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Introduction

The notion of "periodically developed" flow was firstly formulated by Patankar, Liu and Sparrow [START_REF] Patankar | Fully Developed Flow and Heat Transfer in Ducts Having Streamwise-Periodic Variations of Cross-Sectional Area[END_REF] as a generalization of the concept of "developed flow" in ducts with constant cross-section. A developed flow is another word for "Poiseuille" flow in an infinite straight duct with constant cross-section; the word "developed" refers to the invariance of the velocity and the pressure gradient with respect to the stream-wise direction. A "periodically developed flow" is the natural generalization to an infinite periodic channel; it is characterized by a periodic velocity and a periodic pressure gradient.

Periodically developed flows can of course exist only in idealized settings: a realistic straight channel has a finite length and prescribes specific inlet and outlet boundary conditions at its entrance and exit. However, it is a widely admitted fact in the heat transfer community that "a steady laminar flow in channels with periodic solid structures becomes periodically developed after some distance from the channel inlet." (Buckinx and Vangeffelen [START_REF] Buckinx | Quasi-periodically developed flow in channels with arrays of in-line square cylinders[END_REF]). The convergence of a flow in a finite periodic channel towards a periodically developed regime was firstly supported by the numerical and experimental evidences of Sparrow et. al. [START_REF] Cur | Measurements of developing and fully developed heat transfer coefficients along a periodically interrupted surface[END_REF][START_REF] Sparrow | Numerical solutions for laminar flow and heat transfer in a periodically convergingdiverging tube, with experimental confirmation[END_REF]. Since then, the periodically developed assumption has nowadays become of fundamental importance in heat transfer engineering, as it allows to predict the effective permeability (also called "friction factor") of the duct from a numerical flow simulation in a single unit periodicity cell [START_REF] Boomsma | Simulations of flow through open cell metal foams using an idealized periodic cell structure[END_REF][START_REF] Zhang | Effect of fin waviness and spacing on the lateral vortex structure and laminar heat transfer in wavy-plate-fin cores[END_REF][START_REF] Vashisth | A Review on the Potential Applications of Curved Geometries in Process Industry[END_REF][START_REF] Sripattanapipat | Numerical analysis of laminar heat transfer in a channel with diamond-shaped baffles[END_REF][START_REF] Fimbres-Weihs | Review of 3D CFD modeling of flow and mass transfer in narrow spacer-filled channels in membrane modules[END_REF][START_REF] Rocha | Calculation of the permeability and apparent permeability of three-dimensional porous media[END_REF][START_REF] Lasseux | On the stationary macroscopic inertial effects for one phase flow in ordered and disordered porous media[END_REF][START_REF] Patankar | Numerical Heat Transfer and Fluid Flow[END_REF][START_REF] Sabourishirazi | Recent advances in design and performance optimization of pillow-plate heat exchangers: A critical review[END_REF], see further references in [START_REF] Buckinx | A macro-scale description of quasi-periodically-developed flow[END_REF].

From a mathematical perspective, fully developed flows have received a lot of interest in the context of solving the so-called Leray's problem [START_REF] Ladyzhenskaya | Investigation of the Navier-Stokes equation for stationary motion of an incompressible fluid[END_REF][START_REF] Galdi | An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems[END_REF]; it asks about the existence and uniqueness of a steady incompressible flow exiting a bounded domain through infinite cylindrical exits with a Poiseuille profile. Leray's problem has been answered affirmatively for the nonlinear Navier-Stokes system by [START_REF] Amick | Steady solutions of the Navier-Stokes equations in unbounded channels and pipes[END_REF][START_REF] Ladyzhenskaia | Solvability of boundary value and initial-boundary value problems for the Navier-Stokes equations in domains with noncompact boundaries[END_REF]. Furthermore, [START_REF] Horgan | Spatial Decay Estimates for the Navier-Stokes Equations with Application to the Problem of Entry Flow[END_REF] has shown that a flow entering a pipe with an arbitrary inlet profile converges exponentially to the developed regime in the stream wise direction. However, these results remain confined to channels with uniform cross-section and do not apply to periodic channels.

On the other hand, incompressible Stokes or Navier-Stokes flows in domains with periodic structures have been extensively studied with the techniques of periodic homogenization, which have provided various mathematical justifications that a fluid flowing in a periodic porous medium can be governed by Darcy's law or by the Brinkman model, see e.g. [START_REF] Sanchez-Palencia | Fluid flow in porous media[END_REF][START_REF] Conca | Étude d'un fluide traversant une paroi perforée. I. Comportement limite près de la paroi[END_REF][START_REF] Allaire | Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes I. Abstract framework, a volume distribution of holes[END_REF][START_REF] Jäger | On the boundary conditions at the contact interface between a porous medium and a free fluid[END_REF][START_REF] Marušić | Two-scale convergence for thin domains and its applications to some lower-dimensional models in fluid mechanics[END_REF][START_REF] Feppon | High Order Homogenization of the Stokes System in a Periodic Porous Medium[END_REF]. However, it is commonly assumed in these works that the fluid is driven by an external force (such as gravity in a cavity) and that the boundary surrounding the domain is a wall imposing a non-slip boundary condition on the velocity. These assumptions do not fit well the setting of realistic periodic systems featuring inlets and outlets as they are mostly encountered in a wide variety of industrial applications such as microfluidic devices [START_REF] Fahrenkopf | Optimal Design of Microfluidic Devices for Rapid DNA Separations[END_REF] or heat exchangers [START_REF] Dzyubenko | Local heat transfer in the intertube space of a heat exchanger with spiral tubes[END_REF][START_REF] Vasiliev | Heat pipes in modern heat exchangers[END_REF]. There is, to the best of our knowledge, no work investigating the behavior of fluid flows through finite periodic structures equipped with inlet and outlet boundary conditions.

The influence of boundary conditions in periodic homogenization has nonetheless been studied for other physical systems with periodic heterogeneities such as the conductivity equation [START_REF] Allaire | Boundary layer tails in periodic homogenization[END_REF][START_REF] Panasenko | Multi-Scale Modelling for Structures and Composites[END_REF], the Helmholtz equation [START_REF] Beneteau | Enriched homogenized models in presence of boundaries : analysis and numerical treatment[END_REF] with periodic refractive index and conductivity, and the Poisson equation with periodically distributed holes [START_REF] Blanc | Asymptotics of solutions to the poisson problem in a perforated domain with corners[END_REF]. As a general fact, a boundary condition incompatible with the periodicity of the interior of the domain creates a boundary layer, that is a narrow region in the vicinity of the boundary where the solution to the physical model transitions to a regime driven by the periodic structure. For the diffusion or the elasticity equation, the effect of a boundary condition surrounding a periodic domain is known to be either exponentially small away from the boundary or exponentially convergent to a limiting constant called a boundary layer tail [START_REF] Blanc | Asymptotics of solutions to the poisson problem in a perforated domain with corners[END_REF][START_REF] Allaire | Boundary layer tails in periodic homogenization[END_REF][START_REF] Panasenko | Multi-Scale Modelling for Structures and Composites[END_REF][START_REF] Beneteau | Enriched homogenized models in presence of boundaries : analysis and numerical treatment[END_REF]. This exponential decay and the negligible influence of the boundary on the behavior of the physical solution inside the domain is often referred to in the literature as a Phragmen-Lindelöf [START_REF] Landis | A Variant of a Phragmén-Lindelöf Theorem for Elliptic Equations with Coefficients that are Periodic Functions of all Variables Except One[END_REF] or Saint-Venant principle [START_REF] Oleinik | An analogue of Saint-Venant's principle for a second order elliptic equation and the uniqueness of solutions of boundary-value problems in unbounded domains[END_REF][START_REF] Oleinik | On the behavior at infinity of solutions of second order elliptic equations in domains with noncompact boundary[END_REF][START_REF] Oleȋnik | Mathematical Problems in Elasticity and Homogenization[END_REF].

For the Stokes or the Navier-Stokes flows with arbitrary inlet boundary conditions, the situation is of course quite different because the incompressibility condition imposes the conservation of the mass flow rate (also called flux). In other words, the non-zero inlet Dirichlet boundary condition has some nonlocal effect due to the incompressibility, which cannot be described by a single exponentially decaying boundary layer or a limiting constant. Still, it is possible to establish Saint-Venant principles for flows with zero flux, as done in [START_REF] Iosif'yan | Saint-Venant's principle for the flow of a viscous incompressible liquid[END_REF][START_REF] Horgan | Spatial Decay Estimates for the Navier-Stokes Equations with Application to the Problem of Entry Flow[END_REF] for Navier-Stokes flows and [START_REF] Jäger | On the boundary conditions at the contact interface between a porous medium and a free fluid[END_REF] for understanding the interface law between a porous medium and a free fluid.

In this paper, we provide a mathematical proof of the convergence of a Stokes flow entering a finite periodic strip with N cells to a periodically developed regime at an exponential rate as N → +∞, where we assume a prescribed (but arbitrary) velocity profile at the inlet and a normal stress-free boundary condition at the outlet (other kind of outlet boundary conditions could be considered and would lead to the same conclusions). Similarly to the establishment of the fully developed regime in the case of straight channels, the difference between the actual flow and its periodically developed component is shown to be exponentially decaying in the interior region, which is consistent with recent physical and numerical observations [START_REF] Buckinx | Macro-scale heat transfer in periodically developed flow through isothermal solids[END_REF][START_REF] Vangeffelen | Developed and quasi-developed macro-scale flow in micro-and mini-channels with arrays of offset strip fins[END_REF][START_REF] Buckinx | Quasi-periodically developed flow in channels with arrays of in-line square cylinders[END_REF]. Furthermore, as a rather direct application to our analysis, we deduce in Section 5 a quantitative homogenization result for a Stokes flow in a thin periodic strip and we identify the effective inlet and outlet boundary conditions. This work represents thus a first step towards building a more complete mathematical understanding of flows in periodic porous media driven by inlet and outlet boundaries.

In the remainder of this introduction, we introduce the main assumptions of the geometric setting and the associated mathematical notation conventions in Section 1.1. We then give in Section 1.2 a formal statement of our main results (which is restated with more details in Proposition 4.1) supported by some numerical illustrations. Finally, Section 1.3 outlines the content of the paper including the main steps of our derivation.

Geometric setting and notation conventions

We consider a finite periodic d-dimensional strip D N ⊂ R d constituted of the juxtaposition of N perforated square unit cells (Figure 1):

D N = N -1 i=0 Y i with Y i := ie 1 + Y, (1.1) 
where (e i ) 1≤i≤d is the canonical basis of R d . The unit cell Y is represented on Figure 2: it is defined as 

Γ x1 T 0 Y 0 Y 0 T 1 Y 1 Y 1 T 2 Y 2 Y 2 T 3 Y 3 Y 3 T 4 Y 4 Y 4 T 5 Y 5 Y 5 T 6 Y 6 Y 6 T 7 Y 7 Y 7 Γ in v 0 Γ out σ(v, p)n = 0 Γ wall Γ wall
Y = P \T Γ w Γ w P = (0, 1) d T Γ 0 Γ 1 Figure 2.
The unit cell Y = P \T , the wall boundaries Γ w and the section Γ x1 .

we denote by Γ x1 the section cutting Y at the abscissa x 1 :

Γ x1 := {(x 1 , x ′ ) ∈ Y }, (1.2) 
where in the whole paper, we use the notation (x 1 , x ′ ) with

x 1 ∈ R and x ′ ∈ R d-1 to refer to the coordinates of a point x = (x 1 , x ′ ) ∈ R d . With the definition (1.
2), Γ 0 and Γ 1 are the left and right boundaries of the fluid domain. The remaining side boundaries are denoted by Γ w and are thought of as solid "walls":

Γ w := (0, 1) × ∂P ′ where P ′ := (0, 1) d-1 .

(1.

3)

The only assumption we consider on T is that Y \T is a smooth connected domain with Γ 0 connected to Γ 1 , which also implies that the strip D N is connected. Thus, configurations featuring a single or more connected holes (Figure 3a) or varying bottom and top walls (Figure 3b) are allowed.

Let us describe some more notation conventions for the boundaries of the strip D N included in Figure 1. The side boundaries of D N are denoted by Γ wall :

Γ wall := (0, N ) × ∂P ′ .
(1.4)

The inlet and outlet boundaries of D N are denoted by Γ in and Γ out : we have Γ in := Γ 0 and Γ out := Γ N where with an abuse of notation, we also denote by Γ x1 := {(x 1 , x ′ ) ∈ D N } the cross-section cutting D N at the abscissa x 1 . Finally, we denote by Y i and T i the fluid and the solid parts in the i-th cell:

Y i := ie 1 + Y, T i := ie 1 + P \Y . (1.5) (a) (b)
Figure 3. Two allowable configurations of unit cells corresponding to perforated channels (A) and section varying ducts (B).

Physical setting and main result

We consider a steady incompressible flow characterized by a velocity and pressure (v, p) entering the inlet Γ in with prescribed velocity v 0 and exiting the channel through Γ out with the normal stress-free boundary condition. The velocity and pressure fields solve the following Stokes equations in the strip D N :

                   -∆v + ∇p = 0 in D N , div(v) = 0 in D N , v = 0 on ∂T i for all 1 ≤ i ≤ N, v = 0 on Γ wall , v = v 0 on Γ in , σ(v, p)n = 0 on Γ out , (1.6) 
where σ(v, p) denotes the fluid stress tensor determined by Newton's law of fluid dynamics:

σ(v, p) = 2e(v) -pI with e(v) := ∇v + ∇v T 2 . (1.7) 
It is well-known that there exists a unique solution (v, p) (1.6), where the pressure p is completely determined (it is not defined up to a constant) due to the outlet boundary condition σ(v, p)n = 0.

∈ H 1 (D N , R d ) × L 2 (D N ) solution to
For the present finite periodic strip, we show that the flow can be decomposed into a periodic flow v per carrying the mass flow, and an exponentially decaying boundary layer v bl carrying zero mass flow. More precisely, we prove the following main result.

Proposition 1.1. The following asymptotic expansion holds for the solution (v, p) to (1.6) as N → +∞:

v(x) = v per (x) + v bl (x) + O H 1 (D N ,R d ) (e -γN ), (1.8) 
p(x) = a(x 1 -N ) + p per (x) + p ∞ + p bl (x) + O L 2 (D N ) (N 3 2 e -γN ), (1.9) 
where γ > 0 is a positive constant and:

• v per and p per are periodic smooth velocity and pressure fields:

v per (x 1 + 1, x ′ ) = v per (x 1 , x ′ ), p per (x 1 + 1, x ′ ) = p per (x 1 , x ′ ). (1.10)
They are solution to an explicit periodic cell problem. • a is a constant which depends only on the geometry of the cell Y and on the input mass flow rate F :

F := Γin v 0 • e 1 dσ.
• v bl and p bl are boundary layer fields constructed from the solutions to two explicit semi-infinite strip Stokes problems. They decay exponentially away from Γ in and Γ out :

|v bl (x)| ≤ Ce -γ min(x1,N -x1) , |p bl (x)| ≤ Ce -γ min(x1,N -x1) , (1.11) 
where C > 0 is a constant independent of x 1 ; • p ∞ is a "boundary layer tail" independent of N determined by the outlet boundary condition σ(v, p)n = 0. This limiting constant is obtained from the solution to one of the semi-infinite strip Stokes problem mentioned above.

As an illustration of the result of Proposition 1.1, we plot on Figure 4 the numerical solution of (1.6) corresponding to a flow entering the strip D 8 periodically perforated with circular holes of radius r = 0.25 with the (non-normal) inlet velocity v 0 = (1, 2). It is clearly visible that the flow becomes almost instantaneously periodic after passing through the first cell, up to small boundary layer effects distinguishable very close to the left and the right boundaries. Proposition 1.1 is restated with more details and proved in Section 4. We note that the periodic part (v per , ax 1 + p per ) was already correctly identified by the physical community since the seminal paper [START_REF] Patankar | Fully Developed Flow and Heat Transfer in Ducts Having Streamwise-Periodic Variations of Cross-Sectional Area[END_REF]. Our contribution is thus to give a proof of the exponential convergence of the actual flow towards the periodically developed regime and to show the existence of the boundary layer tail p ∞ .

Two remarks are in order regarding the asymptotic (1.9) for the pressure. Firstly, we choose to introduce the constant -aN so that the linear part vanishes at the outlet. This term is crucial for making the boundary layer tail p ∞ independent of N ; it physically implies that the pressure approximately vanishes at the outlet (it is of order O(1) with respect to N ). Second, we have introduced the factor N 3 2 in our quantitative error bound O L 2 (D N ) (N 3 2 e -γN ). This term, which comes directly from our energy estimates (more precisely from Lemma 4.1), may seem strange at first glance since this factor could be removed by changing the exponent γ to a slightly lower constant. We have left this factor in order to emphasize that the pressure is naturally of a larger amplitude than the velocity by a possibly linearly growing factor (which is of order O(N 3 2 ) when estimated with the L 2 -norm in D N ).

Outline of the paper

Section 2 to Section 4 focus on the result of Proposition 1.1 and unfold the main steps of our reasoning. In Section 2, we construct Stokes solutions with periodic velocity and pressure gradient in the periodic strip extended in the infinite left and right directions. These periodic flows coincide with the "periodically developed" solutions of [START_REF] Patankar | Fully Developed Flow and Heat Transfer in Ducts Having Streamwise-Periodic Variations of Cross-Sectional Area[END_REF]; they are obtained from the solution (X , α) to a periodic cell-problem which is very similar to the one encountered in periodic homogenization. This construction allows to identify the periodic component (v per , p per ) and the constant a of the asymptotic expansions (1.8) and (1.9), which are adjusted to match the input mass flow rate.

We then construct the boundary layer terms v bl and p bl in Section 3, by introducing Stokes problems in semi-infinite strips capturing the difference between the actual flow and its periodically developed part. The existence of these boundary layers is based on the crucial fact that this remainder flow carries zero mass. We prove the exponential decay of the velocity v bl by adapting some classical arguments available for the conductivity equation [START_REF] Allaire | Boundary layer tails in periodic homogenization[END_REF]. We then establish the exponential convergence of the pressure towards a constant by following some reasoning from [START_REF] Jäger | On the boundary conditions at the contact interface between a porous medium and a free fluid[END_REF].

We complete the proof of Proposition 1.1 in Section 4. Two ingredients come into play: first, the exponential decay of the boundary layers imply the exponential rate of convergence of the approximation (1.8) for the velocity field. Then, the construction of an appropriate right-inverse for the divergence in D N explicitly bounded in terms of N allows us to prove the asymptotic (1.9) for the pressure.

As an application of Proposition 1.1, we deduce in Section 5 a quantitative homogenization result for a Stokes flow in a thin periodic strip. The corresponding problem for a flow in a thin strip with non-oscillating walls has been studied with the tool of two-scale convergence in [START_REF] Marušić | Two-scale convergence for thin domains and its applications to some lower-dimensional models in fluid mechanics[END_REF]. We find that the homogenized flow of a thin strip with periodic structure is governed by Darcy's law with the normal velocity prescribed at the inlet and a zero pressure boundary condition at the outlet.

Throughout the paper, our argumentation is supported by a number of numerical experiments which have been performed with the Finite Element solver FreeFEM [START_REF] Hecht | New development in FreeFem++[END_REF]. Additionally, we include in Appendix A some remarks about the practical implementation of the periodic cell problem with the finite element method, more specifically about the possible choices of finite element spaces enforcing the periodicity of the pressure. In Appendix B, we propose a numerical procedure to estimate the constant p ∞ and we report its value for the twodimensional flow in a strip perforated with circular holes. Then, we provide in Appendix C further illustrations of the validity of the approximation (1.8) and (1.9) for additional geometric configurations of periodic unit cells.

Throughout this work, C > 0 denotes a universal constant independent of N and v 0 whose value may be redefined from lines to lines.

Periodic Stokes flows in the infinite strip

In this section, following the intuition of [START_REF] Patankar | Fully Developed Flow and Heat Transfer in Ducts Having Streamwise-Periodic Variations of Cross-Sectional Area[END_REF], we postulate that the periodic flow part v per solves the Stokes equation in the infinite strip B defined by

B := i∈Z Y i with Y i := ie 1 + Y,
obtained by juxtaposing periodically the unit cell Y . The strip B is represented on Figure 5, where we still denote by Γ wall := R × ∂P ′ the wall boundaries and by Γ x1 the section cutting B at the abscissa x 1 :

Γ x1 := {(x 1 , x ′ ) ∈ B}.
(2.1)

In order to construct Stokes flows in B with periodic velocity v per , we introduce in Section 2.1 the solution (X , α) to a periodic cell problem very similar to the one commonly encountered in periodic homogenization [START_REF] Sanchez-Palencia | Fluid flow in porous media[END_REF]. We then demonstrate in Section 2.2 that the set of flows with periodic velocity field in the infinite strip B is a one-dimensional vector space spanned (X , -x 1 + α). The linearly growing part of the pressure physically corresponds to a fluid motion driven by a constant pressure gradient; the corresponding flow field coincides thus with the concept of "periodically developed flow" formulated by [START_REF] Patankar | Fully Developed Flow and Heat Transfer in Ducts Having Streamwise-Periodic Variations of Cross-Sectional Area[END_REF].

In Section 2.2, we show that the mass flow rate of periodic Stokes flow is constantly proportional to the pressure drop between the faces of any unit cell of the strip. We interpret this result as Darcy's law in the strip, and we relate the proportionality constant to the classical effective permeability of periodic homogenization.

Finally, we postulate in Section 2.3 that the periodically developed part of the flow (v, p) in the strip D N is proportional to (X , -x 1 + α) with a proportionality constant adjusted to capture the input mass flow rate. We verify on a numerical example that subtracting these from the flow (v, p) in the finite strip D N yields indeed boundary layer flows exponentially decaying away from the inlet and outlet boundaries. These boundary layers are analyzed in the next Section 3.

T -3 Y -3 T -2 Y -2 T -1 Y -1 T 0 Y 0 T 1 Y 1 T 2 Γ 2 Γ 3 Γ 4 Γ wall Γ wall Figure 5. The infinite strip B.

The Stokes equation in the periodic cell

Let us denote by Y # the "torus", namely the cell Y with the opposite boundaries Γ 0 and Γ 1 identified. The other boundaries of Γ w are not identified and remain considered as "walls". We introduce the following periodic cell-problem: find a solution (X , α)

∈ H 1 (Y # ) × L 2 (Y # )/R to the system                -∆X + ∇α = e 1 in Y # , div(X ) = 0 in Y # , X = 0 on ∂T, X = 0 on Γ w , (X , α) is 1-periodic in x 1 .
(2.

2)

The problem (2.2) is very similar to the standard cell-problem defining the correctors for the periodic homogenization of Stokes or Navier-Stokes flows [START_REF] Sanchez-Palencia | Fluid flow in porous media[END_REF][START_REF] Allaire | Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes I. Abstract framework, a volume distribution of holes[END_REF]: the only difference is that we consider a single forcing direction e 1 and non-slip boundary conditions on the walls Γ w rather than periodic boundary conditions on all opposite matching faces. The quotient notation L 2 (Y # )/R means that the pressure field α is defined up to an additive constant.

The following proposition recalls the existence and uniqueness result of smooth solution fields to (2.2).

Proposition 2.1. There exists a unique solution (X , α)

∈ H 1 (Y # ) × L 2 (Y # )/R to the cell problem (2.2).
Furthermore, X and α are C ∞ functions in the torus Y # .

Sketch of the proof. The existence and uniqueness is a classical application of the Lax-Milgram's theorem, see e.g. the proof given in [START_REF] Sanchez-Palencia | Fluid flow in porous media[END_REF]. Furthermore, X and α are C ∞ functions in the torus Y # owing to interior regularity estimates. □

As an illustration in our context, we plot on Figure 6 the numerical solution to the cell problem (2.2) for the circular obstacle considered for the flow of Figure 4. On this plot, we have selected the constant for the pressure α so that Y α dx = 0. In what follows, we will need the following positivity result (already contained in [START_REF] Jäger | On the boundary conditions at the contact interface between a porous medium and a free fluid[END_REF]) for the mass flow rate of X . Lemma 2.1. We call "effective permeability" the positive number denoted by X * satisfying

X * := Y |∇X | 2 dx = Y X • e 1 dx = Γ1 X • e 1 dσ > 0.
(2.3) Furthermore, it also holds Y X • e j dx = 0 for any 2 ≤ j ≤ d.

Proof. The identity Y |∇X | 2 dx = Y X • e 1 dx is obtained by multiplying (2.
2) against X and integrating by parts with Stokes theorem. The strict positivity of X * comes from the fact that X is distinct from zero. The identity Y X •e 1 dx = Γ1 X •e 1 dσ is a consequence of the incompressibility condition: using div(X ) = 0 and X = 0 on Γ w , we find that the integral Γx

1 X • n dσ is independent of the interface Γ x1 := {(x 1 , x ′ ) ∈ Y } cutting the cell Y at the abscissa x 1 : Γ1 X 1 2 , x ′ • e 1 dx ′ = Γx 1 X (x 1 , x ′ ) • e 1 dx ′ for any 0 ≤ x 1 ≤ 1. (2.4)
By using Fubini's theorem, we obtain

Y X • e 1 dx = 1 0 Γx 1 X (x 1 , x ′ ) • e 1 dx ′ dx 1 = 1 0 Γ1 X • e 1 dσ dx 1 = Γ1 X • e 1 dσ, (2.5) 
which implies (2.3). The second point is obtained similarly: the incompressibility condition implies that the flux across any section of Y with normal e j is constant for any 2 ≤ j ≤ d. This constant is zero due to the non-slip boundary condition on Γ w . Fubini's theorem as in (2.5) implies then Y X • e j dx = 0. □

Periodic Stokes flow and Darcy's law in the infinite strip

According to Proposition 2.1, the solution (X , α) to (2.2) extends periodically as a smooth field of C ∞ (B, R d )× C ∞ (B)/R; we still denote by (X , α) this extension. The following lemma shows that pressure gradient driven flows with periodic velocity in the strip B can be characterized from (X , α).

Lemma 2.2. The set (u, q) ∈ H 1 loc (B, R d ) × L 2 loc (B)/R of functions satisfying                -∆u + ∇q = 0 in B, div(u) = 0 in B, u = 0 on ∂T i , for all i ∈ Z, u = 0 on Γ wall , u(x 1 + 1, x ′ ) = u(x 1 , x ′ ) for all x 1 ∈ R, x ′ ∈ q ′ , (2.6)
is the one-dimensional vector space. More precisely, any solution (u, q) to (2.6) can be written as

u(x) = cX (x), q(x) = c(-x 1 + α(x)), (2.7) 
where (X , α) is the unique solution to the cell-problem (2.2) extended by periodicity in B, for a constant c ∈ R.

Proof. Since B is a smooth domain, any solution u to (2.6) must be a smooth 1-periodic function in x 1 by interior regularity estimates. Consequently, the Laplacian ∆u, and so the pressure gradient ∇q, must be smooth periodic functions. In other words, ∇(q(x 1 , x ′ ) -q(x 1 + 1, x ′ )) = 0, which implies that q(x 1 , x ′ ) -q(x 1 + 1, x ′ ) is a constant, that we denote by c. Then, it follows that

q(x 1 + 1, x ′ ) + c(x 1 + 1) -q(x 1 , x ′ ) + cx 1 = 0, (2.8) 
which implies that the function q per (x 1 , x ′ ) := q(x 1 , x ′ ) + cx 1 is 1-periodic with respect to x 1 . Then, we remark that q(x 1 , x ′ ) can be rewritten as q(x 1 , x ′ ) = -cx 1 + q per (x 1 , x ′ ), where (u, q per ) solves the problem

                     -∆u + ∇q per = ce 1 in B, div(u) = 0 in B, u = 0 on ∂T i , for all i ∈ Z, u = 0 on R × ∂q ′ , u(x 1 + 1, x ′ ) = u(x 1 , x ′ ) for all x 1 ∈ R, x ′ ∈ q ′ , q per (x 1 + 1, x ′ ) = q per (x 1 , x ′ ) for all x 1 ∈ R, x ′ ∈ q ′ .
(2.9)

This implies that u = cX and q per (x

1 , x ′ ) = q(x 1 , x ′ ) + cx 1 = cα(x 1 , x ′ ) as claimed. □
Flows (u, q) of the form (2.7) correspond to the definition of "periodically developed flow" by [START_REF] Patankar | Fully Developed Flow and Heat Transfer in Ducts Having Streamwise-Periodic Variations of Cross-Sectional Area[END_REF]. Due to their structure, periodically developed flows Lemma 2.1 satisfy a Darcy's law in the periodic strip.

Lemma 2.3. Let (u, q) be a periodically developed flow as given by (2.7). Let us denote by f := Γ0 u • e 1 dσ the mass flow rate of u and by δq := q| Γ1 -q| Γ0 the pressure drop after one cell. Then the following Darcy's law holds: f = X * δq.

(2.10)

Proof. Due to (2.7), the constant c of (2.7) coincides with the pressure drop after one cell: c = δq. On the other hand, due to Lemma 2.1, c can also be written as the ratio between the mass flow rate of u and the mass flow rate of X :

c = Γ0 u • e 1 dσ Γ0 X • e 1 dσ . (2.11)
The the identity (2.10) follows. □ Remark 2.1. The definition (2.2) of the cell problem and the formula (2.3) for the effective permeability agree with those commonly used in the heat transfer community to estimate the permeability or friction factor based on the periodically developed flow assumption of [START_REF] Patankar | Fully Developed Flow and Heat Transfer in Ducts Having Streamwise-Periodic Variations of Cross-Sectional Area[END_REF][START_REF] Buckinx | Multi-scale modelling of flow in periodic solid structures through spatial averaging[END_REF]. In an alternative part of the physical community, e.g. [START_REF] Kaviany | Principles of Heat Transfer in Porous Media[END_REF][START_REF] Dede | Measurement of low Reynolds number flow emanating from a Turing pattern microchannel array using a modified Bernoulli equation technique[END_REF], the effective permeability is evaluated by considering an a priori different cell problem

                       -∆ X + ∇ α = 0 in Y # , div( X ) = 0 in Y # , X = 0 on ∂T, X = 0 on Γ w , X is 1-periodic in x 1 , α| Γ0 -α| Γ1 = 1.
(2.12)

The solution ( X , α) to (2.12) corresponds to the flow field generated by a unit pressure drop and the effective permeability is evaluated as its mass flow rate: X * = Γ0 X • e 1 dx. In fact, this formulation is equivalent to (2.2) since the solution to (2.12) is given by X = X and α(x) = -x 1 + α(x). This observation and the identity (2.3) imply that the permeability constants X * and X * coincide.

Periodic part of the flow in the finite periodic strip

In order to construct the asymptotic (1.8) for the solution (v, p) in the finite strip D N , it is natural to pose

v per (x) := F X * X (x), a = - F X * , p per (x) := F X * α(x), (2.13) 
where F is the prescribed mass flow rate

F := Γin v 0 • e 1 dσ, (2.14) 
and X * the effective permeability (2.3). Thus (v per , p per ) is a periodic Stokes flow in the infinite strip with the same mass flow rate as the solution (v, p) in the finite strip. In this ansatz, α remains defined up to a constant; this constant will be determined by the boundary layer associated to the outlet boundary.

We plot the resulting velocity field and the reconstructed pressure (a(x 1 -N ) + p per ) on Figure 7, where the constant for α is chosen such that Y α dx = 0. It is clear that we have a very good agreement between the reconstructed velocity fields. The reconstructed pressure field agrees also with the original pressure field p of Figure 4 up to a noticeable difference: both follow the same trend but seemingly differ from a constant small with respect to N . We verify quantitatively these observations on Figure 8 where we plot the residual velocity and pressure (w, r) defined by

w(x) := v(x) -v per (x), r(x 1 , x ′ ) := p(x) -(a(x 1 -N ) + p per (x)). (2.15)
It is clear from the figure that w is close to zero almost everywhere except on a small region near the inlet and outlet boundaries of a width of order one cell. It is also visible that r is approximately constant away from the boundary, the difference being also an exponentially decaying field away from the inlet and outlet boundaries; our numerical experiments of Appendix B larger mesh resolutions indicate that this constant is not zero. These exponentially decaying boundary layers and the constant p ∞ are analyzed in the next section.

The Stokes equations in semi-infinite strips with inlet and outlet boundary conditions

In this section, we construct the boundary layer terms v bl and p bl and the constant p ∞ of the asymptotic expansion (1.8). Our construction relies on the observation that the residual (w, r) of (2.15) solves the following Figure 8. Difference between the reference velocity and pressure fields of Figure 4 and the reconstructed velocity and pressure fields from Figure 7, showing boundary layers near the inlet and the outlet. To improve the readability, the color scale bounds for the difference pressure plot ignore extreme values at the left boundary.

Stokes system in the finite strip D N :

                       -∆w + ∇r = 0 in D N , div(w) = 0 in D N , w = 0 on ∂T i for all 1 ≤ i ≤ N, w = 0 on Γ wall , w = v -v per on Γ in , σ(w, r)n = -σ(v per , p per )n = - F X * σ(X , α)n on Γ out . (3.1) 
Knowing that (w, r) should be exponentially small away from the inlet and the outlet, we expect that it can be approximated by the sum of two Stokes flows:

(i) an inlet boundary layer flow (v bl,in , p bl,in ) in the semi-infinite strip extended towards the right direction with the prescribed velocity v 0 -v per at the left boundary, (ii) an outlet boundary layer flow (v bl,out , p bl,out + p ∞ ) in the semi-infinite strip extended towards the left direction with the prescribed normal stress -σ(v per , p per )n at the left boundary.

These two boundary layer flows are constructed in Section 3.1 and Section 3.2 respectively.

The boundary layer flow in the vicinity of the inlet

In what follows, let us denote by B + the semi-infinite strip with periodic cells Y opened towards the positive real axis:

B + = +∞ i=0 Y i with Y i := ie i + Y. (3.2)
We still denote by T i := ie 1 + P \Y the solid part in the cell i and by Γ x1 := {(x 1 , x ′ ) ∈ B + } the section cutting B + at the abscissa x 1 (thus Γ 0 is the left boundary). We also denote by Γ wall,+ the wall boundaries Γ wall,+ := (0, +∞) × ∂P ′ with P ′ = (0, 1) d-1 .

(3.

3)

The semi-infinite strip B + is represented on Figure 9. We consider the problem of finding a solution (v bl,in , p bl,in ) to the following Stokes problem in the semi-infinite strip B + :

Γ x1 T 0 T 1 T 2 T 3 T 4 T 5 T 6 T 7 Γ wall,+ Γ wall,+ Γ 0 Γ 1 v 0 -v per
               -∆v bl,in + ∇p bl,in = 0 in B + , div(v bl,in ) = 0 in B + , v bl,in = 0 on ∂T i , ∀i ≥ 0, v bl,in = 0 on Γ wall,+ , v bl,in = w 0 on Γ 0 . (3.4)
where for our purpose, the boundary datum w 0 is given by

w 0 := v 0 -v per = v 0 - F X * X . (3.5) By construction v 0 -v per ∈ H 1 2 (Γ 0 , R d ) is an inlet velocity satisfying Γ0 w 0 • n dσ = Γ0 (v 0 -v per ) • n dσ = 0. (3.6) 
In what follows, we show that the solution (v bl,in , p bl,in ) is a boundary layer flow that captures (up to exponentially small errors in N ) the behavior of the residual flow in the vicinity of the inlet as visible on Figure 8.

Before stating an existence and uniqueness result for (3.4), let us give some considerations motivating the introduction of the boundary datum w 0 = v 0 -v per . If v bl,in is a boundary layer flow decaying exponentially at infinity, it is natural to expect that v bl,in ∈ H 1 (B + ). The following lemma given in [START_REF] Jäger | On the boundary conditions at the contact interface between a porous medium and a free fluid[END_REF]Lemma 3.3] states that if (3.4) has a solution v bl,in ∈ H 1 (B + , R d ) for a given w 0 ∈ H Proof. The zero divergence condition implies that the flux of w is constant on any section Γ x1 cutting the strip B + . Therefore, using the non-slip boundary condition on the wall Γ wall,+ , a similar argument to that in the proof of Lemma 2.1 yields the identity

Y w • e 1 dx = Γ0 w • e 1 dσ. (3.7) 
Passing from cell to cell, we actually find that

Y k w • e 1 dx = Γ0 w • e 1 dσ for all k ≥ 0. (3.8)
We now use the Cauchy-Schwartz inequality to obtain that

|Y | Y k |w| 2 dx ≥ Y k w • e 1 dx 2 = Γ0 w • e 1 dσ 2 for all k ≥ 0. (3.9)
Summing over k, we thus infer the following inequality:

|Y | ||w|| 2 L 2 (B+) ≥ k≥0 Γ0 w • e 1 dσ 2 , (3.10) 
which is possible only if Γ0 w • n dσ = 0. □

In the next proposition, we show the converse result: the problem (3.4) admits a unique solution if the prescribed inlet flow w 0 has zero flux. Our proof will depend on the following Poincaré inequality in the perforated semi-strip B + . Lemma 3.2. There exists a constant C > 0 such that for any w ∈ H 1 (B + , R d ) satisfying w = 0 on ∂T i for any i ≥ 0, it holds

||w|| L 2 (B+,R d ) ≤ C||∇w|| L 2 (B+,R d×d ) . (3.11)
Proof. The standard Poincaré inequality on every perforated cell states that

||w|| L 2 (Yi,R d ) ≤ C||∇w|| L 2 (Yi,R d×d ) for all i ≥ 0,
with a constant C independent of w and i. The result follows by summing over i ≥ 0. □ This lemma implies the following proposition. 

) ∈ H 1 (B + ) × L 2 loc (B + )/R satisfying ||v bl,in || H 1 (B+,R d ) ≤ C||w 0 || H 1 2 (Γ0,R d ) , (3.12) 
for a constant C > 0 independent of v 0 and v per .

Proof. We start by constructing a vector field

w 1 ∈ H 1 (Y, R d ) such that div(w 1 ) = 0 in Y, w 1 = 0 on ∂Y \Γ 0 , w 1 = w 0 on Γ 0 . (3.13)
This is possible thanks to the zero flux assumption as follows: let w 0 ∈ H 1 (Y ) be an extension of w 0 vanishing on ∂Y \Γ 0 , satisfying w 0 = w 0 on Γ 0 . The function div( w 0 ) belongs to

L 2 0 (Y ) = {w ∈ L 2 (Y ) | Y w dx = 0} due to the zero-flux assumption: Y div( w 0 ) dx = ∂Y w 0 • n dy = Γ0 w 0 • n dσ = 0. (3.14)
Therefore, we can introduce r := B(div( w 0 )) a function in H 1 0 (Y, R d ) (vanishing on all the boundaries of Y ) satisfying div( r) = div( w 0 ) in Y . Here, B :

L 2 0 (Y ) → H 1 0 (Y, R d ) is a Bogovskii operator in Y [25, 1],
i.e. a continuous right inverse of the divergence. Then, the function w 1 := w 0 -r satisfies the properties (3.13). Moreover, there exist constants C, C ′ > 0 independent of w 0 such that

||w 1 || H 1 (D,R d ) ≤ || w 0 || H 1 (D,R d ) + || r|| H 1 (D,R d ) ≤ || w 0 || H 1 (D,R d ) + C||div( w 0 )|| L 2 (D) ≤ C ′ ||w 0 || H 1 2 (Γ0) . (3.15) 
Let us denote by V the space V := {w ∈ H 1 (B + ) | w = 0 on ∂B + and div(w) = 0}.

From the Lax-Milgram's theorem and the Poincaré inequality (3.11), there exists a unique solution w ∈ V to the variational problem

find w ∈ V such that ∀ w ′ ∈ V, B+ ∇ w : ∇ w ′ dx = - Y ∇w 1 : ∇ w ′ dx. (3.16)
We pose v bl,in := w + w 1 1 Y . Note that v bl,in = w 0 on Γ 0 and v bl,in ∈ H 1 (B + , R d ) because w 1 can be extended continuously by zero in B + \Y . Moreover, there exist constants C, C ′ > 0 such that

||v bl,in || H 1 (B+,R d ) ≤ || w|| H 1 (B+,R d ) + ||w 1 || H 1 (Y,R d ) ≤ C||w 1 || H 1 (Y,R d ) ≤ C ′ ||w 0 || H 1 2 (Γ0,R d )
.

This proves the inequality (3.12).

Let us now prove the existence of the pressure p bl,in . Due to (3.16), we find that B+ ∇v bl,in : ∇w ′ dx = 0 for any w ′ ∈ V which also implies, by restriction to those w ′ ∈ V satisfying w ′ = 0 on the cells Y i with i ≥ l:

D l ∇v bl,in : ∇w ′ dx = 0 for any w ′ ∈ V l , (3.17) 
where V l := {w ′ ∈ H 1 (D l , R d ) | w ′ = 0 on ∂D l and div(w ′ ) = 0} (we recall that D l is the finite strip with only l cells). By standard arguments [START_REF] Girault | Finite Element Methods for Navier-Stokes Equations[END_REF] (or the theorem of De Rham), this implies the existence of p l bl,in ∈ L 2 (D l ) defined up to a constant such that for any w ′ ∈ H 1 0 (D l ),

D l ∇v bl,in : ∇w ′ dx = D l p l bl,in div(w ′ ) dx. (3.18)
In order to obtain a global pressure field p bl,in , we set p bl,in := p l bl,in in D l for any l ≥ 0 where we choose the constant defining p l bl,in such that p l bl,in = p 0 bl,in in the first cell Y 0 . The pressure field p l bl,in is thus the restriction of a global pressure field p bl,in ∈ L 2 loc (B -) which is defined up to a constant (the one associated with the definition of p 0 bl,in ). Since the semi-strip B + is a smooth domain, standard elliptic regularity estimates for the Stokes system imply we have actually obtained a smooth solution (v bl,in , p bl,in ) ∈ C ∞ loc (B + , R d ) × C ∞ loc (B + )/R solving the system (3.4). □

In the next propositions, we prove the exponential decay of v bl,in and the exponential convergence of p bl,in towards a constant, which can be chosen to be zero. In the remainder of this section, we assume that the boundary datum w 0 is given by (3.5), i.e. w 0 = v 0 -F X * X . Since F = Γ0 v 0 • e 1 dσ and we have the existence of some constant C > 0 such that

||v 0 -v per || H 1 2 (Γ0,R d ) ≤ C||v 0 || H 1 2 (Γ0,R d )
.

(3.19) Proposition 3.2. There exists an exponent γ > 0 and a constant C > 0 both independent of v 0 and k ≥ 0 such that

||v bl,in || H 1 (Y k ,R d ) ≤ Ce -γk ||v 0 || H 1 2 (Γ0,R d )
for all k ≥ 0.

(3.20)

Proof. The proof is almost identical to that of [START_REF] Allaire | Boundary layer tails in periodic homogenization[END_REF]Lemma 4.4]. The main idea can be summarized as follows: due to (3.12), the energy norm of v bl,in in the strip B +,k := ∪ i≥k Y k can be bounded for any k ≥ 1 by the energy norm in the cell Y k-1 . The translational invariance of B + implies indeed the existence of a constant C > 0 independent of k and of v bl,in such that

||v bl,in || H 1 (B +,k ,R d ) ≤ C||v bl,in || H 1 2 (Γ k ,R d ) ≤ C||v bl,in || H 1 (Y k-1 ,R d ) for all k ≥ 1, (3.21) 
where we recall (see e.g. [START_REF] Girault | Finite Element Methods for Navier-Stokes Equations[END_REF]Chapter 1]) that a possible definition of the norm of

H 1 2 (Γ k , R d ) is ||v bl,in || H 1 2 (Γ k ,R d ) = inf w∈H 1 (Y k ,R d ) w=v bl,in on Γ k ||w|| H 1 (Y k ,R d ) . (3.22) From (3.21) and ||v bl,in || 2 H 1 (Y k-1 ,R d ) = ||v bl,in || 2 H 1 (B +,k-1 ,R d ) -||v bl,in || 2 H 1 (B +,k ,R d ) , we obtain thus ||v bl,in || 2 H 1 (B +,k ,R d ) ≤ C 2 1 + C 2 ||v bl,in || 2 H 1 (B +,k-1 ,R d ) , (3.23) 
from where we readily infer

||v bl,in || 2 H 1 (B +,k ,R d ) ≤ C 2 1 + C 2 k-1 ||v bl,in || 2 H 1 (B,R d ) for all k ≥ 1. (3.24)
This inequality together with (3.12) and (3.19) implies the result with γ = -log C 2 /(C 2 + 1) /2. □

The next proposition show the exponential convergence of the pressure towards a constant, where we assume that a determining constant has been chosen for p bl,in ∈ L 2 loc (B + )/R. Proposition 3.3. There exists a limiting constant p in,∞ ∈ R, and a constant C > 0 independent of k ≥ 0 and v 0 such that

|p in,∞ | ≤ C||v 0 || H 1 2 (Γ0,R d ) , (3.25) ||p bl,in -p in,∞ || L 2 (Y k ) ≤ Ce -γk ||v 0 || H 1 2 (Γ0,R d ) for all k ≥ 0. (3.26)
Proof. Our proof is based on some arguments present in the proof of [START_REF] Jäger | On the boundary conditions at the contact interface between a porous medium and a free fluid[END_REF]Proposition 3.7]. It is done in two steps. Let us first recall that by construction p bl,in satisfies

D l ∇v bl,in : ∇w ′ dx = D l p bl,in div(w ′ ) dx for all w ′ ∈ H 1 0 (D l , R d ), (3.27) 
for any l ≥ 1, where D l = ∪ l-1 i=0 Y i is the union of the first l cells. • Step 1 : we show the convergence of the mean value 1 |Y k | Y k p bl,in dx. For this, let us consider the function

ϕ k ∈ L 2 0 (Y k ∪ Y k+1 ) defined by ϕ k (x) = 1 if x ∈ Y k , -1 if x ∈ Y k+1 . (3.28)
By using the Bogovskii operator in Y k ∪ Y k+1 , we can find a test function

w k ∈ H 1 0 (Y k ∪ Y k+1 , R d ) such that div(w k ) = ϕ k . The extension of w k by zero in D k is an element of H 1 0 (D k+2 , R d ) satisfying ||w k || H 1 (Y k ∪Y k+1 ,R d ) ≤ C for a constant C > 0 independent
of k, due to the translational invariance. Setting w ′ = w k in (3.27) with l = k + 2 and using (3.20), we obtain thus

Y k+1 p bl,in dx - Y k p bl,in dx = Y k ∪Y k+1 ∇v bl,in : ∇w k dx ≤ ||∇v bl,in || L 2 (Y k ∪Y k+1 ,R d×d ) ||∇w k || L 2 (Y k ∪Y k+1 ,R d×d ) ≤ Ce -γk ||v 0 || H 1 2 (Γ0,R d ) . (3.29)
By summing (3.29) over k, we obtain that 1 |Y k | Y k p bl,in dx converges to some limit p in,∞ ∈ R, and that this limit satisfies (3.26). Moreover, the convergence is exponential:

1 |Y k | Y k p bl,in dx -p ∞ ≤ C||v 0 || H 1 2 (Γ0,R d ) e -γk .
(3.30)

•

Step 2 : we show the convergence towards zero of ||p bl,in -p in,∞ || L 2 (Y k ) . We use the Bogovskii operator in Y k to construct a test function

w k ∈ H 1 0 (Y k , R d ) such that div(w k ) = p bl,in - 1 Y k Y k p bl,in dx ′ and ||w k || H 1 (Y k ,R d ) ≤ C p bl,in - 1 Y k Y k p bl,in dx ′ L 2 (Y k )
, for a constant C > 0 independent of k ≥ 0 (this is possible due to the translational invariance of the cells Y k ).

Setting w ′ to be the extension of w k by zero in D k+1 in (3.27), we obtain

p bl,in - 1 Y k Y k p bl,in dx ′ 2 L 2 (Y k ) = Y k ∇v bl,in : ∇w k dx ≤ ||∇v bl,in || L 2 (Y k ,R d×d ) ||∇w k || L 2 (Y k ,R d×d ) ≤ Ce -γk ||v 0 || H 1 2 (Γ0,R d ) p bl,in - Y k 1 Y k p bl,in dx ′ L 2 (Y k ) , (3.31) 
from where we infer p bl,in -1

Y k Y k p bl,in dx ′ L 2 (Y k ) ≤ Ce -γk ||v 0 || H 1 2 (Γ0,R d )
.

The inequality (3.26) follows by using the triangle inequality with (3.30). □

Gathering the two previous propositions all together, we obtain the following corollary.

Corollary 3.1. There exists a unique solution (v bl,in , p bl,in

) ∈ C ∞ (B + , R d ) × C ∞ (B + , R d
) to the semi-infinite strip problem (3.4) and (3.5) satisfying p bl,in (x 1 , x ′ ) → 0 as x 1 → +∞. Moreover, there exist constants γ > 0 and C > 0 independent of v 0 such that for all (x 1 , x ′ ) ∈ B + ,

|v bl,in (x 1 , x ′ )| ≤ C||v 0 || H 1 2 (Γ0,R d )
e -γx1 for all x 1 ≥ 0, (3.32)

|p bl,in (x 1 , x ′ )| ≤ C||v 0 || H 1 2 (Γ0,R d )
e -γx1 for all x 1 ≥ 0.

(3.33)

Proof. Since the p bl,in is defined up to a constant, we can choose p in,∞ = 0. Then, we just need to prove the exponential decays (3.32) and (3.33). First, owing to the smoothness of B + , interior regularity estimates [START_REF] Galdi | An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems[END_REF] imply the existence of a constant

C l > 0 such that ||v bl,in || H l (Y k ,R d ) +||p bl,in -p in,∞ || H l-1 (Y k ,R d ) ≤ C l e -γk ||v 0 || H 1 2 (Γ0,R d )
where C l may depend on l but not on k or on v 0 . Using the Sobolev embedding theorem for a sufficiently large l, the same bound holds in fact for the L ∞ norm of v bl,in , ∇v bl,in and p bl,in -p in,∞ inside Y k . This implies (3.32) and (3.33). □

As an important consequence of the vanishing of the pressure p bl,in at infinity, we find that the inlet boundary condition has no influence on selecting the global constant for the pressure field p of (1.6).

The boundary layer flow in the vicinity of the outlet

We construct similarly a boundary layer field (v bl,out , p bl,out ) matching the outlet boundary condition of (w, r) in (3.1). Let us introduce the periodic semi-infinite strip B -opened towards the negative real axis:

B -= -∞ i=-1 Y i with Y i = ie 1 + Y for i ≤ -1.
We denote by Γ wall,-the wall boundaries

Γ wall,-:= (-∞, 0) × ∂P ′ with P ′ = (0, 1) d-1 .
As previously, T i := ie 1 + P \Y is the solid part in the cell i and Γ 0 is the section of B -with abscissa x 1 = 0. In this configuration, Γ 0 plays the role of the outlet boundary. The semi-infinite strip B -is represented on Figure 10.

T-1 T-2 T-3 T-4 T-5 T-6 T-7 T-8 Γ wall,- Γ wall,- Γ 0 σ(v bl,out , p bl,out )n = -σ(v per , p per )n Figure 10. The semi-infinite strip B -.
We consider the following Stokes problem in the semi-infinite strip B -:

               -∆X bl,out + ∇α bl,out = 0 in B -, div(X bl,out ) = 0 in B -, X bl,out = 0 on Γ wall,-, X bl,out = 0 on ∂T i , ∀i ≤ -1, σ(X bl,out , α bl,out )n = σ(X , α)n on Γ 0 . (3.34) 
This problem depends only on the periodic cell solution (X , α) to (2.2). Note that a constant needs to be chosen for the pressure α; however, the difference α bl,out -α is independent of the choice of this constant. By adapting the arguments of the previous Section 3.1, we obtain the existence and uniqueness of solution to (3.34) satisfying exponentially decaying estimates as x 1 → -∞.

Proposition 3.4. There exist a unique solution (X bl,out , α bl,out

) ∈ C ∞ (B -, R d ) × C ∞ loc (B -)
to the outlet boundary layer problem (3.34), and a limiting constant α ∞ ∈ R and a constant γ > 0 such that for all

x = (x 1 , x ′ ) ∈ B -, |X bl,out (x 1 , x ′ )| ≤ Ce -γ|x1| , (3.35) 
|α bl,out (x 1 , x ′ ) -α ∞ | ≤ Ce -γ|x1| . (3.36) 
Moreover, α bl,out -α ∞ is independent of the choice of the additive constant chosen for the pressure α determined by the cell problem (2.2).

Proof. Let us denote by W the space

W := w ∈ H 1 (B -) | div(w) = 0, w = 0 on Γ wall,-and w = 0 on i<0 ∂T i . (3.37) 
Multiplying (3.34) by a test function w ′ ∈ W , using ∆X bl,out = div(2e(X bl,out )) and integrating by parts, we find that X bl,out satisfies

B- 2e(X bl,out ) : e(w ′ ) dx = Γ0 w ′ • σ(X , α)n dσ for any w ′ ∈ W, (3.38) 
where n = e 1 is the normal to Γ 0 pointing outward B -. Since (X , α)

∈ H 1 (Y, R d )×L 2 (Y ) solves the cell problem (2.
2), it is classical that σ(X , α)n defines an element of H -1 2 (Γ 0 , R d ). In other word, w ′ → Γ0 w ′ • σ(X , α)n dσ is a continuous linear form over H 1 (B -, R d ). Therefore, by the Lax-Milgram's theorem, the variational problem (3.38) admits a unique solution X bl,out ∈ H 1 (B -, R d ). The existence of a unique pressure field α bl,out ∈ L 2 loc (B -) follows then as in the proof of Proposition 3.1, the only difference being that test functions w ′ do not vanish on Γ 0 ; this implies that α bl,out is defined uniquely and not up to a constant.

Then, since (X bl,out , α bl,out ) are also solution to a semi-infinite strip Stokes problem with the Dirichlet boundary condition X bl,out = X bl,out | Γ0 on Γ 0 , a straightforward adaptation of Propositions 3.2 and 3.3 implies the existence of constants C > 0 and γ > 0 and a limiting constant α ∞ ∈ R such that

||X bl,out || H 1 (Y -k ,R d ) ≤ Ce -γk ||X bl,out || H 1 2 (Γ0,R d ) for all k ≥ 0, (3.39) 
||α bl,out -α ∞ || L 2 (Y k ) ≤ Ce -γk ||X bl,out || H 1 2 (Γ0,R d ) for all k ≥ 0. (3.40) 
The final result follows by using interior regularity estimates as in the proof of Corollary 3.1. □ Remark 3.1. Proposition 3.4 could be restated as follows: there exists a unique additive constant α ∞ such that (3.34) with α replaced by α -α ∞ admits a unique solution (X bl,out , α bl,out ) with α bl,out → 0 as x 1 → -∞.

In order to match the boundary condition of the residual flow (w, r) of (3.1), σ(w, r)n = -σ(v per , p per )n = -F X * σ(X , α), the outlet boundary layer flow (v bl,out , p bl,out + p ∞ ) is defined in the translated strip B -+ N N as follows:

v bl,out (x 1 , x ′ ) := - F X * X bl,out (x 1 -N, x ′ ), p bl,out (x 1 , x ′ ) := - F X * (α bl,out (x 1 -N, x ′ ) -α ∞ ), (3.41) 
where (3.36) implies p bl,out (x 1 , x ′ ) → 0 as x 1 → +∞. The outlet limiting pressure p ∞ is set to

p ∞ := - F X * α ∞ . (3.42) 
The flow (v bl,out , p bl,out + p ∞ ) is expected to capture the outlet boundary layer because it satisfies

σ(v bl,out , p bl,out + p ∞ )n = - F X * σ(X , α)n on Γ out . (3.43)
4. Proof of Proposition 1.1

We have now all the ingredients to establish the asymptotic formulas (1.8) and (1.9) of Proposition 1.1. Let us pose

v bl (x) := v bl,in (x) + v bl,out (x 1 , x ′ ), (4.1) 
p bl (x) := p bl,in (x) + p bl,out (x 1 , x ′ ), (4.2) 
where (v bl,in , p bl,in ) is the inlet boundary layer flow solution to (3.4) and (v bl,out , p bl,out ) are the outlet boundary layer flow defined in (3.41). Let p ∞ be the constant (3.42). Proposition 1.1 can be restated as follows.

Proposition 4.1. Let (v, p) be the solution to the Stokes system (1.6) in the finite strip D N . The following asymptotic expansions hold as N → +∞:

v(x) = F X * X (x) + v bl (x) + O H 1 (D N ) (e -γN ), (4.3) 
p(x) = - F X * (x 1 -N ) + F X * (α(x) -α ∞ ) + p bl (x) + O L 2 (D N ) (N 3 2 e -γN ), (4.4) 
where:

(i) (X , α) is the solution to the periodic cell problem (2.2);

(ii) F := -Γin v 0 • n dσ is the prescribed flux by the inlet velocity v 0 , also called input "mass-flow rate"; (iii) X * := Y X • e 1 dx is the "effective" permeability;

(iv) v bl and p bl are the boundary layer velocity and pressure determined by (4.1) and (4.2). These boundary layers decay exponentially away from the inlet and the outlet:

|v bl (x 1 , x ′ )| + |p bl (x 1 , x ′ )| ≤ C||v 0 || H 1 2 (Γ0,R d ) e -γ min(x1,L-x1) , (4.5) 
for constants C > 0 and γ > 0 independent of v 0 and (

x 1 , x ′ ) ∈ D N , (v) ||O H 1 (D N ,R d ) (e -γN )|| H 1 (D N ,R d ) +||O L 2 (D N ) (e -γN )|| L 2 (D N ) ≤ C||v 0 || H 1 2 (Γ0,R d ) e -γN for a constant C > 0 independent of v 0 .
Proof. The exponential decay (4.5) is a consequence of Corollary 3.1, Proposition 3.4 and of the definition (3.41) of p bl,out . In order to prove the exponential rate of convergence in (4.3) and (4.4), we consider the residual velocity and pressure field (w, r) defined by

w(x) := v(x) - F X * X (x) + v bl (x) , r(x) := p(x) -- F X * (x 1 -N ) + F X * (α(x) -α ∞ ) + p bl (x) . (4.6)
By construction, (w, r) solves the following Stokes problem:

                 -∆w + ∇r = 0 in D N , div(w) = 0 in D N , w = 0 on ∂T i for 1 ≤ i ≤ N, w = -v bl,out = F X * X bl,out (• -N, •) on Γ in , σ(w, r)n = -σ(v bl,in , p bl,in )n on Γ out . (4.7) 
By using the exponential decay estimates of Corollary 3.1 and Proposition 3.4 for the boundary layer v bl,in , p bl,in and v bl,out , we find that there exists a constant C > 0 independent of N such that

F X * X bl,out (• -N, •) H 1 2 (Γin,R d ) ≤ C||v 0 || H 1 2 (Γ0,R d ) exp(-γN ), (4.8) 
||σ(v bl,in , p bl,in )n||

H -1 2 (Γout,R d ) ≤ C||v 0 || H 1 2 (Γ0,R d )
exp(-γN ). (4.9)

By using standard energy estimates in D N and the Poincaré inequality (3.11) (which is independent of N ), we obtain the existence of a constant C > 0 such that Since div(w ′ ) = r, we obtain thus

||w|| H 1 (D N ,R d ) ≤ C exp(-γN )||v 0 || H 1 2 (Γ0,R d ) . ( 4 
||r|| 2 L 2 (D N ) ≤ C||w|| H 1 (D N ,R d ) ||w ′ || H 1 (D N ,R d ) + ||w ′ || H 1 2 (Γout,R d )
||σ(v bl,in , p bl,in )n||

H -1 2 (Γout,R d ) ≤ CN 3 2 exp(-γN )||v 0 || H 1 2 (Γ0,R d ) ||r|| L 2 (D N ) , (4.13) 
which implies (4.4). □

Remark 4.1. The asymptotic (4.3) for the velocity is reminiscent of the classical decomposition of waves into propagative and evanescent modes in periodic wave guides, as seen in, for example, [START_REF] Hohage | Riesz bases and Jordan form of the translation operator in semi-infinite periodic waveguides[END_REF].

In the proof of Proposition 3.4, we relied on the following lemma which establishes the existence of a right inverse for the divergence in the finite strip D N with an explicit bound in N . Lemma 4.1. Let V be the subspace of H 1 (D N , R d ) of vanishing functions on all boundaries except the outlet:

V = {w ∈ H 1 (D N ) | w = 0 on Γ wall ∪ Γ in and w = 0 on ∪ N -1 i=0 ∂T i }.
There exists a Bogovskii operator B N : L 2 (D N ) → V satisfying the following properties:

(i) div(B N (ϕ)) = ϕ for all ϕ ∈ L 2 (D N ); (ii) ||B N (ϕ)|| H 1 (D N ,R d ) ≤ CN 3 2 ||ϕ|| L 2 (D N ) for a constant C independent of N ≥ 1 and ϕ ∈ L 2 (D N ).
Proof. Let ϕ ∈ L 2 (D N ). We decompose ϕ as

ϕ = N -1 k=0 (ϕ -ϕ k ) 1 Y k + N -1 k=0 ϕ k 1 Y k ,
where

ϕ k := 1 |Y k | Y k ϕ dx is the average of ϕ k on Y k . Let us denote by • B k the Bogovskii operator from L 2 0 (Y k ) to H 1 0 (Y k , R d ) for all 0 ≤ k ≤ N -1; • w k ∈ H 1 0 (Y k ∪ Y k+1 , R d ) a function satisfying div(w k ) = 1 Y k -1 Y k+1 for 0 ≤ k ≤ N -2; • w N -1 ∈ H 1 (Y N -1 , R d ) a function vanishing on ∂Y N -1 \Γ out and satisfying div(w N -1 ) = 1 Y N -1 .
By the translational invariance of the sets Y k , there exists a constant C > 0 independent of N ≥ 0 and k such that

||w k || H 1 (Y k ∪Y k+1 ) ≤ C and |||B k ||| L 2 (Y k )→H 1 (Y k ,R d ) ≤ C. (4.14) 
We pose

B N (ϕ) := N -1 k=0 B k (ϕ -ϕ k )1 Y k + N -1 k=0 k l=0 ϕ l w k , (4.15) 
where w k is extended by zero in D N outside its domain of definition. By the properties of B k and of the functions w k , B N (ϕ) is an element of V . Furthermore, its divergence is equal to

div(B N )(ϕ) = N -1 k=0 (ϕ -ϕ k )1 Y k + N -2 k=0 k l=0 ϕ l (1 Y k -1 Y k+1 ) + N -1 l=0 ϕ l 1 Y N -1 = N -1 k=0 (ϕ -ϕ k )1 Y k + N -2 k=0 k l=0 ϕ l - k-1 l=0 ϕ l 1 Y k - N -2 l=0 ϕ l 1 Y N -1 + N -1 l=0 ϕ l 1 Y N -1 = N -1 k=0 (ϕ -ϕ k )1 Y k + N -2 k=0 ϕ k 1 Y k + ϕ N -1 1 Y N -1 = ϕ. (4.16) 
It remains to estimate the norm of B N (ϕ). The first term in (4.15) can be bounded as follows:

N -1 k=0 B k (ϕ -ϕ k )1 Y k 2 H 1 (Y k ,R d ) = N -1 k=0 ||B k (ϕ -ϕ k )|| 2 H 1 (Y k ,R d ) ≤ C N -1 k=0 ||ϕ -ϕ k || 2 L 2 (Y k ) ≤ C||ϕ|| 2 L 2 (D N ) .
(4.17) Then, estimating the second term of (4.15) with the uniform bound (4.14) on w k yields

N -1 k=0 k l=0 ϕ l w k H 1 (D N ,R d ) ≤ N -1 k=0 k l=0 |ϕ l | ||w k || H 1 (D N ,R d ) ≤ C N -1 l=0 (N -l)|ϕ l | ≤ CN 3 2 N -1 l=0 |ϕ l | 2 1 2 ≤ CN 3 2 ||ϕ|| L 2 (D N ) . (4.18)
This implies the point (ii). □

Homogenization of a Stokes flow in a periodic microchannel

In this final section, we use Proposition 4.1 to obtain a quantitative homogenization result for a Stokes flow in a thin periodic channel with inlet and outlet boundary conditions. As it can be guessed from periodic homogenization theory for fluids driven by an external volume force, the homogenized flow is governed by Darcy's law. Our main motivation is to identify the effective boundary conditions satisfied by the homogenized model in the presence of inlet and outlet boundaries.

In the following, we introduce a small rescaling constant ε > 0, and we consider a Stokes flow (v ε , p ε ) in the domain D ε := εD N , where we assume that N := L/ε is an integer and L > 0 a given fixed length. The periodic strip D ε of length L and width ε is represented on Figure 11. The velocity and pressure v ε and p ε are solution

εΓ in ε 2 v 0 εΓ out σ(v, p)n = 0 εΓ wall εΓ wall ε L Figure 11. The strip D ε = εD 14 .
to the following Stokes system:

               -∆v ε + ∇p ε = 0 in D ε , div(v ε ) = 0 in εD ε , v ε = 0 on ε∂T i for 1 ≤ i ≤ N, v ε = ε 2 v 0 on εΓ in , σ(v ε , p ε )n = 0 on εΓ out . (5.1) 
The scaling ε 2 for the inlet velocity is made clear in the next proposition; it ensures that the pressure p ε remains bounded with ε. By rescaling the strip D N by the factor ε and using the result of Proposition 4.1, we obtain the following asymptotic formulas.

Proposition 5.1. The following asymptotic expansions holds for (v ε , p ε ) as ε → 0:

v ε (y) = ε 2 F X * X y ε + v bl y ε + O H 1 (Dε) (e -γL/ε ) , (5.2) 
p ε (y) = - F X * (y 1 -L) + p bl y ε + ε F X * α y ε -α ∞ + O L 2 (Dε) (ε -3 2 e -γL/ε ), (5.3) 
where the norm H 1 (D ε ) is defined as

||v|| H 1 (Dε) := ||v|| L 2 (Dε) + ε||∇v|| L 2 (Dε) . (5.4) 
Moreover, the boundary layer terms satisfy the following estimates:

(i) ||v bl || H 1 (Dε) + ||p bl || L 2 (Dε) ≤ Cε 1 2 ; (ii) ||v bl || H 1 (ω) + ||p bl || L 2 (ω) ≤ Ce -γL/ε for any interior open set ω ⊂⊂ D ε ;
for a constant C > 0 independent of ε but which may depend on ω ⊂⊂ D ε .

Proof. By the uniqueness of a solution to (5.1), it is clear that (v ε , p ε ) is given by

v ε (y) = ε 2 v y ε , p ε (y) = εp y ε , (5.5) 
where (v, p) is the solution to the unscaled system (1.6) in D N . Substituting (5.5) in the asymptotic expansion (4.3) with N = L/ε yields (5.2). Setting N = L/ε in (4.4) we find

p ε (y) = -ε F X * y 1 ε - L ε + ε F X * (α (y/ε) -α ∞ ) + p bl y ε + O L 2 (Dε) (ε -3 2 e -γL/ε ), (5.6) 
which is (5.3). Finally, the boundary layer terms satisfy

p bl y ε + v bl y ε ≤ C exp - γ ε min (y 1 , L -y 1 ) , for all y = (y 1 , y ′ ) ∈ D ε , (5.7) 
for some constant C > 0 independent of y 1 , which by integration leads to the boundary layer estimates (i) and (ii). □

The boundary layer estimates (i) and (ii) reflect that v bl and p bl are concentrated near the inlet and outlet boundaries εΓ in and εΓ out . Following [START_REF] Allaire | Boundary layer tails in periodic homogenization[END_REF], these boundary layers can be safely neglected away from the boundaries. From the asymptotic (5.2) and (5.3) and the point (ii), we can therefore write for y restricted to any interior domain ω ⊂⊂ D ε :

v ε (y) = ε 2 F X * X y ε + O H 1 (ω) (ε 2 e -γL/ε ), (5.8) p ε (y) = - F X * (y 1 -L) + ε F X * α y ε -α ∞ + O L 2 (ω) (e -γL/ε ).
(5.9)

We now "homogenize" the solution (v ε , p ε ) by averaging the periodic fluctuations at the scale ε.

Definition 5.1. We define the homogenized velocity and pressure field (v * ε , p * ε ) by

v * ε (y 1 ) := ε 2 F X * ε -d εY X y ε dy = ε 2 F e 1 , (5.10) 
p * ε (y 1 ) := - F X * (y 1 -L) + ε F X * (α * -α ∞ ), (5.11) 
where α * := Y α(y) dy.

Remark 5.1. The name "homogenized" can be justified in the sense that it can be proved that

D v ε • ϕ dy = D v * ε • ϕ dy + O(ε M ), D p ε ϕ dy = D p * ε ϕ dy + O(ε M ), (5.12) 
holds for any compactly supported vector valued functions ϕ

∈ C ∞ c (D, R d ), ϕ ∈ C ∞ c (D)
, and for any arbitrarily large integer M ∈ N, where we extend v ε and p ε by zero inside the holes εT i , 1 ≤ i ≤ N (see [START_REF] Smyshlyaev | On rigorous derivation of strain gradient effects in the overall behaviour of periodic heterogeneous media[END_REF]Appendix C] or [START_REF] Feppon | Shape and Topology Optimization of Multiphysics Systems[END_REF]Lemma 7.3]). The extension for the velocity is natural due to the no-slip boundary condition. The extension for the pressure is somewhat arbitrary; it is relevant in the sense that p ε can be retrieved from p * ε and v * ε (up to exponentially small errors away from the inlet and outlet boundaries) through the formula

p ε (y) = p * ε (y) + ε -1 β y ε • v * ε (y) + O L 2 (ω) (ε -3 2 e -γL/ε ), y ∈ D ε , (5.13) 
where β is the universal corrector β(y/ε) = (X * ) -1 (α(y/ε) -α * )e 1 . The identity (5.13) shows that p * ε is a relevant definition for the homogenized pressure because when α is extended by zero inside Y , β(y/ε) is a fluctuation of zero average in P = (0, 1) d . The identity (5.13) can be related to the "Bakhvalov" or "criminal" ansatz for the pressure as introduced in [START_REF] Feppon | High Order Homogenization of the Stokes System in a Periodic Porous Medium[END_REF]. The corresponding identity for the velocity reads v ε (y) = N y ε v * ε (y) + O H 1 (ω,R d ) (ε 2 e -γL/ε ) with N (y/ε) = (X * ) -1 X (y/ε) ⊗ e 1 .

(5.14)

Similar to the result of Lemma 2.3, we can write a "macroscopic" the Darcy's law for the homogenized pipe.

Corollary 5.1. The input mass flow rate F ε and the homogenized pressure drop ∆p * ε inside the thin perforated tube D ε , are related by the following Darcy's law:

F ε = ε 2 X * ∆p * ε L , (5.15) 
where X * is defined in (2.3) and ε 2 X * plays the role of an effective permeability.

Proof. The pressure drop between the inlet and the outlet reads

∆p * ε = p * ε | εΓin -p * ε | εΓout = F X * L, (5.16) 
while the input mass flow rate of the fluid in the thin strip is

F ε := - 1 ε d-1 εΓin u ε • n dσ = ε 2 F.
(5.17)

Eliminating the constant F , we obtain the result. □

The macroscopic Darcy's law (5.15) can be seen as a consequence of the following "local" Darcy's law, which can be seen as an effective homogenized model characterizing the homogenized velocity and pressure fields (v * ε , p * ε ). Corollary 5.2. The homogenized velocity and pressure (v * ε , p * ε ) defined by (5.10) and (5.11) solve the following Darcy system:

v * ε (y 1 ) = -ε 2 X * ∇p * ε , with        div(v * ε ) = 0 in (0, L), v * ε • e 1 = ε 2 F at y 1 = 0, p * ε = ε F X * (α * -α ∞ ) at y 1 = L.
(5.18)

In conclusion, we obtain that the homogenized equation for (5.1) is the Darcy's law (5.18) which is a Poisson equation with a Neumann boundary condition for the pressure at the inlet and a Dirichlet condition for the pressure at the outlet. The Dirichlet condition can be approximated at first order by p * ε = 0 on the outlet, but the use of the boundary layer tail α ∞ is needed if one desires a (higher order) correction on the pressure constant determined by the outlet boundary condition. 
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 1 Figure 1. The finite strip D 8 made of 8 unit cells and enclosed by the inlet boundary Γ in , the outlet boundary Γ out and the remaining wall boundaries Γ wall . Y = P \T , where P = (0, 1) d and T ⊂ P is an open subdomain representing the solid part. For any x 1 ∈ (0, 1),
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 4 Figure 4. Numerical simulation of a two-dimensional flow field past 8 circular obstacles with non-normal inlet boundary condition v 0 = (1, 2). v 1 and v 2 are the x and y component of the velocity field v. To improve the readability, the color scale bounds for the pressure plot ignore extreme values at the left boundary.
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 17 Figure 7. Reconstructed periodic velocity and pressure fields matching the input mass flow rate from formula (2.13). The color scales for the x and y components of the velocity, v per,1 and v per,2 , have been set to match those of Figure 4.
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 2012 Figure 12. Numerical estimation of the residual pressure α N i of (B.1) for different strip lengths N and mesh resolutions h = 1/M . The residual pressure settles to a constant close to the outlet boundary layer tail α ∞ of Proposition 3.4. The blue line corresponds to the mean of the residual pressure values excluding the boundary nodes, giving an estimation of α ∞ .

Figure 13 .

 13 Figure 13. Numerical simulation of a two-dimensional flow field past 8 triangular obstacles with non-normal inlet boundary condition v 0 = (1, 2) (obtained with FreeFEM [27]). v 1 and v 2 are the x and y component of the velocity field v.
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 114 Figure 14. Reconstructed periodic velocity and pressure fields matching the input mass flow rate from formula (2.13) for the periodic strip with triangular obstacles..
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 1152 Figure 15. Difference between the reference velocity and pressure fields of Figure13and the reconstructed velocity and pressure fields from Figure14.
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 16 Figure 16. Numerical simulation of a two-dimensional flow field in a duct with periodically varying cross-section, with non-normal inlet boundary condition v 0 = (1, 2) (obtained with FreeFEM [27]). v 1 and v 2 are the x and y component of the velocity field v.
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 1217 Figure 17. Reconstructed periodic velocity and pressure fields matching the input mass flow rate from formula (2.13).
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 118319 Figure 18. Difference between the reference velocity and pressure fields of Figure16and the reconstructed velocity and pressure fields of Figure17.
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 1220 Figure 20. Reconstructed periodic velocity and pressure fields matching the input mass flow rate from formula (2.13).
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 121 Figure 21. Difference between the reference velocity and pressure fields of Figure 19 and the reconstructed velocity and pressure fields from Figure 20.
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Although quite elementary, Proposition 2.1 has subtle consequences for the practical numerical computation of the solution (X , α) to (2.2) with the finite element method. In this appendix, we want to draw the attention of the reader on the fact that one may implement (2.2) by solving it with a mixed formulation, using periodic finite elements with respect to Γ 0 and Γ 1 for both X and α, but it is also possible to not to work in the torus Y # but on the cell Y with the Sobolev space

W is the closure of the space of smooth C ∞ (Y, R d ) functions vanishing on Γ w and periodic with respect to the variable x 1 . One can reformulate (2.2) as the following mixed formulation:

where a(X , w) can be either of the following bilinear forms: (A.3)

In (A.2), the boundaries Γ 0 and Γ 1 are not identified and no periodicity condition is imposed on the pressure: the choice of the variational space W of (A.1) only imposes the matching of the traces of X on these boundaries.

In the case (iii), × denotes the vector product (the space dimension is assumed to be d = 3); this bilinear form arises to solve Stokes problems with non-standard boundary conditions on the pressure [START_REF] Conca | The Stokes and Navier-Stokes equations with boundary conditions involving the pressure[END_REF]. It turns out that the solutions (X , α) determined by either of the corresponding mixed variational formulations (A.2) are identical and coincide with the solution (X , α) to the cell problem (2.2). This result comes from the fact that the formulation (A.3) solves (A.2) with the following conditions as essential boundary conditions:

• case (i): matching of (∇X -αI)e 1 on the boundaries Γ 0 and Γ 1 ;

• case (ii): matching of the normal stress σ(X , α)e 1 where σ(X , α) = ∇X + ∇X T -pI on Γ 0 and Γ 1 ;

• case (iii): matching of (∇ × X ) × e 1 -αe 1 on Γ 0 and Γ 1 . Due to interior regularity the solution (X , α) to (2.2) in Y # , ∇X is periodic, which implies that it satisfies all these boundary conditions. The uniqueness of a solution to (A.2) then implies that the solution to (A.2) and the solution to (2.2) coincide in all three cases.

Appendix B. Numerical estimation of the boundary pressure tail α ∞

In this appendix, we numerically estimate the pressure constant α ∞ in (4.4) for a periodic strip with circular obstacles (of radius 0.25) as on Figure 4. The constant p ∞ in Proposition 1.1 can then be obtained from the formula (3.42). Using FreeFEM [START_REF] Hecht | New development in FreeFem++[END_REF], we perform the following procedure:

(i) we compute the original solution (v, p) of the problem (1.6) in the two-dimensional strip D N perforated with disks as on Figure 4. We consider different lengths N ∈ {5, 10, 20} and different possible mesh resolutions determined by the typical edge size h= 1/M for M ∈ {70, 100, 200, 500, 700, 1000}. We first create a periodic mesh for the unit cell by using Mmg [START_REF] Dapogny | Three-dimensional adaptive domain remeshing, implicit domain meshing, and applications to free and moving boundary problems[END_REF] with minimum and maximum edge sizes hmin = 0.9/M and hmax = 1.1/M . We then construct a global mesh for the channel using the mesh addition operator of FreeFEM. This operator enables the discretization of D N by "gluing" N translated copies of the unit cell meshes. (ii) we solve the cell-problem (2.2), setting the constant for α such that Y α dy = 0. We then estimate the constant α ∞ by computing the difference between p and its periodically developed approximation at center nodes with integer abscissa:

From the asymptotic (4.4), α N i is expected to be exponentially close to the constant α ∞ as x i is away from the wall boundaries; the formula (B.1) offers thus a practical way to estimate α ∞ without the need for solving the semi-infinite strip problem (3.34). As a final evaluation, we the constant α ∞ from the mean value α N ∞ := 1/(N -1)

N -1 i=1 α N i obtained at the finest resolution (M = 1000), which excludes the boundary points x 0 and x N .

Given the fine mesh resolutions involved in the numerical computations (for M = 1000 and N = 20, the mesh featured about 16 millions vertices !), we took advantage of an Overlapping Schwarz Domain Decomposition Method [START_REF] Dolean | An Introduction to Domain Decomposition Methods: Algorithms, Theory, and Parallel Implementation[END_REF] in order to perform finite element operations in parallel. The distributed linear system was solved with PETSc [START_REF] Balay | PETSc users manual[END_REF] using MUMPS with the default options [START_REF] Amestoy | MUMPS: A General Purpose Distributed Memory Sparse Solver[END_REF]. The numerical computation was performed using a node with 2x36 Intel Xeon Platinum 8360Y CPUs@2.4 GHz (2048 GB RAM) of the Vlaams Supercomputer Centrum (VSC).

We report on Figure 12 the values of (α N i ) 0≤i≤N for the various strip lengths N and resolutions M . On every plot, a blue line indicates the mean pressure α N ∞ obtained by averaging the values of α∞ (x i )) 1≤i≤N -1 for the finest resolution, excluding the extremal points.

Several observations can be made from our results. Quite a fine mesh resolution (at least h ≃ 1/200) was needed to observe the numerical estimation α n i settling to an approximately constant value away from the channel entrance and exit: in that case α N i is approximately constant for 1 ≤ i ≤ N -1 outside the boundary nodes, for the three situations N ∈ {5, 10, 20}. We note that a much coarser resolution (h ≃ 1/70) was enough to capture the periodic behavior as illustrated e.g. on Figure 8.

Then even a finer resolution h < 1/700 was needed to observe the independence of the estimated constant α N ∞ with respect to N , and a convergent approximation of the estimated constant α ∞ with a precision less than 10 -4 . We note that these convergences were also more difficult to achieve as N grows larger, requiring smaller mesh size and increased computational effort. This can be explained by the fact that as we increase the length N , we also increase the numerical error which accumulates by propagating throughout the strip due to the incompressibility.

Our result using the finest mesh suggests that α N ∞ ≃ α ∞ ≃ -0.0097. This constant is remarkably small, but not zero. The plots of Figure 12 offer thus a numerical validation of the excellent approximation offered by the asymptotic formulas (4.3) and (4.4) for N as small as N = 5.

Appendix C. Numerical verifications of the asymptotic formula with further geometries

In this third appendix, we verify numerically the quality of the approximation provided by the asymptotic formula (4.3) and (4.4) on further 2D unit cell geometries and topologies. We consider the following three additional examples on top of the strip D 8 perforated with circular obstacles (represented on Figure 4): (i) the strip D 8 perforated with triangular holes (featuring corners); (ii) the strip D 8 with periodic walls with varying shapes but without holes, (illustrating the setting of Figure 3b); (iii) the strip D 8 periodically perforated with a set of three small holes, to investigate a more complicated topological configuration.

These three settings are considered in sections C.1 to C.3 respectively. For each configuration, we plot the numerical simulation of the flow by solving the Stokes system (1.6) on the full strip, and the approximation obtained by neglecting the boundary layers in (1.8) and (1.9). Then, in order to appreciate quantitatively the difference and to isolate the boundary layers, we plot the difference between the exact numerical solution and the periodically developed approximation (namely, the residual flow (w, r) of (2.15)). Note that as in Figs. 4 and8, the color scale bounds for the pressure plots ignore extreme values at the left boundary.

The conclusions obtained from these simulations are unchanged: in all three cases, the periodic and linearly growing parts of the asymptotic formula (4.3) and (4.4) (or (1.8) and (1.9)) provide an excellent approximation of Stokes flow inside the periodic strip independently of the geometric configuration (up to the constant p ∞ for the pressure field), even for N as small as 8.