 0,2 (v), γ 1,2 (v), γ 2,2 (v), γ 1,3 (v)) . (2.1) 
Our general result for martingales is the following theorem:

Theorem 2.1. Let (X n ) n∈Z be a stationary sequence of martingale differences in L 4 such that E(X 2 0 ) = 1. Let (γ(k)) k≥0 be the sequence of dependent coefficients defined in (2.1). Assume that k≥1 kγ(k) < ∞. Then

E κ θ (P Sn(θ) , P G ) (log n) 2 n . (2.2)
As a proof technique, we shall use as a starting point (following [START_REF] Bobkov | Berry-Esseen bounds for typical weighted sums[END_REF][START_REF] Bobkov | Normal approximation for weighted sums under a second-order correlation condition[END_REF]) a new variant of the smoothing inequality, which is custom built for the type of randomization we used and sequences of martingale differences. Let us give some details.

Let (X k ) k∈Z be a stationary sequence of martingale differences. We start from the so-called Berry-Esseen smoothing inequality (see e.g. [9, Ineq. (3.13) p. 538]) together with Lemma 5.2 in [START_REF] Bobkov | Berry-Esseen bounds for typical weighted sums[END_REF] which takes advantage of the fact that the random variables are projected on the sphere. More precisely, note first that for any fixed point θ on the sphere S n-1 , in case of stationary sequences of martingale differences, Theorem 3.10 in [START_REF] Merlevède | Functional Gaussian approximation for dependent structures[END_REF] implies

E(| X, θ | 4 ) 1/4 ≤ c 2 X 0 4 . In addition, if k≥1 Cov(X 2 0 , X 2 k ) < ∞, (2.3) 
then

σ 2 4 := n -1 E n i=1 (X 2 i -1) 2 < ∞ .
Therefore, if the moment of order 4 is finite and (2.3) holds, [1, Lemma 5.2 ] together with [1, Corollary 2.3] then imply that for all T ≥ T 0 ≥ 1,

T T 0 t -1 E |f θ (t)| dt log(T /T 0 ) n + e -T 2 0 /16 , (2.4) 
where f θ (t) = E e it X,θ |θ . The upper bound (2.4) combined with the Berry-Esseen's smoothing inequality entails the following Proposition:

Proposition 2.1. Let (X k ) k∈Z be a sequence of stationary martingale differences with finite fourth moment and G a standard normal variable. If (2.3) is satisfied then, for all T ≥ T 0 ≥ 1, E κ θ (P X,θ , P G )

T 0 0 E |f θ (t) -e -t 2 /2 | dt t + log(T /T 0 ) n + e -T 2 0 /16 + 1 T . (2.5)
In the rest of the paper we shall chose T = n and T 0 = 4 √ log n. To derive an upper bound for E κ θ (P X,θ , P G ) of order 1/n modulo an extra-logarithmic term (log n) α for α ≥ 1, one needs to prove that

T 0 0 E |f θ (t) -e -t 2 /2 | dt t (log n) α n . (2.6) 
This will be achieved by a two steps procedure. Using Lindeberg's method we shall replace one by one the variables θ i X i by independent random variables Y i (θ) taking only two values with some desired characteristics. After that we shall compare the characteristic function of

n i=1 Y i (θ) with e -t 2 /2 .

Applications

Martingale differences sequences and functions of Markov chains

Recall that the strong mixing coefficient of Rosenblatt [START_REF] Rosenblatt | A central limit theorem and a strong mixing condition[END_REF] between two σ-algebras A and B is defined by α(A, B) = sup{|P(A ∩ B) -P(A)P(B)| : (A, B) ∈ A × B }. For a strictly stationary sequence (X i ) i∈Z , let

F i = σ(X k , k ≤ i). Define the mixing coefficients α 2 (n) of the sequence (X i ) i∈Z by α 2 (n) = sup ≥0 α(F 0 , σ(X n , X n+ )) .
For the sake of brevity, let Q = Q X 0 where Q X 0 is the quantile function of X 0 , that is the generalized inverse of t → P(|X 0 | > t). Applying Theorem 2.1 and proceeding as in (6.86) and (6.87) of [START_REF] Merlevède | Functional Gaussian approximation for dependent structures[END_REF], the following result holds:

Corollary 2.1. Let (X n ) n∈Z be a stationary sequence of martingale differences in L 4 such that E(X 2 0 ) = 1. Assume that k≥1 k α 2 (k) 0 Q 4 (u)du < ∞ (2.7)
Then the conclusion of Theorem 2.1 holds.

Examples of martingale differences that are additionally strongly mixing are harmonic function of a Harris recurrent Markov chain. Let us for instance consider the following example as described in [7, Section 4.1]: Let (Y i ) i∈Z be the homogeneous Markov chain with state space Z described at page 320 in [START_REF] Davydov | Mixing conditions for Markov chains[END_REF]. The transition probabilities are given by p n,n+1 = p -n,-n-1 = a n for n ≥ 0, p n,0 = p -n,0 = 1 -a n for n > 0, p 0,0 = 0, a 0 = 1/2 and 1/2 ≤ a n < 1 for n ≥ 1. This chain is Harris positively recurrent as soon as n≥2 Π n-1 k=1 a k < ∞ and in that case the stationary chain is strongly mixing in the sense of Rosenblatt [START_REF] Rosenblatt | A central limit theorem and a strong mixing condition[END_REF].

Denote by K the Markov kernel of the chain (Y i ) i∈Z . The functions f such that K(f ) = 0 almost everywhere are obtained by linear combinations of the two functions f 1 and f 2 given by

f 1 (1) = 1, f 1 (-1) = -1 and f 1 (n) = f 1 (-n) = 0 if n = 1, and f 2 (0) = 1, f 2 (1) = f 2 (-1) = 0 and f 2 (n + 1) = f 2 (-n -1) = 1 -a -1 n if n > 0. Hence the functions f such that K(f ) = 0 are bounded. If (X i ) i∈Z is defined by X i = f (Y i ), with K(f ) = 0, then Corollary 2.1 applies if k≥1 kα 2 (k) < ∞ that
holds as soon as E 0 (τ 3 ) < ∞ where τ = inf{n > 0, X n = 0} and E 0 is the expectation under P 0 , which is the probability of the chain starting from 0. Now

P 0 (τ = n) = (1 -a n )Π n-1 i=1 a i for n ≥ 2. Consequently, if for some > 0, a i = 1 -1 i 3 + 1+ log i
for i large enough, Corollary 2.1 applies.

ARCH models

Theorem 2.1 applies to the case where (X i ) i∈Z has an ARCH(∞) structure as described by Giraitis et al. [START_REF] Giraitis | Stationary ARCH models: dependence structure and central limit theorem[END_REF], that is

X n = σ n η n , with σ n ∈ R + that satisfies σ 2 n = c + ∞ j=1 c j X 2 n-j , (2.8) 
where (η n ) n∈Z is a sequence of iid centered random variables such that E(η 2 0 ) = 1 and independent of F n-1 , and where c ≥ 0, c j ≥ 0, and j≥1 c j < 1. Since E(η 2 0 ) = 1 and j≥1 c j < 1, the unique stationary solution to (2.8) is given by Giraitis et al. [START_REF] Giraitis | Stationary ARCH models: dependence structure and central limit theorem[END_REF]:

σ 2 n = c + c ∞ =1 ∞ j 1 ,...,j =1 c j 1 . . . c j η 2 n-j 1 . . . η 2 n-(j 1 +•••+j ) . (2.9) Let v 2 = E(X 2 0 ) and note that v 2 = c 1 - j≥1 c j -1
. Applying Theorem 2.1, we get the following result:

Corollary 2.2. Let p ∈]4, 6]. Assume that η 0 p < ∞ and c j = O(j -b ) for b > 1 + 2(p -2)/(p -4) . (2.10) Then E κ θ (P Sn(θ) , P G v 2 ) (log n) 2 n ,
where

G v 2 ∼ N (0, v 2 ).
Proof of Corollary 2.2. Let k ≥ 2 and f be such that σ k = f (η k-1 , . . . , η 1 , η 0 , η -1 , . . .). Let (η n ) n∈Z be an independent copy of (η n ) n∈Z and set

σ * k = f (η k-1 , . . . , η 1 , η 0 , η -1 , . . .) .
Let also

X * k = σ * k η k , k ≥ 2.
Let us estimate the coefficients (γ(k)) k≥2 . With this aim, we start by noticing that, for any k ≥ 2,

γ 0,2 (k) ≤ E(|X 2 k -X * 2 k |) = E(η 2 k )E(|σ 2 k -σ * 2 k |) = E(|σ 2 k -σ * 2 k |) := δ k . Now, according to [5, Prop. 5.1], δ k inf 1≤ ≤k κ k/ + i≥ +1 c j where κ = i≥1 c j . (2.11) Next, for any k ≥ 2, γ 1,2 (k) ≤ E |X 0 ||X 2 k -X * 2 k | = E |X 0 ||σ 2 k -σ * 2 k | , γ 2,2 (k) ≤ sup ≥0 E |X 0 X ||X 2 k+ -X * 2 k+ | = sup ≥0 E |X 0 X ||σ 2 k+ -σ * 2 k+ | ,
and, there exists a numerical constant C such that, for any k ≥ 2,

γ 1,3 (k) ≤ C sup ≥0 E {|X | 3 + |X * | 3 }|X k -X * k | .
Let us give an upper bound for the coefficients γ 1,3 (k), the other coefficients being bounded by similar arguments.

For any k ≥ 2, let u(k) := sup |X | 3 (X k -X * k ) 1 .
Let M be a positive real. By stationarity and Cauchy-Schwarz's inequality, note that

u(k) ≤ M 3-p/2 E(|X 0 | p ) E(|X k -X * k | 2 ) + M 4-p sup |X | p-1 (X k -X * k ) 1 ≤ M 3-p/2 E(|X 0 | p ) E(|X k -X * k | 2 ) + 2M 4-p E(|X 0 | p ) .
Note that

E(|X k -X * k | 2 ) = E(|σ k -σ * k | 2 ) ≤ E(|σ 2 k -σ * 2 k |) . Therefore u(k) M 3-p/2 δ k + M 4-p . The quantity sup |X * | 3 (X k -X * k ) 1 can be bounded similarly. Selecting M = δ -1/(p-2) k , it follows that γ 1,3 (k) δ (p-4)/(p-2) k
.

Using similar arguments we infer that γ 1,2 (k) δ 

(p-3)/(p-
T 0 0 E E |θ e it n k=1 θ k X k -e -t 2 /2 dt t (log n) 2 n , (3.12) 
with T 0 = 4 √ log n. With this aim, for any fixed θ, we shall use the Lindeberg method and consider a sequence (Y i (θ)) i≥1 of independent random variables with specific distribution, which is also independent of (X i ) i≥1 . To specify the distribution, let us mention the following fact. 

(Y ) = 0, E(Y 2 ) = σ 2 , E(Y 3 ) = β 3 and E(Y 4 ) = σ 4 + β 2 3 σ 2 .
Proof. According to Lemma 5.1 in [START_REF] Dedecker | On mean central limit theorems for stationary sequences[END_REF], we can select m and m as follows:

m = β 3 + β 2 3 + 4σ 6 2σ 2 , m = - σ 2 m ,
and consider a r.v. Y with values in {m, m } such that

P(Y = m) = t and P(Y = m ) = 1 -t , where t = 2σ 6 4σ 6 + β 3 (β 3 + β 2 3 + 4σ 6 )
.

Indeed, in this case, by straightforward computations,

E(Y ) = 0, E(Y 2 ) = σ 2 and E(Y 3 ) = β 3 . Let us now compute Y 4 4 . Note that m -σ 2 /m = m + m = β 3 σ 2 .
Setting κ 3 = β 3 /σ 2 , we have

Y 4 4 = m 2 (m 2 t + m 2 (1 -t)) + m 2 (m 2 -m 2 )(1 -t) = m 2 σ 2 -m 2 (m -m )κ 3 (1 -t) . But -m 2 (1 -t) = m 2 t -σ 2 and m -m = κ 2 3 + 4σ 2 .
Then, simple computations lead to

Y 4 4 = σ 4 + σ 2 κ 2 3 = σ 4 + β 2 3 σ 2 ,
which ends the proof of the lemma.

Let (Y i (θ)) i≥1 be a sequence of random variables that are independent for any fixed θ, independent of (X i ) i≥1 , and such that, for each i ≥ 1, the conditional law of Y i (θ) given θ takes 2 values and is such that

E |θ (Y i (θ)) = 0, E |θ (Y 2 i (θ)) = θ 2 i E(X 2 0 ), E |θ (Y 3 i (θ)) = β i,3 (θ) and E |θ (Y 4 i (θ)) = β i,4 (θ)
where

β k,3 (θ) = θ 3 k E(X 3 k ) + 3 k-1 =1 θ θ 2 k E(X X 2 k ) := θ 3 k E(X 3 k ) + 3 βk,3 (θ) . (3.13)
and

β k,4 (θ) = θ 4 k (E(X 2 k )) 2 + β 2 k,3 (θ) θ 2 k E(X 2 k ) . (3.14) 
Note that this is always possible according to Fact 3.1.

Setting f t (x) = e itx , M k (θ) = k i=1 θ i X i and T k,n (θ) = n i=k+1 Y i (θ), we have E |θ f t n i=1 θ i X i -E |θ f t n i=1 Y i (θ) = n k=1 E |θ f t M k-1 (θ) + θ k X k + T k,n (θ) -E |θ f t M k-1 (θ) + Y k (θ) + T k,n (θ) . Let f t,k,n (x) = E |θ f t x + T k,n (θ) .
This function is in C ∞ and all its successive derivatives are bounded and satisfy: for any i ≥ 0, f

(i) t,k,n (x) ∞ ≤ t i
. By Taylor's expansion and independence between sequences, it follows that

E |θ f t n i=1 θ i X i -E |θ f t n i=1 Y i (θ) = 3 i=1 n k=1 I i,k + n k=1 (R 1,k (f t ) + R 2,k (f t )) , (3.15) 
where the following notations have been used: for any integer i ≥ 1,

I i,k = 1 i! E |θ f (i) t,k,n M k-1 (θ) θ i k E |θ,k-1 (X i k ) -E |θ (Y i k (θ)) , R 1,k (f t ) = 1 6 1 0 (1 -s) 3 E |θ θ 4 k X 4 k f (4) t,k,n M k-1 (θ) + sθ k X k ds and R 2,k (f t ) = 1 6 1 0 (1 -s) 3 E |θ Y 4 k (θ)f (4) t,k,n M k-1 (θ) + sY k (θ) ds . Above the notation E |θ,k-1 (X i k ) means E(X i k |σ(θ) ∨ F k-1 ) (note that by independence between θ and X, E |θ,k-1 (X i k ) = E k-1 (X i k )).
Clearly n k=1 I 1,k = 0 (by the martingale property and the fact that E |θ (Y i (θ)) = 0), and

n k=1 (R 1,k (f t ) + R 2,k (f t )) ≤ t 4 24 n k=1 β k,4 (θ) + θ 4 k E(X 4 k ) . (3.16) 
On another hand, since

E |θ (Y 2 k (θ)) = θ 2 k E(X 2 0 ), E |θ f (2) t,k,n (0) θ 2 k E |θ,k-1 (X 2 k ) -E |θ (Y 2 k (θ)) = θ 2 k f (2) t,k,n (0)E E k-1 (X 2 k ) -E(X 2 k ) = 0 .
Hence, since M 0 (θ) = 0,

n k=1 I 2,k = 1 2 n k=1 θ 2 k k-1 =1 E |θ f (2) t,k,n M (θ) -f (2) t,k,n M -1 (θ) E (X 2 k ) -E(X 2 k ) = 1 2 n k=1 θ 2 k k-1 =1 θ E |θ f (3) t,k,n M -1 (θ) X E (X 2 k ) -E(X 2 k ) + 1 2 n k=1 θ 2 k k-1 =1 θ 2 1 0 (1 -s)E |θ f (4) t,k,n M -1 (θ) + sθ X X 2 E (X 2 k ) -E(X 2 k ) := n k=1 I 2,3,k + n k=1 I 2,4,k . (3.17) 
We have

n k=1 I 2,4,k ≤ t 4 4 n k=1 θ 2 k k-1 =1 θ 2 γ 2,2 (k -) ≤ t 4 4 n k=1 θ 4 k n v=1 γ 2,2 (v) . (3.18)
Next we deal with the quantity n k=1 I 3,k + I 2,3,k . We have

n k=1 I 3,k + I 2,3,k = 1 6 n k=1 θ 3 k E |θ f (3) t,k,n M k-1 (θ) E k-1 (X 3 k ) -E(X 3 k ) + 1 2 n k=1 θ 2 k k-1 =1 θ E |θ f (3) t,k,n M -1 (θ) X E (X 2 k )-E(X 2 k ) - 1 2 n k=1 βk,3 (θ)E |θ f (3) t,k,n M k-1 (θ) .
Next define

J n := 1 2 n k=1 βk,3 (θ)E |θ f (3) t,k,n M k-1 (θ) - k-1 =1 θ 2 k θ E |θ f (3) t,k,n M -1 (θ) E X E (X 2 k )-E(X 2 k ) = 1 2 n k=1 k-1 =1 θ 2 k θ E |θ f (3) t,k,n M k-1 (θ) -E |θ f (3) t,k,n M -1 (θ) E(X X 2 k ) .
For ≤ k,

E |θ f (3) t,k,n M k-1 (θ) -E |θ f (3) t,k,n M -1 (θ) = k-1 u= E |θ f (3) t,k,n M u (θ) -E |θ f (3) t,k,n M u-1 (θ) = k-1 u= θ u E |θ f (4) t,k,n M u-1 (θ) E u-1 (X u ) + 1 0 (1 -s) k-1 u= θ 2 u E |θ f (5) t,k,n M u-1 (θ) + sX u X 2 u ds .
By the Martingale property, E u-1 (X u ) = 0. Therefore

|J n | ≤ t 5 4 n k=1 k-1 =1 k-1 u= θ 2 k |θ |θ 2 u γ 1,2 (k -) . (3.19) Next, since E |θ (Y 3 i (θ)) = β i,3 (θ), note that n k=1 I 3,k + I 2,3,k -J n = 1 6 n k=1 θ 2 k k =1 (1 + 31 k = )E |θ f (3) t,k,n M -1 (θ) Z ,k -E(Z ,k ) , where Z ,k = X E (X 2 k ) -E(X 2 k ) . Hence, since E |θ f (3) t,k,n 0 Z ,k -E(Z ,k ) = 0, n k=1 I 3,k + I 2,3,k -J n = 1 6 n k=1 θ 2 k k =1 (1 + 31 k = ) -1 u=1 θ E |θ f (3) t,k,n M -u (θ) -f (3) t,k,n M -u-1 (θ) Z ,k -E(Z ,k ) = 1 6 n k=1 θ 2 k k =1 (1+31 k = ) -1 u=1 θ θ -u 1 0 E |θ f (4) t,k,n M -u-1 (θ)+sθ -u X -u X -u Z ,k -E(Z ,k ) ds .
We have

E |θ f (4) t,k,n M -u-1 (θ) + sθ -u X -u X -u Z ,k -E(Z ,k ) = E |θ f (4) t,k,n M -u-1 (θ) + sθ -u X -u X -u E -u Z ,k -E(Z ,k ) ≤ t 4 X -u E -u (X X 2 k ) -E(X X 2 k ) 1 ≤ t 4 γ 1,3 (u) .
On another hand

E |θ f (4) t,k,n M -u-1 (θ) + sθ -u X -u X -u Z ,k -E(Z ,k ) ≤ E |θ f (4) t,k,n M -u-1 (θ) + sθ -u X -u X -u X E (X 2 k ) -E(X 2 k ) + E |θ f (4) t,k,n M -u-1 (θ) + sθ -u X -u X -u X E (X 2 k ) -E(X 2 k ) 1 ≤ t 4 X 0 X u E u (X 2 k-+u -E(X 2 0 ) 1 +t 4 X 0 1 X 0 E 0 (X 2 k-)-E(X 2 0 ) 1 ≤ t 4 (γ 2,2 (k-)+γ 1,2 (k-)) .
Bearing in mind Definition (2.1), we get 

n k=1 I 3,k + I 2,3,k -J n ≤ t 4 n k=1 θ 2 k k-1 =1 -1 u=1 |θ θ -u | γ(u) ∧ γ(k -) . ( 3 
E |θ f t n i=1 θ i X i -E |θ f t n i=1 Y i (θ) ≤ t 4 12 n k=1 β k,4 (θ) + θ 4 k E(X 4 0 ) + t 4 4 n k=1 θ 4 k n v=1 γ(v) + t 4 n k=1 θ 2 k k-1 =1 -1 u=1 |θ θ -u | γ(u) ∧ γ(k -) + t 5 4 n k=1 k-1 =1 k-1 u= θ 2 k |θ |θ 2 u γ(k -) . (3.21)
By Young's inequality,

θ 2 k |θ θ -u | ≤ 1 2 √ 2 θ 4 k + θ 4 + θ 4 -u and θ 2 k |θ |θ 2 u ≤ 2 5 |θ k | 5 + |θ u | 5 + |θ | 5 .

Now, for any

m ≥ 1, E(|θ v | m ) ≤ c m n -m/2 . Hence E(θ 2 k |θ θ -u |) n -2 and E(θ 2 k |θ |θ 2 u ) n -5/2 .
In addition,

E(β k,4 (θ)) n -2 1 + k-1 =1 γ( ) 2 . (3.22) Indeed, β k,4 (θ) ≤ θ 4 k (1 + 2 X 0 2 3 ) + 18θ 2 k k-1 =1 θ E(X X 2 k ) 2 .
Then we use the fact that sup 1≤v≤n E(θ 4 v ) ≤ Cn -2 and that

E θ 2 k k-1 =1 θ E(X X 2 k ) 2 ≤ k-1 , =1 γ(k -)γ(k -)E(|θ 2 k θ θ |) ≤ Cn -2 k-1 =1 γ( ) 2 .
So, overall, starting from (3.21), we derive that

E E |θ f t n i=1 θ i X i -E |θ f t n i=1 Y i (θ) t 4 n -1 1 + n =1 γ( ) 2 + t 4 n -1 n v=1 n u=1 γ(u) ∧ γ(v) + t 5 n -3/2 n v=1 vγ(v) .
Hence, the following bound is valid:

E E |θ f t n i=1 θ i X i -E |θ f t n i=1 Y i (θ) t 4 n 1 + n =1 γ( ) 2 + n v=1 vγ(v) + t √ n n v=1 vγ(v) ,
implying that

T 0 0 t -1 E E |θ f t n i=1 θ i X i -E |θ f t n i=1 Y i (θ) dt T 4 0 n 1 + n =1 γ( ) 2 + n v=1 vγ(v) .
Since v≥1 vγ(v) < ∞, it follows that

T 0 0 E E |θ e it n k=1 X k (θ) -E |θ e it n k=1 Y k (θ) dt t (log n) 2 n . (3.23) 
Therefore the upper bound (3.12) will follow from (3.23) provided one can prove that

T 0 0 E E |θ e it n k=1 Y k (θ) -e -t 2 /2 dt t (log n) 2 n . ( 3 

.24)

With this aim, we shall adapt the proof of [13, Lemma 2.1]. Their result cannot be applied directly since Y k (θ) is not of the form θ k η k where (η k ) kZ is a sequence of independent r.v.'s independent of θ. Let

Γ n (θ) = max 1≤k≤n |β k,3 (θ)|T 0 ≤ 1 ∩ T 3 0 n k=1 β k,3 (θ) ≤ 1 ∩ T 4 0 n k=1 β k,4 (θ) ≤ 1 .
Since, when θ is fixed, (Y k (θ)) 1≤k≤n are independent random variables that are centered, in L 4 and such that n k=1 E(Y 2 k (θ)) = 1, we infer that, by standard arguments (see the proof of [13, Lemma 2.1]), the following estimate holds : for any positive t such that t ≤ T 0 ,

E |θ e it n k=1 Y k (θ) -e -t 2 /2 1 Γn(θ) e -t 2 /2 t 3 n k=1 β k,3 (θ) + t 4 n k=1 β k,4 (θ) . (3.25) Let a(u) = E(X 0 X 2 u ). Note that E n k=1 β k,3 (θ) ≤ X 0 3 3 E n k=1 θ 3 k + 3E n k=1 θ 2 k k-1 =1 a(k -)θ .
We shall use the fact that (θ 1 , . . . , θ n ) = D (ξ 1 , . . . , ξ n )/ ξ e where (ξ i ) i≥1 is a sequence of iid N (0, 1)-distributed r.v.'s and ξ 2 e = n i=1 ξ 2 i . Note first that, because E n 3 / ξ 6 e ≤ K (by the properties of the χ 2 -distribution),

E n k=1 θ 3 k = E 1 ξ 3 e n k=1 ξ 3 k ≤ E n 3 ξ 6 e 1/2 1 n 3 E n k=1 ξ 3 k 2 1/2 n -1 . Next E n k=1 θ 2 k k-1 =1 a(k -)θ = E 1 ξ 3 e n k=1 ξ 2 k k-1 =1 a(k -)ξ ≤ E n 3 ξ 6 e 1/2 1 n 3 E n k=1 ξ 2 k k-1 =1 a(k -)ξ 2 1/2 . Now, E n k=1 ξ 2 k k-1 =1 a(k -)ξ 2 = n k=1 E(ξ 4 k ) k-1 =1 a 2 (k -)E(ξ 2 ) + 2 n-1 k=1 n k =k+1 E(ξ 2 k ) k-1 =1 k -1 =1 a(k -)a(k -)E(ξ ξ 2 k ξ ) .
By independence,

n-1 k=1 n k =k+1 k-1 =1 k -1 =1 a(k -)a(k -)E(ξ ξ 2 k ξ ) = n-1 k=1 n k =k+1 k-1 =1 a(k -)a(k -) . Hence E n k=1 ξ 2 k k-1 =1 a(k -)ξ 2 n n =1 γ( ) 2 .
It follows that 

E n k=1 β k,3 (θ) n -1 1 + n =1 γ( ) . ( 3 
T 0 0 E E |θ e it n k=1 Y k (θ) -e -t 2 /2 1 Γn(θ) dt t n -1 1 + n =1 γ( ) 2 .
(3.27)

Next, note that

P Γ c n (θ) ≤ n k=1 P T 0 |β k,3 (θ)| > 1 + P T 3 0 n k=1 β k,3 (θ) > 1 + P T 4 0 n k=1 β k,4 (θ) > 1 . (3.28)
We first deal with the first term in the right-hand side of (3.28). By Markov's inequality,

n k=1 P T 0 |β k,3 (θ)| > 1 T 2 0 n k=1 E(θ 6 k ) + E θ 4 k k-1 =1 θ a(k -) 2 . Now E(θ 6 k ) ≤ Cn -3
, and

E θ 4 k k-1 =1 θ a(k -) 2 ≤ k-1 , =1 |a(k -)||a(k -)|E(θ 4 k |θ θ |) ≤ Cn -3 k-1 =1 γ( ) 2 .
Hence 

n k=1 P T 0 |β k,3 (θ)| > 1 T 2 0 n -2 1 + n =1 γ( ) 2 . ( 3 
P Γ c n (θ) T 4 0 n -1 1 + n =1 γ( ) 2 .
(3.30)

On another hand, note that

E |θ e it n k=1 Y k (θ) -e -t 2 /2 = n k=1 E |θ e itY k (θ) - n k=1 e -t 2 θ 2 k /2 ≤ n k=1 E |θ e itY k (θ) -e -t 2 θ 2 k /2 ≤ |t| 3 6 n k=1 E |θ (|Y 3 k (θ)|) + t 4 8 n k=1 θ 4 k . Now E |θ (|Y 3 k (θ)|) ≤ β 3/4 k,4 (θ). Since |θ k | ≤ 1 it follows θ 4 k ≤ β 3/4 k,4 (θ). Therefore E |θ e it n k=1 Y k (θ) -e -t 2 /2 ≤ |t| 3 6 (1 + |t|) n k=1 β 3/4 k,4 (θ) . (3.31)
Taking into account (3.30), (3.31) and the fact that ≥1 γ( ) < ∞, we infer that for any r ≥ 1,

T 0 0 E E |θ e it n k=1 Y k (θ) -e -t 2 /2 1 Γ c n (θ) dt t T 4 0 n k=1 E β 3r/4 k,4 (θ) 1/r T 4 0 n -1 (r-1)/r . (3.32)
Proceeding as to prove (3.22), we infer that if

≥1 γ( ) < ∞, for any m ≥ 1, max 1≤k≤n E(β m k,4 (θ)) n -2m . (3.33)
So, for any r ≥ 4/3,

T 0 0 E E |θ e it n k=1 Y k (θ) -e -t 2 /2 1 Γ c n (θ) dt t T 8-4/r 0 n 1/r n 3/2 .
Taking r > 2 in the inequality above, we derive that

T 0 0 E E |θ e it n k=1 Y k (θ) -e -t 2 /2 1 Γ c n (θ) dt t 1 n ,
which combined with (3.27) implies (3.24) in case ≥1 γ( ) < ∞. This ends the proof of the theorem.

Application to linear regression with Gaussian design

Let us consider the following linear model

Y i = α + βZ i + X i , 1 ≤ i ≤ n ,
where (X i ) i∈Z is a strictly stationary sequence of martingale differences, and (Z i ) i∈Z is a sequence of iid N (µ, σ 2 )-distributed random variables, which is independent of (X i ) i∈Z . As usual, the observations are (Y i , Z i ) 1≤i≤n and the aim is to estimate the unknown parameter β. The ordinary least squares estimator β of β is then given by

β = n i=1 (Y i -Ȳn )(Z i -Zn ) Z -Zn 2 e ,
and satisfies

β -β = n i=1 (Z i -Zn ) Z -Zn 2 e X i = n i=1 (Z i -Zn ) Z -Zn 2 e (X i -Xn ) ,
where Z = (Z 1 , . . . , Z n ) and Z -Zn

2 e = n i=1 (Z i -Zn ) 2 . Let T n := Z -Zn e β -β = n i=1 (Z i -Zn ) Z -Zn e (X i -Xn ) .
Note that

T n = ξ -1 e ξ, X R n .
where X = (X 1 -Xn , . . . , X n -Xn ), and ξ = (ξ 1 -ξn , . . . , ξ n -ξn ) with ξ i = (Z i -µ)/σ.

Note that n i=1 ξi = n i=1 Xi = 0. Let (u i ) 1≤i≤n be the vectors of R n defined as follows:

u 1 = 1 √ 2 , - 1 √ 2 , 0, . . . , 0 t , u n = 1 √ n , 1 √ n , . . . , 1 √ n t and, for 2 ≤ k ≤ n -1, u k = 1 k(k + 1) , . . . , 1 
k(k + 1) k times , - k k(k + 1) , 0, . . . , 0 n-k-1 times t .
Note that (u i ) 1≤i≤n is an orthonormal basis of R n . Let A be the change-of-basis matrix from the basis (u i ) 1≤i≤n to the canonical basis (e i ) 1≤i≤n of R n . Hence A = (u 1 , u 2 , . . . , u n ). Since (e i ) 1≤i≤n and (u i ) 1≤i≤n are both orthonormal bases of R n , A is an orthonormal matrix and the change-of-basis matrix B from (e i ) 1≤i≤n to (u i ) 1≤i≤n satisfies B = A t . Hence ξ = n i=1 (Bξ) i u i and X = n i=1 (BX) i u i . Since ξ (resp. X) is the orthogonal projection of ξ (resp. X) on the space generated by (u 1 , . . . , u n-1 ), ξ = n-1 i=1 (Bξ) i u i and X

= n-1 i=1 (BX) i u i . It follows that ξ, X R n = n-1 i=1 (Bξ) i (BX) i .
In addition,

ξ 2 e = n-1 i=1 (Bξ) 2 i and X 2 e = n-1 i=1 (BX) 2 i . (4.1) 
So, overall,

T n = ξ -1 e ξ, X R n := θ, Y R n-1 where θ = ((Bξ) 1 , • • • , (Bξ) n-1 )/ ξ e and Y = ((BX) 1 , • • • , (BX) n-1
). Note that since ξ is a standard Gaussian vector (i.e. with N (0, I n ) distribution) and B is an orthonormal matrix, θ is uniformly distributed on the sphere S n-2 .

Next, note that

θ, Y R n-1 = n-1 k=1 θ k k =1 X k(k + 1) - k k(k + 1) X k+1 := n-1 k=1 θ k X * k .
Hence by interchanging the sums, it follows that

T n = θ, Y R n-1 = n =1 X θ * .
where

θ * n = - √ n -1 √ n θ n-1 and θ * = θ - √ -1 √ θ -1 , 1 ≤ ≤ n -1 , (4.2) 
with θ = n-1 v= θ v / v(v + 1) and the convention that θ 0 = 0. To summarize T n can be viewed either as the projection of (X * 1 , . . . , X * k ) on the sphere S n-2 (however (X * k ) k∈Z is not anymore a sequence of martingale differences) or as the weighted sums n =1 X θ * . Even if (θ * 1 , . . . , θ * n ) is not uniformly distributed on the sphere, we can use both ways of writings T n and adapt the proof of Theorem 2.1 to derive the following: Theorem 4.1. Let (X n ) n∈Z be a stationary sequence of martingale differences in L 4 such that

E(X 2 0 ) = 1. Assume that v≥1 vγ(v) < ∞ (where γ(k) is defined in (2.1)). Then E sup t∈R P |Z (T n ≤ t) -P(G ≤ t) (log n) 2 n .
Proof of Theorem 4.1. Recall that T n = n-1 =1 X * θ where (θ 1 , . . . , θ n-1 ) is uniformly distributed on the sphere S n-2 and

X * k = k k + 1 Xk -X k+1 , with Xk = k -1 k v=1 X v . We first notice that n-1 k=1 E(X * k ) 2 = n + r n where |r n | ≤ c log n .
We then infer that the conclusion of Lemma 5.2 in [START_REF] Bobkov | Berry-Esseen bounds for typical weighted sums[END_REF] is still valid. Therefore, if one can prove that

n-1 k=1 (X * k ) 2 -E(X * k ) 2 2 2
n and sup

θ∈S n-2 E |θ n-1 k=1 θ k X * k 4 (log n) 2 , (4.3) 
then, with T 0 = 4 √ log n, we will have

E sup t∈R P |Z (T n ≤ t) -P(G ≤ t) T 0 0 E E |θ e i n-1 k=1 θ k X * k -e -t 2 /2 dt t + (log n) 2 n , (4.4) 
in place of (2.5) of Proposition 2.1. Therefore, using that n-1 k=1 θ k X * k = n k=1 θ * k X k , where the θ * k 's are defined in (4.2), it will suffice to prove that

T 0 0 E E |θ e i n k=1 θ * k X k -e -t 2 /2 dt t (log n) 2 n . (4.5) 
Let us start by proving (4.3). Note first that n-1 k=1

(X * k ) 2 -E(X * k ) 2 2 ≤ n-1 k=1 k k + 1 X 2 k+1 -E(X 2 k+1 2 + 4 n-1 k=1 k k + 1 Xk X k+1 2 + n-1 k=1 Xk 2 4 .
Since (X k ) k≥0 is a sequence of martingale differences in L 4 , Burkholder's inequality implies that

n-1 k=1 Xk 2 4 X 0 2 4 n-1 k=1 k -1 X 0 2 4 (log n) and n-1 k=1 k k + 1 Xk X k+1 2 2 = n-1 k=1 k 2 (k + 1) 2 Xk X k+1 2 2 ≤ X 0 2 4 n-1 k=1 Xk 2 4 X 0 4 4 (log n) .
On another hand,

n-1 k=1 k k + 1 X 2 k+1 -E(X 2 k+1 ) 2 2 ≤ 2n n-1 v=0 γ 2,2 (v) .
All the above considerations prove that the first part of condition (4.3) is satisfied as soon as v≥0 γ(v) < ∞. To prove its second part, we first write that

E |θ n-1 k=1 θ k X * k 4 ≤ 2 3 E |θ n-1 k=1 √ k √ k + 1 θ k X k+1 4 + 2 3 E |θ n-1 k=1 √ k √ k + 1 θ k Xk 4 .
Burkholder's inequality implies that

E |θ n-1 k=1 √ k √ k + 1 θ k X k+1 4 X 0 4 4 n-1 k=1 k k + 1 θ 2 k 2 X 0 4 4 .
Next, again by Burkholder's inequality,

E |θ n-1 k=1 √ k √ k + 1 θ k Xk 4 ≤ E n-1 k=1 X2 k 2 ≤ n-1 k=1 Xk 2 4 2 X 0 4 4 (log n) 2 .
So, overall, the second part of (4.3) is proved.

It remains to show that (4.5) is satisfied. With this aim, we consider(Y i (θ * )) 1≤i≤n a sequence of random variables that are independent for any fixed θ, independent of (X i ) i≥1 , and such that, for each i ≥ 1, the conditional law of Y i (θ * ) given θ takes 2 values and is such that

E |θ (Y i (θ * )) = 0, E |θ (Y 2 i (θ * )) = (θ * i ) 2 E(X 2 0 ), E |θ (Y 3 i ( θ * )) = β i,3 (θ * ) and E |θ (Y 4 i (θ * )) = β i,4 (θ *
) where β i,3 (θ * ) (resp. β i,4 (θ * )) is defined by (3.13) (resp. (3.14)) with θ * replacing θ. Recall that this is always possible according to Fact 3.1.

To show that (4.5) is satisfied, we shall prove that

T 0 0 E E |θ e i n k=1 θ * k X k -E |θ e i n k=1 Y k (θ * ) dt t (log n) 2 n , (4.6) 
T 0 0 E E |θ e i n k=1 Y k (θ * ) -e -t 2 n k=1 (θ * k ) 2 /2 dt t (log n) 2 n , (4.7) 
and

T 0 0 E e -t 2 n k=1 (θ * k ) 2 /2 -e -t 2 /2 dt t (log n) 2 n , (4.8) 
To prove (4.6) and (4.7), we proceed as in the proof of Theorem 2.1. Then starting from (3.21) with θ * instead of θ, the estimate (4.6) will follow if one can prove that, for any m ≥ 1, there exists a positive constant c m such that, any 1 ≤ k ≤ n,

E(|θ * k | m ) c m n -m/2 , (4.9) 
and, for any η > 0,

n k=1 E(β k,4 (θ * )) n -1 . (4.10)
On another hand, analyzing the proof of (3.24), we infer that (4.7) holds provided (4.10) is satisfied and

E n k=1 β k,3 (θ * ) n -1 , n k=1 E(β 2 k,3 (θ * )) n -1 and max 1≤k≤n E(β m k,4 (θ * )) n -2m . (4.11)
Finally, to prove (4.8), we note that

E e -t 2 n k=1 (θ * k ) 2 /2 -e -t 2 /2 ≤ t 2 2 E n k=1 (θ * k ) 2 -1 .
Hence to prove (4.8), it suffices to show that

E n k=1 (θ * k ) 2 -1 n -1 log n . (4.12) 
We start by proving (4.9). Note first that

E(|θ * k | m ) ≤ 2 m-1 E(|θ k-1 | m ) + 2 m-1 E n-1 =k θ ( + 1) m
Since θ is uniformly distributed on the sphere S n-2 , E(|θ k-1 | m ) c m n -m/2 . In addition (θ 1 , . . . , θ n-1 ) = D (ξ 1 , . . . , ξ n-1 )/ ξ e where (ξ i ) i≥1 is a sequence of iid N (0, 1)-distributed r.v.'s and ξ

2 e = n-1 i=1 ξ 2 i . Hence E n-1 =k θ ( + 1) m n -m/2 E n-1 =k ξ ( + 1) m + E 1/2 n-1 =k θ ( + 1) 2m P ξ 2 e < n/2 1/2
. By Burkholder's inequality

E n-1 =k ξ ( + 1) m n-1 =k 1 ( + 1) m/2 k -m/2 .
On another hand, using that P ξ 2 e < n/2 ≤ e -cn , for some c > 0, and the fact that θ k ≤ 1, we get

E 1/2 n-1 =k θ ( + 1) 2m P ξ 2 e < n/2 1/2 n -m/2 k -m/2 . So, overall, E n-1 =k θ ( + 1) m n -m/2 k -m/2 and then E(|θ * k | m ) n -m/2 , (4.13) 
which proves (4.9). We turn now to the proof of the last part of (4.11) that will also imply (4.10). Setting a(k) = E(X 0 X 2 k ), note first that

β k,4 (θ * ) θ 4 k-1 + n-1 =k θ ( + 1) 4 + k-1 =1 √ -1 √ θ -1 a(k -) 4 + k-1 =1 θ a(k -) 4 .
Proceeding as in the proof of (4.13), since k≥1 a 2 (k) < ∞, we infer that

max 1≤k≤n E k-1 =1 √ -1 √ θ -1 a(k -) 4m n -2m ,
which combined with (4.13) and the fact that max 1≤k≤n E(θ 4m k-1 ) n -2m , implies that, for any m ≥ 1,

max 1≤k≤n E(β m k,4 (θ * )) n -2m + max 1≤k≤n E k-1 =1 θ a(k -) 4m .
Next, proceeding again as in the proof of (4.13), for any k ≤ n, we get

E k-1 =1 θ a(k -) 4m = E n-1 v=1 θ v v(v + 1) (k-1)∧v =1 a(k -) 4m n -2m + n -2m n-1 v=1 1 v(v + 1) (k-1)∧v =1 a(k -) 2 2m n -2m 1 + n-1 =1 γ(v) 4m . (4.14) So, overall, for any m ≥ 1, max 1≤k≤n E(β m k,4 (θ * )) n -2m 1 + n-1 =1 γ(v) 4m ,
which proves the last part of (4.11) (and then (4.10)) since v≥1 γ(v) < ∞. On another hand, by Young's inequality,

n k=1 E β 2 k,3 (θ * ) n-1 k=1 E(θ * k 6 ) + n k=1 E k-1 =1 √ -1 √ a(k -)θ -1 6 + n k=1 E k-1 =1 θ a(k -) 6 
.

By (4.9), the first term in the right-hand side is bounded by a constant times n -2 . In addition, by the same arguments used to prove (4.13), we infer that

n k=1 E k-1 =1 √ -1 √ a(k -)θ -1 6 n -3 n k=1 k-1 =1 a 2 (k -) 3 + n -2 n -2 , (4.15) 
and

n k=1 E k-1 =1 θ a(k -) 6 n -3 n k=1 1 + n-1 =1 γ(v) 6 n -2 .
So, overall, the second part of (4.11) is satisfied. We turn to the proof of (4.12). With this aim, we note that n-1 k=1 θ

2 k = 1. Hence n k=1 θ * k 2 -1 = n-1 =1 ( θ ) 2 -2 n-1 =2 √ -1 √ θ θ -1 - n-1 =1 1 + 1 θ 2 .
Taking the expectation of the absolute values of the above quantity, and considering the first part of (4.13), we then infer that (4.12) holds. Indeed we can use the same arguments used to prove (4.13) and the fact that

E n-1 =2 √ -1 √ ξ -1 n-1 v= ξ v v(v + 1) 2 = E n-1 v=2 ξ v v(v + 1) v =2 √ -1 √ ξ -1 2 = n-1 v=2 1 v(v + 1) E v =2 √ -1 √ ξ -1 2 ≤ n-1 v=2 1 v + 1 ≤ log n . to derive that E n-1 =2 √ -1 √ θ -1 n-1 v= θ v v(v + 1) 2 n -2 log n . (4.16) 
To end the proof of the theorem, it remains to prove the first part of (4.11). Recall that

n k=1 β k,3 (θ * ) = E(X 3 0 ) n k=1 θ * k 3 + 3 n k=1 θ * k 2 k-1 =1 θ * a(k -) . Note that n k=1 θ * k 3 n k=1 ( θk ) 3 + n k=1 k -1 k 3/2 θ 3 k-1 + n k=1 ( θk ) 2 k -1 k 1/2 θ k-1 + n k=1 θk k -1 k θ 2 k-1 .
By the first part of (4.13),

E n k=1 ( θk ) 3 ≤ n k=1 E(|( θk ) 3 |) n -3/2 n k=1 k -3/2 n -3/2 and E n k=1 ( θk ) 2 k -1 k 1/2 θ k-1 ≤ n k=1 E 1/2 ( θ4 k )E 1/2 (θ 2 k-1 ) n -3/2 n k=1
k -1 n -3/2 log n .

Next, using the same arguments used for proving (4.13), we infer that

E n k=1 k -1 k 3/2 θ 3 k-1 n -1 + n -3/2 E n k=1 k -1 k 3/2 ξ 3 k-1 2 n -1 .
On another hand, using again the same arguments used to prove (4.13), we get

E n k=1 θk k -1 k θ 2 k-1 2 = E n-1 =1 θ ( + 1) k=1 k -1 k θ 2 k-1 2 n -3 + n -3 E n-1 =1 ξ ( + 1) k=1 k -1 k ξ 2 k-1 2 n -3 + n -3 n =1 1 ( + 1) Var k=1 k -1 k ξ 2 k-1 2 n -3 (log n) .
So, overall, On another hand, proceeding as to prove (3.26) and since v≥1 γ(v) < ∞, we get that

E n k=1 k -1 k θ 2 k-1 k-1 =1 √ -1 √ θ -1 a(k -) n -1 . (4.19) Next E n k=1 ( θk ) 2 k-1 =1 √ -1 √ θ -1 a(k -) ≤ n k=1 E 1/2 ( θ4 k )E 1/2 k-1 =1 √ -1 √ θ -1 a(k -) .
Using (4.9) and proceeding as in the proof of (4.15), we derive that

E n k=1 ( θk ) 2 k-1 =1 √ -1 √ θ -1 a(k -) n -3/2 log n . (4.20) Next n k=1 k -1 k θ 2 k-1 k-1 =1 θ a(k -) = n k=1 k -1 k θ 2 k-1 n-1 v=1 θ v v(v + 1) (k-1)∧v =1 a(k -) ≤ n k=1 k -1 k θ 2 k-1 k-1 v=1 θ v v(v + 1) v =1 a(k -) + n-1 k=1 k -1 k θ 2 k-1 n-1 v=k θ v v(v + 1) k-1 =1 a(k -) .
Using the same arguments used to prove (4.13), we infer that

E n k=1 k -1 k θ 2 k-1 k-1 v=[k/2]+1 θ v v(v + 1) v =1 a(k -) n -1 + n -3/2 E n k=1 k -1 k ξ 2 k-1 k-1 v=[k/2]+1 ξ v v(v + 1) v =1 a(k -) n -1 + n -3/2 n k=1 E 1/2 k-1 v=[k/2]+1 ξ v v(v + 1) k-1 =k-v a(u) 2 n -1 + n -3/2 n k=1 k -1 k-1 v=[k/2]+1 k-1 =k-v a(u) 2 n -1 + n -3/2 n k=1 k -1/2 n -1 .
In addition On another hand

E n k=1 k -1 k θ 2 k-1 [k/2]
E n-1 k=1 k -1 k θ 2 k-1 n-1 v=k θ v v(v + 1) k-1 =1 a(k -) = E n-1 v=1 θ v v(v + 1) v k=1 k-1 =1 a(k -) k -1 k θ 2 k-1 .
By the same arguments as to prove (4.13), note that

E n-1 v=1 θ v v(v + 1) v k=1 k-1 =1 a(k -) k -1 k θ 2 k-1 n -1 + n -3/2 E n-1 v=1 ξ v v(v + 1) v k=1 k-1 =1 a(k -) k -1 k ξ 2 k-1 .
In addition So, overall,

n -3/2 E 1/2 n-1 v=1 ξ v v(v + 1) v k=1 k-1 =1 a(k -) k -1 k ξ 2 k-1 2 ≤ n -3/2 n-1 v=1 1 v(v + 1) E v k=1 k-1 =1 a(k -) k -1 k ξ 2 k-1 2 
E n k=1 k -1 k θ 2 k-1 k-1 =1 θ a(k -) n -1 . (4.21)
With similar but easier arguments, one can prove that

E n k=1 √ k -1 √ k θ k-1 θk k-1 =1 θ a(k -) n -1 , (4.22) 
and The first part of (4.11) then follows by considering the upper bounds (4.17) and (4.24). This ends the proof of the theorem.

E n k=1 √ k -1 √ k θ k-1 θk k-1 =1 √ -1 √ θ -1 a(k -) n -1 . ( 4 

Fact 3 . 1 .

 31 Let σ 2 > 0 and β 3 ∈ R. There exists a random variable Y taking only 2 values m and m (depending only on σ 2 and β 3 ) and such that E

  .26) Starting from (3.25) and taking into account (3.26) and (3.22), we derive that

1 =1 2 n - 3 / 2

 1232 θ * a(k -) . By using (4.9), (4.14) and the fact that v≥1 γ(v) < ∞, we first notice that E log n .(4.18)

  .23) Hence considering the upper bounds (4.18)-(4.23), we get that E

  If(1.4) is satisfied then (2.3) holds and we apply the smoothing Proposition 2.1. Hence we want to prove that (2.6) holds with α = 2, namely:

			k	2)	and γ 2,2 (k)	δ k (p-4)/(p-2)	. So,
	overall, Theorem 2.1 applies if k≥1 kδ	(p-4)/(p-2) k	< ∞ that clearly holds under (2.10) by taking
	into account (2.11).				
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