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ABSTRACT
This work investigates both theoretically and experimentally the
security of JPEG steganography as a function of the quality factor.
For a fixed relative payload, modern embedding schemes, such as
J-UNIWARD and UED-JC, exhibit surprising non-monotone trends
due to rounding and clipping of quantization steps. Their secu-
rity generally increases with increasing quality factor but starts
decreasing for qualities above 95. In contrast, old-fashion stegano-
graphy, such as Jsteg, OutGuess, and model-based steganography,
exhibit complementary trends. The results of empirical detectors
closely match the trends exhibited by the KL divergence computed
between models of cover and stego DCT modes. In particular, our
analysis shows that the main reason for the complementary trends
is the way modern schemes attenuate embedding change rates with
increasing spatial frequency. Our model also provides guidance on
how to adjust the embedding algorithm J-UNIWARD to improve
its security for JPEG quality factor 100.
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1 INTRODUCTION
The JPEG format is the most ubiquitous image format in use today
due to its ability to efficiently compress visual data without intro-
ducing perceivable artifacts and the fact that it is supported across
all platforms by all applications capable of displaying imagery. It
is also a quite complex format because the compression algorithm
is controlled by numerous parameters and settings, such as the
selection of the color representation, quantization matrices, chromi-
nance subsampling, and the specific implementation of the Discrete
Cosine Transform (DCT). Surprisingly little research is available on
the effect of the above choices on detectability of steganography.
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Arguably, the most influential settings in JPEG compression are
the quantization matrices, which control the trade-off between the
file size and image quality. As this paper shows using both empirical
detectors and theoretical arguments, the impact of quantization on
security is quite complex and depends on the specific embedding al-
gorithm. Most notably, for relative payload fixed in terms of bits per
non-zero AC DCT coefficient (bpnzac) the security of “old” embed-
ding methods, such as Jsteg [13] (or any generic LSB flipper), Out-
Guess [10], and Model-Based Steganography (MBS) [11], decreases
with increasing JPEG quality factor (QF) but starts increasing for
qualities close to 100, while the trend is just the opposite for mod-
ern embedding schemes, such as J-UNIWARD [7] and UED-JC [4].
Hints of this can be observed, but are not explicitly commented
upon, in previous work with steganalyzers implemented using the
JPEG Rich Model (JRM) and the JPEG Projection Spatial Rich Model
(JPSRM) (Table 1 in [5]), detectors using the JPEG-phase-aware
features (Fig. 5 and 6 in [6]), as well as detectors implemented as
Convolutional Neural Networks (CNNs) [2].

In Section 2, we introduce the notation and the model of DCT
coefficients used in Section 3 to quantify the impact of embedding
using the KL divergence between cover and stego models of indi-
vidual DCT modes. The datasets used in this paper as well as the
estimation of the model from images are described in Section 4.
Theoretical predictions derived from the model are validated exper-
imentally using machine-learning based steganalyzers in Section 5.
In Section 6, we provide a more intuitive explanation of the ob-
served non-monotone security trends and identify the modulation
of change rates across spatial frequencies as the key element respon-
sible for the observed complementary trends. In the same section,
we also use our model to find an adjustment of embedding change
rates of J-UNIWARD to improve its security for quality factor 100.
A summary and future directions appear in Section 7.

2 JPEG IMAGE MODEL
In this section, we first introduce the notation followed by a model
of JPEGDCT coefficients that will later be used in Section 3 to assess
the impact of steganographic embedding changes on security.

2.1 Notation
For simplicity, we only consider n1 × n2 8-bit grayscale images xi j ,
1 ≤ i ≤ n1, 1 ≤ j ≤ n2, with n1 and n2 multiples of 8. The (a,b)th
8 × 8 block of pixels, 1 ≤ a ≤ n1/8, 1 ≤ b ≤ n2/8, formed by pixels
with indices 8(a−1)+i+1, 8(b−1)+j+1, 0 ≤ i, j ≤ 7, will be denoted
x(a,b) = (x

(a,b)
i j ). Similarly, the (a,b)th 8 × 8 block of unquantized

and quantized DCT coefficients will be denoted c(a,b) = (c
(a,b)
i j )

and d(a,b) = (d
(a,b)
i j ), respectively, where d

(a,b)
kl =

[
c
(a,b)
kl /qkl

]
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with qkl denoting the luminance quantization steps and [x] the
operation of rounding to integers.

Denoting the 8 × 8 matrix of ones with boldface 1, the standard
quantization matrix for quality factor Q ∈ {1, 2, . . . , 100} is

q(Q) =

max

{
1,

[
2q(50)

(
1 − Q

100

)]}
, Q > 50

min
{
255 × 1,

[
q(50) 50Q

]}
, Q ≤ 50,

(1)

where the luminance quantization matrix for quality factor 50 is

q(50) =

©«

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

ª®®®®®®®®®®®¬
. (2)

We use the symbol Z for the set of all integers, Γ(x) for the
gamma function, andH2(x) = −x log2 x−(1−x) log2(1−x),H3(x) =
H2(x) + x for the binary and ternary entropy expressed in bits.

2.2 Model
Unquantized DCT coefficients c(a,b)kl are modeled as 64 indepen-
dent channels (modes (k, l)). The coefficients in each mode (k, l)
across all blocks in the image (a,b) are assumed to be independent
realizations of a random variable with the generalized Gaussian
(GG) distribution

c
(a,b)
kl ∼ д(x ;γkl ,wkl ), (3)

with zero mean, shape parameter γkl > 0, and width parameter
wkl > 0 :

д(x ;γ ,w) =
γ

2wΓ
(
1
γ

) exp
(
−

���� xw ����γ )
. (4)

We note that the variance of the GG distribution is v = w2Γ(3/γ )
Γ(1/γ ) .

Quantized DCTs from a cover image, d(a,b)kl , across all blocks

(a,b), follow the quantized GG probability mass function P (c)kl (m) ,

Pr{d(a,b)kl =m},m ∈ Z :

P
(c)
kl (m) =

qkl (m+ 1
2 )ˆ

qkl (m− 1
2 )

д(x ;γkl ,wkl )dx = ω(m;qkl ,γkl ,wkl )

(5)

ω(m;q,γ ,w) =



1
2

[
Γ

(
1
γ ,

(
q( |m |+ 1

2 )
w

)γ )
−Γ

(
1
γ ,

(
q( |m |− 1

2 )
w

)γ )]
form , 0

Γ
(
1
γ ,

(
q
2w

)γ )
form = 0

(6)

where

Γ(x, z) =
1

Γ(x)

ẑ

0

tx−1e−t dt, (7)

is the normalized lower incomplete gamma function.

3 EMBEDDING MODELS
For old steganographic systems, it is easier to obtain the impact
of embedding on the distribution of quantized DCT coefficients
because the schemes are not adaptive to content. Instead, a fixed
embedding operation is typically applied to a selected subset of
coefficients with a fixed change rate β determined by the size of
the secret payload to be embedded.

Using the GG model of cover DCT coefficients, we can express
the total expected number of non-zero quantized DCT coefficients
N0, the number of DCT coefficients different from 0 and 1, N01, and
the number of non-zero AC DCT coefficients, N0AC, as

N0 = n1n2
©«1 − 1

64

7∑
k ,l=0

P
(c)
kl (0)

ª®¬ (8)

N01 = n1n2
©«1 − 1

64

7∑
k ,l=0

[
P
(c)
kl (0) + P

(c)
kl (1)

]ª®¬ (9)

N0AC = n1n2
©«1 − 1

64
−

1
64

∑
(k ,l ),(0,0)

P
(c)
kl (0)

ª®¬ . (10)

3.1 Generic LSB flipper
By a generic LSB flipper (LSBF), we understand an algorithm that
embeds messages by replacing the Least Significant Bits (LSBs) of
pseudo-randomly selected quantized DCT coefficients that are not
equal to 0 or 1 with message bits. For example, the embedding
algorithm Jsteg falls into this category. LSB replacement is the most
popular type of steganography because it is simple and can be
applied to virtually any sampled signal. As of October 2017, out of
2863 tools available on the Internet capable of hiding data in digital
images, 1024 (36%) of them embed secrets by manipulating LSBs.1

Assuming an absolute payload of M bits to be embedded, the
probability of changing a quantized DCT coefficient not equal to
zero or one is thus β = M/(2N01), where N01 is the number of all
DCT coefficients in the cover image not equal to zero or one, the
maximum number of bits that can be embedded. In terms of the
relative payload α in bits per non-zero AC DCT coefficient (bpnzac)
and in terms of bits per pixel (bpp), M = αN0AC and M = αn1n2,
respectively. Thus, using (9) and (10), the change rates w.r.t. N01
are

β =
αN0AC
2N01

α in bpnzac (11)

β =
αn1n2
2N01

α in bpp. (12)

1N. Johnson, “IoT Forensic Considerations and Steganography Beyond Images.” Invited
talk presented at the Network and Cloud Forensics Workshop, IEEE Conference on
Communications and Network Security, October 9–11, 2017, Las Vegas, Nevada, USA.



Quantized DCT coefficients in the stego image follow the p.m.f.
P
(s)
kl , 0 ≤ k, l ≤ 7 :

P
(s)
kl (2m) = (1 − β)P

(c)
kl (2m) + βP

(c)
kl (2m + 1) m , 0

P
(s)
kl (2m + 1) = βP

(c)
kl (2m) + (1 − β)P

(c)
kl (2m + 1) m , 0 (13)

P
(s)
kl (m) = P

(c)
kl (m), m ∈ {0, 1}.

3.2 OutGuess
OutGuess embedding proceeds in two stages – embedding and cor-
rection. First, the secret message is embedded using LSBR as in the
generic LSBF. Then, more changes are introduced in unused DCT
coefficients to preserve the global histogram of DCT coefficients.
This introduces the following impact on quantized DCT coefficients
in the stego image:

P (s )
kl (2m) =


(1 − β )P (c )

kl (2m) + β P (c )(2m)

P (c )(2m+1)
P (c )
kl (2m + 1) m > 0

(1 − β )P (c )
kl (2m) + β P (c )(2m+1)

P (c )(2m)
P (c )
kl (2m + 1) m < 0

P (s )
kl (2m + 1) =


βP (c )

kl (2m) + (1 − β ) P (c )(2m)

P (c )(2m+1)
P (c )
kl (2m + 1) m > 0

βP (c )
kl (2m) + (1 − β ) P

(c )(2m+1)
P (c )(2m)

P (c )
kl (2m + 1) m < 0

P (s )
kl (m) = P (c )

kl (m), m ∈ {0, 1}

where P (c)stands for the global p.m.f. of DCT coefficients in the
cover image.

3.3 nsF5
For nsF5, the maximum number of bits that can be embedded is
equal to the number of non-zero AC DCT coefficients in the cover
image, N0AC. Assuming optimal source coding, nsF5 modifies the
fraction β = H−1

2 (M/N0AC) of all non-zero AC DCT coefficients,
where H−1

2 is the inverse binary entropy function. For relative
payload α ,

β = H−1
2

(
αN0AC
N0AC

)
= H−1

2 (α) α in bpnzac (14)

β = H−1
2

(
αn1n2
N0AC

)
α in bpp. (15)

Quantized DCT coefficients in the stego image follow

For (k, l) , (0, 0) : (16)

P
(s)
kl (m) =


(1 − β)P

(c)
kl (m) + βP

(c)
kl (m + 1) m > 0

pkl (0) + βP
(c)
kl (1) + βP

(c)
kl (−1) m = 0

(1 − β)P
(c)
kl (m) + βP

(c)
kl (m − 1) m < 0

(17)

P
(s)
00 (m) = P

(c)
00 (m).

3.4 LSBM
We also work out the impact for a generic embedding scheme that
uses LSB matching (LSBM) applied to all non-zero DCT coefficients.
Even though such an embedding scheme has not been proposed
before, it does make sense to include this case in our study for com-
pleteness. Denoting the number of all non-zero DCT coefficients
with N0, under optimal source coding the total change rate applied

k\l 0 1 2 3 4 5 6 7
0 2.24 0.43 0.40 0.38 0.37 0.37 0.36 0.35
1 0.48 0.46 0.43 0.43 0.42 0.42 0.41 0.40
2 0.45 0.45 0.44 0.42 0.42 0.42 0.41 0.41
3 0.45 0.45 0.43 0.43 0.42 0.42 0.42 0.41
4 0.44 0.45 0.44 0.42 0.43 0.42 0.42 0.41
5 0.43 0.45 0.44 0.43 0.43 0.42 0.42 0.41
6 0.41 0.44 0.43 0.43 0.42 0.43 0.42 0.42
7 0.40 0.42 0.42 0.42 0.42 0.42 0.42 0.41

k\l 0 1 2 3 4 5 6 7
0 709 2.89 1.06 0.52 0.32 0.21 0.14 0.08
1 5.87 2.24 1.08 0.68 0.49 0.34 0.25 0.15
2 2.27 1.47 0.89 0.53 0.39 0.29 0.21 0.15
3 1.46 1.05 0.67 0.49 0.36 0.27 0.19 0.14
4 0.91 0.76 0.57 0.39 0.31 0.24 0.18 0.12
5 0.61 0.57 0.45 0.33 0.27 0.20 0.16 0.11
6 0.36 0.42 0.32 0.27 0.21 0.17 0.13 0.10
7 0.22 0.25 0.22 0.19 0.16 0.13 0.10 0.08

Table 1: Top/bottom: Shape/width parameter of GG models
of unquantized DCT coefficients in each DCT mode (k, l) es-
timated from 2000 randomly selected BOSSbase images.

k\l 0 1 2 3 4 5 6 7
0 .16807 .26092 .23824 .07496 .05008 .00831 .00485 .00395
1 .26807 .22638 .20590 .05708 .01411 .00121 .00159 .00252
2 .24810 .20875 .07469 .04893 .00455 .00088 .00063 .00196
3 .20128 .06112 .05147 .01152 .00102 .00006 .00018 .00119
4 .05848 .04286 .00513 .00048 .00011 .00001 .00004 .00025
5 .05434 .00646 .00105 .00051 .00006 .00002 .00003 .00021
6 .00630 .00202 .00044 .00012 .00004 .00002 .00005 .00030
7 .00311 .00067 .00030 .00015 .00006 .00014 .00032 .00069

Table 2: Average change rates βkl across DCTmodes (k, l) for
J-UNIWARD at 0.4 bpnzac for JPEG QF 95 in BOSSbase.

to each non-zero DCT is β = H−1
3 (M/N0), whereH−1

3 is the inverse
ternary entropy. For relative payload α ,

β = H−1
3

(
αN0AC
N0

)
α in bpnzac (18)

β = H−1
3

(
αn1n2
N0

)
α in bpp. (19)

The stego p.m.f. of quantized DCT coefficients is for |m | > 1,
|m | = 1, andm = 0, respectively, and for all k, l :

P
(s)
kl (m) =


(1 − β)P

(c)
kl (m) +

β
2 P

(c)
kl (m + 1) +

β
2 P

(c)
kl (m − 1)

(1 − β)P
(c)
kl (m) +

β
2 P

(c)
kl

(
m + m

|m |

)
P
(c)
kl (0) +

β
2 P

(c)
kl (1) +

β
2 P

(c)
kl (−1)

(20)

3.5 J-UNIWARD
The steganographic scheme J-UNIWARD modifies quantized DCT
coefficients with probabilities determined by the local content of
the cover image. This non-stationarity significantly complicates



modeling the impact of embedding. For simplicity, we will assume
that J-UNIWARD applies a certain change rate βkl to all coefficients
(including zeros and the DC term) from mode (k, l) in all blocks.
These change rates will be determined by averaging the change
rates in each DCT mode across a number of images for each JPEG
quality factor Q and payload α separately (Section 4.2). The impact
on the p.m.f. of each DCT mode will thus be for all k, l,m :

P
(s)
kl (m) = (1 − βkl )P

(c)
kl (m) +

βkl
2

P
(c)
kl (m + 1) (21)

+
βkl
2

P
(c)
kl (m − 1). (22)

Allowing the change rate to be different across the modes cap-
tures the fact that the cost of an embedding change in J-UNIWARD
depends on the quantization step qkl and thus on the DCT mode.
This model is limited, however, because it does not capture the
content adaptivity of J-UNIWARD.

3.6 UED-JC
In UED steganography (Uniform Embedding Distortion), the cost
of changing a DCT coefficient is proportional to its reciprocal value
(UED-SC algorithm as originally introduced in [3]). The more ad-
vanced version called UED-JC [4] considers four intra and inter-
block neighbors of the coefficient to determine the cost (see Sec-
tion III-C in [4]). This makes the embedding adaptive to content.

To model the impact of embedding, we adopt the same simplifi-
cation as for J-UNIWARD – the change rates are assumed to depend
on the spatial frequency k, l but not on the physical location within
the image as in Eq. (21), and are estimated from a set of images for
each quality factor as explained in the next section.

3.7 Security
Security will be measured with the KL divergence between the
cover and stego p.m.f.s :

DKL(P
(c) | |P (s)) ,

7∑
k ,l=0

DKL(P
(c)
kl | |P

(s)
kl ) (23)

=

7∑
k ,l=0

L∑
m=−L

P
(c)
kl (m) log

P
(c)
kl (m)

P
(s)
kl (m)

, (24)

where, for numerical evaluation, L was selected to obtain P (c)kl (m) <

10−15 for |m | > L.

4 DATASETS AND MODEL ESTIMATION
All experiments in this paper were carried out on the union of
BOSSbase 1.01 and BOWS2 datasets, each with 10,000 grayscale
images, resized from their original size 512× 512 to 256× 256 using
imresize with default setting in Matlab. Cover JPEG images were
obtained in Matlab using the command imwrite. The decompres-
sion to the spatial domain for experiments with empirical detectors
was obtained by multiplying the DCT coefficients by quantization
steps and applying the block inverse DCT without rounding or
clipping, idct2, in Matlab.

For training empirical detectors, we randomly selected 4,000
images from BOSSbase and the entire BOWS2 dataset with 1,000

BOSSbase images set aside for validation. The remaining 5,000
BOSSbase images were used for testing. In summary, 2 × 14, 000
cover and stego images were used for training, 2 × 1, 000 for val-
idation, and 2 × 5, 000 for testing. This dataset and the split into
training and testing has been used for design of many modern deep
learning architectures for steganalysis, including the YeNet [15],
the Yedroudj-Net [16], and the SRNet [1].

4.1 Estimating GG models of DCT modes
A total of N = 2000 grayscale uncompressed images were selected
from BOSSbase at random and subjected to block-wise DCTwithout
quantization or rounding. The GG parameters shown in Table 1
were estimated from all N images using the method of moments [9]
for each DCT mode (k, l) separately. Note that the DC term was
approximated with a rather wide distribution similar to a Gaussian
(γ = 2.24) while all AC modes exhibit spiky distributions with
a similar value of the shape parameter, 0.35 ≤ γ ≤ 0.48, with
the vast majority around γ ≈ 0.42 but a widely varying width
0.08 ≤ w ≤ 5.87.

4.2 Estimating change rates for J-UNIWARD
and UED-JC

Different N randomly chosen images were used for computing the
average change rates βkl (α,Q) for each DCT mode (k, l), payload
α , and quality factor Q . Let β (a,b)kl (x,α,Q) denote the change rates
returned by the embedding simulator for (a,b)th block in image x.
The values βkl were obtained as averages over all blocks (a,b) and
all N images x :

βkl (α,Q) =
64

Nn1n2

n1/8∑
a=1

n2/8∑
b=1

∑
x

β
(a,b)
kl (x,α,Q). (25)

For compactness, in the rest of this paper we will often drop the
explicit dependence of βkl on α and Q .

Table 2 shows an example of the average change rates βkl for
J-UNIWARD for quality factor 95 and relative payload 0.4 bpnzac.
Note that the change rate is the largest for low spatial frequencies
and much smaller for high frequencies. This is because the embed-
ding costs of J-UNIWARD are larger for larger quantization steps
qkl , which roughly correspond to higher spatial frequencies.

5 EXPERIMENTS
In this section, we report the results of all experiments, which
include the accuracy of empirical detectors as a function of the JPEG
quality factor for several algorithms and payloads contrasted with
the KL divergence computed from the model of JPEG coefficients
introduced in Section 2. The investigation focuses on the case when
the relative payload is fixed in terms of bpnzac because it is far
more interesting than for bpp, which we briefly comment upon in
Section 5.3.

5.1 Modern steganography
The initial investigation deals with J-UNIWARD [7]. Two types of
empirical detectors were studied: the ensemble classifier [8] with
Gabor Filter Residual (GFR) features [12], as a representative of the
paradigm of rich models, and the Steganalysis Residual Network



−1

−0.5

0

0.5

1

1.5
·10−2

KL
di
ve
rg
en
ce

KL div

85 90 95 100
0.5

0.6

0.7

0.8

0.9

1

JPEG Quality Factor

A
cc
ur
ac
y

JUNI 0.4 (SRNet)
JUNI 0.4 (GFR)

0

1

2

3

4

5
·10−3

KL
di
ve
rg
en
ce

KL div

85 90 95 100
0.8

0.85

0.9

0.95

1

JPEG Quality Factor

SR
N
et

A
cc
ur
ac
y

UED 0.3
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with ensemble (left axis) and the KL divergence between cover and stego models for the same payload (right axis). Right:
UED-JC for 0.3 bpnzac.

75 80 85 90 95 100

2

4

6
·10−3

JPEG Quality Factor

KL
di
ve
rg
en
ce

Figure 2: KL divergence as a function of the QF for J-
UNIWARD at 0.4 bpnzac when using non-rounded and non-
maximized quantization matrices.

(SRNet) [1] as a representative of detectors built using deep learn-
ing. Based on the experiments reported in [1], the SRNet currently
provides the most accurate detection of modern JPEG stegano-
graphy over other competing architectures designed for the JPEG
domain [14, 17].

Figure 1 left shows the performance of both detectors for payload
0.4 bpnzac across JPEG qualities 85–100 in terms of the correct
classification accuracy 1 − PE, where

PE = min
1
2
(PMD + PFA) (26)

is the often used minimum average detection error under equal
priors, and PMD and PFA the missed-detection and false-alarm
rates. The right y axis shows the scale of the KL divergence (23)
computed between the cover model (5) and the stego model of
J-UNIWARD (21). With the exception of GFR for quality 99 and
100, both empirical detectors closely mimic the variations of the KL
divergence across all quality factors, including the small “ripples” at
86, 88, 90, and 93, due to rounding and clipping of the quantization
steps (1) as well as the minimum around quality 95–96. To confirm
the origin of the ripples, in Figure 2 we show the KL divergence
for J-UNIWARD at 0.4 bpnzac, when the quantization steps qkl
are not rounded to integers and not clipped to 1 (when removing
“max” and rounding “[.]” in (2)) with q(100) , q(99)/10 as (1) would
produce a matrix of zeros for quality 100. The KL divergence for
J-UNIWARD in this case monotonically and smoothly decreases
with increased quality factor Q .

Furthermore, still inspecting Figure 1, the SRNet provides mark-
edly better detection than GFR. In particular, GFR appears to signif-
icantly under-perform w.r.t. the SRNet for quality factors above 98.
For the two largest quality factors 99 and 100, the KL divergence
predicts that the detection should be much more accurate than
what the SRNet exhibits, perhaps indicating a possible space for im-
provement. Since the SRNet generally offers much better detection
than GFR, all remaining experiments, unless otherwise mentioned,
are executed with the SRNet as the empirical detector.

In Figure 1 right, we show the detectability of UED-JC across
quality factors for a fixed payload 0.3 bpnzac. The trends of the
empirical detector, including the small variations between QF 85
and 91 due to quantization step rounding again closely match the
KL divergence computed between the models. As with J-UNIWARD,
the KL divergence values seem to suggest that the empirical detector
under-performs for qualities near 100.
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Figure 3: By rows: Detection accuracy of SRNet for OutGuess at 0.02 bpnzac, LSBF at 0.02 bpnzac, MBS at 0.03 bpnzac, and nsF5
at 0.2 bpnzac (left axis). The right axis is for the KL divergence (23) between cover and the corresponding stego models.

Before we move to older steganographic paradigms in the next
section, we note that for the experiments reported above, the SRNet
was initially trained as described in the original publication [1]
from randomly initialized filters for quality factor 85 as this is when
both J-UNIWARD and UED-JC are the most detectable. Curriculum
training via the quality factor was used to train for 86, 87, . . ., 100
and was always run for 100k iterations with LR 10−3 after which
the LR was lowered to 10−4 for an additional 50k iterations.

5.2 Old steganography
In this section, the relationship between the empirical detection
accuracy and the KL divergence between the cover and stegomodels
has been investigated for a generic LSB flipper, OutGuess, model-
based steganography (MBS), generic ternary embedding in non-zero
DCT coefficients (LSBM), and nsF5. The results are summarized in
graphical form in Figure 3.

In contrast to J-UNIWARD and UED-JC, except for nsF5, all
embedding methods exhibit the same qualitative trend – their em-
pirical security decreases with increasing quality factor but this
trend eventually reverses for larger quality factors. Since the de-
tails of how MBS handles embedding a payload smaller than the
maximal payload have not been available to the authors, the KL
divergence displayed in the graph showing MBS is for LSBM.

The corresponding KL divergence between the models relatively
well matches the empirical results. The nsF5 was the only embed-
ding algorithm for which the KL divergence exhibited a different
trend than the empirical detectors (Figure 3 bottom right). While
both the SRNet and the ensemble with GFR exhibit approximately
constant detectability, the model predicts an increasing KL diver-
gence. This could mean that either our model fails to capture the
impact of embedding correctly for this algorithm or that the empir-
ical detectors increasingly under-perform for larger quality factors.
We hypothesize that the latter explanation is more likely for the
following reason. The increase of the KL divergence for nsF5 is pri-
marily due to the increased number of zeros in stego images since
the embedding operation always decreases the absolute value of
DCT coefficients. Detecting this increase or, equivalently, estimat-
ing the number of zeros in the cover from the stego image, however,
seems to be a difficult task in practice. We intend to investigate this
issue as part of our future effort.

For all embedding methods, the SRNet was first trained from
scratch for QF 95 because this is the range with the easiest detection.
The detectors for the remaining QFs were trained using curriculum
training via the quality factor in quality factor steps of one.

5.3 Fixed bpp
For completeness, we briefly report the results obtained when the
payload is fixed in terms of bits per pixel (bpp) rather than bpnzac.
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Figure 4: Accuracy of SRNet and theKL divergence between cover and stegomodels for LSBF at 0.005 bpp (left) and J-UNIWARD
(right) at 0.1 bpp.

Figure 5: Fisher information Ikl (Q) for generic LSBM as a function of the quality factor 75 ≤ Q ≤ 100 for all 64 DCT modes
with k and l corresponding to rows and columns, respectively.

A relative payload fixed in terms of bpp means that the same num-
ber of bits is embedded for all quality factors and all steganographic
algorithms. Since the number of non-zero DCT coefficients strictly
increases with increased quality factor, the “effective size” of the
cover for old steganography paradigms increases. Our model pre-
dicts a strictly decreasing KL divergence for all old stego methods.

As an example, in Figure 4 left we show the SRNet accuracy and
the KL divergence for LSBF at payload 0.1 bpp.

In contrast, for modern steganography, the detectability de-
creases but starts increasing for qualities close to 100. Figure 4
right shows the detection accuracy of the SRNet and the KL di-
vergence between cover and stego models for J-UNIWARD when



fixing the relative payload at 0.1 bpp. The model correctly predicts
the lowest detectability around 97–98 as well as the small “ripples”
between 85 and 93.

6 ANALYSIS
In this section, we present a more intuitive explanation of the
complementary security trends observed for old and modern ste-
ganography. This requires inspecting in more detail how the KL
divergence of individual DCT modes changes with increasing qual-
ity factor. We first study old steganography paradigms and then
modern schemes.

6.1 Old steganography
Wework with the generic LSBM (20) with global change rate β w.r.t.
all non-zero DCT coefficients as this will simplify our arguments.
The leading term of the Taylor expansion of the KL divergence (23)
with respect to β is :

DKL(P
(c) | |P (s)) �

β2

2

7∑
k ,l=0

Ikl , (27)

where

Ikl =
∑
m

1

P
(c)
kl (m)

©«
∂P

(s)
kl (m)

∂βkl

����
βkl=0

ª®¬
2

. (28)

is the steganographic Fisher information for mode (k, l). Thus, to
understand the trends w.r.t. the quality factorQ , we need to inspect
Ikl as a function of Q . First, we take a look at the range Q ≤ 95.

Figure 5 shows Ikl (Q) for 75 ≤ Q ≤ 100 with the y-axis scale
unified across all modes. Note that the Fisher information for low
frequency modes decreases, it exhibits a non-monotone trend for
medium frequencies, and sharply increases for high frequencies.
With increasing Q , the increase in Ikl (Q) for high spatial frequen-
cies is larger than the decrease of Ikl (Q) for low spatial frequencies,
which clarifies the security trend of old embedding methods ob-
served in the previous section. Note that this trend can be reversed
by letting the change rates decrease with increasing k + l as is the
case for modern steganography.

The seemingly complex behavior of Ikl (Q) w.r.t. Q is caused by
the fact that old steganography does not embed into zeros. To see
why, we point out that the cover p.m.f. P (c)kl (5) depends only on the
ratiowkl /qkl (Q) (see Eq. (6)), the effective width of the GG model
after quantizing the (k, l)th mode with quantization step qkl (Q).
Figure 6 (solid line, right y-axis) shows the Fisher information I
as a function of the ratio w/q for γ = 0.4.2 Note that I exhibits a
maximum at w/q ≈ 0.04. In contrast, when allowing embedding
into zeros, I becomes strictly decreasing w.r.t. Q (the dashed line,
lefty-axis shows log10 I in Figure 6). For DCTmodes (k, l) for which
wkl /qkl (Q) ≤ 0.04, increasing the quality factor leads to increased
Fisher information Ikl (Q). This occurs for high frequency modes
because the width of their GG fit is smaller (Table 1). For modes
with wkl /qkl (Q) ≥ 0.04, Ikl (Q) decreases with increased Q . The
non-monotone behavior of Ikl (Q) for medium frequencies is due
to the ratiowkl /qkl (Q) moving past 0.04 as Q increases.

2From Table 1, γ ≈ 0.4 across all AC modes.
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Figure 6: Solid line and right y-axis: Fisher information I of
LSBM as a function of the ratio w/q for γ = 0.4. Dashed line
and left y-axis: Logarithm of Fisher information of LSBM
when embedding into zeros.

Once Q > 95, for low spatial frequencies the quantization
steps qkl (Q) start “flattening out” at 1, which means that the ratio
wkl /qkl (Q) stops increasing and thus Ikl (Q) no longer decreases
with Q . The Fisher information of high and medium-frequency
modes start decreasing as the ratioswkl /qkl (Q) grow larger than
0.04, eventually reversing the detectability trend for old stegano-
graphy.

6.2 Modern steganography
Explaining the trend reversal for modern steganography is more
complicated due to the modulation of change rates across spatial
frequencies and their dependence on the quality factor. We can no
longer factor out the global change as in (27) and need to consider
dkl (Q) = β

2
kl (Q)Ikl (Q) as functions of Q .

Generally speaking, for low-frequency modes, dkl (Q) decrease
with increasing Q . For medium and high frequencies, however, dkl
starts to sharply increase for Q > 95 (see Figure 7). This rapid
increase is responsible for the reversal of the detectability trend
observed for modern embedding schemes for high quality factors,
which holds for fixed relative payload in both bpnzac and bpp :

Attenuation of change rates across modes is
not optimal.

This observation gives a clue on a possible improvement of J-
UNIWARD, which we briefly delve into in the next section.

6.3 Improving J-UNIWARD
In the previous section, we concluded from our model that the
increase of detectability (KL divergence) of J-UNIWARD for high
quality factors is due to improper modulation of embedding change
rates. In particular, the change rates for high spatial frequencies
should be attenuated more aggressively than what the embedding
distortion of J-UNIWARD dictates. This shows a possible way to
improve its security.



Figure 7: By rows: the leading term of the KL divergence dkl (Q) in modes (0, 1), (0, 2), (1, 0), (4, 4), (1, 7), (7, 7) as a function of the
quality factor Q . J-UNIWARD, 0.4 bpnzac.

Recalling that βkl (α,Q) is the average change rate applied by J-
UNIWARD to mode (k, l) for a given payload α and quality factorQ ,
we find β̃kl (α,Q), minimizing the leading term of the KL divergence
while communicating on average the same entropy:

min
β̃kl

7∑
k ,l=0

β̃2kl (α,Q)Ikl (Q) (29)

7∑
k ,l=0

H3(β̃kl ) =
7∑

k ,l=0
H3(βkl ). (30)

Since the DC term is difficult to model, we avoid optimizing it
and instead set β̃00 = β00. The change rates β̃kl , k + l > 0, found
in this manner are indeed smaller for high frequencies (k > 5 or
l > 5) and larger for low and medium frequencies. Figure 8 shows
βkl and β̃kl for Q = 100 and relative payload α = 0.1 bpp. Note
that β̃kl > βkl for low frequencies and β̃kl < βkl for high spatial
frequencies. Also, while β̃kl decrease with increased frequency, the
smallest values of βkl roughly correspond to the largest entries in
q(50) (see Eq. (2)).

To incorporate this adjustment into the embedding algorithm,
we first convert both βkl and β̃kl to embedding costs

ϱ̃kl = ln

(
1
β̃kl

− 2

)
(31)

ϱkl = ln

(
1
βkl

− 2

)
. (32)

Given the matrix of J-UNIWARD’s embedding costs in (a,b)th
8 × 8 block of image x as ρ(a,b)kl (x), we modulate them

ρ
(a,b)
kl (x) → ρ

(a,b)
kl (x)

ϱ̃kl
ϱkl
. (33)

These modulated costs would then be used in an embedding
simulator or STCs for practical embedding in image x. Note that
the modulation (33) depends on payload α as well as the quality
factor Q .

This heuristic adjustment of the embedding change rates did
indeed improve J-UNIWARD’s security. For quality factor 100, the
accuracy of SRNet decreased by 2.14%. The network detector was
trained by seeding with detector trained on J-UNIWARD for α = 0.1
bpp and the corresponding quality factor. The LR was 10−3 for the
first 100k iterations, lowered to 10−4 for an additional 50k iterations.

To further validate this approach, we carried out the same exper-
iment for quality factors 100 for J-UNIWARD at α = 0.4 bpnzac. In
this setting, the security was improved by 1.12% in terms of SRNet
accuracy.

Due to limited space and time, we postpone a more detailed
investigation to our future work. In particular, more detailed study
needs to be executed regarding the change rate adjustment across
payloads and quality factors as well as for other embedding schemes.
The limited experiment in this section should thus be thought



Figure 8: Left: βkl , right: β̃kl for quality factor Q = 100 and
relative payload α = 0.1 bpp.

of more as a promising direction and additional evidence for the
predictive power of our theoretical approach.

7 CONCLUSIONS
This paper investigates how the detectability of JPEG steganogra-
phy changes with the quality factor when fixing the relative pay-
load.While older embedding paradigms become progressively more
detectable up until quality 90–95 after which their detectability de-
creases, modern steganography exhibits complementary trends.
This behavior is explained by modeling a JPEG file as 64 indepen-
dent channels with a quantized generalized Gaussian distribution.
The KL divergence between cover and stego distributions closely
matches the detectability obtained with empirical detectors. The
only tested algorithm for which our theoretical analysis failed to
match the results of empirical detectors is nsF5. We hypothesize
that this is due to the inability of empirical detectors to assess the
number of zeros in a JPEG file, indicating a possible improvement
of detection of nsF5 for larger quality factors.

By analyzing the Fisher information as a function of the width
of the GG model, we offer a more intuitive explanation of the
observed trends. For old embedding paradigms, the contribution
of high-frequency modes to detectability increases faster with in-
creased quality than the decrease in detectability in low-frequency
modes. This trend can be reversed by decreasing the change rates
with increased spatial frequency. For modern steganography, the
loss of security of J-UNIWARD for high quality factors has been
linked to slightly improper modulation of change rates across spa-
tial frequencies. A heuristic adjustment of the change rates based
on the insight obtained from the model indeed lead to an improved
security of J-UNIWARD for quality factor 100.

A by-product of our analysis is a better understanding of why
older embedding paradigms are much less secure than modern
schemes: the comparatively large change rates for high-frequency
modes in older schemes substantially increase the KL divergence but
contribute little to the total payload because they contain fewer non-
zero coefficients. Modern steganography addresses this problem by
decreasing the change rate with increasing spatial frequency.

Numerous imaging devices and image editing software use non-
standard quantization matrices, which were not investigated in this
work. However, the authors are fairly confident that the findings of
this paper qualitatively generalize to custom quantization matrices

with respect to a generalized concept of JPEG quality defined by a
suitably chosen distance (metric) between quantization matrices.

Despite the fact that our model cannot properly capture content
adaptivity of modern steganography, its predictive power allowed
us to explain the security trends w.r.t. JPEG quality factor and
improve the security of J-UNIWARD for the largest quality factor.
The use of the model for steganography is a topic that deserves a
more extensive study and is thus left for future research.
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