
HAL Id: hal-04444062
https://hal.science/hal-04444062

Submitted on 7 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Service Based Cooperation Patterns to Support Flexible
Inter-Organizational Workflows

Saida Boukhedouma, Mourad Oussalah, Zaia Alimazighi, Dalila Tamzalit

To cite this version:
Saida Boukhedouma, Mourad Oussalah, Zaia Alimazighi, Dalila Tamzalit. Service Based Cooperation
Patterns to Support Flexible Inter-Organizational Workflows. International Journal of Information
Technology and Computer Science, 2014, 6 (4), pp.1 - 18. �10.5815/ijitcs.2014.04.01�. �hal-04444062�

https://hal.science/hal-04444062
https://hal.archives-ouvertes.fr

I.J. Information Technology and Computer Science, 2014, 04, 1-18
Published Online March 2014 in MECS (http://www.mecs-press.org/)
DOI: 10.5815/ijitcs.2014.04.01

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 04, 1-18

Service Based Cooperation Patterns to Support
Flexible Inter-Organizational Workflows

Saida Boukhedouma

University of Science and Technologies Houari Boumediene, Algiers, Algeria
E-mail: sboukhedouma@usthb.dz

Mourad Oussalah

University of Nantes, France
E-mail: mourad.oussalah@univ-nantes.fr

Zaia Alimazighi

University of Science and Technologies Houari Boumediene, Algiers, Algeria
E-mail: zalimazighi@usthb.dz

Dalila Tamzalit

University of Nantes, France
E-mail: dalila.tamzalit@univ-nantes.fr

Abstract— Service Oriented Architecture (SOA) is a
paradigm that provides important advantages like
interoperability, reusability and flexibility, particularly
beneficial for B2B applications. In the current paper, we
consider specific architectures of inter-organizational
workflows (IOWF) fairly widespread in the B2B area
and implementing different cooperation schemas. Our
aim is to propose new generic IOWF-architectures by
using the SOA paradigm in order to obtain IOWF
models flexible enough to ease their adaptation,
evolution and reuse. For that, we introduce the concept
of Service-Based Cooperation Pattern (SBCP) that
supports the definition of IOWF models based on
services. A SBCP is defined by three main dimensions:
the distribution of services, the control of execution and
the structure of interaction between services. Also, we
define a concept of composite cooperation pattern based
on the combination of elementary patterns. We illustrate
our approach by a general description of our
cooperation framework called “S-IOFLOW” that
supports the implementation of IOWF models obeying
to the described SBCP. Three main points characterize
our approach: (i) the use of a pattern-based approach; (ii)
the definition of composite patterns by reusing
elementary ones and (iii) the support of several
cooperation schemas with different types of control.

Index Terms — IOWF, SOA, Service Based
Cooperation Pattern (SBCP), Flexibility, Composite
Pattern

I. Introduction

Since the year 2000, many works deal with the
combination of business oriented technologies such as
workflow [1] and web services [2] supported by SOA
[3], to build collaborative and distributed business
applications which are suitable for ad-hoc cooperation
[4] or structured cooperation [5][6]. Ad-hoc
cooperation means that the schema of the business
process is defined on the fly at runtime and process
instances don’t necessarily follow the same process
model. Ad-hoc cooperation is appropriate for occasional
and non durable B2B relationships. However, in many
situations, business partners need to agree together in
order to build structured and durable cooperation to
reach a common business goal according to a “winner-
winner” policy. In structured cooperation, the steps of
the business process and interactions in the system are
well defined resulting in an IOWF model clearly
defined and followed by all process instances.

In our research work, we are interested in structured
cooperation supported by the concept of inter-
organizational workflow (IOWF). In [7], [8], generic
architectures of IOWF have been defined to support this
kind of cooperation. These architectures are the
capacity sharing, the “Chained execution”, the
“Subcontracting”, the “Case transfer”, the “Extended
case transfer “and the “Loosely coupled WF”; we
consider them as basis of cooperation models between
businesses because they express different cooperation
schemas. However in their initial form, these
architectures were subject to criticisms because of their
rigidity and the difficulty to adapt to changes [9].

mailto:sboukhedouma@usthb.dz
mailto:mourad.oussalah@univ-nantes.fr
mailto:zalimazighi@usthb.dz
mailto:dalila.tamzalit@univ-nantes.fr

2 Service Based Cooperation Patterns to Support Flexible Inter-Organizational Workflows

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 04, 1-18

Furthermore, because the environment of businesses
is naturally dynamic and unstable, business processes
are continually or occasionally subject to changes. Then,
the final objective of our research is to deal with
flexibility of IOWF models by providing mechanisms
that support their adaptation, evolution and reuse.
However, before we get to deal with flexibility, we
define new IOWF-architectures that support process
models flexible enough in order to ease their adaptation,
evolution and reuse. So, the current paper focuses on
the description of these new IOWF-architectures using
the SOA paradigm.

The use of SOA approach for WF interconnection is
not new and is motivated by the fact that services are
loosely coupled components, easily invoked, business
oriented and platform independent and SOA paradigm
supports integration, reuse and composition of services.
Then, our contribution in this paper is to define and to
implement Service-Based Cooperation Patterns(SBCP)
corresponding to the basic architectures defined in [7]
[8]. We state that the basic architectures considered can
be implemented through global orchestration of
services in case of centralized or hierarchized control or
distributed local orchestrations of services in case of
decentralized control, respecting the constraints of each
IOWF-architecture.

Three main points characterize our contribution: (i)
by considering several IOWF-architectures, we ensure
that we cover a wide range of existing business
processes (ii) By using a pattern-based approach, we
ease the maintainability and the extensibility of the
cooperation framework and (iii) by reusing existing
IOWF models, we can build more complex ones
obeying to composite cooperation patterns.

The rest of the paper is structured as follows: Section
2 presents some related works and explains the
motivations of our research. Section 3 synthesizes the
necessary background to understand the paper. Section
4 lays the basis of our approach for WF interconnection
using services; here, we introduce the concept of SBCP.
Section 5 describes the set of SBCP proposed. Section 6
gives some implementation details of our cooperation
framework. Section 7 talks about generalized and
composite cooperation patterns. Section 8 provides a
comparison of some WF cooperation approaches
proposed in the literature. Finally, Section 9 concludes
the paper and talks about other works.

II. Related Works and Motivations

With the emergence of SOA and web services
standards, many research works deal with orchestration
and choreography of web services [10], [11], especially
based on BPEL4WS [12]. Other research works such as
[13], [14] show the interest of combining BPM, WF and
SOA for reusing services to build dynamic business
processes. This had a great impact in promoting B2B
relationships since several approaches and platforms

have been developed to support the B2B cooperation. In
structured cooperation, we can cite some approaches
like CoopFlow [9], CrossFlow [15], CrossWork [16],
Pyros [17], e-Flow [18] and DISCOBOLE [19]. A
comparison of approaches is provided in Section 8 of
this paper.

Also, flexibility is an important propriety to be
satisfied by business processes and their systems
allowing them to support changes. Even if some
approaches like CoopFlow, Pyros and e-Flow provide
internal adaptation of workflows without
compromising the coherence of the global process, a
large number of the proposed solutions are not flexible
enough because they are closely coupled with the
platforms. More recently, a certain number of
approaches for flexible WF cooperation have been
proposed [20], [21], [22]. In [20], the author describes a
methodological framework for service-based dynamic
cooperation using aspect-programming and context
adaptation. The author of [21] describes a framework
for dynamic composition of services with asynchronous
communication and mechanisms of adaptation for
service-based business processes. The author of [22]
uses web services and model driven engineering for the
construction of extensible business oriented applications.

Moreover, WF flexibility is perceived at two
complementary levels: (1) at the system level, the
flexibility defines the ability of a WFMS (WF
management system) to face unexpected and erroneous
situations [23], [24], [25]. (2) at the level of process

models that defines the ability of a process model to be
adaptable, evolvable and reusable; many research works
have been proposed describing different techniques
such as adaptation patterns [26], [27], [28], rule-based
adaptation patterns [29], [30] and constraint-based
modeling [31] to support flexibility of process models.
For example, in [28], the authors identify the most
important process change patterns and change features
for PAIS (process aware information systems). In [32],
a framework was described using adaptation patterns
and aspect–programming in order to support process
adaptation for BPEL engines.

The concept of pattern was initially used in software
engineering as the abstraction from a concrete form
which keeps recurring in specific context. In the WF
area, this concept has been usually used for business
process modeling [33], business process improvement
or changes [28], [32] or exception handling [34]. More
recently, the concept of pattern is used in model
transformation; for example in [35], the author proposes
transformation patterns to move from choreographies to
orchestration of services. Also, workflow patterns are
used for verification of service composition like in [36],
[37].

This paper deals with WF cooperation and uses a
pattern-based approach to define generic IOWF-
architectures using the SOA paradigm, by introducing
the concept of Service-Based Cooperation Pattern

 Service Based Cooperation Patterns to Support Flexible Inter-Organizational Workflows 3

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 04, 1-18

(SBCP). The idea of using services to build
collaborative business applications is not new; the
motivations behind this come from three main points:
the first point is the relevance of service orientation for
the information system since the concept of service
(mainly web services) provides credible answers to
constraints and problems such as the lack of flexibility
and the reluctance to openness. The second point is the
benefits of service orientation for the information
system because a service-based approach provides a
certain degree of flexibility to the information system
by easing the participation in new business
opportunities and meeting new market demands. The
third point is the benefits of service orientation for
cooperation that is realized by service composition; then
businesses provide their services with a certain degree
of abstraction allowing them the preservation of
autonomy and confidentiality which are, in addition to
flexibility, important properties to be satisfied in WF
cooperation.

Regarding the choice of the basic IOWF-
architectures, we have considered those proposed in
[7][8] because they define different cooperation
schemas with different types of execution control and
then cover a wide range of existing business processes.
Consequently, our approach of WF cooperation (and
adaptation) can be applied to a large number of existing
IOWF processes.

Also, for conceptual aspects of our solution, we adopt
a pattern-based approach to define the different schemas
of WF cooperation allowing the enumeration of
structurally well defined process schemas for WF
interconnection. From the implementation perspective,
the pattern-based approach allows modular and reusable
implementation of the proposed patterns to build more
complex ones called composite cooperation patterns.

III. Basic Definitions and Concepts

In this section, we introduce the necessary definitions
and concepts to ease the understanding of the paper.

3.1 IOWF Definition and Architectures

An IOWF can be defined as a manager of activities
involving two or more workflows autonomous, possibly
heterogeneous and interoperable in order to achieve a
common business goal [38].

In [7][8], generic architectures of IOWF have been
defined in order to support structured cooperation which
must obey, depending on the partners needs, to a
schema clearly defined. These architectures are the
“Capacity sharing”, the “Chained execution”, the
“Subcontracting”, the “Case transfer”, the “Extended
case transfer” and the “Loosely coupled WF”
characterized by two main dimensions: the partitioning

of the process and the control of execution.

Regarding the first dimension, two types of
partitioning are distinguished: process schema

partitioning and instance partitioning. Process schema
partitioning means that the IOWF process model is
implemented as fragments at the partner’s sites.
Instance-partitioning means that the execution of a
process instance is distributed, in a disjoint manner,
among the partner’s sites.

Since IOWF are distributed systems, the control of
instance execution can be centralized, decentralized,
hierarchized or mixed. The control is centralized if the
execution of process instances is delegated to one
system that also manages all interactions between the
systems of partners like in the capacity sharing. The
control is decentralized if the execution of instances is
distributed among the systems of all partners and each
system manages itself its interactions with the other
systems, this is appropriate for “Chained execution”,
“Loosely coupled” and “(extended) Case transfer”
architectures. The control can be a mixture of
centralized and decentralized ones if each system
manages the part of WF implemented locally but the
management of interactions is delegated to one system;
this can be applied to “(extended) Case transfer”. We
say that a control is hierarchized if each system
manages its own WF and there is one principal system
that controls interactions with one or more secondary
systems, like in the “Subcontracting”. More details of
these architectures are given in Section 5 of the paper.

Fig. 1: Meta-model of IOWF process definition

4 Service Based Cooperation Patterns to Support Flexible Inter-Organizational Workflows

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 04, 1-18

3.2 IOWF Meta-Model

Fig. 1 below shows a meta-model that exhibits the
main concepts of IOWF process definition; we can see
that an IOWF process model is defined by a set of WFs
(fragments of the global IOWF) and a cooperation

pattern. Each WF is attached to a partner, manipulates
data and is submitted to a condition of invocation. A
given cooperation pattern is attached to a specific
IOWF-architecture; it links two or more workflows and
is defined around three main dimensions: the
partitioning of the process, the control of execution and
the structure of interaction.

This last dimension is defined by a set of interaction
points between WF fragments and is as important as the
two first ones because the structure of interaction differs
from a given architecture to another, so we consider it
as a third characteristic of an IOWF-architecture that
should be taken into account. Intuitively a cooperation
pattern defines the manner in which WF fragments are
distributed among the partner’s sites, how the execution
of instances is managed and how WF fragments interact
together.

3.3 Flexibility of IOWF Models

Through the concepts exhibited on the meta-model of
Fig. 1, we can see that an IOWF model covers four
main axes: process (concepts of IOWF, WF, condition

and cooperation pattern), organization (concept of
partner), data and interaction (concepts of message,
interaction structure and interaction point).
Consequently, we can affirm that the constraints of
flexibility in IOWF models are not limited to one axis,
but cover the four axes. Also, we perceive the flexibility
of process models through three main perspectives:
adaptability, evolutivity and reusability.

The adaptability of an IOWF process model defines
its capacity to easily support changes while maintaining
the coherence of the process after changes, the overall
functionality and the cooperation (the set of partners).

Hence, an IOWF model is adaptable if one or more of
the entities (WF, condition, data, interaction points)
composing it can be modified without affecting the
global functionality of the process and the cooperation.

The evolutivity (called evolutive adaptability) of an
IOWF process model is its capacity to accept expansion
of its global functionality and/or expansion of
cooperation inducing additional business partners and
so additional WF fragments where maintaining the
coherence of the process.

The reusability of a model defines its capacity to be
easily integrated with another model in order to build
more complex models. Then, an IOWF model is
reusable if it can be manipulated as a separate entity to
be integrated to other models in order to build more
complex IOWF processes covering more functionalities
and services.

In the following section, we explain the basis of our
approach mainly the generic schemas of structuring a
WF process into services and the concept of SBCP.

IV. Basis of Our Approach

The main idea of our approach is to encapsulate each
WF fragment into a single service or a set of services
while preserving the interaction points in the basic
IOWF-architecture so as interactions between WF
fragments turn into invocations of services. The main
question is: how to structure an IOWF process into
services?

4.1 Structuring of an IOWF into Services

In order to structure an IOWF schema into services,
we consider interaction points between the workflows
involved in cooperation as markers allowing the cutting
of a process schema into sub-processes to be
encapsulated into services.

Fig. 2: Interaction Schemas of IOWF

 Service Based Cooperation Patterns to Support Flexible Inter-Organizational Workflows 5

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 04, 1-18

According to the interaction points: we can envisage
two configurations: (i) the interaction points frame the
whole WF invoked; (ii) the interaction points are
located at several points of the WF invoked. Fig. 2
shows two generic schemas of interaction in IOWF
implying two partners, partner 1 and partner 2 which
implement WF1 and WF2, respectively. In the schema
(a) on the left, the interaction points frame entirely WF2;
this corresponds to the “Chained execution” and the
“Subcontracting”. In the schema (b) the interaction

points frame partially WF2; this is suitable for
“Capacity sharing”, “(extended) Case transfer” and
“Loosely coupled” architectures. The dashed arrows
indicate an optional reply. Depending on the type of
IOWF-architecture, the question is to decide which
parts of the WF process should be encapsulated within
services in order to invoke them from outside.
Specifically, it is to encapsulate a WF process or a sub-
process into a service.

Fig. 3: Generic schemas of encapsulation into services

Fig. 4: Meta-model of a SBCP Definition

Starting with the generic schemas of Fig. 2, the parts
of WF that should be encapsulated in services are those
that require external invocation as schematized in Fig.
3.The schema (a) shows the transformation of the
schema (a) of Fig. 2, where the invoked WF (WF2) is

entirely encapsulated into a single service. The schema
(b) corresponds to the transformation of the schema (b)
of Fig. 2 where WF2 is invoked at various interaction
points and therefore requires its cutting into several
services. Let’s notice that on Fig. 3, services are not

6 Service Based Cooperation Patterns to Support Flexible Inter-Organizational Workflows

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 04, 1-18

necessarily atomic; each service can be composed by
several services but seems to be atomic from outside.
Furthermore, depending on the IOWF-architecture, the
operations of invocation are interpreted differently.
Indeed, for “capacity sharing”, it is to invoke services
from a global process, for a “chained execution”,
invocation consists to forward the instance partially
performed by a partner to another one in order to
complete its execution; for a “subcontracting”, the
invocation consists to delegate part (one activity or
more) of a principal WF to a secondary WF. For a
“(extended) case transfer”, the cooperation is to transfer
process instances from one partner’ site to another to
complete their execution and for a “loosely coupled
WF”, the cooperation consists of asynchronous data
exchanges.

4.2 Service Based Cooperation Pattern (SBCP)

In our approach, we define a new concept called
SBCP based on SOA where we replace the concept of
WF by the concept of service. A SBCP allows the
characterization of a specific IOWF-architecture using
SOA. Then, our approach for WF interconnection
focuses on three main questions: (i) How to structure

the WF process into services? (ii) How to control the
execution of instances? (iii) How to define interactions
between services provided by different partners? These
three questions exhibit three main dimensions that we
use to define the concept of SBCP (see Fig. 4). Here,
we define a SBCP in a generic manner for all IOWF-
architectures; in Section 5, we exhibit the specificities
of each cooperation pattern.

Regarding the first dimension which is the
distribution of services, we consider that each service
encapsulates part or all of the WF process and is
implemented at the partner site that provides it. This
dimension corresponds to the dimension Process

partitioning defined for the initial IOWF-architectures.
From the perspective of a given partner, a service can
be implemented locally or provided by an external
partner; it can be an interactional service if it ensures
interaction among services of different partners.

The second dimension which is the control of

execution is expressed through the concept of
orchestration function that abstracts the structure of the
process in terms of control flow between services
composing the IOWF process. Hence, in case of
centralized control, there is one global orchestration
function implemented at the site of one partner. By
contrast, in case of decentralized control, there is a set
of local orchestration functions implemented at the
partner’s sites in order to control the execution of the
fragments implemented locally. In case of hierarchized
control, there is one global orchestration function that
controls the invocation of internal and external services
and a set of local orchestration functions that control the
execution of secondary WFs implied in the cooperation.

The third dimension defines the interactions between
services of several partners implied in the IOWF
process. This dimension is expressed via interactional
activities (invoke/receive for asynchronous
communication and invoke/receive/reply for
synchronous communication).

4.3 Orchestration Function and Control Flow

Like shown on the meta-model of Fig. 4, the concept
of orchestration function describes the control flow
between services composing the IOWF using basic
control flow operators. On Fig. 5, we introduce these
basic operators and we express them using a general
notation independently from any language or platform.

Fig. 5: Basic Control Flow Operators

Remark. To describe multi-choice – respectively
multi-parallel - (more than two edges), we can
decompose on several simple choices – respectively
several simple parallel blocs. For example, Alt (S1, S2,
S3) is expressed as Alt (Alt (S1, S2), S3) or Alt (S1, Alt
(S2, S3)).

Because of specific constraints of each IOWF-
architecture considered, we define for each one a
corresponding SBCP by refining the generic meta-
model of Fig.4 in order to consider specific
characteristics, according to the three dimensions
identified.

 Service Based Cooperation Patterns to Support Flexible Inter-Organizational Workflows 7

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 04, 1-18

V. The Proposed Cooperation Patterns

In this section, we specify the six SBCP that we
propose to meet the basic IOWF-architectures
considered. For each SBCP, we give some descriptive
details, a generic schema, a meta-model and a set of
specification rules.

5.1 The Capacity Sharing Pattern - SBCP1

SBCP1 meets the “Capacity sharing” architecture
where the partners share the execution of a global WF
model. This pattern is implemented as a set of services
orchestrated using a global orchestration function
implemented at one location inducing a centralized
control of execution.

The orchestrator of services plays the role of the
central WFMS (see Fig. 6); it decides the order of
invocation of services. Each partner is responsible of
performing the set of services attached to him. SBCP1
is described through the meta-model of Fig. 6. The
specification rules set in the description (at the bottom
of Fig. 6) express the set of actions to perform in order
to obtain an IOWF obeying to SBCP1. An example of
an orchestration function for this pattern can be Seq(Seq

(Seq(S1, S2), Par (S3,S4), S5)) that is interpreted as the
invocation of service S1, followed by S2, followed by
simultaneous invocations of S3 and S4 and finally
synchronized to invoke S5. The interaction pattern for
SBCP1 obeys to a synchronous mode between the
orchestrator and the set of services provided. In BPEL,
the synchronous interaction pattern is realized using an
invoke activity from the BPEL process and a receive

activity from the service to accept the input data of the
request and a reply activity from the service in order to
return results and to enable the progress of the client
process.

5.2 The Chained Execution Pattern - SBCP2

In the “Chained execution” architecture, each partner
implements its own WF process. Workflows implied in
cooperation are executed in sequence. The results of
execution of WFi are input data of WFi+1.To obtain
SBCP2 suitable to the “Chained execution” architecture,
we propose to entirely encapsulate the WF of each
partner within a service that means service Si

encapsulates WFi provided by partner i. Process
instances are executed according to the sequence of
services implemented (see Fig. 7). Thus, the first
service (S1) in the sequence is triggered by an external
event (the occurrence of a new instance); for the other
services, each of which is triggered by the service that
precedes it in the sequence. In a general way, a service
Si+1 is invoked by service Si that precedes it once Si
terminates its execution. We can say that this
architecture is implemented as choreography of
services with decentralized control. Also, a reply to the
service invoker (for notification) can be facultative.

SBCP2 pattern is described through the meta-model
shown on Fig. 7.

Fig. 6: Description of the “Capacity Sharing” Pattern - SBCP1

At internal level, services Si can be implemented as
composite services since they respectively encapsulate
the WF of each partner; it means that each internal
activity of WFi is implemented as a local service Sij.
Then, we propose to implement a local orchestration
function at each partner where maintaining a
decentralized control of execution in the IOWF. The
local orchestrator of partner i receives input data from
another orchestrator, invokes its local service (Si) with
this input data and then invokes service Si+1 of the next
partner by sending results (output) of its local service;
this scenario is implemented at each partner implied in
the IOWF. For this architecture, the interaction between
services obeys to a “one-way” interaction pattern
(considered as an asynchronous interaction in a single
direction) if no reply is necessary or a “synchronous”
interaction pattern if we consider a reply for notification.
In a one-a-way interaction, the client sends a message to
the service and does not wait for a response. In BPEL,
this interaction pattern is implemented using an invoke
activity from the client (WFi) and a receive activity at
the service (WFi+1) that becomes in turn a client when

Pattern-Reference: SBCP1
Name: “Capacity Sharing” Pattern
Cooperation: Share the execution of a global business process
implemented at one location.
Control: Centralized
Structure: A global orchestration of services provided by different
partners
Type of interaction: Synchronous interaction between the client
(the orchestrator) and the business services.
Use in practice: used in dynamic cooperation with techniques of
service orchestration.

Generic Schema of the “Capacity Sharing” Pattern

Meta-model of the “Capacity Sharing” Pattern

Specification Rules

R1.1: Encapsulate each WF into services.
R1.2: Specify the global orchestration function (the control flow
between services).

8 Service Based Cooperation Patterns to Support Flexible Inter-Organizational Workflows

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 04, 1-18

it invokes the next service (WFi+2). Fig. 8 illustrates
the concept of orchestration function for an IOWF
model obeying to SBCP2.

Fig. 7: Description of the “Chained Execution” Pattern – SBCP2

The process schema implies two partners, partner 1
and partner 2 implementing their WFs as services S1

and S2 respectively. Partner 1 provides his WF
composed by internal services S11, S12, S13, S14 and

partner 2 provides his WF composed by internal
services S21 and S22. For more readability and less
complexity of the orchestration function, we can
structure the WF fragments into blocks Bij of sequential,
parallel or alternative services. In a hierarchical way, a
block is expressed using other blocks. Sout1
corresponds to an activity “invoke” of external service
S2 and Sin2 corresponds to an activity “receive”.

5.3 The Subcontracting Pattern – SBCP3

In the “Subcontracting” architecture, there is one

main workflow attached to the main partner which
subcontracts some activities not implemented locally to
one or more secondary workflows implemented by
other partners involved in the cooperation.

In order to obtain an IOWF obeying to SBCP3, we
propose to entirely encapsulate each secondary WF

involved in cooperation within a service. On Fig. 9 for
example, partner 1 hosts the main WF and partner 2
provides his secondary WF as a global service S2 which
can be composite but from the perspective of the main
partner, it is abstracted to a single entity; thus, Partner 1
invokes the service of partner 2 for subcontracting. To
obtain an IOWF entirely based on services, the whole
WF can be implemented as an orchestration of local
services encapsulating activities of the main WF and
external services provided by secondary partners. In the
subcontracting architecture, the interaction between
services is synchronous and the control of execution is
hierarchized because the main WF manages the control
of the whole process and controls invocation of external
services. SBCP3 is described by the meta-model of Fig.
9.

To illustrate the concept of global orchestration
function for SBCP3, we give a simple example of
IOWF obeying to the “Subcontracting” pattern (see Fig.
10). The process schema describes an IOWF implying
two partners, partner 1 and partner 2. Partner1 provides
the main WF composed by internal services S11, S12,
S13, S14 and an invocation of S2 which is the external

service provided by partner 2.

Fig. 8: Illustration of orchestration functions in SBCP2

Pattern-Reference: SBCP2
Name: “Chained Execution” Pattern
Cooperation: Sequential execution of services implemented by a set
of partners.
Control: Decentralized
Structure: A set of services orchestrated by a set of local
orchestration functions
Type of interaction: Synchronous or One-a-way
Use in practice: Fairly common in processes of the supply-chain
management
Example: An IOWF process implying three partners in a production
line: a supplier of raw materials, a producer of semi-finished products
and a producer of finished products.

Generic Schema of the “Chained Execution” Pattern

Meta-model of the “Chained Execution” Pattern

Specification Rules

R2.1: Encapsulate each WF into a service.
R2.2: Insert an activity “invoke” at the end of each WF (except the
last one in the sequence) in order to transmit data to the following
WF in the sequence.
R2.3: An activity “receive” is automatically inserted at the beginning
of each WF in order to capture data sent from the precedent WF.

 Service Based Cooperation Patterns to Support Flexible Inter-Organizational Workflows 9

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 04, 1-18

Fig. 9: Description of the “Subcontracting” pattern – SBCP3

5.4 The (Extended) Case Transfer Pattern -

SBCP4 (SBCP5)

The "Case transfer" (respectively, the “Extended case
transfer”) architecture defines a form of cooperation
fairly widespread in B2B, especially between partners
engaged in the same profession and aiming to satisfy
promptly many potential customers. In the “Case
transfer” architecture, business partners share the same
WF model implemented at each partner and hosted by a
local WFMS. Their cooperation consists of transferring
process instances (cases) from one location (partner) to
another in order to achieve their execution. For example,
one can envisage an IOWF involving a set of partners in
a process of production; a customer’s order may arrive
at partner x but it is not completely performed by the

WF of this partner; the order may be transferred to other
partners involved in the IOWF process. The transfer can
occur for example, for load balancing among partners or
because of the lack of skills at partner x to perform part
of the process.

Fig. 10: Illustration of orchestration function in SBCP3

For the extended case transfer, the difference is that
some activities can be implemented differently from one
partner to another, while respecting the overall structure
of the process and the global functionality covered. This
pattern is provided for partners who want to preserve
their expertise for some activities in the process that
remain invisible from the other partners; this guarantees
a certain degree of autonomy and confidentiality.
Before describing the patterns SBCP4 (resp. SBCP5)
suitable to the “Case-transfer” (resp. the extended case
transfer) architecture, we should introduce some basic
definitions mainly the notions of transfer point and
transfer policy and explain how to structure the process
into services according to transfer points in the IOWF
model.

5.4.1 Transfer Point and Transfer Policy

A Transfer point is a state of the process where a
case transfer can eventually occur; it can be each state
of the process that guarantees coherent execution of
instances when a transfer is done.

In fact, a transfer point should verify the following
conditions: (i) it must be before the beginning or after
the end of an activity. (ii) It should not interrupt the
execution of an activity. (iii) It should not be between a
routing operator Split and the corresponding operator
Join that means: whether a parallel or an alternative
branch is started in the process, the transfer of a process
instance may take place only after synchronization
(Join).

A Transfer policy is conjointly defined by all
partners at build time. It defines the set of transfer

points and expresses a set of rules governing the
transfer of process instances from one location to

Pattern-Reference: SBCP3
Name: “Subcontracting” Pattern
Cooperation: Externalization of services to other partners
Structure: A set of internal and external services orchestrated by a
global orchestration function implemented at the main partner and a
set of local orchestration functions, each of which implemented at
the corresponding secondary partner.
Control: Hierarchized
Type of interaction: Synchronous
Use in practice: Fairly common between business partners with
complementary skills and competencies.
Examples: Processes of pharmaceutical production, automotive
processes, manufacturing and assembly of integrated circuits.

Generic Schema of the “Subcontracting” Pattern

Meta-model of the “Subcontracting” Pattern

Specification Rules
R3.1: Encapsulate each secondary WF into a service.
R3.2: Insert an activity “invoke” into the main WF in order to
invoke the service encapsulating the secondary WF.
R3.3: An activity “receive” is automatically inserted at the
beginning of the secondary process to be invoked, in order to
receive the input data sent from the main workflow.
R3.4: An activity “reply” is automatically inserted at the end of the
secondary WF in order to return results to the main WF.
R3.5: Insert an activity “receive” into the main workflow after the
corresponding activity “invoke” in order to receive results from the
secondary WF.

10 Service Based Cooperation Patterns to Support Flexible Inter-Organizational Workflows

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 04, 1-18

another. A transfer rule is associated to a transfer point
and can be defined by a pair (condition, action) that
means: if the condition is verified, an action of transfer
is performed otherwise the instance continues its
execution at its current location. An action specifies the
location to where the instance will be transferred. Thus
depending on the transfer policy, this location can be
deterministic or not.

In order to structure an IOWF process obeying to the
“Case transfer” architecture into services, our approach
is to split each WF into sub-processes at the transfer
points and to encapsulate each sub-process into a
service (see Fig.11). A sub-process is part of a global
WF process that can be composed by a single activity, a

single block of activities delimited by a Split operator
and the corresponding Join operator or a sequence of
several activities and/or blocks. A service in this case
does not encapsulate the overall WF process but only a
sub-process. A service can be run locally (if the transfer
is not necessary) or relied on the other partner (if the
transfer is necessary). At each moment, any process
instance is at one location, hence the use of the "XOR"
operator in the process model. A case transfer may be
done in both directions from partner 1 to partner 2 or
vice versa. The transfer points and the direction of
transfers are fixed in the transfer policy. More details
and examples of this approach are described in our
previous works [39], [40].

Fig. 11: Illustration of Transfer points and structuring of a WF process into services

An orchestration function for this architecture uses
Seq and Exl operators because the process model turns
into a sequence of a certain number of exclusive choices,
depending on the number of transfer points in the
process. According to a generic schema of Fig. 12, the
expression of the orchestration function is Seq (…Seq
(Seq (S11, Exl (S21, S22), …, Exl (Sn1, Sn2)).

5.4.2 Managing transfers

For each partner, the control of execution of process
instances is done locally by the local engine. Regarding
the transfer of cases, we can envisage two modes of
control: decentralized or centralized control [39], [40].
In the first mode, workflows implemented at each
partner interact directly between them for transfer of
instances; this mode is typically appropriate in case of a
simple transfer policy (deterministic rules) and is

realized by injecting exclusive choices in the IOWF
model at the transfer points, in order to decide for
transfer or not according to transfer conditions. In the
second mode, an additional component (a coordinator)
is needed in order to manage all transfers to be done
between the systems of the partners implied in the
IOWF process. So, workflows don’t interact directly
with each other but they must do this through the
coordinator. This second mode is appropriate in case of
complex transfer policies (non deterministic rules), this
can usually occur for load balancing in the system.

5.5 The Loosely coupled WF Pattern – SBCP6

The “Loosely coupled” IOWF is defined by a set of
WFs which are distributed among the partner’s sites and
that interact together using a public protocol based on
asynchronous message exchanges. WF processes

 Service Based Cooperation Patterns to Support Flexible Inter-Organizational Workflows 11

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 04, 1-18

operate essentially independently, but have to interact at
given points to exchange data and to ensure a coherent
execution of the overall process. An interaction point is
attached to a message and then to an interaction activity
(invoke or receive) in the process. Fig.13 and Fig.14
bellow schematize the transformation of generic WF
schemas into services, using the rules set in the bottom
of Fig.15.

Fig. 12: Description of the “Case Transfer” Pattern- SBCP4 (SBCP5)

Fig. 13: Transformation of a schema containing sequential blocs

Fig. 15: Description of the “Loosely Coupled” pattern – SBCP5

Pattern-Reference: SBCP6
Name: “Loosely coupled” Pattern
Cooperation: Exchange data according to a public protocol for the
execution of process instances
Structure: At each location, a set of internal/interactional services
orchestrated locally by an orchestration function.
Control: Decentralized
Type of interaction: Asynchronous
Use in practice: Fairly common between business partners who
need to exchange data in order to perform a global WF.
Example: Processes of production, e-commerce processes
implying customers, producers, suppliers, banks...

Generic Schema of the “Loosely coupled” Pattern

Meta-model of the “Loosely coupled” Pattern

Specification Rules

R6.1: isolate each interaction activity and encapsulate it into an
interactional service “invoke” or “receive”.
For the cutting of the process into sub-processes, we define the
rules R2 and R3.
R6.2: in a sequential branch (see Fig. 13)
A sub-process in a WF process is delimited: by (i) two interaction
activities or (ii) by the start-point and the first interaction activity
or (iii) by the last interaction activity and the end-point.
R6.3: in an alternative (or parallel) bloc (see Fig. 14)
Two possibilities are envisaged:
(1) If the bloc doesn’t contain any interaction activity, it is

considered as a single activity.
(2) If the bloc contains at least one interaction activity:

- Insert fictive interaction points at the OP-Split and the
corresponding OP-Join in the process and cut the process at
these two points.

- Apply the rule R1 on each edge containing interaction
activities.

R6.4: Encapsulate each sub-process within an internal service.

Pattern-Reference: SBCP4 (resp. SBCP5)
Name: “Case Transfer” Pattern (resp. “Extended Case Transfer”)
Cooperation: share the execution of process instances according to
the same WF model by transferring them among partners,
conformably to a set of transfer rules.
Structure: a set of internal and external services orchestrated by the
same orchestration function implemented at each location
Control: decentralized / mixed
Type of interaction: Synchronous or One-a-Way
Use in practice: fairly common between business partners exercising
the same activity with complementary skills, competencies and
resources
Example: Processes of the supply chain management with several
businesses having the same profile.

Generic schema of the Generic schema of the

“Case Transfer” Pattern “Extended Case Transfer” Pattern

Meta-model of the “Case Transfer” Pattern

Specification Rules

R4.1: Cut the WF process into sub-processes according to the
following definition (see Fig. 11):
A sub-process in a WF process is delimited: by (i) two transfer
points or (ii) by the start-point and the first transfer point or (iii) by
the last transfer point and the end-point.
R4.2: Encapsulate each sub-process into a service.
R4.3: Transform the WF process into invocation of local and
external services according to the transfer condition attached to each
transfer point.
Transfer rules are injected into the IOWF process model and are
specified using exclusive activities of invocation in the WF process,
according to the schema:

If (condition) invoke external service
 Else invoke local service

12 Service Based Cooperation Patterns to Support Flexible Inter-Organizational Workflows

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 04, 1-18

Fig. 14: Transformation of a schema containing parallel or alternative blocks

To obtain an IOWF model obeying to SBCP6, we
propose first to isolate the interaction activities in the
WF process of each partner in order to encapsulate them
into interactional services. After that, we structure the
WF process of each partner into a set of sub-processes
to be encapsulated in local services.

The cutting of a WF process into interactional
activities and sub-processes is done conformably to the
rules set out in the description of the “Loosely coupled”
pattern (see Fig.15) and schematized in Fig.13 and
Fig.14.

In order to show the feasibility of our approach and
to do our tests, we have implemented the proposed
cooperation patterns in a framework of cooperation
called “S-IOFLOW”. In the next section, we show the
general architecture of our framework, its environment
of development and the main functionalities that it
provides. The process models are stored in repositories
of distinct machines which play the roles of client or
server depending on the different architectures
considered.

VI. The Framework “S-IOFLOW”

“S-IOFLOW” is our cooperation framework that
provides a set of wizards for the WF designers in order
to build IOWF models obeying to a given SBCP among
those considered in our work. Each wizard presents a
set of steps to be followed by WF designers in order to
realize a specific architecture starting with a set of WF
fragments (based on web services) implemented at
partner’s sites.

For the development of our framework, we have
considered process models specified with BPEL and
interpreted by the WF engine OPEN ESB 2.2, we also
used a plug-in SOA Netbeans. We have developed our
framework using the Java language and the IDE
Netbeans, the application server used is GlassFish
server version 2. To implement the cooperation patterns
(interconnection of WFs), we have used the API jdom2
that eases the modification of the code BPEL specifying

the WF processes. For the development of the web
services to do our tests, we have used the EJB
(Enterprise Java Beans). Our framework of cooperation
is as modular as possible since we implement separate
classes for each cooperation pattern. Furthermore for
design, we adopt the MVC (Model-View Controller)
pattern that allows the separation between data and their
processing. Fig. 16 describes the functional architecture
of our framework according to the MVC pattern. Each
wizard of the framework displays a set of interfaces to
the user; when a user event occurs, the selected view
calls the appropriate controller to do the composition by
affecting the selected models (i.e BPEL files), then the
models notify the concerned views for changes. This
allows synchronization between the models and the
views that display them. Also, each partner stores in his
local servers the BPEL files specifying his business
processes and the web services that he provides to the
other partners. The cooperation framework is deployed
on a common infrastructure where a copy of each BPEL
file selected for cooperation is created. All changes are
done via the appropriate wizard, on the created copies;
once the designer validates the composition, these
changes are reflected on the original BPEL files at the
partner’s sites. Also, to check the execution of the
composite process obtained, we use test applications.
Before validation, a step of updating data flow in the
composite process is done in a semi-automatic way via
interfaces provided by the wizards. In Table 1 below,
we give some implementation details of the cooperation
wizards implemented. Since the architecture of
deployment is a client/server, we specify for each
cooperation pattern the clients and the servers.

The main classes of our framework are BpelFile and
ListBpelFile classes which inherit from the class
“observable” and all views of the models (detail,
graphical, code) inherit from the interface “observer”
which is notified by the class “observable” for all
changes done on the models. The controller contains a
set of classes implementing the set of cooperation
patterns described in Section 5; these classes are named
“CapacitySharing”, “ChainedExecution”,
“Subcontracting”, “CaseTransfer” and

 Service Based Cooperation Patterns to Support Flexible Inter-Organizational Workflows 13

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 04, 1-18

“LooselyCoupled” that inherit from an interface named“Composition”.

Fig. 16: Functional architecture of the framework according to the MVC pattern

VII. Generalized and Composite Patterns

For all patterns described in the previous sections, we
have considered cooperation between two partners but it
is possible, using our framework, to build IOWF
models involving three or more partners, this is what we
call generalized cooperation patterns. Typically, it is to
build a cooperation between two partners and then to
consider the resulting process with the third one to build
another cooperation and so on until all processes
implied in cooperation are taken into account. For
example, for a “Chained execution” (SBCP2), it is to
select the first process and the second one to build an
IOWF implying the two processes and then to select the
resulting process with the third one in the sequence. For
a “(extended) Case transfer” (SBCP4, SBCP5), it is to
duplicate the same process at each location and to select
at each time two processes to define the set of transfer
points and transfer rules between them. For a “Loosely
coupling” (SBCP6), it is to select at each time, two
processes that should interact with each other from the
set of processes and define the interaction points
between them. For the “Subcontracting” (SBCP3), it is
to select the main process and the secondary processes
one by one to define the cooperation; let’s notice that
for this architecture, a secondary partner can also
subcontract part of his process to another partner; this is
what we call “multilevel subcontracting”.

Furthermore, our approach allows the construction of
more complex IOWF models by reusing existing
models that obey to one of the SBCP implemented. The
more complex models are obtained by combining two
or more SBCP. For example, one can build an IOWF
process model P1 obeying to SBCP2 and should
subcontract part of the process P1 to another partner
providing a process P2 as a composite service. Then, by
combining the two models, we obtain a process model P
obeying to SBCP2 and SBCP3. The predominant
pattern is the pattern that initiates the execution of the
composite process and the secondary pattern is the
second one. By combining the patterns in pairs and by
considering the notions of predominant pattern and
secondary pattern, we obtain a set of twenty composite
cooperation patterns. Table 2 below describes examples
of composite cooperation patterns; a composite pattern
is referenced as “CmpSBCPij” where i is to the number
of the predominant pattern (SBCPi) and j is the number
of the secondary pattern (SBCPj); that means
CmpSBCPij is obtained by the combination of SBCPi
and SBCPj. Let’s notice that we have implemented
some of these patterns such as CmpSBCP23,
CmpSBCP32, CmpSBCP24 and CmpSBCP42.

14 Service Based Cooperation Patterns to Support Flexible Inter-Organizational Workflows

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 04, 1-18

Table 1: Description of the Wizards

Table 2: Examples of Composite Patterns

 Service Based Cooperation Patterns to Support Flexible Inter-Organizational Workflows 15

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 04, 1-18

VIII. Comparison of Approaches

In Table 3 below, we present a comparison of our
framework with some approaches proposed in the
literature. For each approach, we give some descriptive
details and we define three criteria for comparison: the
cooperation type supported, IOWF-architectures
supported and aspects of flexibility provided by each
approach. The cooperation type can be planed or
dynamic; planed cooperation means that partners agree
together to cooperate and we don’t need to discover
them and to select them in the registry of publication
which is necessary in a dynamic cooperation, because
partners are not known a priori. Many approaches are
suitable for dynamic cooperation that usually
correspond to occasional and non-durable cooperation;
other approaches are suitable to planed cooperation
(which is our concern) that corresponds to well defined
and durable cooperation which is more realistic in the
B2B area, for the realization of big projects. The second
criteria concern IOWF-architectures supported (on

Table 1, Type1, Type2, Type3, Type4, Type5, Type6
refer respectively to Capacity sharing, Chained
execution, Subcontracting, Case transfer, Extended case
transfer and Loosely coupled), we can see that all the
proposed approaches support only a sub-set of the
architectures implemented in our framework “S-
IOFLOW”. Regarding the third criteria, we can see that
the approaches suitable to dynamic cooperation provide
flexible mechanisms in the phase of selection of
partners; also, some of them allow internal adaptation of
services. The approaches suitable to planed cooperation
are rigid and are based on predefined protocols. Our
framework “S-IOFLOW” provides three aspects of
flexibility: (i) the selection of the IOWF-architecture to
build; (ii) the definition of composite cooperation
patterns by reusing elementary ones to build more
complex IOWF models, (iii) our framework is extended
with adaptation and evolution modules for structural
and functional adaptation of IOWF models; some
adaptation and evolution patterns are described in [41],
[42].

Table 3: Comparison of Approaches

16 Service Based Cooperation Patterns to Support Flexible Inter-Organizational Workflows

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 04, 1-18

IX. Conclusion and Other Works

The current paper deals with WF cooperation. Our
contribution consists in the definition and the
implementation of a set of cooperation patterns based
on services (called SBCP) in order to meet specific
IOWF- architectures defined in the literature [7][8]; the
goal is to obtain IOWF models flexible enough thanks
to the SOA characteristics. These basic architectures
define different cooperation schemas obeying to
different modes of execution control: centralized,
decentralized or hierarchized. For the development of
our solution, we have adopted a pattern-based approach
to define and implement the different patterns of WF
cooperation. The pattern-based approach guarantees
modular and reusable implementation; by reusing the
elementary patterns implemented, we can particularly
build generalized and composite cooperation patterns
which is in our opinion, an interesting point in our
contribution. Because of the length of the paper, we
gave only an example of composite cooperation patterns.
The proposed patterns have been implemented in a
framework of cooperation called “S-IOFLOW” which
is as modular as possible since we implement separate
classes for each cooperation pattern. Furthermore, for
the development of our framework, we adopt the MVC
pattern that eases the maintainability and the
extensibility of the framework and allows the separation
between data and their processing.

Regarding the second issue of our research that
concerns the adaptability and evolutivity of process
models obeying to the SBCP defined, we have
classified our adaptation patterns in three categories
according to the three dimensions (services, control
flow and interaction) defining a SBCP. We have
implemented adaptation modules that can be interfaced
with “S-IOFLOW” and composed by a set of
adaptation/evolution patterns applied to BPEL process
models resulting from cooperation.

Acknowledgments

We would like to thank our students Bouchekir
Redouane,and Hermez Dalil for their participation in
the design and implementation of the cooperation
framework.

References

[1] Van Der Aalst W. Workflow Management: Models,
Methods and Systems. The MIT Press. Cambridge,
Massachusetts, London, 2002.

[2] Alonso G, Casati F, Kuno H. Web services:
concepts, architectures and applications. Springer
Verlag, Germany, 2004.

[3] Papazoglou] M. P, Van Den Heuvel W. J. Service
Oriented Architectures: approaches, technologies

and research issues. The VLDB Journal, vol.16, pp
389-415, 2007

[4] Voorhoeve M, Van Der Aalst W. Ad-hoc
Workflow: Problems and Solutions. In R. Wagner,
editor, Database and Expert Systems Applications,
8th. International Workshop, DEXA’97
Proceedings, 36–40, Toulouse, France, September
1997.

[5] Kiepuszewski A.H.M, ter Hofstede, Bussler C. On
Structured Workow Modelling. In B. Wangler and
L. Bergman, editors, Proceedings of the 12th
International Conference on Advanced Information
Systems Engineering (CAiSE'2000),
2000, .LNCS(1789), 431-445, Springer-Verlag,

[6] Eder J, Gruber W, A meta model for structured
workflows supporting workflow transformations.
Proceedings of the 6th East European Conference
on Advances in Databases and Information
Systems (ADBIS 2002), 326–339, Bratislava,
Slovakia, 2002.

[7] Van Der Aalst W. Process oriented architectures
for electronic commerce and interogranizational
WF. Journal of Information systems, 1999, 24 (9).

[8] Van Der Aalst W. Loosely Coupled
Interorganizational Workflows : modeling and
analyzing WFs crossing organizational boundaries.
Journal of Information and Management, March
2000, 37(2) , 67-75.

[9] Chebbi I. CoopFlow : an approach for ascendant
cooperation of workflows in virtual enterprises.
Phd Thesis, National Institute of Telecom, France,
2007.

[10] Peltz C. Web Services Orchestration and
Choreography. IEEE Computer, 2003, 36 (10), 46-
52.

[11] Amirereza T. Web Service Composition Based
Interorganizational Workflows. Sudwestdeutscher
Verlag fur Hochschulschriften edition, 2009

[12] Jordan D, Evdemon J. Web services business
process execution language V.2.0. W3C. 2006.

[13] Leymann F, Roller D, Schmidt M.T. Web Services
and Business Process Management. IBM Systems
Journal 2002, 41(2).

[14] Gorton S, Montangero C, Reiff-Marganiec S,
Semini L, StPowla: SOA, Policies and Workflows.
ICSOC workshops, 2009, LNCS (4907), 351-362.

[15] Grefen P, Aberer K, Hoffer Y, Ludwig H.
CrossFlow: Cross-organizational workflow
management for service outsourcing in dynamic
virtual enterprises. IEEE Data Engineering
Bulletin, 2001, 24(1), 52–57.

[16] Mehandjiev N. I, Stalker K, Fessl , Weichhart G.
Interoperability contributions of CrossWork. In
invited short paper to Proceedings of INTEROP-

 Service Based Cooperation Patterns to Support Flexible Inter-Organizational Workflows 17

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 04, 1-18

ESA’05 Conference, Geneva, February 2005.
Springer-Verlag.

[17] Belhajjame K, Vargas-Solar G, Collet C. Pyros -
an environment for building and orchestrating
open services. In Proceedings of the IEEE
International Conference on Services Computing,
USA, 2005, 155–164.

[18] Casati F. and Shan M., Dynamic and adaptive
composition of e-services. Information Systems,
2001, 26(3), 143–163.

[19] Baïna K, Benali K, Godart C, DISCOBOLE: A
service architecture for interconnecting workflow
processes. Computers in Industry , 2006, 57(8-9):
768-777.

[20] Boukadi K. Interenterprise cooperation at demand:
a flexible approach based on adaptable services.
Phd Thesis, ENSM, Saint-Etienne. France, 2009.

[21] Heorhi R. Service Composition in Dynamic
Environments: From Theory to Practice, Phd thesis,
University of Trento, december 2012.

[22] Pedraza Ferreira G. R. FOCAS : an extensible
framework for the construction of process oriented
applications. Phd Thesis, University of Grenoble 1,
France, 2009.

[23] Sadiq S.W., Orlowska M.E. On capturing
Exceptions in workflow process models. In
proceedings of ER’2001.

[24] Meng J, Su S.Y.W, Lam H, Helal A, Xian J, Liu X,
Yang S. DynaFlow: a dynamic inter-organisational
workflow management system. Int. J. Business
Process Integration and Management, 2006, 1(2),
101–115.

[25] LÉVESQUE E. Adaptation of collaborative
processes by coordination of changes and instance
migration. Phd Thesis, University of Quebec,
Montréal, 2011.

[26] He Q, Yan Y, Jin H. Adaptation of web service
composition based on WF patterns. In proceedings
of Service Oriented Computing- ICSOC, 2008.

[27] Döhring M, Zimmermann B, Karg L. Flexible
Workows at design- and Runtime using BPMN2
Adaptation Patterns. In proceedings of BIS’2011-
Springer, 2011.

[28] Weber B, Reichert M, Rinderle-Ma S. Change
patterns and change support features- Enhancing
flexibility in PAIS. Journal of Data & Knowledge
Engineering 2008,(66), 438-466.

[29] Muller R, Greiner U, Rahm E. AGENT-WORK: a
workflow system supporting rule-based workflow
adaptation. In journal of Data and Knowledge
Engineering , 2004, 51(2), 223-256.

[30] Döhring M, ZimmermaSnn B, Godehardt E.
Extended workflow flexibility using rule-based

adapatation patterns with eventing semantics. In
proc. of INFORMATIK’10, 2010, 216-226.

[31] Pesic M, Schonenberg MH, Sidorova N, Van der
Aalst W. Constraint-based workflow models:
Change made easy. In Proceedings of the OTM
Conference CoopIS’2007. 2007. In LNCS(4803),
77–94, Springer-Verlag, Berlin,

[32] Tragatschnig S, Zdun U. Runtime Process
Adaptation for BPEL Process Execution Engines.
15th IEEE International EDOC Workshops, 2011.

[33] Van Der Aalst W, ter Hofstede W.M.P,
Kiepuszewski A.H.M, Barros, B.A.P. Workflow
Patterns. DAPD, 2003, 14(1), 5-51.

[34] Russell N, Van Der Aalst W, ter Hofstede W.M.P.
Exception handling patterns in process-aware
information systems. In: CAiSE'06 (Luxembourg),
2006, 288-302.

[35] Khadka R. Model-Driven Development of Service
Compositions: Transformation from Service
Choreography to Service Orchestrations, Master
thesis, University of Netherlands, 2010.

[36] AIT-CHEIK-BIHI W. Model oriented approach
for verification and performance evaluation of
services interoperability and interactions. Phd
Thesis, University of Belford-Montbeliard, 2012.

[37] W. Fdhila : Optimized decentralization and
synchronization of Inter-organizational business
processes. Phd Thesis, University Henri Poincaré –
Nancy 1, 2011.

[38] Bernauer M, Kappel G, Kramler G,
Retschitzegger W. Specification of
Interorganizational Workflows — A Comparison
of Approaches, 7th World Multiconference on
Systemics, Cybernetics, and Informatics, Orlando,
Florida, July 2003, 30-36

[39] Boukhedouma S, Alimazighi Z, Oussalah M,
Tamzalit D. SOA based approach for
interconnecting workflows: application to case
transfer. In proceesings of INFORSID 2011, 43-58.

[40] Boukhedouma S, Alimazighi Z, Oussalah M,
Tamzalit D. Interconnecting workflows using
services: an approach for case transfer with
centralized control. In proceedings of
ICISTM’2012, S. Dua et al. (Eds.): CCIS 285,
pp.396–401, Springer-Verlag Berlin Heidelberg,
2012.

[41] Boukhedouma S, Alimazighi Z, Oussalah M,
Tamzalit D. Adaptability of service-based
workflow models : the chained execution
architecture. In proceedings of BIS’2012,

Lithuania. W. Abramowicz et al. (Eds.) LNBIP
117, Springer-Verlag.

[42] Boukhedouma S, Oussalah M, Alimazighi Z,
Tamzalit D. Flexible loosely coupled workflows

http://www.informatik.uni-trier.de/~ley/pers/hd/b/Benali:Khalid.html
http://www.informatik.uni-trier.de/~ley/pers/hd/g/Godart:Claude.html
http://www.informatik.uni-trier.de/~ley/db/journals/cii/cii57.html#BainaBG06
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6036125
http://dret.net/biblio/authors#MartinBernauer
http://dret.net/biblio/authors#GertiKappel
http://dret.net/biblio/authors#GerhardKramler
http://dret.net/biblio/authors#WernerRetschitzegger
http://dret.net/biblio/authors#WernerRetschitzegger
http://dret.net/biblio/reference/sci2003
http://dret.net/biblio/reference/sci2003
http://dret.net/biblio/reference/sci2003
http://www.informatik.uni-trier.de/~ley/pers/hd/a/Alimazighi:Zaia.html
http://www.informatik.uni-trier.de/~ley/pers/hd/o/Oussalah:Mourad_Chabane.html
http://www.informatik.uni-trier.de/~ley/pers/hd/t/Tamzalit:Dalila.html
http://www.informatik.uni-trier.de/~ley/pers/hd/t/Tamzalit:Dalila.html
http://www.informatik.uni-trier.de/~ley/db/conf/inforsid/inforsid2011.html#BoukhedoumaAOT11
http://www.informatik.uni-trier.de/~ley/pers/hd/a/Alimazighi:Zaia.html
http://www.informatik.uni-trier.de/~ley/pers/hd/o/Oussalah:Mourad_Chabane.html
http://www.informatik.uni-trier.de/~ley/pers/hd/t/Tamzalit:Dalila.html
http://www.informatik.uni-trier.de/~ley/pers/hd/t/Tamzalit:Dalila.html
http://www.informatik.uni-trier.de/~ley/pers/hd/a/Alimazighi:Zaia.html
http://www.informatik.uni-trier.de/~ley/pers/hd/o/Oussalah:Mourad_Chabane.html
http://www.informatik.uni-trier.de/~ley/pers/hd/t/Tamzalit:Dalila.html
http://www.informatik.uni-trier.de/~ley/pers/hd/t/Tamzalit:Dalila.html
http://www.informatik.uni-trier.de/~ley/pers/hd/o/Oussalah:Mourad_Chabane.html
http://www.informatik.uni-trier.de/~ley/pers/hd/a/Alimazighi:Zaia.html
http://www.informatik.uni-trier.de/~ley/pers/hd/t/Tamzalit:Dalila.html
http://www.informatik.uni-trier.de/~ley/pers/hd/t/Tamzalit:Dalila.html

18 Service Based Cooperation Patterns to Support Flexible Inter-Organizational Workflows

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 04, 1-18

using SOA. In proceedings of AICCSA’2013, Fes,
Maroc.

[43] Lazcano A, Alonso G, Schuldt H, Schuler C. The
Wise approach to electronic commerce.
International Journal of Computer Systems Science
& Engineering, special issue on Flexible Workflow
Technology Driving the Networked Economy,
2000, 15(5).

[44] Perrin O, Godart C. A model to support
collaborative work in virtual enterprises. Data
Knowledge Engineering, 2004, 50(1), 63–86.

[45] ACE-FLOW. Project homepage,
http://www.ifi.unizh.ch/dbtg/projects/aceflow/inde
x.html,1999.

[46] haari S. Interconnecting interentreprise processes :
a service-oriented approach. Phd Thesis, EDIIS,
Lyon, France, 2008.

[47] Esper A. Integration of SOA and object
approaches for modeling a coherent orchestration
of services. Phd Thesis, INSA, Lyon, France, 2010.

Authors’ Profiles

Saida Boukhedouma is a Teacher/Researcher at
USTHB University, member of the ISI team in the LSI
laboratory. Actually, her works are directed towards the
flexibility of inter-organizational business processes
using the SOA paradigm which is the main focus of her
PHD thesis.

Mourad Chabane Oussalah is a full Professor of
Computer Science at the University of Nantes and the
head of the software architecture modeling team. His
research concerns software architecture, object
architecture and their evolution.

Zaia Alimazighi is a full Professor of Computer
Science at USTHB University, team leader at the LSI
laboratory and dean of the Electrical and Computer
Science faculty. Her current research concentrates on
cooperative Information Systems modeling, inter-
organizational business process modeling.

Dalila Tamzalit is an Assistant Professor at the
University of Nantes in France. Her main research
interest concerns software evolution foundations and
methodologies. These last years, she focuses on
Software Architecture Evolution.

How to cite this paper: Saida Boukhedouma, Mourad
Oussalah, Zaia Alimazighi, Dalila Tamzalit,"Service Based
Cooperation Patterns to Support Flexible Inter-Organizational

Workflows", International Journal of Information Technology
and Computer Science(IJITCS), vol.6, no.4, pp.1-18, 2014.
DOI: 10.5815/ijitcs.2014.04.01

