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How diversity is maintained in natural ecosystems is a long-standing question in Theoretical Ecol-
ogy. By studying a system that combines ecological dynamics, heterogeneous interactions and spatial
structure, we uncover a new mechanism for the survival of diversity-rich ecosystems in the presence
of demographic fluctuations. For a single species, one finds a continuous phase transition between
an extinction and a survival state, that falls into the universality class of Directed Percolation. Here
we show that the case of many species with heterogeneous interactions is different and richer. By
merging theory and simulations, we demonstrate that with sufficiently strong demographic noise,
the system exhibits behavior akin to the single-species case, undergoing a continuous transition.
Conversely, at low demographic noise, we observe unique features indicative of the ecosystem’s com-
plexity. The combined effects of the heterogeneity in the interaction network and migration enable
the community to thrive, even in situations where demographic noise would lead to the extinction
of isolated species. The emergence of mutualism induces the development of global bistability, ac-
companied by sudden tipping points. We present a way to predict the catastrophic shift from high
diversity to extinction by probing responses to perturbations as an early warning signal.

I. INTRODUCTION

Community ecology explores how the interactions be-
tween different species shape the diversity-rich ecosys-
tems that characterize the natural world. Understanding
the main mechanisms at play is a challenge that spans dif-
ferent scientific fields and it is relevant for human health
[1].

There are three salient facts that one has to take into
account in this endeavor. Many ecosystems of interest
are species-rich. The interactions between these large
sets of species, and the induced ecological dynamics, can
lead to complex dynamical behaviors such as chaos and
a very large number of possible equilibria [2–8]. Many
ecosystems are spatially extended: the ecological dynam-
ics takes place at some local scale, but individuals can
then explore different spatial locations through migra-
tion [9]. This can lead to the appearance of complex eco-
logical phenomena, such as traveling activity fronts, pat-
tern formation, and persistent chaotic dynamics [10–18].
Ecosystems are subject to noise, in particular environ-
mental and demographic (due to stochasticity in births
and deaths). Both noises induce fluctuations which are a
key factor in determining abundances distributions, and
their time-dependence [19–29]. Understanding the in-
terplay between these three properties of ecosystems is
essential for answering many central questions in com-
munity ecology.

In this work, we consider spatially extended species-
rich ecosystems subject to demographic noise. We will
consider populations that are large but spatially struc-
tured, so that demographic fluctuations globally average
out, but they have an important effect on the local dy-
namics. This is for example the case in semi-arid ecosys-
tems: the total number of plants is such that global fluc-
tuations are negligible, but at the local level stochasticity

can play a fundamental role [26]. Our aim is to under-
stand how in these cases interactions and spatial migra-
tion can allow for large diversity and finite abundances
despite the adversarial role of demographic noise. In fact,
in an isolated community demographic noise leads to ex-
tinctions, irreversibly reducing the ecosystem’s diversity
until there are no species left [27].

Previous works, following the classical theory of Island
Biogeography by MacArthur and Wilson [30], proposed
as a rescuing mechanism the immigration from a static
reservoir (or "mainland", when thinking of an island-
mainland system) [2, 4, 27, 31, 32]. Nevertheless, this
approach simply shifts the question from how diversity
is maintained on the island to its maintenance on the
mainland. Here we use a different approach. We con-
sider ecosystems as a network of ecological communities
(a metacommunity) coupled by passive dispersal. In this
case, the immigration rates are not externally imposed,
but they are the result of the internal dynamics. If a
species goes locally extinct in one of the communities,
immigrants from the neighboring ones can re-invade, pro-
viding an "insurance" (or "storage") effect [33, 34]. This
makes the possibility of a global extinction much more
unlikely, and it can allow the ecosystem to self-sustain
at finite abundances and diversity. The stabilisation of
high-diversity states by spatial structure is a very general
phenomenon: it can arise in the presence of spatial het-
erogeneity of environmental conditions [9, 33–36] or when
abundances in different spatial locations exhibit unsyn-
chronized fluctuations [14–16, 37]. Providing a theory for
this mechanism for species-rich ecosystems subject to de-
mographic noise, and assessing the role of interactions, is
the main contribution of this work.

The situation is well understood in the case of a few
species, in which depending on the competition between
migration and death-birth rates the system is found to
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be either in a survival or in a extinct state. A tran-
sition separates the two regimes [11, 13, 38, 39]. This
phase transition falls in the universality class of Directed
Percolation, a second-order out-of-equilibrium transition
studied in statistical physics and widely used to describe
spreading phenomena, from forest fires to epidemics [40].

In a many-species metacommunity with constant com-
petitive interactions, it was recently shown that a sim-
ilar second-order phase transition takes place and that
it also belongs to the Directed Percolation universality
class [16]. Because the transition is continuous with van-
ishing abundances, interactions, that are quadratic in the
abundances, are subleading at the critical point. In con-
sequence, the main mechanism at play in this case is
still the competition between migration and death-birth
rates. We shall show that the scenario for heterogeneous
interactions is different and goes beyond the directed per-
colation paradigm. The transition can become discontin-
uous. The ecosystem can exhibit global bistability and
tipping points between drastically different alternative
states. Upon small changes in the environmental condi-
tion, the system can therefore undergo catastrophic shifts
from a state with large diversity and finite abundances
to one in which all species are extinct. As in many other
dynamical systems, from coral reefs to arid ecosystems
and from Earth’s climate to financial markets [41–44], it
is important to find early warning signals of these kinds
of transition in order to prevent them. We have identi-
fied a specific probe, which is based on the response of
the ecosystem to perturbations, and that can be moni-
tored in experiments. Our analytical framework shows
that interactions play a key role both in the overall sce-
nario and in promoting a self-sustained survival state, in
agreement with results obtained for constant mutualistic
interactions [45]. Remarkably, in our case, heterogeneous
interactions of the pool of species are not necessarily mu-
tualistic on average. It is the ecological dynamics that
shapes the ecosystem in a self-sustained phase character-
ized by emergent mutualistic behavior among the non-
extinct species.

In our work, we make use of several methods developed
in statistical physics that are particularly well suited
for species-rich ecosystems, which are complex systems
formed by many interacting degrees of freedom undergo-
ing stochastic dynamics. To model the heterogeneity in
the interactions, we sample the coupling coefficients from
a random ensemble. We have thus to deal with "disor-
dered" ecosystems, which can be analyzed by transfer-
ring methods from spin-glass theory [46]. This disorder
approach, which dates back to May’s seminal paper [47],
has recently inspired a growing body of work [3–6, 23, 48–
51] and also received positive experimental confirmations
[31, 52]. Previous works have explored within this frame-
work the effect of heterogeneous interactions [3–6, 47], de-
mographic fluctuations [5, 23] and spatial structure [12–
17], but the analysis we present here is to our knowledge
the first analytical study in which the three ingredients
are combined.

The model we focus on is a disordered Generalized
Lotka Volterra (GLV) system of metacommunity subject
to demographic noise. For one community, the disor-
dered GLV has been shown to have a rich phase dia-
gram, and to display several dynamical regimes: single
equilibrium, multi-stability, and chaos [3–6, 31]. We ex-
pect this complex behavior also in the case of spatially
structured ecosystems [12]. In this work, we focus on the
moderate-heterogeneity regime in which there is a sin-
gle stable equilibrium. This allows us to disentangle the
multistability due to the fragmentation of the basins of
attraction of the ecological dynamics at strong hetero-
geneity from the bistability of the feedback mechanism
between abundance and immigration. Our analysis is
performed using a mean-field approximation on the spa-
tial fluctuations, which is equivalent to considering that
the community network is a fully connected graph.

Note that because of their generality, Lotka-Volterra
equations have been applied to a variety of fields besides
their original ecological interpretation, from immunology
to economics and game theory [53–56]. Our results could
therefore find applications beyond ecology, notably for
the study of global bistability and crashes in economy.

II. THE MODEL

D D

D

Figure 1: A metacommunity of 7 species living on 3
patches. Each individual interacts with the local com-
munity to which it belongs possibly migrating to neigh-
boring patches with diffusion coefficient D.

We consider a meta-community of S species living on
a network of L discrete spatial locations, or patches. A
graphical representation of the system is given in Figure 1
in the case of a fully connected network of 3 patches.
Each species is characterized by its abundance in each
patch, which is modeled by a continuous variable, Ni,u,
representing the total number of individuals divided by
the typical size of the local population Ñtyp. The abun-
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dance of species i in patch u evolves according to the
stochastic differential equation:

Ṅi,u =
r

k
Ni,u

k −Ni,u −
∑
j

αu
ijNj,u

+

D

c

∑
v∈∂u

(Ni,v −Ni,u) + ηui (t)
√
Ni,u ,

(1)

which corresponds to Lotka-Volterra dynamics, with con-
stant growth rate r and carrying capacity k that are set
to 1 throughout. The notation ∂u indicates the set of
patch neighbors of u (from and to which species in patch
u can migrate). The growth of each species is influenced
by the abundance of all the others through the interac-
tion coefficients αu

ij : if αu
ij is positive species j inhibits

the growth of species i in patch u and vice versa. Positive
αu
ij and αu

ji correspond to two species competing for re-
sources, whereas αu

ij and αu
ji both negative correspond to

mutualistic behaviour. Predation leads to opposite signs.
To model the heterogeneity in the interactions of

species-rich ecosystems, we follow [2, 57] and consider
the disordered LV model. As already discussed in the in-
troduction, the disorder approach has attracted recently
a lot of attention [3–6, 23, 48, 49] and also received pos-
itive experimental confirmations [31, 52]. In this frame-
work, the interaction coefficients are random variables,
with mean µ/S and variance σ2/S. They are indepen-
dent in each patch except for αu

ij and αu
ji, which have a

correlation coefficient γ. In the following, we will first
focus on the symmetric interactions case (γ = 1), and
then show that a small asymmetry does not qualitatively
change the results. As the interactions between species
can depend on the environmental conditions (tempera-
ture, humidity, resources availability...) which differ in
space, we consider interaction matrices fluctuating from
one patch to another, i.e. they are not identical in differ-
ent patches but corresponding elements αu

ij and αv
ij have

a correlation coefficient ρ [14, 15].
We will restrict the choice of µ and σ to values for

which an isolated Lotka-Volterra community only dis-
plays a single uninvadable equilibrium (the single equi-
librium phase studied in Ref. [57]). Without spatial het-
erogeneity the transition point is not modified by the in-
troduction of a spatial structure [12], and spatial hetero-
geneity decreases the effective complexity of the interac-
tion network [35], favoring the single equilibrium phase.
Therefore we also expect the metacommunity to be in
the single equilibrium phase for all the allowed values of
µ and σ. The effect of migration between patches in the
strong heterogeneity regime with non symmetric inter-
actions, in which a single community with fixed immi-
gration exhibits chaotic dynamics, [3–6, 31] was studied
in [14, 15] in the absence of demographic noise. It leads
to complex dynamical behavior with long-lived persis-
tent fluctuations. Combining strong heterogeneity, de-
mographic noise, and spatial migration is a challenge left
for future studies.

In the model defined by Eq.(1) individuals can migrate
on the patches network through diffusion, with a constant
diffusion coefficient D/c, where c is the connectivity (or
number of connections per site) of the network. We as-
sume the network to be translationally invariant, there-
fore each site has the same connectivity. Migration is
possible and equiprobable from patch u to any of its c
nearest neighbors v ∈ ∂u.

Each species is subject to a white demographic noise
ηui , accounting for the stochasticity in birth and death
events in a continuum setting [5, 23]. We follow Ito’s
convention, according to which fluctuations in birth and
deaths at time t + dt depend on the abundance at the
previous time step. The noise is uncorrelated and of con-
stant amplitude across species and patches:

⟨ηui (t)ηvj (t′)⟩ = 2Tδijδuvδ(t− t′) . (2)

The auto-correlation of the demographic noise defines the
noise strength T which depends on the birth and death
rates and on the typical size of the local population; T
scales as T ∝ 1/Ñtyp [5, 23]: the larger the local popula-
tions, the more negligible are demographic fluctuations.
In the γ = 1 case T can be interpreted as an effective
temperature, as we shall show later.

Some further insights into the effect of the demographic
noise can be obtained considering it in the absence of all
the other terms. In this case, an exact solution to the
associated Fokker-Planck equation is available, showing
that starting from any initial condition the population
goes to 0 abundance with some finite rate [58, 59]. There-
fore also in the continuous model, extinction is possible
over finite times, and not only asymptotically as it would
be the case for example with environmental noise.

ti
m
e

Figure 2: Directed percolation on an array of 7 sites.
Each row represents a different time step, green arrows
indicate birth, gray arrows death, and orange arrows
survival.

The dynamics of species in the presence of birth and
death has important connections with the celebrated di-
rected percolation problem studied in out-of-equilibrium
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Figure 3: Phase diagram for Directed Percolation in the
mean-field approximation: in green the active phase, in
which at long times there is a finite density of particles,
in white the inactive phase, in which all particles even-
tually die. D0(T ) indicates the transition line (see Sec.
III and App. F for details).

physics and statistical field theory [40]. Directed per-
colation is a model of particles that hop on a network
and are subjected to births and deaths; a graphical il-
lustration of the process can be found in Figure 2 for a
one-dimensional network. Directed percolation was orig-
inally introduced to model spreading phenomena, from
forest fires to epidemics [40]. In our case, the sites of the
network represent spatial locations, or patches, on which
(or from which) species can migrate; the particles indi-
cate which sites are colonized by species. At each time
step the particles can produce an offspring in a neigh-
boring site, die or just survive. In our case, this corre-
sponds to colonization or extinction. Depending on the
competition between death and birth rates, the activity
can spread to the entire system and lead to a finite den-
sity of particles (active, self-sustaining state) or die out
(absorbing, inactive state). Between these two phases,
there is a continuous phase transition, characterized by
universal critical behavior [40, 60]. We show in figure
3) the phase diagram in the mean-field approximation
(discussed in the next section). A direct link between
DP and GLV is obtained by coarse-graining [40, 60]. In
this way the discrete DP occupation variable becomes
a continuous quantity that represents the mean occupa-
tion, the competition between birth and death rates gives
rise to a logistic growth, hopping is replaced by diffusion
and the stochastic fluctuations generate the demographic
noise. This leads to a set of independent GLV eqs. (1) in
absence of interactions, one for each species. Each equa-
tion corresponds to an independent directed percolation
process.

The directed percolation transition can therefore be in-
terpreted as a transition between a self-sustained phase
where migration enables a finite abundance of species
to persist to a regime, characteristic of small (or zero)
dispersal, where species go extinct due to demographic
noise. The aim of this work is to develop a theory for
these phenomena for species-rich ecosystems in the pres-

ence of heterogeneous interactions. Upon increasing the
number of species in the pool and considering heteroge-
neous interactions, the set of directed percolation pro-
cesses is no longer independent and the complexity of
the model increases considerably. In fact, the system be-
comes equivalent to the collection of an infinite number
of directed percolation processes, coupled by random in-
teractions – an interesting and open statistical physics
problem.

III. METHODS

A. DMFT and coupled Directed Percolation
processes

In this work, we aim to study systems in which both
the number of species and the number of patches are very
large. In order to obtain analytical results we follow the
statistical physics "way" and take the limit of an infinite
number of species and an infinite number of patches. In
this double limit (whose order is irrelevant, see the ap-
pendix) the macroscopic properties of the system do not
depend on the particular realization of the demographic
noise and of the interactions: the macroscopic properties
are self-averaging in the jargon of disordered systems [46].

The large S limit allows for an analytical treatment,
as the dynamics of the S interacting degrees of freedom
can be replaced by the effective dynamics for a single
representative species, through Dynamical Mean Field
Theory (DMFT) [61]. The interaction effect with other
species is captured by a noise term, which can be seen
as an environmental noise (or a thermal bath) statisti-
cally defined in a self-consistent way. The DMFT pro-
cedure is analogous to the one used to derive Langevin’s
equation from Newtonian dynamics [62], with the differ-
ence that here the degrees of freedom that are integrated
out, giving rise to the noise, are equivalent to the de-
gree of freedom under consideration, thus allowing a self-
consistent closure of the equations of motion. DMFT is
a very powerful technique that has been employed in sev-
eral different contexts from quantum many-body systems
to glassy dynamics [63, 64]. Thanks to DMFT, we can
map an infinite number of randomly coupled DP pro-
cesses – a formidable problem – into a single DP process
with additional terms to be determined self-consistently
(a colored noise and a memory term).

Our derivation follows the one developed in reference
[61] for LV models, and can be found in Appendix A
for generic values ρ of the spatial heterogeneity of the
interactions. Here we outline the main steps in the spe-
cial case of patch-independent interactions, ρ = 1. In
the following, we are interested in the steady states of
the dynamics. In fact, we expect that after a transient
the system will settle in a time translationally invariant
regime. For S → ∞ DMFT allows one to replace the
interaction term −

∑
j αijNj,u by a stochastic expression
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that has the same statistical properties:

−µh− σξ̃iu(t) + σ2γ

∫ t

0

∑
v

Ruv(t, s)N
i
v(s)ds . (3)

Since this allows us to decouple different species, we will
for simplicity omit the species index i in the following.
We now discuss the different contributions. Note that
in the following empirical averages over species will be
denoted as E[·].

The first term represents the average interaction with
all other species. It is given by the product of the mean
of the interaction strength and the mean abundance, h =
E[Nu], that in the steady state does not depend on the
patch u thanks to translational invariance.

The second term represents the fluctuation of the inter-
action with all other species. It is given by the product of
the standard deviation of the interaction coefficients and
Gaussian noise with zero mean and correlation match-
ing the time auto-correlation of the single species abun-
dances:

⟨ξ̃u(t)ξ̃v(s)⟩ = E[Nu(t)Nv(s)] := Cu,v(t− s) . (4)

The noise ξ̃u(t) is multiplied by the abundance in the LV
equations. Henceforth we will call it environmental since
its effect is to add fluctuations to the carrying capacity.
Since the autocorrelation of the abundances generically
decays to a positive plateau at large time separations
[61], one can decompose the environmental noise into a
fluctuating component and a static one. The former cor-
responds to the fluctuations due to ecological dynamics
for a given species. The latter is characteristic of a given
species and fluctuates from species to species [61]. We de-
compose the noise by rewriting ξ̃u(t) = z

√
C∞

d + ξu(t),

where C∞
d = limτ→∞ Cu,u(t, t+τ) is the value of the cor-

relation function within the same patch at infinite times,
z is a static Gaussian variable with zero mean and unit
variance, that now plays the role of quenched disorder,
and ξu(t) is a fluctuating noise whose covariance vanishes
at long times. Again z and C∞

d do not depend on the
patch u thanks to translational invariance.

To distinguish the roles of fluctuating and static noises
in the GLV equation, we introduce two kinds of averages:
⟨·⟩ indicates the average over the fluctuating noises ξ and
η. It is an average over the ecological dynamics, or by er-
godicity, over patches for a fixed species. In analogy with
physical systems, we call it thermal average. The over-
line · instead stands for the average over the static field z
corresponds to averaging over species or over different in-
stances of the interaction matrix. Again in analogy with
the physical system, we call it quenched disorder average.

The last term in the dynamical mean-field treatment of
the interactions is due to a feedback mechanism: a fluc-
tuation of the abundance of species i influences species
j, which in turn influences species i. These contributions
sum up because of the correlation between αij and its
reciprocal αji, leading to the factor γ. This feedback
mechanism (the famous Onsager reaction in the spin-
glass literature) generates a memory term, containing the
response function of the abundance on patch u to a per-
turbation in the carrying capacity in patch v:

Ru,v(t, s) = E

[
δNu(t)

δζv(s)

∣∣∣∣
ζ=0

]
. (5)

In the S → ∞ limit, there is convergence in law be-
tween the statistics of the infinite number of randomly
coupled DP processes and the effective one [62, 65], i.e.
the dynamics of a species satisfying the GLV equation
(1) is equivalent to the effective one of a single species
living on the original spatial network:

Ṅu = Nu

(
k −Nu − µh− σ

(
z
√
C∞

d + ξu

)
+ σ2γ

∫ t

0

∑
v

Ruv(t, s)Nv(s)ds

)
+
D

c

∑
v∈∂u

(Nv −Nu) + ηu
√
Nu . (6)

The DMFT closure consists then in replacing the empir-
ical averages over species E[·] with the one with respect
to the effective single-species one. Because the effective
process itself depends on some averaged quantities, one
ends up with a self-consistent stochastic equation.

Eq. (6) can also be interpreted as the Langevin equa-
tion associated with a Directed Percolation (DP) process,
with the addition of a memory term (that is absent in the
special case γ = 0) and environmental noise. The effect of
the static part of the environmental noise z is to change
the control parameter of the DP process, determining
whether this is sub-critical or supercritical.

Interestingly, whereas a system of few species interact-
ing and diffusing on a network was established to boil
down to a standard DP problem [11, 13, 38, 39, 66],
the case of many species is fundamentally different and
belongs to a different class. Indeed, a system of many
species is equivalent to a family of many DP processes,
characterized by different values of static and fluctuating
noises and coupled through the common self-consistently
determined mean, correlation, and response functions.
Understanding the behavior of this self-consistent DP
problem is an open challenge. In this work, we study
whether the DP transition can fundamentally change na-
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ture due to this self-consistent coupling. Even if the tran-
sition remained qualitatively DP-like (continuous and
from an absorbing state to a fluctuating one) critical
properties could change. In fact, although an environ-
mental noise can be shown to be an irrelevant perturba-
tion of the associated field theory [40], within DMFT the
environmental noise inherits the time dependence of the
correlation function through the self-consistency. It can
therefore develop long-range correlations in time at the
critical point, possibly altering the critical behavior and
leading to a new universality class.

B. Symmetric interactions, mean-field
approximation, and mapping to a system in thermal

equilibrium

Studying the coupled field theories (6) is a formidable
task. In the following, we simplify the problem by doing
a mean-field approximation which allows us to obtain a
general theory independent of the underlying network of
patches.

We replace the term D
c

∑
v∈∂uNv by its thermal av-

erage. This amount to D
c

∑
v∈∂uNv → DN∗, where

N∗ = 1
c

∑
v∈∂u⟨Nv⟩ and, using translation invariance,

it simplifies to ⟨Nu⟩ (which is time-independent since
we are considering steady states). This procedure cor-
responds to a mean-field approximation of the spatially
dependent DMFT Eqs. (6). Such DMFT2 approxima-
tion becomes exact for a fully connected network. In
fact, in this case, taking the L→ ∞ limit, the empirical
average of the abundances over the patches concentrates
around the thermal average N∗ = ⟨Nu⟩. From now on,
we shall focus on this case.

By substituting D
c

∑
v∈∂uNv with N∗ in Equation (6),

one obtains an equation on Nu only, with an additional
parameter to be determined self-consistently. Note that
N∗ is obtained by averaging only over thermal fluctua-
tions, and not over disorder: therefore, it will have to
be determined as a function of z. This means that dif-
ferent species will have different immigration rates (here,
for simplicity, we are still focusing on the ρ = 1 case;
generalizations will be discussed later).

This substitution allows us to decouple stochastic pro-
cesses for the abundance in different patches. Omitting
for simplicity the index u, we now obtain (for large times,
i.e. in the steady state):

Ṅ = N

(
k −N − µh− σz

√
C∞

d − σξ(t) + σ2γ

(∫ t

0

Rd(t− s)N(s)ds+N∗
∫ t

0

R0(t− s)ds

))
+

+D(N∗ −N) + η(t)
√
N

(7)

Since all patches are equivalent on a fully connected
lattice, the Ruv and Cuv matrices (of functions) only have
two independent elements: the diagonal ones, Rd and Cd,
and the off-diagonal ones R0/L and C0 (see the appendix
for the justification of the scaling with L ofR0/L and C0).

In the case of symmetric interactions, γ = 1, one can
show (see App. B) that the self-consistent solution maps
to a thermal equilibrium process. In fact, one finds that
the diagonal elements of the response and correlation
functions obey a fluctuation-dissipation relation:

Rd(τ) = − 1

T

∂

∂τ
Cd(τ) . (8)

The memory term and ξ therefore play the role of a fric-
tion term and the noise associated with a colored ther-
mal bath at temperature T . The stochastic process maps
then to a generalized Langevin equation whose stationary
probability distribution is given by the Boltzmann distri-
bution at temperature T and with the effective Hamilto-
nian:

Heff =

(
1− σ2

T
(C0

d − C∞
d )

)
N2

2
−
(
k −D − µh+

−z
√
C∞

d σ + σ2N∗Rint
0

)
N + (T −DN∗) lnN ,

(9)

where C0
d is the equal-time correlation function, namely

the second moment of the abundances over disorder and
noise, ⟨N2⟩. The long time limit of the correlation func-
tion, C∞

d , represents instead the second moment of the
thermal-averaged abundances, ⟨N⟩2. Rint

0 is the inte-
grated off-diagonal response, which is the solution of the
self-consistent equation (see Appendix C):

Rint
0 = rd(z)

Dχ(z) + σ2Rint
0 rd(z)

1−
(
Dχ(z) + σ2Rint

0 rd(z)
) . (10)

χ(z) and rd(z) are the species-dependent response to a
perturbation in the immigration rate or the carrying ca-
pacity, respectively:

χ(z) = ⟨N logN⟩ − ⟨N⟩⟨logN⟩ (11)

rd(z) = ⟨N2⟩ − ⟨N⟩2 (12)

The self-consistent equations can be expressed as av-
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erages with respect to the Boltzmann distribution:

N∗(z) = ⟨N⟩ =
∫∞
0
dNNe−βHeff∫∞

0
dNe−βHeff

(13)

h = ⟨N⟩ =
∫

Dz
∫∞
0
dNNe−βHeff∫∞

0
dNe−βHeff

(14)

C0
d = ⟨N2⟩ =

∫
Dz
∫∞
0
dNN2e−βHeff∫∞

0
dNe−βHeff

(15)

C∞
d = ⟨N⟩2 =

∫
Dz

(∫∞
0
dNNe−βHeff∫∞

0
dNe−βHeff

)2

. (16)

and analogously for Rint
0 .

∫
Dz =

∫
dz√
2π
e−z2/2 indicates

the average over the Gaussian field.
These equations can be solved iteratively: starting

from a suitable initial condition for N∗(z), h, C0
d , C∞

d
and Rint

0 , one updates their values according to equations
(13)-(16) until reaching a fixed point. Because very large
values of z are exponentially suppressed by the Gaussian
distribution, it is sufficient to determine N∗(z) for z of
O(1).

In conclusion, within the DMFT2 approximation and
for the symmetric case, the formidable self-consistent
stochastic equations (6) can be analyzed by studying a
set of static self-consistent equations on four parameters
h,C0

d , C
∞
d , Rint

0 and one function N∗(z). Solving these
equations (see next section) allows us to obtain a general
picture of the interplay between migration and demo-
graphic noise for spatially extended metacommunities.
In order to show that such a picture is valid beyond the
simplified case we focus on, we have also considered sev-
eral extensions that we shall present below.

C. Extensions

1. Spatial heterogeneity

In the case of a generic value of the spatial hetero-
geneity of the interactions ρ, an analogous procedure
can be implemented, with some important differences.
The static disorder is now a patch-dependent and cor-
related variable, that we can decompose as ρ

√
C∞

0 z +√
C∞

d − ρ2C∞
0 wu where z is constant and wu indepen-

dent across locations, and C∞
d and C∞

0 are the infinite
time correlation function of the abundance on the same
patch and on different patches, that for ρ = 1 coincide.
Averaging the abundance across patches to obtain the im-
migration rate requires an additional step, i.e. averaging
also over wu. The solution of the self-consistent equa-
tions, albeit conceptually analogous to the ρ = 1 case, is
for generic values of ρ much more numerically challeng-
ing, because of the need to integrate over two disorder
fields, z and wu. For this reason, we focused on the two
extreme cases, ρ = 1 and ρ = 0, in which only one of
the two disorder fields is present. The results are quali-
tatively similar so we expect our conclusions to hold also

for intermediate values of ρ. We confirm it by numerical
simulations at 0 < ρ < 1.

2. Asymmetric interactions

The mapping to an equilibrium distribution requires
symmetry in the interactions: non-symmetric interac-
tions correspond to non-conservative forces, which ex-
plicitly break time reversal and lead to non-equilibrium
steady states. In order to show that our results hold
also in this case, at least if the asymmetry is not too
strong, we have analyzed the case of small asymmetry in
perturbation theory. The analysis of the Martin-Siggia-
Rose-De Dominicis-Janssen action [67–70] allows us to
conclude that a small degree of asymmetry (γ = 1 − ϵ,
ϵ ≪ 1) does not affect qualitatively the results we shall
present in the next section, therefore establishing that
our findings for the symmetric case also holds for small
asymmetry (see Appendix D for more details). We have
also confirmed this result by numerical simulations for
γ < 1.

IV. RESULTS

In the following we present our analytical results focus-
ing on ecosystems with parameters σ = 0.5 and µ = 1,
hence a case in which interactions are in average compet-
itive for the pool of species.
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Figure 4: Average abundance ⟨N⟩ and diversity ϕ as a
function of the diffusion constant D for T = 0.25 (top)
and as a function of temperature (strength of demo-
graphic noise) for D = 0.1 (bottom). The dashed lines
represent the T = 0 well-mixed results. µ = 1, σ = 0.5.
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(a) Phase diagram, ρ = 1
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Figure 5: (a) The phase diagram for constant interactions across patches (ρ = 1). The continuous line indicates
the continuous transition, and the dotted and dashed lines are the limits of the metastability region, highlighted in
grey. At the two limits of the metastability region one of the two solutions disappears and we have a discontinuous
transition. The arrows indicate the parameters range in the right figures. The average abundance h = ⟨N⟩ and the
diversity ϕ = θ(⟨N⟩) as a function of D across a discontinuous (b, d) or continuous (c, e) transition. In subfigure
(c) the arrows indicate the direction of the hysteresis cycle: decreasing D (starting from high values) the ecosystem
would follow the finite solution until the discontinuous transition, where the abundances jump to zero. If we now
increase D, it would follow the zero solution until this becomes unstable at D0(T ). Gray dashed lines indicate the
value of D at which a single species would go (continuously) extinct. Note that we have divided D by the critical
value of the diffusion constant for Directed Percolation D0(T ) in all plots, to emphasize the effect of interactions on
the already known case. Because D0(T ) vanishes exponentially for T → 0 (App. F), the metastability region has a
vanishing width in this limit and the system is always in the survival phase. µ = 1, σ = 0.5.

A. Characterization of the self-sustained phase

By solving the DMFT equations described in the pre-
vious section, one finds that when the diffusion constant
is large enough the system is in a self-sustained phase (ac-
tive phase in the directed percolation jargon) in which a
non-zero abundance is maintained despite the presence of
demographic fluctuations. In this regime, although some
species go globally extinct on all patches, others sur-
vive thanks to the migration from neighboring patches.
This mechanism is sufficient to prevent extinctions due
to demographic stochasticity and leads to a self-sustained
metacommunity.

In the following, we discuss the salient properties of
this phase, focusing on two ecologically relevant observ-
ables: the average abundance, h = ⟨N⟩, and the ecosys-
tem diversity ϕ, defined as the fraction of species that are
not globally extinct, i.e. that have non zero abundance
in at least one patch. At stationarity, we can compute
the ecosystem diversity as ϕ = θ(⟨N⟩).

As expected, demographic noise is detrimental to sur-
vival: the fraction of surviving species, or diversity, and
the average abundance decrease with the strength of de-
mographic fluctuations, see bottom panels of Fig. 4. On
the contrary, dispersal is beneficial, as shown in the top
panels of Fig. 4. The behavior of the diversity for species-

rich ecosystems with heterogeneous interactions in the
presence of demographic noise is a novel result of our
approach: in the case of fixed external immigration, pre-
viously often considered in the literature, all species are
kept alive by the immigration, albeit some at very small
abundances, it is therefore not possible to rigorously de-
fine the ecosystem diversity [32]. We find that the species
that go extinct are those whose growth is on average more
affected by the interactions with the rest of the ecosys-
tem, as quantified by the static part of the environmental
noise zσ√q0, which renormalizes the carrying capacity of
a species. For ρ = 1, if z is larger than a critical value
z∗ the corresponding species goes extinct (for z > z∗ the
renormalized carrying capacity is negative). This is true
also for smaller values of ρ (Appendix E). The case of
independent interactions across patches (ρ = 0) is spe-
cial, for all species are globally equivalent so that they
can only be all surviving or all extinct. In general, all
species have some patches in which they are very abun-
dant, immigrants from these patches can then save them
from extinction in the rest of the system. This favorable
role of dispersal through which spatial heterogeneity en-
hances diversity has been discussed in [9, 14, 35, 36].

The limits D → ∞ and T → 0 can be mapped to the
well-mixed case. For D → ∞ the timescale of spatial
mixing is much smaller than all other timescales, there-
fore the abundances of each species are equal on all sites.



9

The absence of spatial fluctuations allows one to write
an evolution equation involving only the space-averaged
abundances, that corresponds to an effective single local
community without demographic fluctuations with inter-
actions given by the spatial average of the original ones.
The well-mixed result is also recovered (for ρ = 1) in the
T → 0 limit (see two bottom panels of Figure 4): because
the abundances do not fluctuate there is no migration flux
between patches, and the diffusion term plays no role.

As for the distribution of the abundances, we find an
exponential decay (see Appendix G), as it is the case in
other models with random fully connected interactions
[3–5, 71].

B. Transition to complete extinction: emergence of
a discontinuous transition at low dispersal

When demographic fluctuations are sufficiently strong,
decreasing the diffusion constant leads to a continuous
phase transition from an active phase in which some
species are able to self-sustain to an inactive phase in
which they are all extinct. The critical value of the diffu-
sion constant is the same that would be obtained in the
absence of interactions, where the system directly maps
to directed percolation, or in the case of constant inter-
actions [16], see Figure 2 and Appendix F. This is to
be expected: upon approaching the transition, the abun-
dances tend to zero, and therefore the interactions, which
have a quadratic dependence on the abundances, become
irrelevant. The critical exponents indeed match the ones
falling in the Directed Percolation universality class; in
particular, the abundance goes to zero linearly (Figure
5c). Interestingly, approaching the transition the diver-
sity does not go to zero and instead tends to a finite value
(Figure 5e). The average abundance goes to zero not be-
cause more and more species are going extinct, but be-
cause all surviving species are simultaneously decreasing
their abundances. This homogenization in the behavior
of species is yet another consequence of the irrelevance of
the interactions, the only trait distinguishing one species
from another in our model.

At smaller demographic noise this picture changes
drastically and interactions play a major role, as shown in
the phase diagram in Figure 5a. The ecosystem is able to
self-sustain at values of the diffusion constant for which
in the absence of interactions it would be in the inactive
phase. Further lowering D we encounter a discontinu-
ous transition at which all species abruptly go extinct,
i.e. species abundances suddenly jump to zero. Before
the discontinuous transition, there is an extended region
in which the ecosystem is meta-stable (in grey in Figure
5a): in this regime, the system reaches an equilibrium
with high or low abundances depending on the initial
conditions. It exhibits hysteresis (Figure 5b).

It was recently shown that a metacommunity subject
to demographic noise and constant mutualistic interac-
tions exhibits a similar discontinuous phase transition
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D/D0(T)
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0.2

0.3

In
t+

(a)

1 0 1
Int

0.0
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0.2
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all
alive

(b)

Figure 6: Thermal averaged interaction term, Int =
⟨
∑

j αijNj⟩, averaged over non extinct species (indi-
cated by an overline with a + superscript), for two tem-
peratures corresponding to the discontinuous regime.
Left: analytical results for T = 0.4, ρ = 1 (as in Figures
5b-d). Int+ is negative in the metastability region, it
jumps to zero when all species go extinct at the discon-
tinuous transition. Right: Distribution of the thermal
averaged interaction terms in a numerical simulation in
the metastability region (T = 0.18, D/D0(T ) = 0.8,
S = 200, L = 400, tmax = 500, averaged over 2
runs). Non extinct species are highlighted in orange,
only species with negative (or close to zero) interaction
terms manage to survive. Averaging only over non ex-
tinct species (orange dotted line) leads to a significantly
lower (more mutualistic) value than averaging over all
species (blu dotted line). µ = 1, σ = 0.5

[45]. The authors of [45] also performed numerical sim-
ulations with random (patch-independent) interactions,
showing that the surviving species have more mutualistic
interactions than the total species pool. We find that a
similar mechanism is at play in our case: it is an emer-
gent phenomenon due to ecological dynamics which is
present even though interactions are not on average mu-
tualistic (in fact they are competitive, µ = 1). Because
of the symmetry in the interaction network, species that
interact more competitively are more negatively affected
by the interactions with the rest of the ecosystem, and
will hence be more easily driven to extinction. This leads
to a decrease of the mean of the interaction matrix re-
stricted to surviving species, which we have estimated in
the case ρ = 1 using a result obtained in [72] (Appendix
I). Another quantity of interest is the average interaction
term for non-extinct species, Int

+
=
∑

j αij⟨Nj⟩
+

(the
+ indicates that the average is carried out only over non-
extinct species, ⟨Ni⟩ > 0), which we find to be negative
in the entire metastability region (Fig. 6a). In order
for a species to survive in conditions in which without
interactions it would go extinct, we need the interaction
term (that appears summed to the carrying capacity with
a negative sign) to give on average a negative contribu-
tion. We indeed find numerically that only species with
negative interaction terms manage to survive (Fig. 6b),
thus leading to an enhancement of mutualism between
surviving species – see Appendix I for details.

In Figure 7 we also show the phase diagram in the case
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Figure 7: The phase diagram for independent interac-
tions across patches (ρ = 0). The continuous line indi-
cates the continuous transition, the dotted and dashed
lines the limits of the metastability region, highlighted
in grey. At the two limits of the metastability region
one of the two solutions disappears and we have a dis-
continuous transition. µ = 1, σ = 0.5

of independent (ρ = 0) interactions across patches, to be
compared to the one of Figure 5a corresponding to con-
stant (ρ = 1) interactions across patches. In both cases,
the upper limit of the metastability region is bounded
from below by the critical value of the diffusion constant
in the absence of interactions,D0(T ). For ρ = 1 these two
lines coincide, whereas for ρ = 0 the metastability region
extends above D0(T ) in some range of temperature. In
the part of the metastability region above D0(T ) the two
metastable solutions are both finite: one is of order one
and the other proportional to the distance from D0(T );
the two solutions coalesce at the tip of the metastability
region.

One can also analytically show that the phase di-
agrams remains qualitatively unchanged considering a
small asymmetry in the interactions (γ = 1 − ϵ, ϵ ≪ 1),
see Appendix D. Numerical simulations presented in the
next sections confirm this result.

V. ASSESSING THE GENERALITY OF THE
SCENARIO

To confirm the generality of our results, we now con-
sider different variations of the model studied in the pre-
vious section. The aim is to show that our results hold
in a broader setting. We shall be particularly interested
in considering the case of a large but finite number of
species, a large but finite number of patches, a small
but finite asymmetry of interactions, as well as interme-
diate values of ρ. All these cases could be in principle
studied analytically but they would require very involved
(in some cases very challenging) analysis. We therefore

turn to direct numerical simulations of the Generalized
Lotka-Volterra equation (1) and show that the results
agree with and extend the theory presented in the pre-
vious section. The details on the numerical scheme im-
plemented for the simulation can be found in Appendix
J. These simulations are challenging as we are interested
in considering both a large number of species and a large
number of patches. Moreover, lowering the temperature
results in a strong slowdown of the dynamics (Appendix
K), leading to additional computational costs. The slow-
down of the dynamics is much stronger in the presence of
heterogeneity in the interactions than with zero or con-
stant ones.

A. Finite number of species and finite number of
patches
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Figure 8: Average abundance ⟨N⟩ as a function of the
diffusion constant D for T = 0.18 and T = 0.8. Green
and red dots indicate the initial conditions of order 1
and of order 0.1. The dashed line indicates the ana-
lytical prediction for the critical value of the diffusion
constant for the continuous transition. µ = 1, σ = 0.5,
S = 200, L = 400, tmax = 500 (left) and 200 (right).

Generically, for moderate system sizes (S < 100 and
L < 100) we find strong fluctuations due to the quenched
disorder in the interaction matrix, and quantitative finite
size effects compared to the asymptotic S,L → ∞ solu-
tion, in particular for ρ = 1 (for ρ = 0 each patch is char-
acterized by an independent realization of the interaction
matrix, thus leading to a faster (self-averaging) conver-
gence of the system to its disorder average). For larger
values of S and L, e.g. S = 200, L = 400, fluctuations
and finite size effects are limited and one finds results
that are both qualitative and quantitative in agreement
with the analytical solution.

In figure 8 we show the behavior of the average abun-
dance as a function of the diffusion constant for two dif-
ferent values of the temperature, starting from two differ-
ent initial conditions. In order to probe the existence of
hysteresis, and therefore a discontinuous transition and
metastability, we numerically simulate systems with dif-
ferent initial conditions. For the green curves, the ini-
tial abundances were uniformly sampled between 0 and
1, for the red curves between 0 and 0.1. The former
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should therefore be more prone to evolve toward the self-
sustained solution, if it exists, whereas the latter to the
"all-extinct" solution.

We find that indeed at higher temperatures, T = 0.8,
in agreement with the analytics and the phase diagram in
Figure 5a, the final abundances vary continuously when
varying the diffusion constant, and they converge to the
same value, no matter the initial condition. The value of
D at which the final abundances significantly depart from
zero quantitatively matches the analytical result for the
critical value of the diffusion constant at the continuous
transition.

Instead, at T = 0.18 the final abundances show a
strong dependence on the initial condition in an extended
interval of diffusion strengths; for a given initial condi-
tion the final abundance exhibits a very abrupt change
[73]. Interestingly, the dynamics strongly slows down in
this regime, in particular for the decay of the abundances
from large initial conditions. In fact, this process occurs
via the rare extinctions of species that are asymptotically
not able to self-sustain but can persist for very long times,
especially in this regime in which demographic fluctua-
tions are weak. The strong dependence on the initial
conditions cannot be explained just by the slowdown of
the dynamics because the abundances with different ini-
tial conditions evolve in opposite directions (see Figure 8
and Appendix K).

The heterogeneity in the interaction network is essen-
tial to allow the ecosystem to self-sustain below the single
DP critical point: indeed if we consider the same param-
eters but take σ = 0 all species go extinct below D0(T ),
and there is no strong dependence on the initial condi-
tions (Appendix K).

B. Asymmetric interactions and partial correlation
between patches
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Figure 9: Average abundance ⟨N⟩ as a function of the
diffusion constant D for T = 0.18 and T = 0.8 with
some spatial heterogeneity (ρ = 0.9) and some asymme-
try in the interactions (γ = 0.9). Green and red lines
indicate the initial conditions of order 1 and of order
0.1, lighter dots show the average abundance at inter-
mediate times (50% and 75% of tmax). µ = 1, σ = 0.5,
S = 200, L = 400, tmax = 500 (left) and 200 (right).

We are now interested in focusing on cases in which the
interactions between species are not fully symmetric, and
the interaction matrices are partially correlated between
patches, i.e. 0 < ρ < 1.

As we have already discussed, we have analytically es-
tablished that a very small asymmetry is not a singular
perturbation. Thus, our results should qualitatively hold
also for a finite, at least not too large, asymmetry.

To confirm this finding and study intermediate values
of ρ (besides ρ = 0, 1 considered analytically) we per-
formed simulations with spatial heterogeneity ρ = 0.9
and asymmetry in the interactions γ = 0.9, and as be-
fore for L = 400, S = 200. Also in this case at T = 0.8
we find a continuous transition and no strong dependence
on the initial conditions, while at T = 0.18 we find a dis-
continuous transition and a hysteresis region (Figure 9)
[74]. Although the curves quantitatively change with re-
spect to their γ = ρ = 1 counterparts, as expected, the
results and in particular the existence of a discontinuous
transition do remain qualitatively unaltered.

In conclusion, combining all these numerical tests, we
conclude that the scenario obtained from the analytical
solution is robust and holds broadly. We will come back
to this point in the conclusion to suggest other extensions
and tests.

VI. PRECURSOR OF THE INSTABILITY
TOWARD EXTINCTION

In the previous section, we have shown that dispersal
can rescue complex and large ecosystems from extinction
due to demographic noise. Depending on the strength
of the demographic noise, the transition from the self-
sustained to the extinct phase can be either continuous
or discontinuous. The latter takes place for low demo-
graphic noise and low dispersal. In this regime, we have
found that the transition is accompanied by a metastable
regime and hysteresis. Such transition is what is called
in ecology, in environmental and social sciences a tip-
ping point or regime-shift [75, 76] and in physics a spin-
odal. Tipping points are often catastrophic events, as the
abrupt rapid shifts almost always lead to negative con-
sequences and a less favorable state of the system. Our
case is no exception, as the system’s transition is from a
self-sustained state with high diversity to one in which
all species are extinct. As done for several other tipping
points [77, 78], it is therefore important to find early signs
or precursors that can allow one to detect the closeness
of the system to the tipping point before the catastrophic
shift actually takes place.

In our case, following intuition that comes from the
physics of spinodal points, we focus on responses to per-
turbations as probe of closeness to the tipping point.
We can show analytically (see Appendix H) that the in-
stability of the self-sustained state is accompanied by a
diverging response to perturbations. This phenomenon
is strongly linked to the saddle-node bifurcation of the



12

mean-field equations that governs the transition.
In particular, we have studied the change of the aver-

age abundance due to a change in the carrying capacity.
Such response, which can be measured in controlled lab
experiments, does diverge approaching the discontinuous
transition, see Figure 10 for the ρ = 0 case. A similar be-
havior is expected for generic values of ρ. This probe can
therefore be used as an early warning signal of the prox-
imity to the tipping point of the self-sustained phase. In
natural ecosystems, where measuring responses to per-
turbation can be challenging, one could instead monitor
the long-term fluctuations of average abundance due to
environmental noise affecting the carrying capacity on a
long time. This would be a proxy for the response pro-
posed above (it is important to focus on long-times as all
the processes at play are slow).
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Figure 10: Average abundance and its response to a
perturbation of the carrying capacity k at T = 0.153 for
ρ = 0 approaching the instability of the self-sustained
phase. µ = 1, σ = 0.5.

VII. CONCLUSIONS

We uncovered a rich phase diagram for many-species
Lotka-Volterra metacommunities subject to heteroge-
neous symmetric interactions, demographic noise and dif-
fusion. If the demographic fluctuations are too strong
they drive all species to extinctions, but when the dif-
fusion constant is large enough these extinctions can be
compensated by recolonizations from neighboring sites,
and the ecosystem is able to self-sustain at finite abun-
dance and diversity. The system exhibits a phase tran-
sition between an extinction and a survival phase. The
transition can be either continuous or discontinuous, de-
pending on whether the behaviour of the system is dom-
inated by the demographic fluctuations or the heteroge-
neous interaction network.

When the demographic fluctuations are strong the

transition is continuous and interactions play a secondary
role. In fact, the transition is completely analogous to
what one would have in the absence of the interactions
(even the critical value of the diffusion constant coincide).
This is because when the abundances tend to zero the in-
teractions become sub-dominant and the system falls in
the standard Directed Percolation universality class.

The situation is drastically different at lower demo-
graphic noise. In this case the transition becomes dis-
continuous and the system exhibits novel features, that
are a signature of the complexity of the ecosystem and
the major role played by the interactions. There is an
extended range of parameters in which without inter-
actions, i.e. for single species, the system would be
driven to extinction but the metacommunity is instead
able to self-sustain at finite abundances. This is possible
because strongly competing species are eliminated from
the community, while surviving species cooperate to self-
sustain in such harsh conditions. For small demographic
noise and lowering the diffusion constant, the ecosystem
reaches a tipping point at which all surviving species go
extinct; close to this point the ecosystem is subject to
collapses upon small perturbations and its dynamics ex-
hibits hysteresis. We therefore find that mutualism nat-
urally emerges from a (on average) competitive pool of
species when conditions become harsher. This has a dou-
ble effect: it allows the ecosystem to survive in conditions
in which all species in isolation would go extinct, but it
also makes it fragile to perturbations. In this regime, it
is not possible to predict the vicinity of the catastrophic
shift of the ecosystem by looking at the average abun-
dance. As early warning sign, we propose to monitor the
response of the system to perturbations. We have shown
that this is a suitable probe, as it diverges approaching
the discontinuous transition.

We confirm and complement our analytical approach
with numerical simulations, which show that our results
are quite robust to modifications of the model, in par-
ticular to the introduction of a small asymmetry in the
interactions, to various degrees of correlation of the in-
teraction network between different spatial locations, and
for system with a finite number of species and patches.

There are several directions worth future investiga-
tions. We focused on a fully connected spatial system,
which provides a mean-field analysis for generic spatial
lattices. On the other hand, our DMFT treatment of the
interactions is directly generalizable to any other spatial
network, including finite dimensional ones. It would be
very interesting to study cases in which the patches are
located in finite dimensional lattice or on random struc-
tures. In particular, it would be interesting to find out
(1) whether the discontinuous transition is also present
in this case or finite dimensional fluctuations destroy the
metastable region, and (2) whether the continuous transi-
tion can still be described in terms of directed percolation
or interactions, although secondary, can alter its univer-
sality class. It would also be worth analysing stronger
asymmetries in the interactions, e.g. lowering the value
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of γ. We expect that a significant positive correlation be-
tween reciprocal interactions is needed to induce metasta-
bility. This ensures that species that interact more com-
petitively are also more negatively affected by the interac-
tions with the rest of the ecosystem and hence go extinct,
thus leading to mutualism for the surviving species.

Finally, species rich LV model with heterogeneous and
strong interactions display multiple equilibria and chaotic
dynamics [2–5]. The possibility of different patches to
converge to different stationary states could strongly
modify the behaviour of the system; in particular allow-
ing the system to experience higher values of the global
diversity, possibly violating May’s bound [47].

ACKNOWLEDGMENTS

During the preparation of the manuscript we became
aware of Jonas Denk and Oskar Hallatscheck work on
tipping points in mutualistic Lotka-Volterra communi-
ties [45]. Their results are complementary and agree with
ours. We would like to thank them for sharing their re-
sults and constructive interactions. We also thank Joseph
Baron, M. Barbier, J. F. Arnoldi, and L. F. Cugliandolo
for stimulating discussions.

This work was supported by the Simons Foundation
Grant on Cracking the Glass Problem (# 454935 Giulio
Biroli).

[1] Catherine A. Lozupone, Jesse I. Stombaugh, Jeffrey I.
Gordon, Janet K. Jansson, and Rob Knight. Diversity,
stability and resilience of the human gut microbiota. Na-
ture, 489(7415):220–230, September 2012.

[2] David A Kessler and Nadav M Shnerb. General-
ized model of island biodiversity. Physical Review E,
91(4):042705, April 2015.

[3] Guy Bunin. Ecological communities with Lotka-Volterra
dynamics. Physical Review E, 95(4):1–8, 2017.

[4] Giulio Biroli, Guy Bunin, and Chiara Cammarota.
Marginally stable equilibria in critical ecosystems. New
Journal of Physics, 20(8):083051, August 2018.

[5] Ada Altieri, Felix Roy, Chiara Cammarota, and Giulio
Biroli. Properties of Equilibria and Glassy Phases of the
Random Lotka-Volterra Model with Demographic Noise.
Physical Review Letters, 126(25):258301, June 2021.

[6] Tobias Galla. Dynamically evolved community size and
stability of random Lotka-Volterra ecosystems(a). Epl,
123(4):1–13, 2018.

[7] Tanya L. Rogers, Bethany J. Johnson, and Stephan B.
Munch. Chaos is not rare in natural ecosystems. Nature
Ecology & Evolution, 6(8):1105–1111, August 2022.

[8] Thilo Gross, Wolfgang Ebenhöh, and Ulrike Feudel. Long
food chains are in general chaotic. Oikos, 109(1):135–144,
2005.

[9] M. A. Leibold, M. Holyoak, N. Mouquet, P. Amarasekare,
J. M. Chase, M. F. Hoopes, R. D. Holt, J. B. Shurin,
R. Law, D. Tilman, M. Loreau, and A. Gonzalez. The
metacommunity concept: A framework for multi-scale
community ecology. Ecology Letters, 7(7):601–613, 2004.

[10] Michael P. Hassell, Hugh N. Comins, and Robert M.
Mayt. Spatial structure and chaos in insect population
dynamics. Nature, 353(6341):255–258, September 1991.

[11] Mauro Mobilia, Ivan T Georgiev, and Uwe C Täuber.
Phase Transitions and Spatio-Temporal Fluctuations in
Stochastic Lattice Lotka–Volterra Models. Journal of
Statistical Physics, 128(1-2):447–483, June 2007.

[12] Fabrizio Olmeda and Steffen Rulands. Long-range inter-
actions and disorder facilitate pattern formation in spa-
tial complex systems, March 2023.

[13] Ulrich Dobramysl, Mauro Mobilia, Michel Pleimling, and
Uwe C. Tauber. Stochastic population dynamics in
spatially extended predator-prey systems. Journal of
Physics A: Mathematical and Theoretical, 51(6), 2018.

[14] Felix Roy, Matthieu Barbier, Giulio Biroli, and Guy
Bunin. Complex interactions can create persistent fluctu-
ations in high-diversity ecosystems. PLoS Computational
Biology, 16(5):1–14, 2020.

[15] Michael T. Pearce, Atish Agarwala, and Daniel S. Fisher.
Stabilization of extensive fine-scale diversity by ecologi-
cally driven spatiotemporal chaos. Proceedings of the Na-
tional Academy of Sciences, 117(25):14572–14583, June
2020.

[16] Jonas Denk and Oskar Hallatschek. Self-consistent dis-
persal puts tight constraints on the spatiotemporal orga-
nization of species-rich metacommunities. Proceedings of
the National Academy of Sciences, 119(26):e2200390119,
June 2022.

[17] Joseph W. Baron and Tobias Galla. Dispersal-induced
instability in complex ecosystems. Nature Communica-
tions, 11(1):6032, November 2020.

[18] Ingrid A. van de Leemput, Egbert H. van Nes, and
Marten Scheffer. Resilience of Alternative States
in Spatially Extended Ecosystems. PLOS ONE,
10(2):e0116859, February 2015.

[19] Robert M. May. Stability and Complexity in Model
Ecosystems, volume 1. Princeton University Press, 1974.

[20] Jacopo Grilli. Macroecological laws describe variation
and diversity in microbial communities. Nature Commu-
nications, 11(1):4743, December 2020.

[21] Sandro Azaele, Samir Suweis, Jacopo Grilli, Igor Volkov,
Jayanth R. Banavar, and Amos Maritan. Statistical me-
chanics of ecological systems: Neutral theory and be-
yond. Reviews of Modern Physics, 88(3):035003, July
2016.

[22] Alex Kamenev, Baruch Meerson, and Boris Shklovskii.
How Colored Environmental Noise Affects Population
Extinction. Physical Review Letters, 101(26):268103, De-
cember 2008.

[23] Ferran Larroya and Tobias Galla. Demographic noise
in complex ecological communities. Journal of Physics:
Complexity, 2023.

[24] David A. Vasseur and Peter Yodzis. The Color of Envi-
ronmental Noise. Ecology, 85(4):1146–1152, 2004.

[25] O. L. Petchey, A. Gonzalez, and H. B. Wilson. Effects on
population persistence: The interaction between environ-
mental noise colour, intraspecific competition and space.
Proceedings of the Royal Society B: Biological Sciences,



14

264(1389):1841–1847, December 1997.
[26] John Realpe-Gomez, Mara Baudena, Tobias Galla,

Alan J. McKane, and Max Rietkerk. Demographic noise
and resilience in a semi-arid ecosystem model. Ecological
Complexity, 15:97–108, September 2013.

[27] Graham Bell and Associate Editor: Dolph Schluter. The
Distribution of Abundance in Neutral Communities. The
American Naturalist, 155(5):606–617, 2000.

[28] Lauren G. Shoemaker, Lauren L. Sullivan, Ian Dono-
hue, Juliano S. Cabral, Ryan J. Williams, Margaret M.
Mayfield, Jonathan M. Chase, Chengjin Chu, W. Stan-
ley Harpole, Andreas Huth, Janneke HilleRisLambers,
Aubrie R. M. James, Nathan J. B. Kraft, Felix May, Ran-
jan Muthukrishnan, Sean Satterlee, Franziska Taubert,
Xugao Wang, Thorsten Wiegand, Qiang Yang, and
Karen C. Abbott. Integrating the underlying struc-
ture of stochasticity into community ecology. Ecology,
101(2):e02922, 2020.

[29] Fabio Peruzzo, Mauro Mobilia, and Sandro Azaele. Spa-
tial Patterns Emerging from a Stochastic Process Near
Criticality. Physical Review X, 10(1):011032, February
2020.

[30] Robert H. MacArthur and Edward O. Wilson. The The-
ory of Island Biogeography. Princeton University Press,
1967.

[31] Jiliang Hu, Daniel R. Amor, Matthieu Barbier, Guy
Bunin, and Jeff Gore. Emergent phases of ecological di-
versity and dynamics mapped in microcosms. Science,
378(6615):85–89, October 2022.

[32] Giulia Garcia Lorenzana and Ada Altieri. Well-mixed
Lotka-Volterra model with random strongly competitive
interactions. Physical Review E, 105(2):024307, February
2022.

[33] Michel Loreau, Nicolas Mouquet, and Andrew Gonzalez.
Biodiversity as spatial insurance in heterogeneous land-
scapes. Proceedings of the National Academy of Sciences,
100(22):12765–12770, 2003. Publisher: Proceedings of
the National Academy of Sciences.

[34] Peter Chesson. General theory of competitive coexistence
in spatially-varying environments. Theoretical Popula-
tion Biology, 58(3):211–237, 2000.

[35] Dominique Gravel, François Massol, and Mathew A.
Leibold. Stability and complexity in model meta-
ecosystems. Nature Communications, 7(1):12457,
November 2016.

[36] Susanne Pettersson and Martin Nilsson Jacobi. Spa-
tial heterogeneity enhance robustness of large multi-
species ecosystems. PLOS Computational Biology,
17(10):e1008899, October 2021.

[37] Aditya Mahadevan, Michael T Pearce, and Daniel S
Fisher. Spatiotemporal ecological chaos enables gradual
evolutionary diversification without niches or tradeoffs.
eLife, 12:e82734, April 2023. Publisher: eLife Sciences
Publications, Ltd.

[38] S. R. Broadbent and J. M. Hammersley. Percolation pro-
cesses: I. Crystals and mazes. Mathematical Proceedings
of the Cambridge Philosophical Society, 53(3):629–641,
July 1957.

[39] H. K. Janssen. Spontaneous Symmetry Breaking in Di-
rected Percolation with Many Colors: Differentiation of
Species in the Gribov Process. Physical Review Letters,
78(15):2890–2893, April 1997.

[40] Haye Hinrichsen. Non-equilibrium critical phenomena
and phase transitions into absorbing states. Advances

in Physics, 49(7):815–958, November 2000.
[41] Marten Scheffer, Steve Carpenter, Jonathan A. Foley,

Carl Folke, and Brian Walker. Catastrophic shifts in
ecosystems. Nature, 413(6856):591–596, October 2001.

[42] Sonia Kéfi, Max Rietkerk, Minus van Baalen, and Michel
Loreau. Local facilitation, bistability and transitions
in arid ecosystems. Theoretical Population Biology,
71(3):367–379, May 2007.

[43] Timothy M. Lenton, Hermann Held, Elmar Kriegler,
Jim W. Hall, Wolfgang Lucht, Stefan Rahmstorf, and
Hans Joachim Schellnhuber. Tipping elements in the
Earth’s climate system. Proceedings of the National
Academy of Sciences, 105(6):1786–1793, February 2008.

[44] Jean-Philippe Bouchaud. Crises and Collective Socio-
Economic Phenomena: Simple Models and Challenges.
Journal of Statistical Physics, 151(3):567–606, May 2013.

[45] Jonas Denk and Oskar Hallatschek. Tipping points
emerge from weak mutualism in metacommunities.
Preprint, Ecology, February 2023.

[46] M Mezard, G Parisi, and M Virasoro. Spin Glass The-
ory and Beyond: An Introduction to the Replica Method
and Its Applications, volume 9 of World Scientific Lec-
ture Notes in Physics. WORLD SCIENTIFIC, November
1986.

[47] Robert M. May. Will a Large Complex System be Stable?
Nature, 238(5364):413–414, August 1972.

[48] Ada Altieri and Giulio Biroli. Effects of intraspecific
cooperative interactions in large ecosystems. SciPost
Physics, 12(1):013, January 2022.

[49] Charles K. Fisher and Pankaj Mehta. The transition be-
tween the niche and neutral regimes in ecology. Proceed-
ings of the National Academy of Sciences of the United
States of America, 111(36):13111–13116, 2014.

[50] Emanuele Pigani, Damiano Sgarbossa, Samir Suweis,
Amos Maritan, and Sandro Azaele. Delay effects on the
stability of large ecosystems. Proceedings of the National
Academy of Sciences, 119(45):e2211449119, November
2022.

[51] Samir Suweis, Francesco Ferraro, Sandro Azaele, and
Amos Maritan. Generalized Lotka-Volterra Systems with
Time Correlated Stochastic Interactions, July 2023.

[52] Matthieu Barbier, Jean François Arnoldi, Guy Bunin,
and Michel Loreau. Generic assembly patterns in com-
plex ecological communities. Proceedings of the National
Academy of Sciences of the United States of America,
115(9):2156–2161, 2018.

[53] Ulrich Behn, J. Leo van Hemmen, and Bernhard Sulzer.
Memory B Cells Stabilize Cycles in a Repressive Net-
work. In Theoretical and Experimental Insights into Im-
munology, pages 249–260. Springer Berlin Heidelberg,
Berlin, Heidelberg, 1992.

[54] José Moran and Jean-Philippe Bouchaud. May’s instabil-
ity in large economies. Physical Review E, 100(3):032307,
September 2019.

[55] Richard M. Goodwin. Chaotic Economic Dynamics. Ox-
ford University Press, November 1990.

[56] Immanuel M. Bomze. Lotka-Volterra equation and repli-
cator dynamics: New issues in classification. Biological
Cybernetics, 72(5):447–453, 1995.

[57] Guy Bunin. Interaction patterns and diversity in assem-
bled ecological communities, July 2016.

[58] William Feller. Two Singular Diffusion Problems. Annals
of Mathematics, 54(1):173–182, 1951.

[59] Ivan Dornic, Hugues Chaté, and Miguel A. Muñoz. Inte-



15

gration of Langevin Equations with Multiplicative Noise
and the Viability of Field Theories for Absorbing Phase
Transitions. Physical Review Letters, 94(10):100601,
March 2005.

[60] J L Cardy and R L Sugar. Directed percolation and
Reggeon field theory. Journal of Physics A: Mathematical
and General, 13(12):L423–L427, December 1980.

[61] F Roy, G Biroli, G Bunin, and C Cammarota. Numerical
implementation of dynamical mean field theory for disor-
dered systems: Application to the Lotka–Volterra model
of ecosystems. Journal of Physics A: Mathematical and
Theoretical, 52(48):484001, November 2019.

[62] Robert Zwanzig. Nonequilibrium Statistical Mechanics.
Oxford Univ. Press, Oxford, 2001.

[63] Antoine Georges, Gabriel Kotliar, Werner Krauth, and
Marcelo J. Rozenberg. Dynamical mean-field theory of
strongly correlated fermion systems and the limit of in-
finite dimensions. Reviews of Modern Physics, 68(1):13–
125, January 1996.

[64] Leticia F. Cugliandolo. Recent Applications of Dynami-
cal Mean-Field Methods, May 2023.

[65] G Ben Arous and Alice Guionnet. Symmetric langevin
spin glass dynamics. The Annals of Probability,
25(3):1367–1422, 1997.

[66] Sheng Chen and Uwe C. Täuber. Non-equilibrium relax-
ation in a stochastic lattice Lotka–Volterra model. Phys-
ical Biology, 13(2):025005, April 2016.

[67] P. C. Martin, E. D. Siggia, and H. A. Rose. Statisti-
cal Dynamics of Classical Systems. Physical Review A,
8(1):423–437, July 1973.

[68] Hans-Karl Janssen. On a Lagrangean for classical field
dynamics and renormalization group calculations of dy-
namical critical properties. Zeitschrift für Physik B Con-
densed Matter, 23(4):377–380, December 1976.

[69] C. De Dominicis. Dynamics as a substitute for replicas
in systems with quenched random impurities. Physical
Review B, 18(9):4913–4919, November 1978.

[70] Camille Aron, Giulio Biroli, and Leticia F. Cuglian-
dolo. Symmetries of generating functionals of Langevin
processes with colored multiplicative noise. Jour-
nal of Statistical Mechanics: Theory and Experiment,
2010(11):P11018, November 2010.

[71] Jim Wu, Pankaj Mehta, and David Schwab. Un-
derstanding Species Abundance Distributions in Com-
plex Ecosystems of Interacting Species, March 2021.
arXiv:2103.02081 [q-bio].

[72] Joseph W. Baron, Thomas Jun Jewell, Christopher Ry-
der, and Tobias Galla. Breakdown of Random-Matrix
Universality in Persistent Lotka-Volterra Communities.
Physical Review Letters, 130(13):137401, March 2023.

[73] The discontinuous transition takes place slightly before
the analytical prediction. Besides finite size effects, we
note that this phenomenon is to be expected for this
kind of transition. In fact, when the red curve (low initial
condition) jumps to high abundance, this does not nec-
essarily indicate that the ⟨N⟩ = 0 solution has become
locally unstable, but rather that its basin of attraction
has shrunk and does not include the considered initial
condition anymore. It is therefore to be expected that
this occurs for D < D0(T ). A similar phenomenon takes
place for spinodal transition in physics.

[74] At T = 0.18 the dynamics is so slow (especially close to
the tipping points) that at tmax = 500 some of the abun-
dances have not yet converged to their asymptotic values.
This leads to an apparent smoothing of the discontinuous
transition, whose existence is nevertheless ensured by the
abrupt change of behaviour of the evolution of the abun-
dance (see Figure 16), analogous to the one observed for
ρ = 1, γ = 1.

[75] Marten Scheffer, Steve Carpenter, Jonathan A Foley,
Carl Folke, and Brian Walker. Catastrophic shifts in
ecosystems. Nature, 413(6856):591–596, 2001.

[76] Timothy M Lenton. Environmental tipping points. An-
nual Review of Environment and Resources, 38:1–29,
2013.

[77] Marten Scheffer, Stephen R Carpenter, Timothy M
Lenton, Jordi Bascompte, William Brock, Vasilis Dakos,
Johan Van de Koppel, Ingrid A Van de Leemput, Si-
mon A Levin, Egbert H Van Nes, et al. Anticipating
critical transitions. science, 338(6105):344–348, 2012.

[78] Vasilis Dakos, Chris A Boulton, Josh E Buxton, Jesse F
Abrams, David I Armstrong McKay, Sebastian Bathi-
any, Lana Blaschke, Niklas Boers, Daniel Dylewsky, Car-
los López-Martínez, et al. Tipping point detection and
early-warnings in climate, ecological, and human sys-
tems. EGUsphere, 2023:1–35, 2023.

[79] Ada Altieri, Giulio Biroli, and Chiara Cammarota.
Dynamical mean-field theory and aging dynamics.
Journal of Physics A: Mathematical and Theoretical,
53(37):375006, September 2020.

[80] Camille Aron, Daniel G. Barci, Leticia F. Cugliandolo,
Zochil González Arenas, and Gustavo S. Lozano. Dynam-
ical symmetries of Markov processes with multiplicative
white noise. Journal of Statistical Mechanics: Theory
and Experiment, 2016(5):053207, May 2016.

[81] Haim Weissmann, Nadav M. Shnerb, and David A.
Kessler. Simulation of spatial systems with demographic
noise. Physical Review E, 98(2):022131, August 2018.

Appendix A: DMFT derivation

Here we outline the derivation, adapted from reference [61], of the Dynamical Mean Field Theory for our system,
for generic value of the spatial correlation of the interactions ρ.

We consider S species, indexed by i = 1, ...S, and their Lotka-Volterra dynamics,

Ṅi,u = Ni,u

1−Ni,u −
∑
j

αu
ijNj,u + ζi,u

+D

(
1

c

∑
v∈∂u

Ni,v −Ni,u

)
+ ηui (t)

√
Ni,u + λi,u (A1)



16

to which we have added a perturbation to the carrying capacity ζi,u and an external immigration λi,u, that will be
taken to zero at the end of the computation. These equations (for a given value of the ηui (t)) define the trajectories
Ni,u(t). We add a new species, i = 0, to the system, and we draw its interactions and initial conditions independently
from the rest of the system and with the same statistics. At large S, thanks to the scaling of the interactions, the
presence of a new species is a small perturbation to the system, so that the trajectories of the other S species will
only be slightly modified. We consider their linear response:

δNi,u(t) =
∑

v∈∂u,j

∫ t

0

δNi,u(t)

δζj,v(t′)
(−αv

j0N0,v(t
′))dt′ =

∑
v∈∂u,i

∫ t

0

Ru,v
i,j (t, t

′)(−αv
j0N0,v(t

′))dt′ (A2)

We have introduced the response function Ru,v
i,j (t, t

′) of the abundance of species i in patch u at time t to a variation
in the carrying capacity of species j in patch v at time t′.

The dynamics of species 0 will depend on these new trajectories:

Ṅ0,u = N0,u

(
1−N0,u −

∑
i

αu
0i

(
N0

i,u + δNi,u

))
+D

(
1

c

∑
v∈∂u

N0,v −N0,u

)
+ η0,u(t)

√
N0,u . (A3)

Because the correlations between interaction coefficients in any two patches are the same, these Gaussian variables
can generically be decomposed into a common random contribution, identical in all patches and proportional to the
correlation ρ, and one independent in different patches, proportional to

√
1− ρ2. We thus introduce the matrix

ai,j and aui,j such that αu
i,j = µ/S + σ

(
ρai,j +

√
1− ρ2aui,j

)
, E [ai,j ] = E

[
aui,j
]
= 0, E

[
a2i,j
]
= E

[
aui,j

2
]
= 1/S,

E [ai,jaj,i] = E
[
aui,ja

u
j,i

]
= γ/S and all other correlations are 0. We can rewrite the interaction term as:

−
∑
i

α0i

(
N0

i,u + δNi,u

)
= −

∑
i

(
µ/S + σ

(
ρa0i +

√
1− ρ2au0i

))
N0

i,u+

+
∑
i,j

(
µ/S + σ

(
ρai0 +

√
1− ρ2aui0

))(
µ/S + σ

(
ρa0j +

√
1− ρ2au0j

)) ∑
v∈∂u

∫ t

0

Ru,v
i,j (t, t

′)N0,v(t
′)dt′ .

(A4)

We want to describe its statistical properties in the limit S → ∞. The response function Ru,v
i,j (t, t

′) is defined
on the unperturbed trajectories, and is therefore uncorrelated from the interactions coefficients with species 0.
Ru,v

i,j (t, t
′) ∼ 1/

√
S for i ̸= j [61], so that the off-diagonal terms can be neglected. Thanks to the central limit

theorem,
∑

j a0jaj0R
u,v
j,j (t, t

′) will converge to its average:

∑
j

a0jaj0R
u,v
j,j (t, t

′) → SE [a0jaj0]E
[
Ru,v

j,j (t, t
′)
]
= γE

[
Ru,v

j,j (t, t
′)
]
. (A5)

By similarly evaluating all terms in (A4) we obtain:

−
∑
j

α0j

(
N0

j,u + δNj,u

)
→ −µE

[
N0

j,u

]
− σρξ̃u(t)− σ

√
1− ρ2ψ̃u(t)+

+σ2ρ2γ
∑
v∈∂u

∫ t

0

E
[
Ru,v

j,j (t, t
′)
]
N0,v(t

′)dt′ + σ2(1− ρ2)γ

∫ t

0

E
[
Ru,u

j,j (t, t
′)
]
N0,u(t

′)dt′ ,

(A6)

where ξ̃u(t) and ψ̃u(t) are Gaussian fields with zero mean and covariance E
[
ξ̃u(t)ξ̃v(t

′)
]

= E
[
N0

j,u(t)N
0
j,v(t

′)
]
,

E
[
ψ̃u(t)ψ̃v(t

′)
]
= δuvE

[
N0

j,u(t)N
0
j,u(t

′)
]
. Note that ξ̃u and the first integral of A6 derive from the component of

the interactions constant across patches, aij , as we can see from the ρ-dependent prefactors, and they therefore couple
different patches. ψ̃u and the second integral of A6 derive instead from the component of the interactions indepen-
dent across patches, auij , and therefore represent diagonal correlations and responses. Plugging this expression in the
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dynamical equation for species 0 we obtain:

Ṅ0,u = N0,u

(
1−N0,u − µE

[
N0

j,u

]
− σρξ̃u(t)− σ

√
1− ρ2ψ̃u(t)+

+σ2ρ2γ
∑
v∈∂u

∫ t

0

E
[
Ru,v

j,j (t, t
′)
]
N0,v(t

′)dt′ + σ2(1− ρ2)γ

∫ t

0

E
[
Ru,u

j,j (t, t
′)
]
N0,u(t

′)dt′

)
+

+D

(
1

c

∑
v∈∂u

N0,v −N0,u

)
+ η0,u(t)

√
N0,u .

(A7)

Species 0 is statistically equivalent to all the others, we can therefore replace the averages over the S original species
with averages with respect to this new dynamics for a single species, obtaining some self-consistent equations:

Ṅu =Nu

(
1−Nu − µhu − σρξ̃u(t)− σ

√
1− ρ2ψ̃u(t) + σ2ρ2γ

∫ t

0

∑
v∈∂u

Ruv(t, s)Nv(s)ds+ (A8)

+ σ2(1− ρ2)γ

∫ t

0

Ruu(t, s)Nu(s)ds

)
+D

(
1

c

∑
v∈∂u

Nv −Nu

)
+ ηu(t)

√
Nu (A9)

⟨ξ̃u(t)ξ̃v(s)⟩ =Cuv(t− s) = E[Nu(t)Nv(s)] (A10)

⟨ψ̃u(t)ψ̃v(s)⟩ =δuvCuu(t− s) (A11)

Ruv(t, s) =E

[
δNu(t)

δζv(s)

∣∣∣∣
ζ=0

]
(A12)

hu =E[Nu] . (A13)

Since species have been effectively decoupled, we can suppress the species index.
In the single equilibrium phase, we expect the process to reach a time translation invariant regime, in which the

one-time averages are time-independent and two-times observables only depend on the times difference. This was
shown in [5] for a single community with demographic noise and fixed immigration and it is known to be the case for
Directed Percolation [40] and in a many-species metacommunity with constant interactions [16]. It is also confirmed
by our numerical results that show a quick relaxation of one-time observables to an asymptotic value (see Appendix
K), at least away from phase transitions. Since the auto-correlation of the abundance of one species doesn’t tend to
zero at large times, we can decompose ξu and ψu into a constant and a fluctuating component:

ξ̃u(t) = ξ̂u + ξu(t) (A14)

ψ̃u(t) = ψ̂u + ψu(t) , (A15)

where ξ̂u and ψ̂u are (time independent) Gaussian variables with zero mean and correlations limτ→∞ Cuv(t, t+τ) = C∞
uv

and δuvC
∞
uu and the auto-correlation of ξu and ψu go to zero at long times. Averaging over ξu, ψu and η at fixed

ξ̂u and ψ̂u corresponds to performing a time-average for one species in one patch, averaging also over ψ̂u and ξ̂u
corresponds to averaging over patches and species. In this sense ξ̂u and ψ̂u play the role of the quenched disorder,
that was previously represented by the interaction matrix αu

ij . We will refer to the average over ξ and η at fixed ξ̂u

and ψ̂u as thermal average and indicate it with brackets, and to the average over ξ̂u and ψ̂u as disorder average and
indicate it with an overline.

While the derivation is so far valid for any spatial network, we will now restricted ourselves to a fully connected
network, in which the empirical average over neighbors can be replaced by its thermal average. In the large L limit
the connected correlation over thermal fluctuations between Nu and Nv is sub-dominant, so that ξu and ξv become
independent. A perturbation in patch v influences the abundance in patch u through the diffusion term, that in a
fully connected network is of order 1/L, therefore Ruv for u ̸= v scales as 1/L, whereas Ruu is of order 1. Since all
patches are equivalent, the elements of the Ruv matrix can only take two values:

Ruu = Rd (A16)
Ruv = R0/L, u ̸= v . (A17)
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Same thing for Cuv:

C∞
uu = C∞

d (A18)
C∞

uv = C∞
0 , u ̸= v . (A19)

We separate ξ̂u in a patch independent and a patch dependent part: ξ̂u = z
√
C∞

0 + wu

√
C∞

d − C∞
0 . We call patch

disorder average the average over wu and ψ̂u; species disorder average the average over z. 1
L

∑
v Nv concentrates

around its average over thermal fluctuations and patch disorder N∗, that will be a function of the static Gaussian
field z. Substituting in the dynamical equation and using time translational invariance we obtain:

Ṅ = N
(
k −N − µh− σ

(
ρ
√
C∞

0 z + ρ
√
C∞

d − C∞
0 w +

√
1− ρ2

√
C∞

d ψ̂ + ρξ +
√
1− ρ2ψ

))
+

+Nσ2γ

(
ρ2
∫ t

0

Rd(t− s)N(s)ds+ ρ2
∫ t

0

R0(t− s)N∗(s)ds+ (1− ρ2)

∫ t

0

Rd(t− s)N(s)ds

)
+

+D(N∗ −N) + η(t)
√
N =

= N

(
k −N − µh− σ

(
ρ
√
C∞

0 z +
√
C∞

d − ρ2C∞
0 w + ξ

))
+

+Nσ2γ

(∫ t

0

Rd(t− s)N(s)ds+ ρ2Rint
0 N∗

)
+D(N∗ −N) + η(t)

√
N ,

(A20)

where we have summed the random variables that had the same behaviour of the correlations (w and ψ̂, ξ and ψ),
and

Rint
0 =

∫ ∞

0

dτR0(τ) . (A21)

The equations simplify in the extreme cases ρ = 1 and ρ = 0, because only one of the components of the static
part of the disorder is present, either w or z. For ρ = 1 C∞

d = C∞
0 . For ρ = 0 N∗ coincides with h, so that we have

one less self-consistent equation, and R0 is not present; these two facts greatly simplify the numerical solution of the
equations.

Appendix B: Stationary probability distribution in the symmetric case

In the case of symmetric interactions (γ = 1), in the single equilibrium phase, the system relaxes to equilibrium
and it verifies the Fluctuation-Dissipation Theorem (FDT) [79]:

Rd(τ) = − 1

T

dC(τ)

dτ
. (B1)

We can integrate by parts the term with the memory kernel:∫ t

0

Rd(t− s)N(s)ds =
1

T

∫ t

0

dCd(t− s)

ds
N(s)ds = (B2)

1

T

(
C0

dN(t)− C(t)N(0)−
∫ t

0

Cd(t− s)Ṅ(s)ds

)
= (B3)

1

T

((
C0

d − C∞
d

)
N(t)−

∫ t

0

(Cd(t− s)− C∞
d ) Ṅ(s)ds

)
. (B4)

We have obtained an additional quadratic term in N(t), and a friction term. The friction term and the noise ξ describe
the coupling of the system to an effective colored bath at temperature T , that replaces the coupling of one species to
all the others.

Using Martin-Siggia-Rose-De Dominicis-Janssen (MSRDJ) formalism, we can show that the stationary probability
distribution associated with the stochastic differential equation

Ṅ = N

(
k −D(1− ρ2σ2Rint

0 N∗)− µh− ρσ
√
C∞

0 z − σ
√
C∞

d − ρ2C∞
0 w − σξ(t)

)
+

−N2

(
1− σ2

T

(
C0

d − C∞
d

))
+N

σ2

T

∫ t

0

(Cd(t− s)− C∞
d ) Ṅ(s)ds+DN∗ + η(t)

√
N

(B5)
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is the Boltzmann distribution with the effective Hamiltonian:

Heff =

(
1− σ2

T

(
C0

d − C∞
d

))
N2/2+

−
(
k −D

(
1− ρ2σ2N∗Rint

0

)
− µh− ρσ

√
C∞

0 z − σ
√
C∞

d − ρ2C∞
0 w + ζ

)
N + (T −DN∗ + λ) lnN ,

(B6)

where we have reintroduced the perturbations ζ and λ. To show that this is the correct equilibrium distribution we
need to verify that, with this as an initial condition, time reversal is a symmetry of the associated MSRDJ action.
We will do it, following reference [70], for a simplified dynamics, that contains all the crucial ingredients:

Ṅ = N

(
1−N − σξ(t)− σ2

∫ t

0

ν(t, s)Ṅ(s)ds

)
+ η(t)

√
N + λ (B7)

⟨ξ(t)ξ(s)⟩ = Tν(t− s) (B8)
⟨η(t)η(s)⟩ = 2Tδ(t− s) . (B9)

Its equilibrium distribution is given by:

Peq(N) =
e−βH

Z
(B10)

H = N2/2−N + (T − λ) logN , (B11)

where β = 1/T , the inverse temperature. The white noise should be interpreted according to Ito’s discretization. It
is convenient to convert it to Stratonovich’s discretization, which is left invariant by time reversal. The multiplicative
nature of the noise makes the two discretizations not equivalent: we then need to introduce an additional drift term
as follows

η
√
N → η

√
N − 1

2

√
2T

2
√
N

√
2TN = η

√
N − T

2
. (B12)

The MSRDJ action can be written in terms of a deterministic and a dissipative part [70, 80]

S[N, N̂ ] = Sdet[N, N̂ ] + Sdiss[N, N̂ ] (B13)

Sdet[N, N̂ ] = logPeq(N(−T )) +
∫ T

−T

du
(
iN̂(N(1−N) + λ− T/2− T/2) +N − 1/2

)
(B14)

Sdiss[N, N̂ ] =

∫
u

iN̂u

∫
v

(δ(u− v) + ν(u− v)θ(u− v)Nu)(iT N̂vNv − Ṅv) . (B15)

The time reversal transformation for the two fields is given by:

N(t) −→ NR(t) = N(−t) (B16)

iN̂(t) −→ iN̂R(t) = iN̂(−t) + 1

TN(−t)
∂

∂t
N(−t) . (B17)

The deterministic and dissipative part of the action are independently invariant under this transformation:

Sdet[NR, N̂R] = − logZ − βH(N(T ))+

+

∫
u

((
iN̂−u +

1

TN−u

∂

∂u
N−u

)
(N−u(1−N−u) + λ− T ) +N−u − 1/2

)
=

= − logZ − 1

T
(N2

T /2−NT + (T − λ) lnNT )+

+
1

T

∫
u

∂

∂u

(
N2

u/2−Nu + (T − λ) lnNu

)
+

∫
u

(
iN̂u(Nu(1−Nu) + λ− T ) +Nu − 1/2

)
=

= − logZ − βH(N(−T )) +
∫
u

(
iN̂u(Nu(1−Nu) + λ− T ) +Nu − 1/2

)
= Sdet[N, N̂ ]

(B18)
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Sdiss[NR, N̂R] =

∫
u

(
iN̂−u +

1

TN−u

∂

∂u
N−u

)∫
v

(δu−v + νu−vθu−vNu)iT N̂−vN−v =

=

∫
u

(
iT N̂uNu − Ṅu

)∫
v

(δv−u + νv−uθv−uNv)iN̂v = Sdiss[N, N̂ ] .

(B19)

The action is invariant under the time reversal transformation using Peq as initial and final condition, therefore Peq

is the correct equilibrium probability distribution.

Appendix C: Response functions

In the following, we restrict ourselves to the ρ = 1 case for simplicity, unless specified, and we show how to obtain
the self-consistent equation leading to Rint

0 .
At equilibrium we can rewrite the integrated disorder-dependent responses to a perturbation of the carrying capacity

and of the immigration rate in terms of connected correlation functions of N .

rintd (z) =

∫ ∞

0

dτ⟨δNu(τ)

δζu(0)
⟩ = ∂⟨Nu⟩

∂ζu
= β(⟨N2⟩ − ⟨N⟩2) (C1)

χ(z) =

∫ ∞

0

dτ⟨δNu(τ)

δλu(0)
⟩ = ∂⟨Nu⟩

∂λu
= β(⟨N logN⟩ − ⟨N⟩⟨logN⟩) . (C2)

When the time dependence is not present we are considering a time independent perturbation.
Adding a perturbation in site v leads to a variation of the abundances in all other sites, because of the coupling by

diffusion and the memory term. These variations are of order 1/L, but since there are L of them they give a significant
contribution. When studying ∂⟨Nu⟩

∂ζv
we need to take into account four contributions: there is a O(1) variation of Nv

that leads to a O(1/L) perturbation of the immigration rate perceived by Nu and a O(1/L) change in its off-diagonal
memory term; there are L − 2 variations of O(1/L) of the Nw, with w ̸= u, v, each leading to a O(1/L2) change in
both immigration and memory term. Carefully taking into account all these contributions, we can write rint0 (z) in
terms of rintd (z), χ(z) and rint0 (z) itself:

rint0 (z) = L

∫ ∞

0

dτ⟨δNu(τ)

δζv(0)
⟩ = L

∂⟨Nu⟩
∂ζv

= L⟨

∂Nv

∂ζv

(
D

L

∂Nu

∂λu
+ σ2Rint

uv

∂Nu

∂ζu

)
+
∑

w ̸=u,v

∂Nw

∂ζv

(
D

L

∂Nu

∂λu
+ σ2Rint

uw

∂Nu

∂ζu

)⟩ =

=
(
Dχ(z) + σ2rintd (z)Rint

0

) (
rintd (z) + rint0 (z)

)
.

(C3)

In the third line we used the fact that the correlations between different patches are subleading to take separately the
thermal averages. Solving for rint0 (z) we obtain:

rint0 (z) =

(
Dχ(z) + σ2rintd (z)Rint

0

)
rintd (z)

1−
(
Dχ(z) + σ2rintd (z)Rint

0

) . (C4)

We can then average over z to obtain Rint
0 :

Rint
0 =

(
Dχ(z) + σ2rintd (z)Rint

0

)
rintd (z)

1−
(
Dχ(z) + σ2rintd (z)Rint

0

) . (C5)

Appendix D: Asymmetric interactions

The MSRDJ action with non symmetrical interactions is given by:

S[N, N̂ ] =

∫
u

i

(
N̂u

(
Nu

(
k −D

(
1− σ2γN∗Rint

0

)
− µh+ σ

√
C∞

d z −Nu

)
− T +DN∗

)
+N − 1

2

)
+ (D1)

+

∫
u

iN̂u(iT N̂uNu − Ṅu) +
σ2

2

∫
u

iN̂uNu

∫
v

Cc(u− v)iN̂vNv + γσ2

∫
u

iN̂uNu

∫
v

R(u− v)Nv + (logP (N(0))), (D2)
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where we have defined Cc(u − v) = Cd(u − v) − C∞
d . If the introduction of a small asymmetry in the interactions

(ϵ = 1 − γ ≪ 1) is a non-singular perturbation, all the self-consistently determined quantities in the action (h, Cd,
Rint

0 and Rd) will be close to their counterparts for γ = 1. At first order in ϵ we can neglect their change; therefore Rd

and Cd will still respect a Fluctuation-Dissipation Relation. We can separate the action in a part that would respect
FDT and a part that breaks it explicitly:

δS =
ϵσ2

T

∫
u>v

Cc
u−viN̂uNuṄv . (D3)

An average ⟨f(Nt)⟩ can be expanded as:

⟨f(Nt)⟩ = ⟨f(Nt)⟩0 + ⟨f(Nt)δS⟩0 +O(ϵ2) , (D4)

where ⟨·⟩0 indicates the average with respect to the action neglecting δS.
We want to estimate the scaling of

⟨f(Nt)δS⟩0 =
ϵσ2

T

∫
u>v

Cc
u−vi⟨f(Nt)N̂uNuṄv⟩0 =

ϵσ2

T

∫
u>v

Cc
u−vi

∂

∂v

δ

δζu
⟨f(Nt)Nv⟩0 (D5)

to show that it is not singular approaching a phase transition. In the simple equilibrium phase the connected correlation
function decays exponentially, with a typical relaxation time τ that could diverge at the phase transitions:

Cc(u− v) ∼ (⟨N2⟩ − ⟨N⟩2)e−|u−v|/τ . (D6)

The correlation function ⟨f(Nt)Nv⟩0 will contain a v independent part (that we can neglect since we will be taking
the derivative in v) and a connected component of order 1 that decays with the same relaxation time τ . Perturbing
the system with a field ζu this observable will respond as:

δ

δζu
⟨f(Nt)Nv⟩0 ∝ 1

Tτ
e−(t−v)/τ . (D7)

Inserting these scalings in equation D5 we obtain:

⟨f(Nt)δS⟩0 ∝ ϵσ2

T

∫
u>v

e−(u−v)/τ ∂

∂v

(
1

Tτ
e−(t−v)/τ

)
=

ϵσ2

T 2τ2

∫ t

−∞
dve−(t−v)/τ

∫ t

v

due−(u−v)/τ = (D8)

=
ϵσ2

T 2τ

∫ t

−∞
dve−(t−v)/τ

(
1− e−(t−v)/τ

)
=

ϵσ2

T 2τ

(
τ − τ

2

)
=
ϵσ2

2T 2
. (D9)

Considering a small asymmetry in the interactions observables are shifted by a correction of order ϵ, where the
prefactor is of order 1 and has no divergence at the phase transitions. We thus expected the phase diagram to remain
qualitatively unchanged.

Appendix E: Extinction threshold and diversity (for ρ = 1)

The self-consistency condition for N∗ reads:

N∗(z) = ⟨N⟩Heff (N ;h,C0
d,C

∞
d ,Rint

0 ,z,N∗) =

∫∞
0
dNNe−βHeff (N ;h,C0

d,C
∞
d ,Rint

0 ,z,N∗)∫∞
0
dNe−βHeff (N ;h,C0

d,C
∞
d ,Rint

0 ,z,N∗)
. (E1)

N∗ = 0 is always a solution of this equation, we want to find the value of z at which it becomes unstable.
We can separate the effective Hamiltonian into a quadratic and a logarithmic part:

Heff (N ;h,C0
d , C

∞
d , Rint

0 , z,N∗) = Hq(N ;h,C0
d , C

∞
d , Rint

0 , z,N∗) + (T −DN∗) lnN . (E2)

For N∗ → 0 the logarithmic part gives rise to a non-integrable divergence in 0 in the denominator. To improve the
numerical stability of our solution at small N∗ we performed an integration by parts of the denominator:∫ ∞

0

dNe−βHeff =

∫ ∞

0

dNe−βHqN−1+βDN∗
=

1

DN∗

∫ ∞

0

dNe−βHqNβDN∗ dHq

dN
. (E3)
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Figure 11: Self-consistent solution for N∗(z) (blue), coefficient of the first order expansion c1(z) (orange) and Gaus-
sian probability distribution P (z) (green). The highlighted region corresponds to the non-extinct species, its area is
the diversity of the ecosystem. T = 0.4, D = 0.15, µ = 1, σ = 0.5.

The integral is now finite for N∗ → 0 and we can expand eq. (E1) in powers of N∗:

N∗(z) = DN∗(z)

∫∞
0
dNe−βHqNβDN∗(z)∫∞

0
dNe−βHq

dHq

dN NβDN∗(z)
= N∗(z)D

∫∞
0
dNe−βHq∫∞

0
dNe−βHq

dHq

dN

+O((N∗(z))2) . (E4)

The term of order N∗(z)2 is always negative, therefore the number of solution depends on the coefficient of the N∗(z)
term: if c1(z) < 1 the only solution is N∗(z) = 0, if c1(z) > 1 the N∗(z) = 0 solution is unstable and there is a
positive stable one. We define the effective growth rate reff = 1 − σ2β(C0

d − C∞
d )) and the effective growth factor

reffgeff (z) = k − µh− z
√
C∞

d σ +Dσ2N∗Rint
0 . The extinction threshold z∗ (Figure 11) is given by:

1 = c1(z
∗) = D

√
βπ

2reff
exp

(
β

2

(geff (z
∗)reff −D)2

reff

)(
1 + erf

(√
β

2

(
geff (z

∗)reff −D
√
reff

)))
. (E5)

As noted in reference [16], this is the same condition that would determine the criticality of the Directed Percolation
process with corresponding growth rate and growth factor:

Ṅu = reff (N
2
u/2− geffNu) +D

(
1

L

∑
v

Nv −Nu

)
+ η
√
Nu (E6)

⟨η(t)η(t′)⟩ = 2Tδ(t− t′) . (E7)

The diversity, given by the fraction of non extinct species, can be obtained as:

ϕ =

∫ ∞

z∗
P (z)dz =

1

2
erfc

(
z∗√
2

)
. (E8)

Appendix F: Continuous transition point

At the continuous transition, all moments of N tend to zero, and we can expand the extinction condition (E5) in
powers of these moments. Keeping only the zeroth order we obtain an equation on the critical value of the diffusion
constant:

D0

√
βπ

2
e

β
2 (k−D0)

2

(
1 + erf

(√
β

2
(k −D0)

))
= 1 . (F1)

This condition has no dependence on the distribution of the interactions, indeed it is the same that would be obtained
with zero or constant interactions [16].
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For T → 0 we can expand Eq. (F1) and show that D0 vanishes exponentially:

D0(T ) ∼
1√
2πβ

e−
k2

2T (F2)

The reason for this behavior is that at low demographic noise, the abundances of a species with carrying capacity
k undergoes a fluctuation toward very low values very rarely. In fact, one needs to wait a rare fluctuation of the
demographic noise that makes the species go against the force due to the logistic growth. This phenomenon is similar
to the one encountered in the Kramers’ problem for barrier crossing. Using the same line of arguments employed
there, one finds that the timescale for this rare event is e

k2

2T (the "energy barrier" equals k2/2). The equation above
can be therefore interpreted as a balance between two inverse time-scales: the one needed for diffusion to operate and
the one over which extinctions take place.

By a careful (and cumbersome) expansion of the self-consistent equations, we can show that approaching the
continuous transition h ∝ qd ∝ D −D0, q0 ∝ (D −D0)

2, and z∗ (and therefore ϕ) has a finite limit.

Appendix G: Abundance distribution
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Figure 12: (a) Probability distribution of the abundance N ; in orange deep in the survival phase (T =
0.8, D/D0(T ) = 1.5), in blue right before the discontinuous transition (T = 0.4, D/D0(T ) = 0.84). Note that
the shown distributions do not integrate to 1 because a finite fraction of the species are extinct, leading to a delta
function in zero with weight 1 − ϕ. (b) Probability distribution of the abundance for a given species, i.e. at fixed
z; in blue for a species close to extinction (z = −0.45, N∗ = 0.148), in orange for a species far from extinction
(z = −2.45, N∗ = 1.733); T = 0.4, D/D0(T ) = 0.84. (c) Probability distribution of the space (or time) av-
eraged abundance, because of extinct species we again have a delta function in zero with weight 1 − ϕ. T = 0.4,
D/D0(T ) = 0.84. µ = 1, σ = 0.5, ρ = 1.

As noted before, two types of stochasticity contribute to the distribution of abundances. Each species is subjected
to demographic and environmental noise, making their abundance a time-dependent random variable. For each
species the abundance is distributed according to the Boltzmann distribution with Hamiltonian Heff , we will call this
P (N |z). On top of this, because of disorder, different species experience different average interactions with the rest
of the ecosystem (different values of z, that is distributed according to P (z) Gaussian), leading to species-dependent
factors in Heff . If we want to study the distribution of the abundances of all species at a given time in one site
(P (N)) we need to take into account both effects. We can compute P (N) marginalizing over z:

P (N) =

∫
dzP (N |z)P (z) , (G1)

with

P (N |z) = e−βHeff (N ;z,N∗(z))∫∞
0
dNe−βHeff (N ;z,N∗(z))

(G2)

P (z) =
e−z2/2

√
2π

. (G3)
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We could also be interested in the distribution across species of the abundance averaged over patches or time, given

by P (N∗) = P (z)
(

dN∗(z)
dz

)−1

for N∗ > 0. There is also a finite probability 1−ϕ that N∗ = 0, where ϕ is the diversity.
Examples of these abundance probability distributions are shown in Fig. 12.

Appendix H: Divergence of response to a variation of the carrying capacity

The divergence of response functions when approaching a tipping point is a generic feature of saddle node bifurca-
tions [77]. Let us consider a generic dynamical system, described by

dx⃗

dt
= F (x⃗, k) . (H1)

x⃗ contains all the degrees of freedom of the system, whereas k is a control parameter. The zeros of F yield the
stationary states x∗:

F (x∗, k) = 0 . (H2)

The stationary point is stable if the Jacobian of F has only negative eigenvalues, ensuring that x returns to x∗ upon
small perturbations. In a saddle node bifurcation a stable and an unstable stationary point collide and annihilate
each other. Since the Jacobian at the stable stationary point has only negative eigenvalues whereas the one at the
unstable stationary point has at least a positive eigenvalue, one of the eigenvalues has to cross zero at the bifurcation.
The existence of a zero mode leads to a diverging response to perturbation.

We show below how this mechanism is at play in our case when approaching the stability limit of the self-sustained
phase. We study the response of the system to a perturbation in the environmental conditions in the case of indepen-
dent interaction coefficients (ρ = 0). We will consider for concreteness a perturbation to the carrying capacity k, but
we expect the same qualitative behavior for perturbations to the diffusion constant, the moments of the interactions,
or the strength of the demographic fluctuations.

The response of the order parameters to a variation of k involves some connected moments of N and the derivative
of H in k:

dh

dk
=

∫
Dz

(∫
dNNe−βH(−β)dH/dk∫

dNe−βH
−
∫
dNNe−βH

∫
dNe−βH(−β)dH/dk(∫
dNe−βH

)2
)

=

= −β
(
⟨N dH

dk
⟩ − ⟨N⟩⟨dH

dk
⟩
) (H3)

dC0
d

dk
= −β

(
⟨N2

dH

dk
⟩ − ⟨N2⟩⟨dH

dk
⟩
)

(H4)

dC∞
d

dk
= −2β

(
⟨N⟩⟨N dH

dk
⟩ − ⟨N⟩2⟨dH

dk
⟩
)
. (H5)

Thanks to the fact that ρ = 0, H has the simplified form:

H =
(
1− σ2β

(
C0

d − C∞
d

))
N2/2 + (µh− k +D − z

√
C∞

d σ)N + (T −Dh) lnN . (H6)

dH/dk depends on the derivative of the order parameters in k:

dH

dk
= −N +

∂H

∂h

dh

dk
+
∂H

∂C0
d

dC0
d

dk
+

∂H

∂C∞
d

dC∞
d

dk
(H7)

∂H

∂h
= µN −D lnN (H8)

∂H

∂C0
d

= −σ
2β

2
N2 (H9)

∂H

∂C∞
d

=
σ2β

2
N2 − 1

2
√
C∞

d

zσN . (H10)



25

Substituting dH/dk in Equations (H3-H5) we obtain:

dh

dk
= −β

{
−
(
⟨N2⟩ − ⟨N⟩2

)
+

+
[
µ
(
⟨N2⟩ − ⟨N⟩2

)
−D

(
⟨N logN⟩ − ⟨N⟩⟨logN⟩

)] dh
dk

+

−σ
2β

2

(
⟨N3⟩ − ⟨N⟩⟨N2⟩

) dC0
d

dk
+

+

[
σ2β

2

(
⟨N3⟩ − ⟨N⟩⟨N2⟩

)
− 1

2
√
C∞

d

σ
(
⟨N2⟩z − ⟨N⟩2z

)] dC∞
d

dk

}
(H11)

dC0
d

dk
= −β

{
−
(
⟨N3⟩ − ⟨N2⟩⟨N⟩

)
+

+
[
µ
(
⟨N3⟩ − ⟨N2⟩⟨N⟩

)
−D

(
⟨N2 logN⟩ − ⟨N2⟩⟨logN⟩

)] dh
dk

+

−σ
2β

2

(
⟨N4⟩ − ⟨N2⟩2

) dC0
d

dk
+

+

[
σ2β

2

(
⟨N4⟩ − ⟨N2⟩2

)
− 1

2
√
C∞

d

σ
(
⟨N3⟩z − ⟨N2⟩⟨N⟩z

)] dC∞
d

dk

}
(H12)

dC∞
d

dk
= −2β

{
−
(
⟨N⟩⟨N2⟩ − ⟨N⟩3

)
+

+
[
µ
(
⟨N⟩⟨N2⟩ − ⟨N⟩3

)
−D

(
⟨N⟩⟨N logN⟩ − ⟨N⟩2⟨logN⟩

)] dh
dk

+

−σ
2β

2

(
⟨N⟩⟨N3⟩ − ⟨N⟩2⟨N2⟩

) dC0
d

dk
+

+

[
σ2β

2

(
⟨N⟩⟨N3⟩ − ⟨N⟩2⟨N2⟩

)
− 1

2
√
C∞

d

σ
(
⟨N⟩⟨N2⟩z − ⟨N⟩3z

)] dC∞
d

dk

}
.

(H13)

We collect the three order parameters in a vector p⃗ = (h,C0
d , q0)

T . Then dp⃗
dk satisfies:

dp⃗

dk
= Ĵ

dp⃗

dk
+ s⃗ , (H14)

where Ĵ is a 3× 3 matrix and s a vector; their elements are the coefficients of Equations (H11-H13). The solution is
given by:

dp⃗

dk
= −(Ĵ − 1̂)−1s⃗ . (H15)

The response to a variation of k diverges if Ĵ − 1̂ has a zero eigenvalue, this is found to happen when approaching the
discontinuous transition.

We expect the same qualitative behaviour of the response to perturbations for generic values of ρ, but for ρ ̸= 0 we
need to take into account also the variations of the function N∗(z), which leads to the study of an infinite dimensional
matrix.

Appendix I: Reduced interaction matrix

In the case of fixed interaction matrices, a finite fraction of the species goes extinct; the interaction matrix restricted
to the surviving species has a smaller mean than the starting one. The statistics of the reduced interaction matrix
can be computed at 0 temperature [72]:

µ′ = ϕµ− 2
σ2h

ϕ

dϕ

dζ
= ϕµ− 2

σh

ϕ
√
2πC∞

d

e−(z∗)2/2 . (I1)
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Figure 13: Left: Analytical estimate of the mean of the reduced interaction matrix using Eq. (I1) for T = 0.4.
Right: Numerical results for the distribution of the interaction coefficients for all and surviving species. T = 0.18,
D/D0 = 0.8. In both cases in the initial species pool µ = 1, σ = 0.5; if all species go extinct we say µ′ = 0.

Since we are not at 0 temperature, in our case this formula is only an approximation, but it provides an useful
estimate of the variation of the mean interaction. We find that the interaction mean decreases (more mutualistic)
when decreasing the diffusion coefficient (Figure 13a); it is negative in the entire metastability region. In Figure 13b
we show the distribution of the interaction coefficients considering all species or only surviving ones in numerical
simulations. The distribution of the interaction coefficients is slightly shifted to more negative values, and indeed
µ′ = S 1

S2

∑
ij αij changes from 0.96 to -0.28.

To compute the average interaction term we can again use the cavity method and imagine to add a species (with
index 0) to the community. Using Equation A6

Int0 = ⟨
∑
j

α0jN
u
j ⟩ = µh+ σ

√
C∞

d z − γσ2
(
Rint

d +Rint
0

)
⟨N0⟩ . (I2)

We can now average it over all species (all values of z, overline), or over only non extinct ones (z < z∗, overline with
+ superscript).

I = µh− γσ2
(
Rint

d +Rint
0

)
h (I3)

I
+
= µh− σ

√
q0

ϕ

e−z∗2/2

√
2π

− γσ2
(
Rint

d +Rint
0

) h
ϕ
. (I4)

Note that we will always find I
+
< I; I

+
is negative in the entire metastability region (Figure 6a in the main text).

This is also confirmed by numerical simulations: the average interaction term is 0.13 considering all species, and -0.46
considering only non extinct ones (Figure 6b in the main text).

In the case of independent interaction matrices, all species survive, so that the interaction matrix is not modified.

Appendix J: Numerical scheme

The numerical simulation of demographic noise poses some technical challenges. Naively sampling it as a Gaussian
variable can result in negative species abundances, an unphysical result that makes the scheme numerically unstable.
A clever solution was found in reference [59], and improved in [5, 81]. The idea is to separate the process in a
deterministic part:

Ṅi,u = Ni,u

1−Ni,u −
∑
j

αu
ijNj,u

+D

(
1

L

∑
v

Ni,v −Ni,u

)
(J1)

and a stochastic one:

Ṅi,u =
√
Ni,uηi,u . (J2)

At each time step we numerically integrate the two in sequence. For the stochastic part an exact solution of the
associated Fokker-Planck equation is available for any initial condition, and it can be efficiently sampled using Gamma
and Poisson variables:

Ñi,u(t) = Gamma

(
Poisson

(
Ni,u(t)

Tdt

))
Tdt . (J3)
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For the deterministic part we rely on Euler method.

Ni,u(t+ dt) =

Ñi,u(t)

1− Ñi,u(t)−
∑
j

αu
ijÑj,u(t)

+D

(
1

L

∑
v

Ñi,v(t)− Ñi,u(t)

) dt . (J4)

Appendix K: Additional numerical results

Some of the challenges encountered in numerical simulations become clear examining the time evolution of the
average abundances (Fig. 14). At high temperature (top) the average abundance fluctuates significantly even with
large number of species and patches (S = 200, L = 400); finite size effects on L lead to an excess of extinctions. At
lower temperature (bottom) the dynamics strongly slows down, and at t = 200 some of the abundances (depending on
the value fo D) have not yet reached their asymptotic value, leading to a smoothing of the discontinuous transition.
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Figure 14: Time evolution of the average abundance for two different temperatures and two average values of the
initial conditions. Note the different time ranges in the top and bottom figures: at high temperature the abun-
dances have converged to their asymptotic values at tmax = 200, at lower temperature it is necessary to wait much
longer (tmax = 500). S = 200, L = 400, µ = 1, σ = 0.5.
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Figure 15: Time evolution of the average abundance without heterogeneity in the interaction network (σ = 0) at
T = 0.18 and two average values of the initial conditions. For D < D0(T ) the abundances converge to 0. S = 200,
L = 400, µ = 1.
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Figure 16: Time evolution of the average abundance without heterogeneity in the interaction network with partial
correlation between patches (ρ = 0.9) and non symmetric interactions (γ = 0.9) at T = 0.18 and two average values
of the initial conditions. At t = 500 the abundances have not yet reached their asymptotic value, leading to an ap-
parent smoothing of the discontinuous transition. Nevertheless this is ensured by the abrupt change of behaviour of
the evolution of the average abundance: for one value of the diffusion constant at long times the abundance is de-
caying to 0, whereas for the next it shows a (slow) increase. We conclude that the asymptotic values would likewise
show an abrupt change. S = 200, L = 400, µ = 1, σ = 0.5.
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