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Abstract8

This paper presents the development of a mechanical crack propagation model coupling vis-9

coelasticity and the extended Griffith’s criterion to the dissipative medium. The applications10

are related to the study of mode I cracking of bituminous materials subjected to loading rates11

under intermediate temperature condition and long term ageing duration. The viscoelastic12

behaviour of these materials based on a Generalized Maxwell (GM) model is presented and13

a discretized form of the state equation based on the exponential algorithm is given. The14

simulation of the complex modulus test is used to validate the proposed discretized law.15

Then, the thermodynamic framework of the Griffith criterion extended to the GM’s model16

is revisited. A crack growth criterion is derived involving the viscoelastic energy release rate17

(Gϑ) as a thermodynamic driving force capped by a resistance strength (R-curve). Analyti-18

cal and numerical implementations of the Gϑ on a semi-circular bending geometry (SCB) are19

presented. SCB fracture tests following a standard experimental protocol are then simulated.20

The resistance strength parameters taking into account the fracture process zone effect are21

identified by an optimisation technique resulting in a good agreement between the test re-22

sults and the numerical simulations. This study demonstrates that the proposed approach23

can account for the ductile fracture properties of bituminous mixes.24
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1 Introduction26

Cracking represents one of the main risk of pavement damage over the time. It is often acceler-27

ated by the ageing of bitumen in bituminous pavement. Understanding of the effect of ageing on28

the mechanical and fracture properties of bituminous mixes is therefore a key step in predicting29

the service life of pavement structures. Most of the studies in the literature deals with the effect30

of ageing on rheological properties of binders and mixes [1–3]. These studies agree that the31

stiffness modulus increases with ageing. However, the effect of ageing on the cracking resistance32

of bituminous mixes is still under investigation. Only Brah’s et al. and Farhad et al. works [4–6]33

combine these two aspects by limiting their investigations either to one loading rate or to a single34

test temperature. At low temperatures, their studies show that the fracture parameters are even35

more degraded as the ageing time increases. At these temperatures, bituminous mixes are often36

considered as brittle or quasi-brittle elastic materials and under the assumption of a negligible37

fracture process zone around the crack tip, several works have been conducted applying linear38

elastic fracture mechanics (LEFM) to study the fracture behaviour of bituminous mixes [7–12].39

Generally, the size of the fracture process zone is relatively large in these materials which limits40

the accuracy of the predictive models based on the LEFM concepts.41

The crack growth mechanism in bituminous mixes is relatively complex and involves the use42

of fracture mechanics principles combined with time and temperature dependent constitutive43

models to accurately capture crack initiation and growth. The high complexity inherent in44

modelling bituminous mixes as a heterogeneous material leads to the assumption of an isotropic45

viscoelastic homogeneous material in most modelling approaches. Relatively few studies deal46

with the modelling of fracture in viscoelastic materials.47

The first works on fracture mechanics based approaches in this domain include the important48

contributions of Knauss [13, 14] and Schapery [15–17]. From the extended viscoelastic cor-49

respondence principle [18], R. A. Schapery [17] proposed a viscoelastic integral Jϑ extending50

Rice’s integral, used in linear elastic fracture mechanics, to viscoelastic materials. Based on this51

theory, several time-dependent cracking models taking into account viscous deformations have52

been proposed (e.g. [19, 20]). The application of this technique of calculation of the energy53

release rate is very limited, as the conditions of application of the extended correspondence54

principle do not lend itself to all real problems. Dubois et al. [21–25] developed a new method55

of invariant surface integral Gθv to compute the rate of energy restitution. Based on Brincker’s56

description [26], Dubois et al. introduced two intensity factors, namely the viscoelastic opening57
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intensity factor to determine the relative displacements in the vicinity of the crack bottom and58

the stress intensity factor, already known in LEFM. They proposed an alternative formulation59

of the Gθv integral calculation using the spectral decomposition of the reduced viscoelastic com-60

pliance: starting from a generalized Kelvin-Voigt rheological model (KVG) of n Kelvin-Voigt61

branches, these authors decoupled the general cracking problem into n elastic sub-problems by62

assuming that the total displacement can be decomposed into a sum of elastic displacement of63

each Kelvin-Voigt chain. This presents a concern due to the fact that the strain fields in the64

Kelvin-Voigt chains are generally not geometrically compatible.65

Cohesive zone models (CZMs) are the most widely used numerical local damage models for mod-66

elling crack initiation and growth in bituminous mixes [27–35]. The different tensile-separation67

laws of the CZM models are discussed in [36]. Li and Marasteanu [28], Kim and Buttlar [33]68

investigated the fracture behaviour of asphalt mixtures under low temperature conditions using69

the CZM bilinear law. Song et al.[30] and Arago et al.[35] modeled the crack growth in bitu-70

minous mixes at room temperature by considering the exponential and bilinear approaches of71

the time-independent cohesive model associated with the viscoelastic behaviour of the material,72

respectively. While the CZM model is widely used in the bituminous mixes community, it is still73

subject to debate. Indeed, although the method is academically interesting, one can naturally74

question the fact that the viscoelastic behaviour of the material is locally disturbed by an elastic75

law. To overcome this problem, C. Yoon et al. [37] recently proposed a non-linear viscoelastic76

cohesive zone (NVCZ) model with a damage function making the model dependent on this.77

Kim et al. [38] applied the NVCZ model to study a bituminous media fracture by considering78

a Gaussian law as damage function. Their studies revealed that the proposed model takes into79

account the rate-dependent effect and can successfully predict test results at different rates by80

only taking the results at an arbitrary loading rate. One of the drawbacks of this model is that81

it introduces additional parameters whose determination is not that easy. In addition, these82

models may suffer a mesh dependence.83

Non-local damage models are another technique for simulating material crack initiation and84

growth. Several authors have recently extended some of these models to viscoelastic media: the85

phase field approach [39–42], the Thick Level Set model [43]. The latest has been applied, in 1D86

case, to model the uniaxial tensile stress tests of bituminous mixes at differents temperatures.87

In this paper, we focus on the modelling of crack propagation by using Griffith’s macroscopic88

viewpoint [44].89

Nguyen et al. [45] modeled crack propagation in a viscoelastic medium. In their work, the ther-90
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modynamic framework of viscoelastic crack propagation was revisited using the Burger model.91

They showed that this approach allows to highlight the loading rate effect on the behaviour of92

the crack growth driving force and the evolution of the crack length. They also investigated the93

interaction between viscous dissipation and fracture growth in geological materials subjected to94

long-term loading [46]. Relying on rigorous thermodynamic basis, this efficient approach could95

be used to study crack growth in bituminous mixes. However, the used rheological model does96

not allow to describe the thermomechanical behaviour of bituminous mixes over a wide range97

of solicitation’s frequencies.98

In this study, this energetic approach is extended to the Generalized Maxwell model, in order99

to predict the fracture behaviour of bituminous mixtures.100

To this end, this paper is organized as follows.101

Section 2 presents the materials and the ageing protocol of the loose mixtures. Section 3 de-102

scribes test methods for the characterisation of viscoelastic (complex modulus test) and cracking103

(semi-circular bending test) properties of bituminous mixtures. In section 4, in the perspective104

of numerical developments of boundary value problems, an explicit incremental form of the vis-105

coelastic behaviour law is presented. The thermodynamic framework of crack propagation in106

viscoelastic media is then revisited. A crack growth criterion taking into account the viscous ef-107

fects is derived. The energy release rate, representing the crack growth driving force, is identified108

in a form that allows its numerical determination in the framework of the previous incremental109

approach. The section 5 discusses the proposed energy release rate expressions for the case of110

a semi-circular geometry subjected to 3-point bending. The numerical implementation of this111

quantity is then illustrated by confronting the numerical results with the proposed expressions112

and by examining the nature of the asymptotic responses of this driving force. In addition,113

the stability of crack growth in dissipative media is discussed. It reveals the role played by the114

resistance to fracture, i.e. the critical energy release rate. Finally, a validation of the proposed115

crack growth criterion is presented in section 6. The selected form of the critical energy release116

rate is discussed and different comparisons between simulations and experimental results are117

carried out.118
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2 Materials and mix design119

2.1 Materials properties120

The mixes are produced with a paving grade bitumen 35/50, whose properties of needle penetra-121

tion (EN 1426) [47] and softening temperature (EN 1427) [48] are respectively 42 × 0.1 mm and122

53.2 ◦C, and porphyry aggregates which come from Pont de Colonne (in France) quarry whose123

abrasion loss and fragmentation properties respectively known as Microdeval (EN 1097-1) [49]124

value and Los Angeles (EN 1097-2) [50] value are 17% and 8%. It is used for surface and binder125

courses and labelled AC10 mix. The mixture composition and the densities of the constituents126

are given in Table 1.127

Constituent Volume fraction (in %) Density (in kg.m
−3)

Limestone filler 2.8 2700

0/2 26.1
2/6.3 23.7 2630
6.3/10 42.

Bitumen 5.4 1040

Table 1: Composition of mixture AC10

2.2 Ageing of bituminous mixture128

The ageing protocol adopted in the curent study is the RILEM ageing procedure described in129

[51]. The mixes are manufactured at 165◦C. After the mixing, the loose mixture are cooled130

down to 135◦C and spread in thin layer (not more than 2.5 cm) into a tray and placed in a131

ventilated oven. Part of the mixture is kept at this temperature for 8 hours to simulate a short132

term ageing. Then, they are cooled down to 85◦C and kept respectively in the oven for 3 and133

6 days to reproduce the long term ageing. 2 hours before the end of the ageing procedure, the134

loose mixes are reheated at 165◦C and then compacted. The reference mix is compacted without135

long-term ageing and designated V0 while those subject to 8 hours short-term ageing followed136

by long-term ageing are labeled V3, V6 for respectively 3 and 6 days ageing.137

3 Test methods138

3.1 Complex modulus test: 2-point cantilever beam method139

At the end of the ageing process, the loose mixes are compacted according to EN 12697-33 [52].140

The manufactured bituminous slabs are then sawn into prismatic specimens of dimensions 4 ×141
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4 × 12 cm and subjected to complex modulus measurements. Sinusoidal cyclic deflections are142

performed on a prismatic cantilever beam in accordance to EN 12697-26 (Annex A: 2PB-PR143

[53]). During the test, thermal conditioning of the specimens is ensured by a thermal chamber. A144

temperature probe located near the surface of the specimen is used to measure the temperature.145

Fig. 1 shows a general view of the experiment. Tests are performed at 4 frequencies (from 3 Hz

Power amplifier Temperature

sensor

Force sensor

Asphalt

concrete

Vibrating

cylinder

Displacement

sensor

Fig. 1. Mixes complex modulus E∗(ω) test principle: b= 40 mm , e= 40 mm , h= 120 mm

146

to 40 Hz) and at 8 temperatures (from -30 to 50◦C). The measured force F and the imposed147

displacement U allow to calculate the complex modulus |E∗| according to a calculation provided148

in [53]. The isotherms of |E∗| are then used to build the master curves (see Fig. 2). Complex149

modulus test results are modeled using the Generalized Maxwell (GM) model [54]. The GM150

analytical expression of the complex Youngs modulus is given by the following equation (1):151

E∗(ω) = E0 +
i=m
∑

i=1

(

Eijωτi
1 + jωτi

)

(1)

Where Ei and τi respectively represent the ith spring modulus and characteristic time. Ei and τi152

are determined at each isotherm by minimizing the error between E∗

measured and E∗

GM according153

to the least-squares method (see Fig. 2). The fitted parameters corresponding to each aged154

mixes are given in Table 2 at reference temperature Tref=20◦C.155
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Fig. 2. Master curve of complex modulus of AC10 at Tref=20.◦C

3.2 Crack growth in semi-circular bituminous mix specimen: experiment156

3.2.1 Specimen preparation157

The test specimens have been manufactured in laboratory and gyratory compacted. The ob-158

tained cylindrical samples have been sliced to obtain 50 mm thick cylinders with 150 mm in159

diameter then cut to obtain semi-circular specimens as schematized in Fig. 3. The specimens160

have been selected in such that their void contents are close to (7±0.6)%. At least four specimens161

have been used.162

Fig. 3. SCB specimen’s preparation

3.2.2 Experimental test procedure163

The loading system consists of a three-point bending loading cell placed in UTICELL Type 650164

mechanical testing equipment. Before the test, the specimens are placed in a thermo-regulated165

chamber for 24 hours to reach temperature equilibrium before testing. They have been taken166

out of the chamber and placed in the loading cell rapidly to perform the test in less than a167

minute. The loading cell consists of two rigid roller supports and lateral thick metallic plates168
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which allows placing the specimen onto the bending fixture in order to avoid exentric loading.169

Another roller support allows applying the load vertically. The test principle is represented in170

Fig. 4. Lubrication is applied to the supports to mitigate friction during testing. The specimens

Fig. 4. SCB test device

171

diameters are D=150 mm, resulting in a span length of 120 mm between two cylindrical support172

of 25 mm. The specimen thickness is t=50 mm. The notch length and width are respectively173

ℓ = 10 mm and wℓ = 0.35 mm. Monotonic displacement rate is applied on the specimen until174

failure. The force, the time and the vertical load-line displacement are recorded continuously175

during the test by sensors integrated into the loading system. The tests are performed at 20◦C176

and a loading rate of 1 mm.min−1 and 5 mm.min−1 for the reference hot mix V0 and for the177

aged mixes V3 and V6. Figure Fig. 5 shows typical force-displacement curves for an AC10 at 1178

mm.min−1 and 5 mm.min−1.

0 1 2 3
U (mm)

0

1

2

3

4

5

F
(k
N
)

U̇ = 1. mm.min−1

U̇ = 5. mm.min−1

Fig. 5. Typical test results of AC10 at 20◦C for two loading rate

179
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4 Modelling of viscoelastic crack growth in SCB180

4.1 Problem formulation181

Let us consider the process of crack growth in opening mode in a notched two-dimensional182

viscoelastic body Ω subjected to prescribed displacement Ud(t) and force T d(t) respectively on183

Γu and ΓT (see Fig. 6). We assume that the crack does not appear on the edge part of Γu ∪ ΓT184

where either a displacement is prescribed or a force is non-zero. For the sake of simplicity, body185

forces and inertia effects are neglected and the small perturbation’s hypotheses are considered.186

Fig. 6. Cracked viscoelastic domain

Based on these assumptions, the mechanical problem (P) can be formulated as follows.187

(P) :











































































divσ(x, t) = 0 in Ω

u(x, t) = Ud(t) on Γu

σ(x, t).n = T d(t) on ΓT

σ(t) = Rt

[

τ=t

ε(τ)
τ=−∞

]

in Ω

ε(u) =
1

2

(

∇u+ T∇u
)

in Ω

(2)

where Rt[] is termed the modulus functional [55], which maps the entire history strain to the188

stress value at the current time t. The Neumann-type boundary conditions in equation (2)189

indirectly assume that the stress vector is zero on the rest of the domain edge including the190

pre-crack.191

The linear viscoelastic behaviour has historically been described by rheological models combining192
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springs and linear dampers, some of which provide an expression for the mathematical functional193

Rt[].194

In most cases, instead of invoking boundary condition fields as Ud(t) and T d(t), the loading195

mode may be described by a set of prescribed static parameters (Qd
1(t) · · ·Q

d
p(t)) associated196

to kinematic variables (q1(t) · · · qp(t)) and prescribed kinematic parameters (qdp+1(t) · · · q
d
n(t))197

associated to static variables (Qp+1(t) · · ·Qn(t)) (see [56]). The whole set of loading parameters198

is thus given by a vector C (t) =
[

Qd
1(t), · · · , Q

d
p(t), q

d
p+1(t), · · · , q

d
n(t)

]T

and the associated static199

and kinematic variables are defined by duality such that the power of external forces writes:200

Pe = Q · q̇

=

p
∑

i=1

Qd
i q̇i +

n
∑

i=p+1

Qi q̇
d
i ,

(3)

where the whole static vector defining external forces contains both prescribed and resulting201

components Q(t) =
[

Qd
1(t), · · · , Q

d
p(t), Qp+1(t), · · · , Qn(t)

]T

and so is, by duality, the kinematic202

vector q(t) =
[

q1(t), · · · , qp(t), q
d
p+1(t), · · · , q

d
n(t)

]T

.203

4.2 Viscoelastic constitutive law for bituminous mixes204

In this study, we chose to use the Generalized Maxwell (GM) model [54] to model the behaviour205

of bituminous mixtures in the time domain. It should be noted that the Huet [57] model and206

the 2S2P1D model [58] describe very well the bituminous mixtures behaviour. However, these207

models lead to store the loading history from the initial to the current time, which may be very208

costly in a finite element approach. As recalled in the sequel, the GM type of model is well209

adapted to an incremental formulation of the behaviour allowing to calculate a stress state at a210

given time step from the strain and stress states at the previous time. It is also interesting to211

note that the constitutive laws of bituminous mixtures under variable temperature have been212

proposed using Huet’s [59] and generalized Maxwell’s [41].213

4.2.1 3D non-ageing isotropic linear viscoelastic formulation214

The constitutive law of bituminous mixtures based on the GM model shown in Fig. 7 is given215

by the Stieltjes convolution integral below [55]:216

σ(t) =

∫ t

t0

R
˜

(

t− t′
)

: dε(t′), (4)
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Fig. 7. Generalized Maxwell model (GM)

where217

R
˜
(t) = C

˜
0 +

m
∑

i=1

exp

(

−
t

τi

)

C
˜
i. (5)

In the case of a constant Poisson’s ratio (which will be the case in this paper unless otherwise218

stated), the relaxation tensor can be written in the following form:219

R
˜
(t) = R(t)C

˜

el (6)

with :220

R(t) =
R(t)

Eel
, where R(t) =



E0 +

m
∑

i=1

Ei exp

(

−
t

τi

)



 and Eel =

m
∑

i=0

Ei

C
˜

el =
Eel

1− 2ν
J
˜
+

Eel

1 + ν
K
˜

(7)

where Jijkl =
1

3
δijδkl stands for the volumetric part components of the fourth-order unity221

tensor I (Iijkl =
1

2
(δikδjl + δilδjk)), K = I − J denotes the deviatoric part of I, R and Eel are222

respectively the normalized relaxation function and the instantaneous elastic modulus and Ei223

the Young’s modulus of the ith spring in the GM model.224

4.2.2 Incremental formulation225

Solving the viscoelastic problem formulated above (equation (4)) by the usual quadrature meth-226

ods is less efficient and often leads to numerical instabilities. Indeed, these methods are stable227

only if the computational time step is very small (dt << τi), requiring several computational228

steps in the case of very slow phenomena simulations. In order to overcome this problem, an229
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unconditionally stable algorithm, called exponential algorithm, developed by Z. P. Bazant [60],230

V. Šmilauer and Z. P. Bažant [61] is used. The physical time interval T = [t0, Tmax] is dis-231

cretized into a sequence of intervals ∆nt such that: tn+1 = tn +∆nt , Tmax being the maximum232

simulation time. By rewriting equation (4) at time step tn+1, exploiting the properties of the233

exponential function; splitting the time integral into two, one from t0 to tn where the solution234

is known and the other from tn to tn+1 where the solution is unknown; and approximating the235

time derivative of the total strain tensor over the time interval [tn; tn+1] by the following finite236

difference:237

dε

dt′
(t′) ≃

ε(tn+1)− ε(tn)

∆nt
∀ t′ ∈ [tn, tn+1]; (8)

it can be shown that equation (4) leads to an affine relationship between the total stress and238

total strain tensors:239

∆nσ = C
˜
(∆nt) : ∆nε+

∼

σ(tn) (9)

where

C
˜
(∆nt) = C

˜
0 +

m
∑

i=1

τi
∆nt

(

1− exp

(

−
∆nt

τi

))

C
˜
i, (10a)

∼

σ(tn) =

m
∑

i=1

(

exp

(

−
∆nt

τi

)

− 1

)

σ
i
(tn), (10b)

σ
i
(tn+1) = exp

(

−
∆nt

τi

)

σ
i
(tn) +

τi
∆nt

(

1− exp

(

−
∆nt

τi

))

C
˜
i : ∆nε (10c)

The formula (9) appears as a pseudo-elastic law with pre-stress where only the current and240

previously calculated fields are involved. The pre-stress
∼

σ(tn) accounts for all past stress history241

updated and stored at the end of each time increment.242

Considering a non-ageing isotropic linear viscoelastic behaviour, in which case the fourth-order243

tensor C
˜
can be completely defined by two scalar viscoelastic kernels λ(t) and µ(t) [55], formula244

(9) can be expressed as follows:245

∆nσ = λ(∆nt)tr(∆nε)I + 2µ(∆nt)∆nε+
∼

σ(tn), (11)

12



where:

λ(∆nt) = λ0 +

m
∑

i=1

τi
∆nt

(

1− exp

(

−
∆nt

τi

))

λi, (12a)

µ(∆nt) = µ0 +

m
∑

i=1

τi
∆nt

(

1− exp

(

−
∆nt

τi

))

µi, (12b)

In the case of a constant Poisson’ s ratio, the equations (12a) and (12b) reduce to:

λ(∆nt) =
νEel

(1 + ν)(1− 2ν)
R

∗

(∆nt) (13a)

µ(∆nt) =
Eel

2(1 + ν)
R

∗

(∆nt) (13b)

with:246

R
∗

(t) =
R∗(t)

Eel
, where R∗(t) =



E0 +

m
∑

i=1

τi
t

(

1− exp

(

−
t

τi

))

Ei



 (14)

The incremental constitutive law given by equation (11) can be introduced in a finite ele-247

ment discretization to obtain solutions to complex viscoelastic problems, as will be discussed in248

sections 4.2.3 and 4.3.249

4.2.3 3D modelling of the 2-point loads cantilever beam test250

For FE modelling, the tested asphalt concrete AC10 is supposed to be homogeneous and251

isotropic, which is a common assumption. In addition, recent work by A. Gudmarsson et al. [62]252

and F. Allou et al. [63] on the measurement of the complex Poisson’s ratio of bituminous mixes253

showed very low values of its imaginary part compared to its real part. The complexity of the254

measurement and the dispersion of the obtained results are additional factors to be considered.255

For these reasons, it is considered that the Poisson’s ratio is constant at 0.35 (a value often used256

in structural calculations). For clarity, only the reference material V0 is chosen for the modelling257

and its properties are given in Table 2. The geometry and boundary conditions are presented258

in Fig. 1.259

The mechanical problem, at each time increment, is then governed by the following system of260
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Table 2: Fitted GM model parameters at 20◦C

V0

Ei (MPa) τi (s)

2.20× 103 4.13× 10−9

2.49× 103 5.16× 10−7

3.04× 103 1.33× 10−5

2.99× 103 1.65× 10−4

2.93× 103 1.33× 10−3

1.88× 103 6.35× 10−3

2.26× 103 2.29× 10−2

3.74× 102 2.34× 10−2

2.74× 103 1.39× 10−1

1.57× 102 5.77× 10−1

3.81× 102 6.02× 10−1

1.19× 103 9.35× 10−1

6.67× 102 3.03× 100

5.54× 102 1.19× 101

2.48× 102 8.21× 101

1.07× 102 −

V3

Ei (MPa) τi (s)

2.41× 103 4.12× 10−10

1.12× 103 7.64× 10−9

2.57× 103 1.34× 10−7

2.58× 103 2.85× 10−6

7.22× 102 8.01× 10−5

2.36× 103 2.13× 10−5

2.98× 103 2.82× 10−4

3, 48× 103 2.72× 10−3

1.17× 103 1.38× 10−2

1, 41× 103 3.00× 10−2

1.29× 103 4.73× 10−2

2.49× 103 2.33× 10−1

1.76× 103 1.17× 100

1.40× 103 8.03× 100

1.67× 102 7.67× 101

3.37× 102 7.76× 101

1.42× 102 −

V6

Ei (MPa) τi (s)

2.58× 103 1.69× 10−10

1.57× 103 9.27× 10−9

1.68× 103 1.82× 10−7

9.39× 102 1.38× 10−6

1.65× 103 6.47× 10−6

2.02× 103 5.35× 10−5

8.35× 102 2.64× 10−4

1.42× 103 5.32× 10−4

1.37× 103 1.89× 10−3

1.56× 103 5.34× 10−3

2.20× 103 1.99× 10−2

2.57× 103 1.09× 10−1

2.19× 103 6.96× 10−1

1.44× 103 4.48× 100

8.17× 102 2.86× 101

2.38× 102 1.48× 102

3.11× 102 2.57× 102

2.09× 102 −

equations:261

(

Pn+1
)

s
:



























































































































































divσ(x, tn+1) = 0 in Ω

u(x, tn+1) =







Ud(x, tn+1) + Uω(x, tn+1)

0

on

on

Ssup

Sinf

Ud(x, tn+1) = Ud sin (2πftn+1)ex

Uω(x, tn+1) = ω ∧GM where











ω(tn+1) = ω(tn+1)ez

GM =

(

x−
b

2

)

ex +

(

z −
b

2

)

ez

σ(x, tn+1).n = 0 on ∂Ω \ {Ssup ∪ Sinf}

σ(x, tn+1) =
σ(x, tn) + λ(∆nt)tr(∆nε(x))I

+2µ(∆nt)∆nε(x) +
∼

σ(x, tn)
in Ω

ε(u(x, tn+1)) =
1

2

(

∇u(x, tn+1) +
T∇u(x, tn+1)

)

in Ω

(15)

where the amplitude of the imposed displacement cycle Ud and the frequency f are input data262
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while the rotation ω is an additional unknown of the problem to solve. The unknown variable263

ω is a simple scalar that is not related to a finite element description insofar as it does not refer264

to a degree of freedom attached to any single node. Indeed, it accounts for the fact that the265

upper surface of the sample undergoes a rigid body motion and its value has to be adjusted so266

that the overall bending moment around ez acting over the upper surface cancels out.267

Note that the kinematic boundary condition on Ssup in its general form is written: u(x, tn+1) =268

Ud(x, tn+1) + ω ∧ GM where the components of the displacement vector of the center of the269

plate Ud and the rotation vector ω define either prescribed parameters of the problem or La-270

grange multipliers associated to their corresponding dual static parameters (force or moment271

components). Here, for symmetry reasons, it is anticipated that both Ud.ez = 0 and R.ez = 0272

(R is the resultant reaction on Ssup) as well as both ω.ex = 0 and M.ex = 0 (M is the resultant273

moment vector at the center G of Ssup) so that prescribed kinematic parameters (Ud.ez = 0274

and ω.ex = 0) are preferably considered in the problem. In addition, since the loading system is275

screwed to the plate by applying a sinusoidal translation along x (thus Ud.ex = Ud sin (2πftn+1)276

and R.ey = 0), the plate prevents a torsional rotation, thus ω.ey = 0. Finally, instead of impos-277

ing a null vertical force R.ey = 0, it is assumed by analogy with the study of a pure bending278

problem in classical structure mechanics that Ud.ey = 0 (null elongation of the neutral axis in279

absence of normal force) and we therefore obtain the kinematic boundary condition on Ssup280

given in equation (15). Finally, as mentioned above, the only (unknown) kinematic Lagrange281

multiplier is ω = ω.ez associated with a prescribed null moment around ez.282

In the sequel, we adopt the following notation: g(x, tn) = gn for any volume or surface field g.283

For the approximation of
(

Pn+1
s

)

by means of the finite element method (e.g. [64]), the weak284

formulation of this problem is needed. It is given by:285
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Find the quadruplet (un+1, pn+1, qn+1, ωn+1) in U × U
′

(Sinf )× U
′

(Ssup)× R :286























































































∫

Ω

[

λ(∆nt)tr(ε
n+1)I + 2µ(∆nt)ε

n+1
]

: ε(δu) dΩ−

∫

Sinf

pn+1 · δu dS −

∫

Ssup

qn+1 · δu dS =

∫

Ω

[

λ(∆nt)tr(ε
n)I + 2µ(∆nt)ε

n − σ
n −

∼

σ
n
]

: ε(δu) dΩ ∀ δu ∈ U

∫

Sinf

un+1 · δp dS = 0 ∀ δp ∈ U
′

(Sinf )

∫

Ssup

(

un+1 − ωn+1 ∧GM
)

· δq dS =

∫

Ssup

Ud,n+1δq dS ∀ δq ∈ U
′

(Ssup)

∫

Ssup

(

GM ∧ qn+1
)

· ezδω dS = 0 ∀ δω ∈ R

(16)

where U denotes the set of admissible displacement fields (set of smooth continuous displacement287

fields on Ω), U
′

(Sinf ) (respectively U
′

(Ssup)) is the set of admissible forces (Lagrange multipliers288

space) on Sinf (respectively Ssup) defined by duality with respect to U , i.e. such that the integrals289

on Ssup (respectively Ssup) in (16) are defined for any kinematic field belonging to U .290

The Lagrangian corresponding to (16) is as follows:291

L(un+1, pn+1, qn+1, ωn+1) =
1

2

∫

Ω

ε(un+1) :
(

(3λ(∆nt) + 2µ(∆nt))J
˜
+ 2µ(∆nt)K

˜

)

: ε(un+1) dΩ+

∫

Ω

[

σ
n +

∼
σ

n
− λ(∆nt)tr(ε

n)I − 2µ(∆nt)ε
n
]

: ε(un+1) dΩ−

∫

Sinf

pn+1 · un+1 dS−

∫

Ssup

qn+1 ·
(

un+1 − Ud,n+1 − ωn+1 ∧GM
)

dS

(17)

The incremental viscoelastic problem equation (16) is implemented in a generic finite element library292

GetFEM [65]. The resolution algorithm is described by the flowchart in Fig. 8. Fig. 9a to Fig. 9d compare293

the numerical results with the experimental results of force versus displacement values at a temperature294

of 20◦C and for four loading frequencies (from 3Hz to 30Hz). A fairly good agreement between these295

results can be observed. This validates the implemented incremental method.296

The developed program is used in the following section to model the crack propagation during the SCB297

test.298

4.3 Crack growth modelling in a viscoelastic medium: Energetic approach299

When the cracking and loading states are known, the problem (P) can be solved using the approach300

presented above. All that remains is to define a crack growth criterion. For this purpose, the energetic301

approach to model mode I crack propagation in a two-dimensional viscoelastic medium adapted from the302

work of S. T. Nguyen et al. [68] is presented.303
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Start

Data:

Geometry (mesh generated by Gmsh [66]), Mechanical characteristics (GM’s model parameters)

Initialization:

Displacement u
n, stress σ

n, internal variables σ
n

i
, stress history

∼

σ

n
at time tn are known

Step n+ 1 : set U
d,n+1,

Viscoelastic computation:

• Computation of the scalar viscoelastic kernels λ(∆nt) ((12a)) and µ(∆nt) ((12b))

• Computation of the displacement field u
n+1: Resolution of problem (16) by FEM

• Fields calculation: εn+1, σ
n+1 (Eq. (9)), σ

n+1

i
(Eq. (10c))

• Fields update:
ε
n
←− ε

n+1 ; σ
n
←− σ

n+1

∼

σ

n
←−

∼

σ

n+1

; σ
n

i
←− σ

n+1

i

Results:

u , ε , σ (Visualization via Paraview [67])

End

Fig. 8. Flowchart of the program implemented in GetFEM

4.3.1 Thermodynamic analysis304

The developments of this section are much inspired by [68]. In the case of an isothermal and uniform305

transformation, the first two principles of thermodynamics lead a dissipation given by:306

D = Pe − Ẇ ≥ 0 (18)

where W denotes the elastic strain energy stored in the system and Pe the power of external forces.307

For a finer analysis of the inequality (18), an alternative formulation of the state equation (4) is proposed308

as follows:309

σ(t) = C
˜

el :
(

ε− ε
ϑ
)

(19)

where:310

ε
ϑ(t) = C

˜

el−1

:
m
∑

i=1

C
˜
i : ε

ϑ

i
(t) (20)

ε
ϑ

i
represents the viscous strain in the ith Maxwell element and ε

ϑ can be interpreted as an eigenstrain311

tensor.312

In order to analyze more in details the dissipation (18), it is worth observing first that the elastic313

strain energy is a function of the loading parameters, which have been synthesized by the vector C (t) =314
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Fig. 9. Simulation of the 2-points cantilever beam test: Evolution of numerical and experimental
forces versus the imposed displacement at 20◦C

[

Qd
1(t), · · · , Q

d
p(t), q

d
p+1(t), · · · , q

d
n(t)

]T
, of the crack length ℓ(t) as well as the internal variables fields315

{εϑ
i
(t) , i = 1,m} and writes:316

W(C , ℓ, {εϑ
i
}) =

1

2

∫

Ω



ε : C
˜
0 : ε+

m
∑

i=1

(

ε− ε
ϑ

i

)

: C
˜
i :
(

ε− ε
ϑ

i

)



 dΩ (21)

Besides, the power of external forces has been expressed in (3) and it is clear that any evolution leaving317

ℓ and the internal fields ε
ϑ

i
unchanged while allowing changes of the loading parameters C corresponds318

to an elastic evolution which does not induce any dissipation by definition:319

∂W

∂Ci

∣

∣

∣

∣

(ℓ,{εϑ

i
})

Ċi = Q ·
∂q

∂Ci

∣

∣

∣

∣

(ℓ,{εϑ

i
})

Ċi (22)
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It follows that the remaining terms of the dissipation stem only from the evolutions of ℓ and ε
ϑ

i
:320

D = −
∂

∂ℓ

(

W − φ
)∣

∣

(C ,{εϑ

i
})
ℓ̇−

∂

∂{εϑ
i
}

(

W − φ
)∣

∣

(C ,ℓ)
• {ε̇ϑ

i
} (23)

where • denotes a scalar product in the sense of functions (i.e. written under the form of integrals since321

ε
ϑ

i
are actual fields) and φ is the work of given external forces written as:322

φ =

p
∑

i=1

Qd
i qi, (24)

Note that φ in (24) does not include terms corresponding to given kinematic parameters since the latter323

disappear in the power of external forces for evolutions of q at fixed C .324

Then, by designating by P = W − φ the potential energy and by denoting:325

Dϑ = −
∂P

∂{εϑ
i
}

∣

∣

∣

∣

∣

(C ,ℓ)

• {ε̇ϑ
i
}, (25)

the energy dissipated by the crack growth appears to be the complementary of the viscous term in the326

total dissipation:327

D −Dϑ = −
∂P

∂ℓ

∣

∣

∣

∣

(C ,{εϑ

i
})

ℓ̇, (26)

where Gϑ = −
∂P

∂ℓ

∣

∣

∣

∣

(C ,{εϑ

i
})

represents the thermodynamic force associated with the crack growth.328

The specificity of this energy release rate relies on the fact that its value depends on the viscous strain329

field which, in turn, depends on the loading history C (t) and the evolution of the crack length ℓ(t) over330

the considered time interval.331

By following the assumption formulated in the work of S. T. Nguyen et al. [68] that the dissipation332

related to crack growth is proportional to the propagation rate ℓ̇, we have:333

D −Dϑ = Rℓ̇ (27)

where R can be interpreted as a resistance strength that must be overcome for crack growth to occur.334

By merging equations (26) and (27), the crack growth criterion can be formulated as follows:335







Gϑ < R =⇒ ℓ̇ = 0 (no crack growth)

Gϑ = R =⇒ ℓ̇ ≥ 0 (possible crack growth)
(28)

The main difficulty in the study of cracking in dissipative media lies in the determination of these two336

terms and will be discussed in the next section.337
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4.3.2 Energy released rate computation338

The energy release rate expression Gϑ highlights a partial derivative with respect to the crack length ℓ339

of the potential energy. This partial derivative is approximated, from two crack states ℓ and ℓ+ δℓ, by a340

difference between the potential energies calculated for these two states. This is a small elastic variation341

related to an increase δℓ of the crack length since the derivation is performed by blocking the viscous342

strains and the imposed loading. To demonstrate this, let us consider the alternative formulation of the343

behaviour law equation (19) for the real state of cracking corresponding to length ℓ:344

σ(ℓ) = C
˜

el : ε(ℓ) + σ
r(ℓ) (29)

where:

σ
r(ℓ) = −C

˜

el : εϑ(ℓ)

The auxiliary elementary calculation for the fictitious cracking state l + δl is instead governed by the345

following state equation:346

σ(ℓ+ δℓ) = C
˜

el : ε(ℓ+ δℓ) + σ
r(ℓ) (30)

By combining equations (29) and (30), the variation in stress between these two cracking states is thus347

given by equation (31):348

∆ℓσ = C
˜

el : ∆ℓε, (31)

which represents the instantaneous response of viscoelastic behaviour. The approximated expression for349

the energy release rate is given by:350

Gϑ = −
δP

δℓ

= −
(W − φ) (ℓ+ δℓ)− (W − φ) (ℓ)

δℓ

(32)

In summary, the energy release rate at time t characterised by the cracking state ℓ is calculated in two351

steps:352

Step (1): Solving the problem (P) with the viscoelastic behaviour law and deriving W(ℓ) by the equation353

(33) and the work of given external forces by (34).354

W(ℓ) =
1

2

∫

Ω



ε(ℓ) : C
˜
0 : ε(ℓ) +

m
∑

i=1

(

ε(ℓ)− ε
ϑ

i
(ℓ)
)

: C
˜
i :
(

ε(ℓ)− ε
ϑ

i
(ℓ)
)



 dΩ (33)

355

φ(ℓ) =

p
∑

i=1

Qd
i qi(ℓ) (34)

where q(ℓ) is the kinematic parameter resulting from solving the problem (P).356

Step (2): Solving an auxiliary elastic problem characterised by the cracking state ℓ+ δℓ subjected to the357
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same loading with the behaviour law (31) (where the viscous strain fields are those calculated in step (1))358

and deriving W(ℓ+ δℓ) by the equation (35) and the work of given external forces by (36).359

W(ℓ+ δℓ) =
1

2

∫

Ω



ε(ℓ+ δℓ) : C
˜
0 : ε(ℓ+ δℓ) +

m
∑

i=1

(

ε(ℓ+ δℓ)− ε
ϑ

i
(ℓ)
)

: C
˜
i :
(

ε(ℓ+ δℓ)− ε
ϑ

i
(ℓ)
)



 dΩ

(35)

360

φ(ℓ+ δℓ) =

p
∑

i=1

Qd
i qi(ℓ+ δℓ) (36)

where q(ℓ+ δℓ) is the kinematic parameter obtained by solving the auxiliary problem.361

Note that
[

Qd
1, · · · , Q

d
p

]

is the set of prescribed static parameters and that when the boundary conditions362

are only defined by prescribed kinematic parameters qd then φ = 0, this will be the case in the sequel.363

In the following section, the validity of this approach will be examined.364

5 Numerical applications365

The energy approach, developed in this paper, is implemented in the generic finite element library Get-366

FEM [65]. In order to validate this approach, we consider a two-dimensional viscoelastic notched semi-367

circular geometry of 75 mm in radius with a central notch of depth ℓ under three-point bending: a368

vertical downward displacement qd(t) is imposed over a segment on top of the sample (see Fig. 10) For369

the numerical simulations, the loading and support surfaces are set to 10−3 mm and the notch width is370

assumed to be zero. We assume a plane state of strain and we reason per unit thickness unless explicitly371

stated otherwise. In this configuration, the crack propagates in an opening mode. The focus of this372

section is to numerically implement the energy approach introduced in section 4.3 for dealing with crack373

growth in asphalt mixtures.374

5.1 Notched semi-circular beam without crack growth375

5.1.1 Numerical computation energy release rate validation376

This section is devoted to the comparison between numerical and semi-analytical energy restitution rates377

under two different loading conditions defined by a prescribed displacement, i.e. a unique kinematic378

loading parameter C (t) = qd(t) so that the static variable Q as well as the residual kinematic variable379

qϑ and the overall compliance Se are here scalar. To simplify the analytical approach, the homogeneous380

isotropic material is assumed to behave as a non-ageing linear viscoelastic material with a constant381

Poisson’s ratio (ν = 0.35) and we consider the plane strain framework.382

Following the same reasoning as the energetic approach in microporoelasticity, it can be shown that the383

elastic strain energy can be decomposed into a recoverable energy We and a frozen energy Wres (see A384
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Fig. 10. Semi-circular geometry R= 75 mm, S= 60 mm

for more details):385

W = We +Wres (37)

where:386

We =
1

2

(

q − qϑ
)

.Se−1

.
(

q − qϑ
)

, (38)

S
e represents the instantaneous global compliance of the system Ω, q denotes the global displacement387

vector and qϑ the residual displacement parameter. We have:388

q = S
e.Q+ qϑ (39)

If we consider the alternative form of the elastic strain energy equation (37), the energy release rate389

equation (32) takes the form:390

Gϑ(t) = −
1

2

d

dℓ

(

1

Se

)

(

q − qϑ
)2

+
1

Se

∂qϑ

∂ℓ

∣

∣

∣

∣

(qd,{εϑ

i
})

(

q − qϑ
)

−
∂Wres

∂ℓ

∣

∣

∣

∣

(qd,{εϑ

i
})

(40)

Assuming that the contributions of the derivatives of the residual energy and kinematic parameter are391

negligible (S. T. Nguyen et al.[68] have rigorously proved this assumption in the case of 1D heterogeneous392

structures and we propose to verify it in the 3D case), one gets the following reduced form of Gϑ:393

Gϑ(t) ≃ −
1

2

d

dℓ

(

1

Se

)

(

q − qϑ
)2

(41)

Substituting equation (39) into equation (41), this one becomes:394

Gϑ(t) ≃
1

2

dSe

dℓ
Q2 (42)
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Under the stated assumptions especially constant Poisson’s ratio and by application of the principle of395

superposition, the evolutionary solution defined by the kinematic loading parameter qd(t) is given by396

equation (43) [55]:397

Q(t) = Ke

∫ t

t0

R(t− t′)dqd(t′) (43)

where Ke =
1

Se
and R is given by equation (7) Substituting equations (43) into the equation (42), the398

energy release rate thus takes the form:399

Gϑ(t) ≃ −
1

2

dKe

dℓ

(∫ t

t0

R(t− t′)dqd(t′)

)2

(44)

Let us discuss in more detail the two types of loading envisaged:400

• A constant displacement is prescribed u(t) = −U0H(t)ey (q
d(t) = U0H(t) and H(t) is the Heaviside401

function). In this case, Gϑ is given by:402

Gϑ(t) ≃ −
1

2

dKe

dℓ

(

R(t)U0

)2
(45)

The asymptotic energy release rate (t → ∞) yields:403

Gϑ(t) −→
t→∞

G∞
ϑ = −

1

2

dKe

dℓ

(

E0U0

Eel

)2

(46)

• A displacement is prescribed in the form u(t) = −U̇ tH(t)ey (qd(t) = U̇ tH(t) and U̇ stands for the404

prescribed constant displacement rate). The energy release rate is expressed as follows:405

Gϑ(t) ≃ −
1

2

dKe

dℓ

(

R
∗
(t)U̇ t

)2

(47)

where R
∗
is given by equation (14) The asymptotic energy release rate (t → ∞) yields:406

Gϑ(t) −→
t→∞

G∞
ϑ =































−
1

2

dKe

dℓ

(

E0U̇ t

Eel

)2

−→ ∞ if E0 6= 0

−
1

2

dKe

dℓ

(

U̇
∑m

i=1 Eiτi
Eel

)2

if E0 = 0

(48)

It can be shown thatKe(ℓ) = EelKe
1(ℓ) whereK

e
1(ℓ) is the effective stiffness per unit modulus and imposed407

loading. A numerical determination of Ke
1(ℓ) may be easily achieved by standard finite elements. So, the408

expressions giving Gϑ are semi-analytical in the sense that they are time-based analytical whereas Ke is409

obtained by solving an elasticity problem using the finite element approach.410
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The energy release rate can also be defined:411

Ge
1(ℓ) = −

1

2

dKe

dℓ
(49)

Fig. 11 show the effective stiffness and energy release rate calculated for different crack lengths in the412

semi-circular bending test subjected to a unit displacement and for a unit modulus. The fitted curve
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Fig. 11. Effective stiffness and energy release rate calculated for different crack lengths in the
SCB test subjected to a unit displacement

413

equation is given by:414

Ke
1(x) = 0.209x5 − 0.18x4 + 0.11x3 − 0.275x2 − 0.018x+ 0.158 where x =

ℓ

R
(50)

In order to verify the accuracy of the numerical technique for determining Gϑ, numerical resolutions are415

performed by simulating a semi-circular bending test without crack growth. The viscoelastic properties of416

the material is given in the Table 2 ( material named V0 in the table). The numerical results are compared417

with our semi-analytical developments (equation (45) and equation (47)). Fig. 12a shows the evolution418

of the viscoelastic energy release rate over time for a constant imposed displacement and in Fig. 12b, the419

variation of Gϑ is plotted for a constant imposed displacement rate. A very good agreement between the420

numerical and semi-analytical solutions can be observed. Under prescribed constant displacement, the421

decrease of Gϑ as a function of time can also be remarked. This fact reflects the relaxation phenomenon422

due to the viscoelastic effect. Figures Fig. 13a and Fig. 13b show the asympotic responses of the energy423

release rate for the two considered loading cases taking E0 = 0.424

5.1.2 Progressive or brutal propagation425

The notion of stability in the cracking process is very crucial in Griffith’s theory [44]. It is proposed here426

to deal with this question in the viscoelastic framework.427
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(a) (b)

Fig. 12. Evolution of numerical and approximate energy release rates at 20◦C without crack
growth: Fig. 12a U0 = 1 mm, Fig. 12b U̇ = 1 mm.min−1 (E0 = 0)

(a) (b)

Fig. 13. Evolution of numerical and approximate asymptotic energy release rates at 20◦C
without crack growth for E0 = 0: Fig. 13a U0 = 1 mm, Fig. 13b U̇ = 1 mm.min−1

According to Griffith, the stability criterion can be summarised as:428

Gϑ ≤ R (51)

429

430

431

432

433

434

This implies that, at fixed loading and viscous strains, the variation of the ratio between the energy

release rate and the crack growth resistance allows to identify the two evolutions of the crack. If this

ratio is decreasing with respect to the crack length, then the propagation is stable. To increase cracking,

the loading must be increased. However, if this ratio is increasing, then the crack evolution is no longer

controlled. If the loading is maintained, the crack will abruptly propagate. In a new state of cracking,

under this same loading, the crack may or may not stabilise.

Let’s illustrate this by reconsidering the three-point bending test on the semi-circular configuration (see435
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Fig. 10) subjected to a constant loading rate U̇ . By assuming that the crack growth resistance is constant436

(R = Gc) and using relation (47), the ratio
Gϑ

R
gives:437

Gϑ

R
= Ge

1(ℓ)





√

Eel

Gc

R
∗
(t)U̇ t





2

(52)

At a fixed loading, the term





√

Eel

Gc

R
∗
(t)U̇ t





2

being constant, the variation of the ratio
Gϑ

R
as a function438

of ℓ is therefore imposed by Ge
1(ℓ). Under the indicated assumptions, and referring to Fig. 11b, the two439

situations are distinguished: a phase where the crack propagates abruptly (increasing ratio) followed by440

a phase of stable propagation (decreasing ratio).441

For bituminous mixes, it is well known that the non-linear zone ahead of the crack tip is relatively large442

compared to the dimensions of the structure and, therefore, its effect cannot be neglected as in linear443

fracture mechanics. X. Li et al. [69] studied the effect of process fracture zone in bituminous mixtures.444

They used an eight-channel acoustic emissions system to monitor the fracture process zone during the445

crack propagation test using an SCB geometry in crack opening mode. They showed that the size of446

the process zone varies with temperature (the process zone at low temperatures has a greater length447

than that at high temperatures, while there is no significant difference in width). The authors explain448

this phenomenon by the viscous behaviour of bituminous mixtures at high temperatures. To take this449

non-linearity into account, R-curve models have been developed and successfully used to treat cracking450

problems in wood [70, 71] and concrete [72]. The shape of the R-curve can play a very crucial role in the451

stability of the crack growth as will be seen in the next section.452

5.2 Numerical crack growth algorithm453

In order to implement crack growth modelling in finite element software, we present an algorithm which454

allows finite element coupling between the viscoelastic behaviour and the crack propagation criterion.455

This paper is limited to the case of a straight crack growth. Thus, the crack path is a priori known. Then456

we apply the technique known as ”unbuttoning nodes” to treat numerically the crack growth of a length457

δℓ when the criterion equation (28) is verified.458

In practice, for a virtual crack advance δℓ, we look for the loading qd (prescribed displacement for clarity)459

for which the criterion is fulfilled, i.e. Gϑ(ℓ, q
d) − R = 0. The first step is to determine the loading qdc460

that would propagate the crack by a length δℓ. For a constant loading rate (q̇d), the loading parameter461

qd can be written in the incremental form equation (53).462

qdn+1 = qdn + q̇d∆nt ; ∆nt = tn+1 − tn (53)

where qdn+1 is determined by looking for the time increment ∆nt that ensures a propagation of ℓ + δℓ.463

Thus for each qdi , the energy release rate Gi
ϑ is computed. Let us denote by qdk, the loading at which464
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Gk
ϑ > R for the first time. The criterion is then unfulfilled and it becomes necessary to determine the465

displacement qd j
k , close to qdk such that :466

f(qd j
k ) = Gϑ(q

d j
k )−R = 0 (54)

The equation (54) is resolved using the secant method which provides the following recurrence relation:467

qd j+1
k = qd j

k −
qd j
k − qd j−1

k

f(qd j
k )− f(qd j−1

k )
f(qd j

k ) (55)

with qd 0
k = qk−1 and qd1k = qk.468

Or:469

∆j+1
k t = ∆j

kt−
∆j

kt−∆j−1
k t

f(qd j
k )− f(qd j−1

k )
f(qd j

k ) (56)

with ∆0
kt = ∆k−1t and ∆1

kt = ∆kt.470

The calculation is interrupted when:471

|f(qd j
k )| ≤ εℓ (57)

where εℓ represents the approximation error committed on the accuracy of the numerical solution. Once472

the displacement qdc is determined (with a tolerance εℓ), the crack is allowed to propagate by a length473

δℓ. If the sequence
(

qd j
k

)

diverges, which would mean that the reference solution qdk is very far from the474

zero of the function f , then it is necessary to decrease the loading step (and thus the time increment)475

and restart the calculation. The algorithm for solving the crack growth problem as described above is476

summarised by the scheme Fig. 14.477

6 Comparison between numerical model and experiments478

In the framework of numerical simulation, the three-point bending problem is implemented using the479

finite element library Getfem++ [65] and compared to the experimental results.480

6.1 Numerical simulation of the semi-circular bending test481

The objective of this section is to evaluate the relevance of the model by comparing the response of the482

numerical simulations with the experimental observations. The standard crack propagation test on a483

semi-circular asphalt mixtures specimen is again considered (see Fig. 10). The dimensions used in the484

simulations are given in section 3.2.2. In order to conduct the 2D numerical simulations of Mode I crack485

propagation, the following assumptions are adopted:486

• Isotropic linear viscoelastic material, homogeneous, whose viscoelastic parameters of the MG model487

are given in Table 2 for the reference material and for the materials subjected to the 3 and 6 days488

ageing times.489
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• Constant Poisson’s ratio ν = 0.35490

In this study, the formulation of the R curve developed by Bathias [73, 74] is used:491

R = [α+ β (ℓ− ℓ0)]

1

λ (58)

where α, β and λ are constants. In the crack growth process, it is shown that the total internal energy,492

which is equal to the external work done, is composed of the recoverable strain energy, the energy493

dissipated by the fracture process and the energy dissipated due to the viscoelasticity of the material.494

The latter term is difficult to identify in the energy analysis balance. The force-displacement method495

used by Morel et al. [70] cannot be applied to determine the R-curve in viscoelastic media in which the496

viscous dissipation may not be neglected. For this reason, the R-curve parameters are determined by497

an optimisation approach. These parameters can be determined by calibrating the peak load and the498

area under the force-displacement curve between the numerical simulations and the experimental results.499

The R-values and summarized in Table 3. Figures 15a and 15b illustrate the SCB test simulation results

Table 3: Optimised parameters of the R-curve expression

U̇ α β λ

V 0
1 6.41× 10−2 1.43× 103 1.31

5 8.81× 10−2 4.04× 103 1.20

V 3
1 6.4× 10−2 9.49× 103 1.77

5 6.53× 10−2 4.23× 103 1.10

V 6
1 8.40× 10−2 1.44× 103 1.06

5 6.37× 10−2 5.02× 103 1.05

500

obtained by the finite element method.501

(a) (b)

Fig. 15. Crack paths in the numerical simulation for the reference material V0: 15a start of
crack growth, 15b end of crack growth

Figures Fig. 16a and Fig. 16b show the numerical variations in crack growth during loading for the two502

loading rates (1 mm.min−1 and 5 mm.min−1) and for the reference material (V0) and the materials503

conditioned to long-term ageing for 3 and 6 days (V3 and V6).504
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Fig. 16. Evolution of crack length as a function of applied displacement at 0, 3 and 6 day
ageing times: 16a for 1 mm.min−1 , 16b for 5 mm.min−1

It is noted that as the loading rate increases, the crack propagates more quickly. This result is in505

agreement with Nguyen et al. conclusions [68]. These figures also show that oxidative ageing leads to506

an increase in crack growth rate which becomes more pronounced at 5 mm.min−1 (see Fig. 16). Figures507

Fig. 17a and Fig. 17b show the evolution of the R-curve versus the crack length (ℓ− ℓ0). An increase in508

R is observed as a function of the loading rate and the ageing time. The reason for this may be that the509

bituminous mix exhibits less viscous and less ductile behaviour and the development of defects becomes510

significant with increasing ageing time.511
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Fig. 17. R-curve evolution as a function of crack length at 0, 3 and 6 day ageing times: 17a
for 1 mm.min−1 , 17b for 5 mm.min−1

The numerical simulation results, in terms of load-displacement, are validated by comparing them with512

the experimental results, as shown in Fig. 18a-18f. In a general way, it can be seen that, for each ageing513

time and loading rate, the numerical and experimental load-displacement curves are consistent for the514

selected specimens. Nevertheless, we note that the accuracy of the model decreases when the material515
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is more exposed to ageing and under a higher loading rate. We think that these discrepancies between516

the numerical simulations and the experimental results may be related to the increase in the size of the517

process zone (with the ageing duration) limiting its consideration by the R-curve model. An attempt can518

be made to overcome this problem by using another form of R-curve expression like the one proposed519

by J. Lemaitre and J-L Chaboche [75] which make the R-expression depend on the crack velocity. Thus,520

the proposed crack growth criterion, which assumes that the part of the dissipation due to the creation521

of a crack surface is proportional to the crack velocity, needs to be reconsidered. However, when several522

specimens are tested, account should be taken of the heterogeneity between specimens which may lead523

to a dispersion of the test results.524
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Fig. 18. Comparison of force-displacement curves between numerical and experimental results
at 20◦C

7 Conclusion525

The development of an energetic crack growth model for viscoelastic media is presented in this paper.526

This model is intended for the study of the fracture of bituminous mixes. For this purpose, the analogue527

Generalized Maxwell model is used to represent the 3D viscoelastic discretized behaviour of the latter.528
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This model is implemented in a finite element software GetFem. At the same time, The discretized law529

is applied to the analysis of a part of the complex modulus tests (2PB-PR) carried out in the laboratory530

on bituminous mixes at room temperature (20◦C) and under 4 loading frequencies ranging from 3 to531

40 Hz. A good agreement between the experimental and numerical results has been obtained, which532

led to the validation of the implemented incremental law. Next, a mechanical model of crack growth533

in dissipative media has been described. For the first time, analytical expressions of the crack growth534

driving force as a function of the type of loading is formulated for a semi-circular geometry subjected535

to three-point bending. This analytical strategy provided a basis for the validation of the numerical536

determination of the driving force implemented in a Getfem FE software. Finally, the developed model537

is applied for the very first time to simulate the SCB test performed in the laboratory on bituminous538

mixtures at 20◦C and under two imposed displacement rates (1 mm.min−1 and 5 mm.min−1) for the539

reference and aged mixtures. By dependently setting the R-curve parameters on the loading rate and540

ageing, a good match between the experimental and numerical results in terms of the force-displacement541

curve is obtained for all investigated test conditions, thus proving the ability of our model to simulate the542

ductile crack growth in bituminous mixes under monotonic loading. Taking into account the dependence543

of the cracking resistance R on a parameter that is a function of the loading rate (a hardening parameter544

defined by the residual displacement rates q̇ϑ by analogy with the hardening laws in plasticity) can thus545

improve the predictive potential of the model and will be investigated in future.546

Aiming at refining the model by representing the heterogeneous composition of the herein considered547

materials, while remaining within reasonable numerical simulation times and further approximating the548

real material composition (heterogeneity), evolutionary multi-model formulations, articulated within the549

multi-scale and multi-model Arlequin framework, initiated in [76, 77] and where the overall behaviour550

can be modelled by homogenisation schemes extended to the viscoelastic medium (e.g. [78, 79]) will be551

conducted and implemented in the future.552
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A Decomposition of elastic strain energy556

Following the same reasoning as the energetic approach in microporoelasticity (see [68, 80]), the local557

problem of (P) at fixed crack length ℓ(t) with the alternative constitutive law equation (19) can be558

separated in two loading cases:559
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1. The first load case we consider is the generalized forces C , while pre-strain field ε
ϑ is zero:560

(

P
′

)

:































divσ′ = 0 in Ω

σ
′ = C

˜

el : ε′ in Ω

σ
′ is statically admissible with Q

(59)

The solution of the evolution problem
(

P
′

)

is given by:561

ε
′ = A.Q

σ
′ = B.Q

q′ = S
e(ℓ) : Q

(60)

where A and B are respectively third order strain and stress concentration tensors fields. S
e

562

represents the instantaneous global compliance of the system Ω which is symmetric by virtue of563

the Maxwell-Betti reciprocal theorem.564

2. The second load case corresponds to a loading defined by the eigenstrain ε
ϑ field (actually defined565

by all the fields εϑ
i
) only:566

(

P
′′

)

:































divσ′′ = 0 in Ω

σ
′′ = C

˜

el :
(

ε
′′ − ε

ϑ
)

in Ω

σ
′′ is statically admissible with Q=0

(61)

Let us denote by qϑ the residual displacement parameter, solution of the problem
(

P
′′

)

. According567

to the virtual work theorem one has:568

qϑ.Q̂ =

∫

Ω

(

ε
ϑ +C

˜

el−1

: σ′′
)

: σ̂ dΩ

=

(∫

Ω

ε
ϑ : B dΩ

)

.Q̂+

∫

Ω

σ
′′ : ε̂ dΩ ∀Q̂

qϑ.Q̂ =

(∫

Ω

ε
ϑ : B dΩ

)

.Q̂, because σ
′′ is self-equilibrating stress

(62)

Therefore we have:569

qϑ =

∫

Ω

ε
ϑ : B dΩ (63)

The global vector q can then be written:570

q = S
e.Q+ qϑ (64)
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On the other hand, the elastic strain energy can be written as follows:571

W =

m
∑

i=0

∫

Ω

1

2

(

σ
′
i
+ σ

′′
i

)

: C
˜

−1
i :

(

σ
′
i
+ σ

′′
i

)

dΩ

=

m
∑

i=0

∫

Ω

1

2
σ

′
i
: ε′ dΩ +

m
∑

i=0

∫

Ω

σ
′′
i
: ε′ dΩ +

m
∑

i=0

∫

Ω

1

2
σ

′′
i
: C

˜

−1
i : σ′′

i
dΩ

=

m
∑

i=0

∫

Ω

1

2
σ

′
i
: ε′ dΩ +

m
∑

i=0

∫

Ω

1

2
σ

′′
i
: C

˜

−1
i : σ′′

i
dΩ, because σ

′′ is statically admissible

with Q=0 and ε
′ is geometrically compatible

W = We +Wres

(65)

where We denotes the recoverable energy and Wres the frozen energy that remains after unloading:572

We =

m
∑

i=0

∫

Ω

1

2
σ

′
i
: ε′ dΩ

=
1

2
q′.Q

We =
1

2

(

q − qϑ
)

.Se−1

.
(

q − qϑ
)

(66)

and573

Wres =

m
∑

i=0

∫

Ω

1

2
σ

′′
i
: C

˜

−1
i : σ′′

i
dΩ

=

m
∑

i=0

∫

Ω

1

2

(

ε
′′ − ε

ϑ

i

)

: σ′′
i
dΩ

Wres = −

m
∑

i=0

∫

Ω

1

2
ε
ϑ

i
: σ′′

i
dΩ

(67)

It is well demonstrated by equations (63) and (67) that the residual displacement field qϑ and the frozen574

energy Wres both depend on the viscous strains field.575
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[78] J-F Barthélémy, Albert Giraud, J Sanahuja, and I Sevostianov. Effective properties of ageing linear752

viscoelastic media with spheroidal inhomogeneities. International Journal of Engineering Science,753

144:103104, 2019.754

[79] F Lavergne and J-F Barthélémy. Confronting a refined multiscale estimate for the aging basic creep of755

concrete with a comprehensive experimental database. Cement and Concrete Research, 136:106163,756

2020.757

[80] Dormieux L., Kondo D., and Ulm F-J. Microporomechanics. John Wiley & Sons, 2006.758

40



Highlights

 The viscoelastic crack growth criterion is reviewed and extended to the behaviour of bituminous

mixtures.

 A new analytical expression of the energy release rate is presented and applied in detail to the

semi-circular bending configuration.

 Numerical simulations of the semi-circular bending test are performed.

 Comparison  between  numerical  and  experimental  results  is  analyzed  using  a  new  approach

combining the proposed model and the R-curve model.
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