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Partial Server Pooling in Delay Systems

V. Hari Rohit∗ Akshay Mete† D. Manjunath†

Jayakrishnan Nair† B. J. Prabhu‡

February 7, 2024

Abstract

We consider a strategic resource pooling interaction between two ser-
vice providers, each of which is modelled as a multi-server queue. The
traditional full resource pooling mechanism, while improving the over-
all system performance measure, may not always benefit the providers
individually. For rational service providers, there will therefore be no in-
centive to form a stable coalition. We address this issue by proposing
three partial sharing mechanisms: two of these, PPDS and PPR, allow
each provider to designate a certain number of servers to potentially serve
jobs of the other provider, while the third mechanism, DQL, maintains
an upper bound on the difference between occupancies of the two queues.
We determine the probability of waiting for each of the three mechanisms
and show through several numerical examples that their Pareto frontiers
are non-empty. In particular, this shows that the proposed partial pooling
mechanisms are individually beneficial to both providers and incentivize
coalition formation in all situations. Finally, we apply bargaining theory
to determine the operating point on the Pareto frontier.

1 Introduction

We consider resource sharing by service systems modeled as multi server queue-
ing systems, e.g., server farms, cloud computing systems, call centers, inven-
tory systems, and emergency services. These services dimension their resources
(e.g., number of servers) to provide a prescribed quality of service (QoS). Two
commonly used QoS measures in delay systems (as opposed to loss systems)
are the stationary probability of waiting for service (famously characterized by
the Erlang-C formula for M/M/N queues), and moments of the steady state
waiting/sojourn time. For many of these systems, resources are expensive and
different independent systems could possibly share their resources to improve
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their customers’ QoS as compared to when they operate without sharing. It
may also be that procurement of additional resources takes time, and sharing
could be a useful interim measure. In [11], two models for resource sharing
among different service providers are identified:

1. Providers pool all their existing resources expecting that the joint system
is beneficial over operating alone.

2. Providers jointly determine the total resource procurement for the QoS
requirements of the combined system.

Our interest in this paper is related to the first kind of resource sharing
model above. In [11], it is shown that when side payments are allowed, (i.e.,
the providers that improve their performance can pay the providers whose per-
formance worsens to keep them in the coalition) there exists a non-empty core
(stable coalition). Furthermore, cooperative game theory is used to determine
the cost/revenue shares among the coalition of providers. Our interest though
is in the setting of non-transferable utility, where side payments are not allowed.
In this case, the providers may not always have the incentive to completely pool
their resources as illustrated in the following example. Two service providers,
P1 and P2, have, respectively, N1 = 20 and N2 = 30 servers and are offered
load of, respectively, λ1 = 16 and λ2 = 28 Erlangs and are modeled as M/M/N
queues. When operating alone, the providers’ QoS, measured as Erlang-C prob-
abilities, are, respectively, 0.25 and 0.62. When the providers merge to create a
coalition system of 50 servers with 44 Erlangs load, the QoS in the joint system
is 0.28. Clearly, the first provider is not incentivized to join this ‘naive’ full
pooling coalition.

A natural question then is to seek partial pooling models that may incentivize
both providers to join the coalition. Here, by partial pooling models we mean
that each provider contributes a fraction (could be all) of its resources to serve
jobs of the ‘other’ provider, e.g., each provider placing some servers into a
common pool that can be used to serve jobs from either provider. This leads us
to the two key questions that we seek to answer in this paper.

1. How to partially share service resources between the service providers?

2. Given a partial sharing model, how much to share?

To address the first question, we propose three partial sharing mechanisms,
two of which can be implemented using cancel-on-start (c.o.s.) redundancy. (A
discussion on partial pooling via cancel-on-complete (c.o.c.) redundancy can be
found in [15].1) We address the second question by analysing the Pareto frontier
of efficient and mutually beneficial sharing configurations under each mecha-
nism, and further invoking the theory of bargaining to capture the ‘agreement’
between the service providers.

1The present paper is an extended version of [15], in which the Partial Pooling with
Dedicated Servers (PPDS) policy was first introduced.
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1.1 Summary of Contributions and Organisation

Our main contribution is to propose partial pooling mechanisms for delay sys-
tems where waiting probability is the measure of performance and no side pay-
ments are possible. In the first mechanisn, which we call Partial Pooling with
Dedicated Servers (PPDS)1, each provider contributes a fixed number of its
servers to the common pool which can serve tasks2 of either provider. Each
provider retains a set of dedicated servers for its own tasks. In the second
mechanism, called Partial Pooling with Repacking (PPR), each provider ac-
cepts to serve concurrently at most a certain number of ‘overflow’ tasks of the
other provider. This mechanism is similar to PPDS except that we allow every
server to execute tasks of either provider (whereas in PPDS, the servers in each
dedicated pool can only execute the tasks of that particular provider). To see
the difference, consider a simple example of P1 with two servers, one of which is
shared with P2, who has only one server but shares none. In PPDS, a possible
sample path could lead to the following configuration: dedicated server of P1 is
idle (a.k.a., free), shared server is used by a task of P1, the dedicated server of
P2 is busy, and there are waiting tasks of P2. That is, there could be tasks of
P2 that are waiting which could have potentially used the shared server if the
idle dedicated server of P1 could be interchanged with the shared server. PPR
allows for such relabelling or repacking; PPDS does not. In the final mechanism
that we consider, called Differential Queue Length (DQL), the providers main-
tain the difference in their queue-lengths inside a given range by jockeying jobs
at arrival and departure instants. As an example, P1 may decide to accept a
task of P2 whenever P2 has 5 more jobs in the queue than P1. The transfer of
a P2 job to P1 can happen due to an arrival at P2 or a departure at P1. In this
system, P2 will never have more than 5 more jobs in the queue than P1. The
maximal difference (5 in this example) will be a parameter the provider can set
according to the scenario.

For all the three mechanisms, we give efficient ways to compute the waiting
probabilities. This allows the providers to analyze the performance impact of
a given pooling scheme, and to ‘bargain’ over the parameters of the sharing
arrangement. Numerical examples show that the Pareto frontier under these
mechanisms has a special property: Pareto-optimal strategies involve at least
one of the providers sharing its resources completely with the other ; a similar
observation was made in the context of loss systems in [17].

The choice of the partial pooling mechanism itself could be based on techno-
logical factors. The implementation of PPDS and PPR assumes cancel-on-start
redundancy. If this feature is not available, then DQL can be used, which is
based purely on knowing the queue lengths at the time of arrival and end of
service. It does not send replicas like in redundancy systems and hence does not
scan all the other queues to remove the replicas. The choice between PPDS and
PPR could be made based on, for example, privacy or security concerns because
of which a provider may want to keep apart a set of dedicated servers for its

2We shall use customer, jobs, requests, or tasks interchangeably depending upon the
context.
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own tasks. Note also that PPR assumes that all servers are capable of serving
tasks of either provider, whereas under PPDS, only the servers in the common
pool require this ability. Thus, PPDS may be preferrable, for example, in call
centers where cross-training agents to perform multiple functions is expensive.

The resource pooling mechanisms considered here are applicable to service
providers that can be modelled as multi-server single-queue (Erlang-C) queueing
systems, e.g., server farms, cloud computing systems, call centers, inventory
systems, and emergency services. As we show, partial sharing can improve the
performance for both providers without requiring procurement of additional
infrastructure.

The rest of the paper is organized as follows. In the next section, we de-
scribe our system model involving two providers operating multi-server service
systems, and briefly present the three mechanisms. Section 3 considers the
PPDS mechanism. Using its connection with cancel-on-start redundancy sys-
tems [6], we obtain the stationary distribution of the number in the system, and
for a special case, we show that the Pareto region is such that at least one of the
providers shares all of its resources. Based on numerical evidence, we conjec-
ture that this is true in general. We then use bargaining theory to capture the
stable sharing agreement. The PPR mechanism is analyzed in Section 4. The
queueing model induced by PPR is shown to be an Order-Independent-Queue
[14] which allows us to deduce a product-form stationary distribution. We show
that this product-form has a simple expression with an interpretation in terms
of the Erlang-C probabilities, a result which can be of independent interest.
Supported by numerical evidence, and also a formal proof for a special case, we
again conjecture that the Pareto frontier has the same structure as for PPDS.
Section 5 is dedicated to the DQL mechanism. The Markov chain of this model
is shown to be a quasi-birth-death process whose stationary distribution can be
computed using techniques based on matrix-geometric analysis [8]. Numerical
examples are presented to see the various possible shapes of the Pareto frontier
of this mechanism. Section 6 provides a short numerical comparison of the per-
formance of the three partial sharing schemes that we introduced in this paper.
We conclude in Section 7, with discussions on related literature and future work.

2 System Model

Consider two service providers P1 and P2 with N1 and N2 servers, respectively.
The servers are homogenous with unit service rate. Jobs of provider Pi arrive
according to a Poisson process of rate λi, and the service requirements (a.k.a.
sizes) of jobs are i.i.d. exponential with unit mean. Thus λi is the traffic load
of Pi. For stability, we assume λi < Ni for i = 1, 2. We will consider the
stationary waiting probability, defined as the steady state probability that an
arriving job has to wait for service, as the performance metric. For provider Pi,

4



the standalone Erlang-C probability [4] is

Cs
i =

λNi
i

λNi
i +

(
1− λi

Ni

)(Ni−1∑
k=0

λk
i

k!

)
Ni!

. (1)

This will serve as the benchmark when highlighting the benefits of partial shar-
ing compared to the no sharing case.

We shall use the notation −i to indicate the other provider when referring
to provider i. For example, Cs

−i will denote the standalone probability of the
other provider when we are analyzing provider Pi.

2.1 Sharing mechanisms

We give a brief description of the three mechanisms. The detailed analyses will
be presented in the following sections.

PPDS

In the PPDS mechanism, there are three separate pools of servers. Each provider
maintains one dedicated pool for its own jobs, and the third pool is a common
one in which servers can serve jobs of either provider. Each pool has its own
single queue with jobs waiting in chronological order of their arrival time. Upon
arrival of a job of its type, Pi sends a replica to the common queue and one
to its own dedicated queue. The order of service in each queue is first come
first served (FCFS). As soon as one replica of a job enters service, the other is
cancelled. Let ki be the number of servers that Pi contributes to the common
pool. This number will also be called the sharing strategy of Pi. When ki = 0,
Pi is not sharing any servers while ki = Ni means that Pi is pooling all its
servers. In particular, (k1, k2) = (0, 0) corresponds to the baseline scenario with
no resource sharing pooling.

The implementation of PPDS as described above is equivalent to an alter-
native implementation wherein each server maintains its own FSFC queue with
c.o.s. replication, with replicas of each arriving Pi job being sent to each of
the Ni + k−i servers that can process it. This alternative implementation is
illustrated in Fig. 2.

PPR

The PPR mechanism has the same pooling strategy as PPDS except that there
are only two server pools—one for each provider. Each pool has its own single
queue with jobs waiting in chronological order. Upon arrival of a job of any
provider, a replica is sent to the queues of both providers. The order of service
at both providers is to pick the first job in its own queue that is eligible for
service. A job of Pi is eligible if there are strictly less than Ni + k−i jobs of Pi

already in service in total across both the pools. As in PPDS, as soon as one
replica of a job enters service, the other is cancelled. The sharing strategy ki
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Figure 1: Comparison of the queueing architectures of PPDS (left) and PPR
(right) with N1 = 2, N2 = 4, k1 = 1, k2 = 1.

of Pi is the maximum number of overflow jobs in service it allows for P−i. As
before, (k1, k2) = (0, 0) corresponds to the baseline scenario with no resource
sharing pooling.

The implementation of PPR as described above is equivalent to an alter-
native implementation wherin each server maintains its own queue, with c.o.s.
replicas of each arriving job being sent to all servers, and each server processing
the earliest arriving eligible job (subject to the constraint on the number of
concurrent jobs in service from each provider) in its queue.

A comparison of the architectures of PPDS and PPR is shown in Fig. 1 for
N1 = 2, N2 = 4, and (k1, k2) = (1, 1). While PPR requires that every server
be able to execute jobs of any provider, PPDS maintains dedicated servers that
only serve jobs of one provider.

DQL

The third and final mechanism is based on queue-length and does not involve
redundancy. Each provider maintains a single queue for all its servers. The
order of service at each provider is FCFS. An arriving job of Pi that sees xi

jobs in the queue of Pi, computes the difference in queue-lengths at the two
providers (that is, xi − x−i) and applies the following rule:

• if xi − x−i < k−i, then join queue i;

• if xi − x−i ⩾ k−i, then join queue −i;

Similarly, when a job departs from queue −i after service completion, one job
waiting in queue i is chosen and will either jockey to queue −i or continue
waiting in queue i based on the following rule:

• if xi − x−i < k−i, then remain in queue i;

• if xi − x−i ⩾ k−i, then jockey to queue −i;
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We remark that the job chosen for jockeying and the position it joins in the other
queue is not relevant to the computation of the waiting probability since only
the state at the arrival instant of the job determines whether it waits or not. The
number ki is the sharing strategy of Pi in DQL and can be any positive integer.
It can interpreted as the maximum number beyond its own queue length that
Pi allows P−i’s queue length to grow before accepting jobs of P−i. Intuitively,
a larger value of ki indicates less sharing by Pi. When (k1, k2) = (1, 1), the
mechanism works as join the shortest queue and corresponds to full pooling.
On the other extreme, ki = ∞ means that Pi is not sharing its resources.

2.2 Pareto-optimality and Pareto-frontier

We now define Pareto-optimal partial sharing configurations, and provide a suf-
ficient condition for the Pareto frontier (i.e., the collection of Pareto-optimal
sharing configurtions) to have a certain special structure. The discussion in the
remainder of this section will consider an abstract sharing mechanism parame-
terized by (z1, z2), where zi captures the extent to which provider Pi shares its
service capacity with the other provider; a higher value of zi corresponding to
a greater extent of sharing. (We will make the connection between (z1, z2) and
the parameters (k1, k2) corresponding to each of the previously defined mecha-
nisms in later sections.) For the configuration (z1, z2) corresponding to a generic
sharing mechanism, the waiting probability of Pi will be denoted by Ci(z1, z2).

Each provider is assumed to be optimizing its own waiting probability, i.e.,
for a provider to consider sharing its servers, it has to benefit from doing so.
To determine which partial sharing configuration will be acceptable to the
providers, we use the concept of Pareto-frontier which is widely used in eco-
nomics and multi-objective optimization.

Definition 1 (QoS stable configuration). A partial sharing configuration (z1, z2)
is said to be QoS stable, if, Ci(z1, z2) < Cs

i for i = 1, 2, where Cs
i is the stan-

dalone Erlang-C probability of Pi given in (1).

That is, a QoS stable configuration is one at which both providers benefit
with respect to the no-sharing configuration.

Definition 2 (Pareto-optimal). A configuration (z1, z2) is said to be Pareto-
optimal, if,

1. it is QoS stable, and

2. there does not exist another sharing configuration (ẑ1, ẑ2) such that Ci(ẑ1, ẑ2) ≤
Ci(z1, z2), for i = 1, 2, with strict inequality for at least one i.

That is, a Pareto-optimal configuration is one that results in improved per-
formance for each provider, and for which there does not exist any other sharing
configuration that is better for both the providers.3

3The first condition is not part of the standard definition of Pareto optimality. However,
in the present context, since Pareto-optimal configurations are meant to capture possible
agreement points between the providers, it is natural to impose this condition of individual
rationality.
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The Pareto-frontier, P, is defined as the set of all Pareto optimal configura-
tions and is the set of configurations for which both providers benefit individu-
ally compared to configurations outside this set. Within the set, two configura-
tions are not comparable since one provider gains while the other loses. Exis-
tence of a non-empty P implies that partial sharing can benefit both providers
when compared to not sharing.

Finally, we provide a sufficient condition for the Pareto frontier to have a
certain special structure, i.e., that at least one provider shares its resources with
the other to the maximum extent. This is formalized as follows.

Theorem 1. Consider a partial sharing mechanism parameterized by (z1, z2),∈
Z := [z1, z̄1] × [z2, z̄2], where −∞ ≤ zi < z̄i < ∞ for i = 1, 2. Suppose further

that the right partial derivatives ∂Ci(z1,z2)
∂zj

exist for all i, j ∈ {1, 2}, and the

following conditions hold:

1. Ci(z1, z2) is strictly increasing in zi,

2. C−i(z1, z2) is strictly decreasing in zi,

3. ∂C1

∂z2
∂C2

∂z1
> ∂C1

∂z1
∂C2

∂z2
for (z1, z2) ∈ [z1, z̄1)× [z2, z̄2).

Then the Pareto frontier is non-empty, and each Pareto-optimal configuration
(ẑ1, ẑ2) satisfies ẑi = z̄i for some i ∈ {1, 2}.

The conditions (1) and (2) have a natural interpretation. Specifically, they
imply that if provider Pi increases the extent to which it shares its resources
with provider P−i, its own performance degrades, while that of provider P−i

improves. Condition (3) relates the marginal performance gains/losses of both
providers from an infinitesimal increase in either partial sharing parameter.
One interpretation of this condition is the following: it can be shown that
Condition (1)–(2), in conjunction with the (also natural) condition that the
overall waiting probability (λ1C1(z1, z2) + λ2C2(z1, z2))/(λ1 + λ2) is a strictly
decreasing function of zi, i = 1, 2, implies Condition (3). Theorem 1 states that
these conditions imply that at least one provider must satisfy ẑi = z̄i, i.e., share
its resources to the maximum extent, at a Pareto-optimal configuration (ẑ1, ẑ2).
Intuitively, this is because Conditions (1)–(3) imply statistical economies of scale
from increased resource sharing between providers. The proof of Theorem 1 is
provided in Appendix A.

2.3 Bargaining solutions

Bargaining theory provides a framework for choosing one configuration from
the set of Pareto-optimal ones [16]. While an extensive treatment of bargaining
solutions is beyond the scope of the present paper, we use one popular solution
concept from the theory, namely, the Kalai-Smorodinsky bargaining solution
(KSBS) [10], to capture the agreement point between the providers.
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Definition 3. A partial sharing configuration (z∗1 , z
∗
2) is a Kalai-Smorodinsky

bargaining solution (KSBS), if (z∗1 , z
∗
2) is on the Pareto-frontier and satisfies

Cs
1 − C1(z

∗
1 , z

∗
2)

Cs
2 − C2(z∗1 , z

∗
2)

=

Cs
1 −min

y∈Z
C1(y1, y2)

Cs
2 −min

y∈Z
C2(y1, y2)

.

The KSBS is such that the ratio of relative utilities of the providers is equal
to the ratio of their maximal relative utilities. It can be shown (using arguments
similar to those in [17]) that under Conditions (1)–(3) of Theorem 1, the KSBS
is uniquely defined. As we shall see in Sec. 6, when the providers are close to
being symmetric in their arrival rates (or equivalently, their standalone waiting
probabilities), the KSBS typically corresponds to full pooling. On the other
hand, when one provider is much more congested than the other, the KSBS
typically does not correspond to complete pooling; instead, the more congested
provider is required to share its resources to the maximum extent.

3 Partial pooling with dedicated servers

In the PPDS mechanism, each provider contributes some of its servers to a
common pool. The servers in this common pool can serve jobs from both of
the service providers. Hence, the system has three types of servers depending
on the types of jobs they can serve. We now formally define the partial sharing
policy.

The partial sharing policy is parametrized by (k1, k2), where ki ∈ {0, 1, 2, . . . , Ni}
is the number of servers contributed by provider Pi to the common pool. Hence
the N = N1 +N2 servers are classified in the following three separate pools.

• Dedicated servers of provider P1: N1 − k1 dedicated servers which can
serve only jobs of provider P1.

• Dedicated servers of provider P2: N2 − k2 dedicated servers which can
serve only jobs of provider P2.

• Common pool: k1 + k2 shared servers which can serve jobs from both
providers P1 and P2.

On arrival of a provider Pi job into the system, copies (replicas) of this
job are sent to all the Ni + k−i servers that can serve it, i.e., to the Ni − ki
dedicated servers of provider Pi and k1 + k2 servers in the shared pool. Each
server performs FCFS scheduling, with the replicas being cancelled according
to the c.o.s. model. An illustration of this is provided in Figure 2.

Partial pooling under c.o.s. replication is also equivalent to a hypothetical
join-the-least-workload system, where each server maintains a FCFS queue, and
an incoming job gets dispatched on arrival to that eligible server that has the
least unfinished work. This follows from the results of [2], who show the equiv-
alence of c.o.s. and join-the-least-workload via a sample path argument. An

9
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Figure 2: Illustration of the PPDS mechanism (left figure) for N1 = 2, N2 = 1,
k1 = 1, k2 = 0. Servers S1 and S3 belong to the dedicated pools of providers P1

and P2, respectively. A copy (replica) of a waiting job is indicated by ′. For
example, J1 and J ′

1 are copies of the same job. The right figure shows the
equivalent model without redundancy and all tasks waiting in a single common
central queue. Here, servers parse the central queue in FCFS order skipping
tasks they cannot serve.

alternative and equivalent view of our dedicated servers model is the following:
All jobs (from both providers) wait in a single FCFS queue, and each server
processes the earliest arriving eligible job. This latter view makes our model
an instance of the multi-server, multi-class system analyzed by Visschers et al.
in [18], for which a product-form description of the stationary distribution is
available.
The contributions of this section are as follows.
1. We use the framework in [18] to obtain a characterization of the stationary
probability of waiting for each provider under the PPDS scheme. Since our
setting has three pools with homogeneous servers inside each pool, we first
define a compact state description based on pools rather than individual servers.
This compact (pool-based) state description is 6 dimensional, compared to the
O(N) dimensional (server-based) state description in [18]. Our pool-based state
description also allows us to obtain simplified expressions for the stationary
probabilities. To the best of our knowledge, these expressions are not available
in the literature and could be of independent interest.
2. Since the expressions for the waiting probabilities remain fairly involved,
we are only able to analytically characterize the Pareto-frontier for the station-
ary waiting probability metric when N1 = N2 = 1. In this case, by suitably
extending the space of sharing configurations to [0, 1]2 via time-sharing across
configurations in {0, 1}2, we show that Pareto-optimal sharing configurations
involve at least one provider always contributing its server to the common pool
(i.e., ki = 1 for some i). Intuitively, under efficient partial sharing configura-
tions, the more congested provider always places its server in the common pool,
whereas as the less congested provider places its server in the common pool for
some (long-run) fraction of time.
3. We conjecture that the above structure of the Pareto-frontier holds for
N1, N2 ≥ 1. This conjecture is validated via numerical evaluations.
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3.1 State space description of Visschers et al. [18]

We first describe the state space of [18], and then show how it can be simpli-
fied when working with pools of homogenous servers. While the model in [18]
applies for an arbitrary number of job types, we restrict our discussion to two
types of jobs (those corresponding to providers P1 and P2) and three classes of
servers (dedicated servers of P1, dedicated servers of P2, and common servers)
for simplicity. Let M = {1, 2, · · · , N1 + N2} denote the set of all servers and
{m1, · · · ,mi−1,mi} be the set of busy servers. Busy servers are labelled in in-
creasing order of the arrival times of the jobs in service; for example, m1 ∈ M
is the label of the server processing the earliest arriving job in the system.

Jobs are queued in the order of their arrival times; the job queue is fed
by a single Poisson stream, with the type of an arriving job being initially
undetermined. The type is determined only when a (free) server checks whether
or not the job is eligible to be served by it. We refer to jobs whose type is (as
yet) unassigned as covered jobs. When a server becomes idle, it starts moving up
the queue uncovering jobs until it finds one that it can serve or it has uncovered
all the waiting jobs and found none that matches its type.4

For j ≤ i − 1, nj denotes the number of jobs that lie in the queue between
the jobs served by Servers mj and mj+1. Finally, ni denotes the number of jobs
that arrived after the job being served by Server mi. Note that nj = 0 so long as
i < N. Moreover, since we are considering only two job types and three server
classes, the following holds: when i = N, ni equals the number of uncovered
jobs in the system (at the back of the queue); the n1+n2+ · · ·ni−1 jobs waiting
in the queue between other jobs in service are all uncovered and belonging to
the same type.

The state of the system (as proposed in [18]) is given by the position in the
queue of each busy server as well as the number of waiting jobs (uncovered or
covered) between them, and is represented as

s = (ni,mi, · · · , n2,m2, n1,m1).

As an illustration of this state description, for the example in Fig. 2, the state
of the system is (2, S3, 1, S2, 0, S1) (see Fig. 3). Here, there are two covered jobs
(in grey) and one uncovered type 1 job in the queue. S3 is the dedicated server
of P2 and cannot serve jobs of P1. Therefore, it has skipped the waiting job of
P1 and moved up the queue (note that jobs J2 and J3 in Fig. 2 are still covered
in this illustration).

Using this state description, under a certain assignment rate condition on
how servers are selected when an arriving job finds more than one idle eligible
server, [18] establishes a product-form stationary distribution.

4Specifically, each job is of Type 1 with probability λ1
λ1+λ2

, and of Type 2 with probaility
λ2

λ1+λ2
. However, the type is not revealed when the job arrives; it is only revealed when a

(free) server ‘passes’ it.

11
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Figure 3: Visschers’s state description for the example in Fig. 2.

3.2 Simplified state description

Visschers et al.’s [18] state description keeps track of the position of the each
busy server separately. We propose here a simpler state description that tracks
only the number of busy servers in each pool and the number of covered and
uncovered jobs. Since there are N servers and only three pools, a considerable
reduction in complexity can be expected by working on the level of pools. We
will show that this compact state space also admits a product-form stationary
distribution under essentially the same assignment rate condition (reworked for
pools).

Some notation: let O = {1, 2, c} denote the set of pools; Ñj be the number

of servers in pool j ∈ O (i.e., Ñ1 = N1 − k1, Ñ2 = N2 − k2, Ñc = k1 + k2); nj

denote the number of busy servers in pool j ∈ O; xi, i ∈ {1, 2}, be the number
of uncovered waiting jobs of Pi; and xcov be the number of covered waiting jobs.
Finally, let Λ := λ1 + λ2.

We take the state to be (xcov, n−i, xi, ni, nc) where i is either 1 or 2 and
−i refers to the other dedicated pool. Here, it is implicit that if xi > 0 then
ni = Ñi and nc = Ñc, and if xcov > 0, then all the servers are busy. This
state description is much more compact than the one with individual servers
in [18] since it only keeps track of the number of busy servers and not their
positions in the queue. Note that there cannot be uncovered jobs of both types
waiting simultaneously. Indeed, uncovering is initiated only when a server in a
dedicated pool becomes free and there is no uncovered waiting job of its type.
Further, at the end of the uncovering process, there will only remain uncovered
waiting jobs of the opposite type.

Remark 1. A more formal description of this state space is (xcov, x2, n2, x1, n1, nc).
We adopt the more concise form (xcov, n−i, xi, ni, nc) to simplify our exposition
by omitting zero entries in the state. Indeed, note that both x1 and x2 cannot be
positive (since uncovered jobs are always of the same type). Similarly, xcov will
also be omitted when at least one server is idle (since xcov = 0 in this case).

Next, we describe the assignment rate condition, which is concerned with
how a job is routed if multiple servers are idle at the time of its arrival. When
this happens, the job is uncovered and dispatched to an idle server that can
process it (if available) as per a state-dependent assignment probability distri-
bution. Specifically, this assignment probability distribution depends on n =
(n1, n2, nc); it must satisfy a certain condition (specified below) for the station-
ary distribution to admit a product-form. Since the condition is more easily
stated in terms of assignment rates rather than assignment probabilities, let
λpi

(n) denote the rate at which an incoming job is dispatched (for immediate

12



service) to a server from pool i. Also, let λ(n) be the total arrival rate of the
types that can be served by the idle servers in configuration n. For example,
λ(n1, Ñ2, Ñc) = λ1, for n1 < Ñ1, and λ(n1, Ñ2, nc) = Λ, for n1 < Ñ1 and

nc < Ñc.
Assignment Rate Condition: There exist unique functions λpi for all

i ∈ O and Πλ such that, for every n,

Πλ(n) = λpi
(n− ei)Πλ(n− ei), ∀i ∈ O,

λpi
(n) ≤ λi, i = 1, 2,∑

i∈O
λpi(n) = λ(n).

Here, ei is the unit vector in the direction i. The definition implies that the
product of the assignment rates is independent of the sequence in which the
pools were activated. In other words, the product is independent of the path
taken to reach n from 0.

In [18] it is shown that it is always possible to design assignment probabili-
ties to free eligible servers such that the assignment rate condition is satisfied.
They also give a recursion to compute the assignment rates for individual ma-
chines (see the equation below (29) in [18]). Further, it is also shown that the
assignment rates so obtained are unique. The same reasoning also holds when
working with pools and aforementioned recursion can be adapted for computing
the assignment rates of pools as below.

λpi(n) =
λ(n)

1 +
∑

j ̸=i

λpj
(n+ei)

λpi
(n+ej)

.

The recursion starts from (Ñ1, Ñ2, Ñc) and works its way down to (0, 0, 0). The
uniqueness of these assignment rates also follows from the arguments of [18].5

3.3 Performance measures

The assignment rate condition implies a product-form stationary distribution
of the pool model assuming that the system is stable. The stability condition
for the pool model again follows from the server-based model [18].

PPDS Stability Condition:

λi < Ñi + Ñc, i = 1, 2;

λ1 + λ2 < N.

Our initial assumption that both providers are stable under the no pooling
strategy implies that the above stability condition is satisfied.

5Note that the assignment probabilities to each pool can be easily deduced from the
assignment rates. The resulting uniqueness of the assignment probabilities (to each pool)
holds because our model involves only two job types and three server classes; the assignment
probabilities are not necessarily unique in the more general model of [18].

13



Before giving the expressions for the stationary distributions, we need a final
piece of notation. For a state s, we will write Πλ(s) to mean the Πλ(n1, n2, nc)
with ni being the number of busy servers in pool i in state s and, define the
sets

S1 =
{
(n1, n2, nc) : n1 < Ñ1, n2 < Ñ2, nc = Ñc

}
∪
{
(n1, n2, nc) : nc < Ñc

}
,

S2 =
{
(n2, x1, Ñ1, Ñc) : x1 ≥ 0, n2 < Ñ2

}
, S3 =

{
(n1, x2, Ñ2, Ñc) : x2 ≥ 0, n1 < Ñ1

}
,

S4 =
{
(xcov, Ñ1, Ñ2, Ñc) : xcov ≥ 0

}
,

S5 =
{
(xcov, Ñ2, x1, Ñ1, Ñc) : x1 ≥ 1, xcov ≥ 0

}
, S6 =

{
(xcov, Ñ1, x2, Ñ2, Ñc) : x2 ≥ 1, xcov ≥ 0

}
.

(2)
In S1, there is a free server for an arrival of both types. In S2 (resp., S3),

only P2 (resp., P1) arrivals see a free server. S4 has no free servers and only
covered jobs waiting. Finally, in S5 (resp., S6), there are no free servers and at
least one uncovered P1 job (resp., P2 job) waiting.

Theorem 2 (Stationary distribution). Under the assignment rate condition,
the stationary distribution is given by

π(s) =



Ñ2

N

(
Λ

N

)xcov
(

λ1

Ñ1 + Ñc

)x1 Πλ(Ñ1, Ñ2, Ñc)

Ñ1!Ñ2!Ñc!
π(0), s ∈ S5;

Ñ1

N

(
Λ

N

)xcov
(

λ2

Ñ2 + Ñc

)x2 Πλ(Ñ1, Ñ2, Ñc)

Ñ1!Ñ2!Ñc!
π(0), s ∈ S6;(

Λ

N

)xcov
(

λ1

Ñ1 + Ñc

)x1
(

λ2

Ñ2 + Ñc

)x2 Πλ(s)

n1!n2!nc!
π(0), otherwise,

(3)
with π(0) computed using the normalization equation.6 For conciseness, it is
assumed that if xi is not present in the description of s, then it takes the value
0 in the above formula; see Remark 1.

The proof is given in Appendix B. The waiting probabilities follow by noting
that P1 jobs wait in S2, S4, S5 and S6 while P2 jobs wait in regions S3, S4, S5,
and S6 (see (2)).

Corollary 1 (Waiting probabilities).

C1 =
∑

s∈S2∪S4∪S5∪S6

π(s),

C2 =
∑

s∈S3∪S4∪S5∪S6

π(s).

6Computing π(0) involves summing the stationary probabilities across all regions. This
computation can be performed exactly (using finitely many operations) once the assignment
rates are computed (via a finite recursive process). For example,∑

s∈S5

π(s) =
Ñ2λ1

N(Ñ1 + Ñc)
(
1− Λ

N

)(
1− λ1

Ñ1+Ñc

) Πλ(Ñ1, Ñ2, Ñc)

Ñ1!Ñ2!Ñc!
π(0).
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3.4 Pareto-frontier for N1 = N2 = 1

Verifying the conditions of Theorem 1 is not easy in general due to the com-
plex form of the Πλ function (which in turn arises from the assignment rate
condition). So, we now specialize to the case N1 = N2 = 1, focusing on the
stationary waiting probability metric. To analyze the Pareto-frontier, we need
to generalize the space of sharing configurations (k1, k2) to allow for real valued
ki ∈ [0, 1]. We do this using randomization as follows. Provider Pi contributes
its server to the common pool with probability ki; these actions being inde-
pendent across providers. Of course, the above probabilities should really be
interpreted as time-fractions. So the configuration (k1, k2) is achieved by time-
sharing between the configurations (0, 0), (0, 1), (1, 0) and (1, 1), with (long run)
time-fractions (1 − k1)(1 − k2), (1 − k1)k2, k1(1 − k2), and k1k2, respectively.
See Lemma 1 in Appendix D for details.

Note that the (0, 0) configuration corresponds to no pooling. Hence Ci(0, 0) =
Cs

i , the standalone Erlang C probability of Pi. The following theorem provides
a complete characterization of the Pareto-frontier.

Theorem 3. For N1 = N2 = 1, the Pareto-frontier is non-empty. Moreover,
Pareto-optimal configurations for the stationary waiting probability metric sat-
isfy ki = 1 for some i. Specifically, the Pareto-frontier P is characterized as
follows.

1. If Ci(1, 1) < Ci(0, 0) ∀ i, then there exist uniquely defined constants ẑ1
and ẑ2, such that ẑi ∈ (0, 1) for i = 1, 2, C1(1, ẑ2) = C1(0, 0), C2(ẑ1, 1) =
C2(0, 0). In this case,

P = {(z, 1) : z ∈ (ẑ1, 1]} ∪ {(1, z) : z ∈ (ẑ2, 1]}.

2. If C2(0, 0) ≤ C1(1, 1) = C2(1, 1) < C1(0, 0), then there exist uniquely de-
fined constants z2 and z̄2 satisfying 0 < z2 < z̄2 ≤ 1 such that C1(1, z2) =
C1(0, 0) and C2(1, z̄2) = C2(0, 0). In this case,

P = {(1, z) : z ∈ (z2, z̄2)}.

3. If C1(0, 0) ≤ C1(1, 1) = C2(1, 1) < C2(0, 0), then there exist uniquely de-
fined constants z1 and z̄1 satisfying 0 < z1 < z̄1 ≤ 1 such that C2(z1, 1) =
C2(0, 0) and C2(z̄1, 1) = C1(0, 0). In this case,

P = {(z, 1) : z ∈ (z1, z̄1)}.

The proof is provided in Appendix D.1. Theorem 3 shows that Pareto-
optimal configurations always involve at least one of the providers always con-
tributing its server to the common pool. Moreover, the theorem also spells out
the exact structure of the Pareto-frontier. Case (1) of the theorem corresponds
to the case where full pooling is beneficial to both providers. In this case, the
Pareto-frontier includes the full-pooling configuration; see Figure 4a for an ex-
ample of this case. Case (2) of the theorem applies to the asymmetric setting
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where full pooling benefits P1 but not P2. In this case, all Pareto-optimal con-
figurations involve the most congested provider (i.e., P1) always contributing
its server to the common pool; see Figure 4b for an example of this case. (We
further interpret the Pareto frontier in Section 3.5.)

Intuitively, the above structure of the Pareto frontier arises due to two fac-
tors: (i) statistical economies of scale from resource pooling, and (ii) individual
rationality of the providers. Indeed, it is well known that pooling of resources
across service systems can result in an overall QoS enhancement (see, for exam-
ple, [11]). This ensures that efficient sharing configurations are ‘maximal.’ On
the other hand, since each provider is strategic, resource pooling is our context
is only feasible when both providers experience a QoS enhancement. This indi-
vidual rationality requirement forces the more congested provider to pool more
of her resources to the common pool, given that she would access (and ‘block’
the resources of) this pool more often. Indeed, we conjecture that the above
structure of the Pareto-frontier holds beyond the special case of N1 = N2 = 1.

Conjecture 1. For N1, N2 ≥ 1, employing an extension of the space of par-
tial sharing configurations to [0, N1] × [0, N2] via randomization as before, any
Pareto-optimal configuration for the stationary waiting probability metric satis-
fies ki = Ni for some i.

3.5 Numerical experiments

Numerical experimentation suggests that Conjecture 1 holds; however, a proof
has eluded us thus far. In the experiments, the Pareto frontier is computed as
follows. In each experiment, we fix the standalone probabilities, Cs

i , and the
number of servers of each provider, Ni. From these parameters, we can compute
the arrival rates, λi, of the two providers (by inverting (1)). The next step is to
discretize the sharing strategy space [0, 1]2 and apply Corollary 1 to compute
the waiting probability vector (C1(k1, k2), C2(k1, k2)) on this grid. Finally, we
select the entries (k1, k2) for which (C1(k1, k2), C2(k1, k2)) is not dominated by
any other waiting probability vector in the grid.

Figures 5 and 6 show the Pareto frontier for N1 = N2 = 4. The standalone
probability of P1 is fixed at 0.1 and that of P2 varies across the subfigures.
The caption provides the exact values as well as the full pooling probability.
First, we observe that the Pareto frontier is indeed on the boundary as stated in
Conjecture 1. Second, we observe that the Pareto frontier is a contiguous set.
Third, the less congested provider tends to pool less of its resources at Pareto-
optimal configurations; this is to ‘insulate’ the less congested provider from a
performance degradation resulting from excessive overflow jobs from the more
congested provider. For example, in Fig. 5a, P2 is the less congested provider,
and its contribution can be quite close to zero at Pareto-optimal configurations.
In Fig. 6b, the roles are reversed with P2 being the more congested provider.
Here, it has no other choice but to share all its resources whereas P1 can make
a relatively small contribution to the common pool under Pareto-optimal con-
figurations.
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(a) Cs
1 = 0.3, Cs

2 = 0.1 (b) Cs
1 = 0.5, Cs

2 = 0.1

Figure 4: PPDS Pareto Frontier for N1 = N2 = 1.

(a) Cs
1 = 0.1, Cs

2 = 0.02,
Ci(1, 1) = 0.00632

(b) Cs
1 = 0.1, Cs

2 = 0.05,
Ci(1, 1) = 0.012

(c) Cs
1 = 0.1, Cs

2 =
0.1,Ci(1, 1) = 0.022

Figure 5: PPDS Pareto Frontier for N1 = N2 = 4.

Finally, note that the full pooling strategy is QoS stable except in Fig. 6b.
Thus, in all the subfigures except in Fig. 6b, the Pareto frontier structure agrees
with Case (1) of Theorem 3 (which is proved only for N1 = N2 = 1) and the
full pooling point belongs to the Pareto frontier. For Fig. 6b, we are in Case (3)
of Theorem 3 and P1 shares a fraction less than 1.

(a) Cs
1 = 0.1, Cs

2 = 0.3,
Ci(1, 1) = 0.066

(b) Cs
1 = 0.1, Cs

2 = 0.5,
Ci(1, 1) = 0.118

Figure 6: Additional cases, PPDS Pareto Frontier for N1 = N2 = 4.
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           i          + k            jobs of Pwith at most N            −i               i
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Figure 7: Example of PPR with N1 = 2, N2 = 4, k1 = 1, k2 = 1, where jobs of
one type can overtake jobs of the other. Jobs 6 and 7 could not enter service
because P1 has reached its limit of N1 + k2 = 3 jobs in service simultaneously.
Hence, Job 8 belonging to P2 enters service before them.

4 Partial pooling with repacking

In the PPR mechanism, the servers are exchangeable and can serve jobs of both
providers. Since a replica is sent to the queues of both providers, the queue
content (including the types of the waiting jobs) is identical at both providers
(see Fig. 1b). Thus, there is a simple description of this mechanism with a single-
queue and treating the servers as being indistinguishable. This is illustrated in
Fig. 7. All the N1+N2 servers are pooled into a common pool, and waiting jobs
of both providers form a single queue in chronological order like in an Erlang-C
system. However, PPR has the following constraint on the number of jobs of
provider Pi that are in service at any time and this makes it different from
Erlang-C.

• At most Ni + k−i jobs of provider Pi can be in service simultaneously.

We shall call this the per-class constraint as it limits the number of jobs in
service for each class. This constraint is in addition to the global constraint that
limits the total number of jobs in service to N1 +N2.

A consequence of this constraint is that jobs do not necessarily enter service
in chronological order. A job of provider Pi can overtake and enter service earlier
than jobs of P−i that arrived earlier as shown in Fig. 7. Jobs have arrived as per
the order number displayed on the job, and no job has departed yet. Job 8 which
belongs to provider P2 has entered service before Jobs 6 and 7 (of P1) because
provider P1 reached its limit of N1 + k2 = 2 + 1 jobs in service simultaneously
when Job 5 entered service.

The single queue equivalent model for PPR is the same as the Multiserver
Station with Concurrent Classes of Customers (MSCCC) model [5] with two
classes of jobs. The MSCCC model allows for arbitrary number of classes of jobs,
with each class having a separate constraint on the number in service. MSCCC
was later shown to fall in the set of Order Independent Queue (OIQ) which
have the property of product-form stationary distribution for an appropriate
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Figure 8: State description and service allocation for the example in Fig. 7.
There are n = 9 jobs in the queue. For ℓ = 6, 7, 9, the service rate sℓ = 0,
whereas for the other sℓ = 1.

state descriptor [12].7

The contributions of this section are as follows.
1. Using the product-form property of OIQ, we derive simple expressions for
computing the waiting probability of jobs of Pi for the two provider model. We
believe these expressions are new since [13, 12] only give a recursion to compute
these quantities.
2. As for PPDS, we are only able to analytically characterize the Pareto-frontier
for the stationary waiting probability metric when N1 = N2 = 1. By suitably
extending the space of sharing configurations to [0, 1]2 via time-sharing across
configurations in {0, 1}2, we show that Pareto-optimal sharing configurations
involve at least one provider always contributing its server to the common pool
(i.e., ki = 1 for some i).
3. We conjecture that the above structure of the Pareto-frontier holds for
N1, N2 ≥ 1. This conjecture is validated via numerical evaluations.

4.1 OIQs

We first state some basic facts of the OIQ framework (taken from [12]) that will
be needed later. OIQs are multi-server multi-class single queue models with
certain conditions on the service rates that ensures a product-form stationary
distribution. In an OIQ, jobs of class c are to arrive according to a Poisson
process of rate λc and require an exponentially distributed time of unit mean.
Jobs join at the tail of the queue (here by queue we mean both in service as
well as waiting), and when a job finishes service, the ones behind it move up
one step.

Let c = (cn, . . . , c1), where cℓ is the class of the job in position ℓ, be the state
description when there are n customers in the queue. Assume that a service
rate of sℓ(c) is allocated to position ℓ. Fig. 8 shows this state description and
the corresponding si for the example in Fig. 7.

A queueing model is OIQ if

(i) sℓ(cn, . . . , c1) = sℓ(cℓ, . . . , c1) for 1 ⩽ ℓ ⩽ n, and

(ii) K(cn, . . . , c1) =
n∑

ℓ=1

sℓ(cn, . . . , c1) is independent of the permutations of c.

7The product-form nature of MSCCC can also be deduced directly from the generalization
of concurrency constraints to hierarchical ones [13]. This generalization is again a special case
of OIQ. So, we choose to present the OIQ framework here.
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That is, for a queueing model to be OIQ, the service effort directed to position
ℓ should depend only on cℓ and the jobs in front of it, and the total service rate
K(c) in a state must be independent of the order of the jobs in that state.

The stationary probability of state c in an OIQ is of the product-form and
is given by

π(cn, cn−1, . . . , c1) = π(0)

n∏
i=1

λci

K(ci, · · · , c1)
, (4)

where π(0) is determined from the normalization equation.
The service rate allocated to position ℓ and the total service rate of PPR

can be stated in simple terms. Let Mcℓ =
∑ℓ−1

j=0 1{cℓ=cj} be the number of jobs
of class cℓ until position ℓ− 1. Then, PPR allocates

sℓ(c) = 1{Mcℓ
<Ncℓ

+k−cℓ} · 1{min(ℓ−1−Mcℓ
,N−cℓ

+kℓ)+Mcℓ
<N1+N2} (5)

to position ℓ, for cℓ = 1, 2. The first indicator function checks for the per-class
constraint of class cℓ, and the second one checks for the global constraint. This
allocation depends only on the number of jobs of cℓ and −cℓ in front of position
ℓ.

Summing over ℓ, it follows that the total service rate of PPR in state c is:

K(c) = min

(
min

(
N1 + k2,

n∑
ℓ=1

1{cℓ=1}

)
+min

(
N2 + k1,

n∑
ℓ=1

1{cℓ=2}

)
, N1 +N2

)
.

(6)

Since K depends only on the number of jobs of the two classes, it is independent
of the permutations of c. The expression of K can now be substituted in (4) to
obtain the stationary distribution of PPR.

4.2 Waiting probabilities

An arriving customer of Pi will not enter service immediately if either its per-
class constraint is violated or the global one is violated. These constraints de-
pend upon the state only through the number of jobs in service of each provider.
This observation suggests that the waiting probability be obtained by first com-
puting the stationary probability of the aggregated states (n1, n2), where ni is
the number of Pi jobs in service. This approach was taken in [12] to obtain a
recursion for the waiting probabilities.

For PPR with two classes, we obtain explicit expressions for the aggregated
state probabilities. To the best of our knowledge, these have not appeared
earlier in the literature and are of independent interest.

Let

N = {(n1, n2) : n1 + n2 ≤ N1 +N2, ni ≤ Ni + k−i, i = 1, 2}

be the set of aggregated states. These states can be classified into six regions
according to whether P1 or P2 jobs have to wait and whether it is the per-class
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Figure 9: Regions of N classified according to which constraints are active.

or the global constraint that is active:

N1 = {(n1, n2) : ni < Ni + k−i, n1 + n2 < N1 +N2} ,
N2 = {(n1, n2) : n2 = N2 + k1, n1 < N1 − k1} ,
N3 = {(n1, n2) : n1 = N1 + k2, n2 < N2 − k2}
N4 = {(n1, n2) : ni < Ni + k−i, n1 + n2 = N1 +N2} ,
N5 = {(n1, n2) : n2 = N2 + k1, n1 = N1 − k1} ,
N6 = {(n1, n2) : n1 = N1 + k2, n2 = N2 − k2}

(7)

Set N1 accepts jobs into service immediately on arrival. In N2, jobs of P2

will wait due to their per-class constraint, but those of P1 will not wait. N3 is
defined analogously by interchanging P1 and P2. In N5, P2’s per-class constraint
is active while P1 will also have to wait because of the global constraint. N6 is
defined analogously by interchanging P1 and P2. Finally, set N4 is where the
global constraint is active but the two per-class constraints are inactive. Fig. 9
shows these six regions.

Define

π̃(n1, n2) =
∑
c

π(c)1{number in service in state c=(n1,n2))} (8)

to be the stationary probability of the aggregated state (n1, n2). Then, the
waiting probability of P1 in terms of π̃ is:

C1(k1, k2) =
∑

(n1,n2)∈N3∪N4∪N5∪N6

π̃(n1, n2). (9)

The one for P2 can be computed similarly.
The stability condition for PPR follows from [12] and can be stated as

λi < Ni + k−i, i = 1, 2

λ1 + λ2 < N.

As before, the standalone stability assumption made in Section 2 implies that
the above holds.
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Theorem 4. Under PPR, the probabilities of the state aggregations defined
in (7) are given by:

(i) for (n1, n2) ∈ N1,

π̃(n1, n2) = π(0)
λn1
1 λn2

2

n1!n2!
, (10)

(ii) for (n1, n2) ∈ N2,

π̃(n1, n2) = π(0)
λn1
1 λn2

2

n1!n2!

1

1− λ2

n2

, (11)

(iii) for (n1, n2) ∈ N3,

π̃(n1, n2) = π(0)
λn1
1 λn2

2

n1!n2!

1

1− λ1

n1

, (12)

(iv) for (n1, n2) ∈ N4,

π̃(n1, n2) = π(0)
λn1
1 λn2

2

n1!n2!

1

1− Λ
N

, (13)

(v) for (n1, n2) ∈ N5,

π̃(n1, n2) = π(0)
λn1
1 λn2

2

n1!n2!

1

1− λ2

n2

N − λ2

N − Λ
. (14)

(vi) for (n1, n2) ∈ N6,

π̃(n1, n2) = π(0)
λn1
1 λn2

2

n1!n2!

1

1− λ1

n1

N − λ1

N − Λ
, (15)

where π(0) can be computed using the normalization equation∑
(n1,n2)∈N

π̃(n1, n2) = 1. (16)

The proof of this theorem appears in Appendix C.

Remark 2. In addition to expressions for the aggregate probabilities, Thm. 4
also provides a simpler way to compute the normalization factor π(0). While a
direct computation using (4) would require summing over an infinite number of
terms, (16) only sums over the points in N which are finite in number.
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(a) Cs
1 = 0.2, Cs

2 = 0.02 (b) Cs
1 = 0.2, Cs

2 = 0.05 (c) Cs
1 = 0.2, Cs

2 = 0.1

Figure 10: OIQ Pareto Frontier for N1 = N2 = 4.

(a) Cs
1 = 0.2, Cs

2 = 0.3 (b) Cs
1 = 0.2, Cs

2 = 0.5

Figure 11: Additional cases, OIQ Pareto Frontier for N1 = N2 = 4.

4.3 Pareto frontier and numerical results

Theorem 4 can be applied to deduce some monotonicity properties of the waiting
probabilities as well as to characterize the Pareto frontier of PPR.

Theorem 5. For N1 = N2 = 1, treating ki as being real valued and lying in
[0, 1] via time-sharing (as in Section 3.4), the Pareto frontier is non-empty, and

all Pareto-optimal configurations (k̂1, k̂2) satisfy k̂i = 1 for some i ∈ {1, 2}.

The proof is provided in Appendix D.2.

Conjecture 2. For multi-server systems, any Pareto-optimal configuration for
the stationary waiting probability metric satisfies ki = Ni for the more congested
provider Pi.

Numerical experimentation suggests that the Conjecture 2 holds. The steps
for computing the Pareto frontier are the same as for PPDS (see Sec. 3.5)
except that the waiting probabilities are computed using (9) and Theorem 4.
See Figures (10) and (11) for some illustrations of the Pareto frontier computed
for N1 = N2 = 4. The standalone probability of P1 is fixed at 0.2 and that of
P2 varies across the subfigures. The observations are similar to those for PPDS
(see Section 3.4). First, we observe that the Pareto frontier is indeed on the
boundary as stated in the above conjecture. Second, the less congested provider
tends to share less of its resources (compared to the more congested provider)
at Pareto-optimal configurations.
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5 Differential queue length scheme

Our third and final mechanism is based on queue-lengths and is different in
spirit to the previous two which are based on sharing servers. In the DQL
mechanism, a provider accepts a job of the other as soon as the difference in
the queue length exceeds a certain threshold. The threshold could be attained
either due to an arrival or a service completion.

Formally, let xi be the queue-length (including the ones in service) at Pi. An
arriving job at Pi joins the queue of Pi and one randomly chosen job amongst
the other ones at Pi is sent to P−i

(i) with probability 1, if xi − x−i ⩾ k−i;

(ii) with probability 0, otherwise.

The job that jockeys is chosen with higher priority amongst the ones that are
waiting. The new arrival is excluded so as to simplify the computation of the
waiting probabilities. An arriving customer now waits whenever it sees all the
servers of its provider as busy. This aligns the criterion for waiting with that
in an Erlang-C system which is the baseline for computing the Pareto optimal
points.

When a job departs from P−i after service completion, one randomly chosen
job from Pi will jockey to P−i

(i) with probability 1, if xi − x−i ⩾ k−i;

(ii) with probability 0, otherwise.

The threshold ki will be called the sharing strategy of Pi. Observe that
when both the thresholds are equal to 1, we get the Join the Shortest Queue
mechanism with the additional feature that queue-lengths are equalized at de-
parture epochs as well. On the other extreme, by setting its k equal to infinity,
a provider can choose not to share with the other provider. Thus, a lower value
of k indicates more sharing while a larger value indicates less. This last property
is in contrast to the previous two mechanisms for which the opposite is true.

Remark 3. The above mechanism is meaningful only when N1 = N2. Other-
wise, situations may occur where a job in service is jockeyed from Pi to P−i but
has to wait there because all the servers of P−i are busy. For example, assume
N1 = 5, N2 = 1, x1 = 4, x2 = 2 and k2 = 2. In this state, an arrival at P1

will divert a job from P1 to P2 in order to maintain the difference in queue-
lengths even though there is a free server at P1 and no free server at P2. With
N1 = N2, such situations cannot occur. (An alternative would be to apply the
DQL mechanism only on the waiting customers, xi −Ni.)

Remark 4. The computation of the mean waiting times of jobs of Pi is not
easy since jobs can jockey an arbitrary number of times. However, as explained
above, jockeying does not affect the calculation of the waiting probabilities which
is the objective of the providers.
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(a) Transition diagram of the
Markov chain.

(b) State space.

Figure 12: Example Markov chain for DQL with with N1 = N2 = 2, k1 =
2, k2 = 1.

Let (X1(t), X2(t)) be the queue-length vector at time t. It can be easily seen
that (X1(t), X2(t)) is a Quasi-Birth-Death process with transition rates:

(X1(t), X2(t)) →


(X1(t), X2(t)) + ei with rate λi ·

(
1{Xi−X−i<k−i}

)
+λ−i ·

(
1{X−i−Xi≥ki}

)
(X1(t), X2(t))− ei with rate min(Xi, Ni) ·

(
1{Xi−X−i<k−i}

)
+min(X−i, N−i) ·

(
1{X−i−Xi≥ki}

)
With reference to the transitions defined above, the upward transitions of Pi

to (X1(t), X2(t))+ei can be due to either its own arrivals (first term) or from the
arrivals in P−i (second term). Its downward transitions to (X1(t), X2(t)) − ei
can be due to a departure in its own queue that does not trigger jockeying from
P−i (first term) or due to a departure at P−i that triggers jockeying (second
term). An example Markov chain of the system is shown in Fig. 12a.

The stationary probabilities of a QBD process can be obtained using the ma-
trix geometric method [8]. To apply this method, we must arrange the generator
matrix, Q, in the form

Q =



0 1 2 3 ...

0 L0 F0

1 B0 L F
2 B L F
3 B L F
...

...
. . .

 (17)

where the entries of Q are block matrices of appropriate dimension. Here, the
number of phases in level 0, or equivalently the dimensions of L0, F0, and B0,
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can be different from that in subsequent levels. Further, in levels other than
0, the transition rates should be independent of the level (except the backward
transitions in level 1).

For DQL, we show that the state space given by (see Fig. 12b){
(x1, x2) ∈ Z2

+ : max(x1 − k2, 0) ≤ x2 ≤ x1 + k1
}

(18)

can indeed be partitioned in a way that leads to a Q matrix of the form of (17).
First, arrange the states (x1, x2) in lexicographic order. Such an ordering is
possible since, for each x1, x2 can only take a finite number of values. Next,
we identify the states in which the transition rates are independent of the level.
Define level i, i ≥ 1 to be the set of states with dark grey area in Fig. 12b).
This ensures both providers are serving customers the maximum possible rate
thereby making the downward transition rates independent of the level. Both
the upward and downward transitions now depend only upon the difference
x1 − x2. Further, it also ensures that the number of phases in every level other
than 0 is the same and is equal to

b = k1 + k2 + 1. (19)

With this definition of levels, lexicographic ordering and substituting Λ = λ1+λ2

and N = N1 +N2, the matrices B, L and F become

B =



a+1 a+2 a+3 ... a+b

a+b+1 N
a+b+2 N1

...
. . .

a+2b−1 N1

a+2b

,

F =



a+b+1 ... a+2b−2 a+2b−1 a+2b

a+1

a+2 λ1

...
. . .

a+b−1 λ1

a+b Λ

,

L =



a+1 a+2 a+3 ... a+b−2 a+b−1 a+b

a+1 −Λ−N Λ
a+2 N2 −Λ−N λ2

...
. . .

. . .
. . .

a+b−1 N2 −Λ−N λ2

a+b N −Λ−N

.

The other states (the ones in light grey in Fig. 12b) are grouped inside level 0.
For completeness, we give the cardinality of level 0 which is

a =
∑

(x1,x2)

1{x1<N2+k2} · 1{max(0,x1−k2)≤x2≤x1+k1} (20)
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= (k2 +N2)k1 +
k2(k2 + 1)

2
+N2(k2 + 1). (21)

The matrices L0, F0, and B0 can be determined from the transition rates.
The stationary probability can now be computed using matrix geometric

arguments [8]. We note that the stability condition under the DQL mechanism
is λ1 + λ2 < N (this follows from a straightforward Lyapunov argument); note
that this condition, which is different from the stability conditions under PPDS
and PPR, is also implied by the standalone stability assumption made in Sec-
tion 2.

Let πi be the stationary probability vector for level i. First, compute R as
the solution of the matrix quadratic equation

F +R · L+R2 ·B = 0. (22)

Then, solve [
π0 π1

] [L0 F0

B0 L+R ·B

]
=
[
0 0

]
(23)

with the normalization condition [π0 π1][1 (I −R)−1 · 1]T = 1 to obtain π0 and
π1. For levels i > 1, πi can be computed using the relation πi = π1R

i−1.
We now have all the ingredients for computing the waiting probability of

Pi for a given partial sharing configuration (k1, k2). Note that an arrival of Pi

waits whenever it sees all the servers of Pi as busy. Applying PASTA, we get

1− Ci(k1, k2) =
∑
x1,x2

1(xi<Ni)

{
1(xi−x−i<k−i)πx1,x2

+ 1(xi−x−i=k−i)1(x−i<N−i)πx1,x2

}
+
∑
x1,x2

1(xi=Ni)

{
1(xi−x−i=k−i)1(x−i<N−i)πx1,x2

}
(24)

where, with slight abuse of notation, π(x1, x2) is the stationary probability of
the state (x1, x2) and can be inferred from the πis.

Ci(k1, k2) = 1(k1−⌊k1⌋=0)1(k2−⌊k2⌋=0)Ci(⌊k1⌋ , ⌊k2⌋)
+ 1(k1−⌊k1⌋=0)1(k2−⌊k2⌋>0)

{
(k2 − ⌊k2⌋)(Ci(⌊k1⌋ , ⌈k2⌉))

+ (⌈k2⌉ − k2)(Ci(⌊k1⌋ , ⌊k2⌋))
}

+ 1(k1−⌊k1⌋>0)1(k2−⌊k2⌋=0)

{
(k1 − ⌊k1⌋)(Ci(⌈k1⌉ , ⌊k2⌋)

+ (⌈k1⌉ − k1)(Ci(⌊k1⌋ , ⌊k2⌋))
}

+ 1(k1−⌊k1⌋>0)1(k2−⌊k2⌋>0)

{
(k1 − ⌊k1⌋)(k2 − ⌊k2⌋)(Ci(⌈k1⌉ , ⌈k2⌉))

+ (k1 − ⌊k1⌋)(⌈k2⌉ − k2)(Ci(⌈k1⌉ , ⌊k2⌋))
+ (⌈k1⌉ − k1)(k2 − ⌊k2⌋)(Ci(⌊k1⌋ , ⌈k2⌉))
+ (⌈k1⌉ − k1)(⌈k2⌉ − k2)(Ci(⌊k1⌋ , ⌊k2⌋))

}
(25)
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(a) Cs
1 = 0.1, Cs

2 = 0.02 (b) Cs
1 = 0.1, Cs

2 = 0.05 (c) Cs
1 = 0.1, Cs

2 = 0.1

Figure 13: DQL Pareto Frontier for N1 = N2 = 4.

(a) Cs
1 = 0.1, Cs

2 = 0.3 (b) Cs
1 = 0.1, Cs

2 = 0.5

Figure 14: Additional cases, DQL Pareto Frontier for N1 = N2 = 4.

Using time-sharing, equation (25) across configurations (k1, k2) ∈ Z+2
, we suit-

ably extend the space of sharing configurations to real space (k1, k2) ∈ [1,∞)2.

5.1 Pareto frontier and numerical results

Conjecture 3. For multiple server systems with N1 = N2, any Pareto-optimal
configuration for the stationary waiting probability metric satisfies ki = 1 for
the more congested provider Pi.

Numerical experiments suggests that the above conjecture holds. See Figs. 13
and 14 for some illustrations of the Pareto frontier for N1 = N2 = 4. The steps
for computing the Pareto frontier are the same as for PPDS (see Section 3.5)
except that the waiting probabilities are computed using (25).

The grey area illustrates the configurations that are QoS stable, i.e, Ci(k1, k2) <
Cs

i . The Pareto-frontier of these stable configurations is illustrated by the black
line. Also, The standalone probability of P1 is fixed at 0.1 and that of P2 varies
across the subfigures. The observations as similar to those for PPDS and PPR.
Note that in DQL, a larger value of ki indicates less sharing by Pi. The ability of
the less congested provider (say i) to share less at Pareto-optimal configurations
is thus demonstrated via large values of ki on the Pareto frontier.

Fig. 15 illustrates that Conjecture 3 is not true for N1 ̸= N2 (see Remark 3
for why this may happen) although the other observations seem to hold.

For example from figure (12a), starting from level 1, which has x1 = 4, the
number of phases can found to be constant equal to (⌈k1⌉+ ⌈k2⌉+ 1) which is
5 in this case.
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(a) N1 = 1, N2 = 4, Cs
1 =

0.9, Cs
2 = 0.2

(b) N1 = 1, N2 = 8, Cs
1 =

0.9, Cs
2 = 0.06

Figure 15: DQL Pareto Frontier, Conjecture 3 does not satisfy for N1 ̸= N2

(a) Cs
1 = 0.05, Cs

2 = 0.1. (b) Cs
1 = 0.02, Cs

2 = 0.2.

Figure 16: Pareto achievable region. N1 = N2 = 4.

6 Performance comparison of the 3 models

We now compare the three sharing models on different criteria. First we compare
the Pareto frontier. Recall that the QoS stable set contains all configurations
that are better for both providers than no sharing. We call the waiting probabil-
ity vectors computed over the elements of the QoS stable set to be the achievable
region of waiting probabilities. Figs. 16 and 17 show the Pareto frontier of the
three mechanism for N1 = N2 = 4 and two different standalone probability vec-
tors. The achievable region is then the set of points that are obtained as convex
combinations of points on the Pareto frontier and the standalone probability
vector (the upper right-hand corner point), that is the set of points that are
above and to the right of points on the Pareto frontier.

In all the figures, we observe that in terms of the achievable region of the
Pareto frontier, PPDS weakly dominates both PPR and DQL. That is, for a
given value of C1, P2 is not worse off in PPDS compared to PPR and DQL.
A similar order cannot be established between PPR and DQL as can be seen
by comparing Figs. 16b and 17. While PPR dominates DQL in the latter, it is
dominated in the former.

For the second comparison, we present in Table 1 the Kalai-Smorodinsky
bargaining solution (KSBS) for the three models for different values of the stan-
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Figure 17: Pareto achievable region. N1 = N2 = 2. Cs
1 = 0.1, Cs

2 = 0.5

dalone probabilities and N1 = N2 = 4. We refer the reader to Sec. 2.3 for
details on the definition of various concepts in Bargaining theory. Also, to be
able to show more decimal places, the values of the probabilities are given in
percentages.

We observe that PPDS obtains a better solution for both providers. Also,
the provider with the higher standalone probability always pools all its resources
at the KSBS solution. The share of the less congested provided increases with
its standalone probability. For example, when Cs

2 increases from 2% to 5% it
contribution goes from 2.2 to 2.9 in PPDS. Finally, in the symmetric case, the
KSBS solution is to pool all the resources. i.e., full pooling, in all the three
schemes.

Table 1: Comparison of the KSBS solution for the case N1 = N2 = 4. For
improved readability, the waiting probabilities are in %.

Standalone Full Sharing PPDS PPR DQL
(Cs

1 , C
s
2) C1 = C2 = C (k∗1 , k

∗
2) (C1, C2) (k∗1 , k

∗
2) (C1, C2) (k∗1 , k

∗
2) (C1, C2)

(10, 2) 0.63 (4, 2.2) (1.75, 0.46) (4, 1.61) (1.9, 0.51) (1, 2) (1.66, 0.46)
(10, 5) 1.23 (4, 2.9) (1.84, 1.1) (4, 1.87) (1.87, 1.14) (1, 1.4) (1.86, 1.1)
(10, 10) 2.21 (4, 4) (2.21, 2.21) (4, 4) (2.21, 2.21) (1, 1) (2.21, 2.21)
(10, 30) 6.6 (1.99,4) (5.1,12.2) (1.27, 4) (5.4, 12.7) (2.1, 1) (5.4, 12.3)
(10, 50) 11.85 (1.14,4) (7.2, 30.2) (0.73, 4) (7.6, 32.7) (3.6, 1) (7.9, 34.4)

7 Discussions

7.1 Related work

Complete resource pooling between independent service systems has been stud-
ied from a cooperative game theory standpoint; see, for example, [7, 1, 11]. The
goal of this literature is to analyze stable mechanisms for sharing the surplus
(and costs) of the grand coalition among the various agents. Single server as
well as multi-server settings have been considered, for queueing as well as loss
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systems; see [11] for a comprehensive survey of this literature. A complemen-
tary view of resource sharing comes from an optimization standpoint. Here the
organization is interested in optimally provisioning (potentially heterogenous)
resources and/or sharing its service resources between various activities; see, for
example, [3, 19, 9].

In contrast to the abovementioned works, our approach here is to analyze re-
source sharing between strategic service providers having non-transferrable util-
ity. In other words, no side-payments are allowed between the service providers.
Instead, providers would (partially or completely) pool their resources with one
another only if their service quality improves in the process. Our goal is thus to
devise mechanisms that guarantee mutually beneficial sharing configurations.
The only prior work we are aware of that takes this view is [17], which considers
loss systems with the Erlang-B loss probability as the QoS measure. This paper
may be viewed as a complement to [17] in that we consider delay systems where
jobs can be queued and the QoS measure is the Erlang-C probability. As it turns
out, the sharing mechanisms are very different between these two settings.

7.2 Future work

An immediate avenue for future work is of course to prove Conjectures 1, 2
and 3 and completely analyse the Pareto-frontier under the proposed sharing
mechanisms; this is currently being pursued. It would also be interesting to
generalize our models to n > 2 service providers, and to devise suitable partial
sharing mechanisms that guarantee the existence of mutually beneficial sharing
configurations. More broadly, the present bargaining-centric view of resource
pooling (with non-transferable utilities between agents) can be explored in other
contexts; for example, sharing of cache memory between content distribution
systems, sharing of energy storage in smart power grids, and spectrum sharing
between cellular service providers or between secondary users in cognitive radio
networks.

Another research direction would be to investigate partial pooling for other
metrics such as mean sojourn time or a combination of mean sojourn time and
energy consumption.
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A Proof of Theorem 1

A sufficient condition for the Pareto frontier to be on the boundary with at least
one ki = Ni is that for any (z1, z2) where zi ∈ [0, Ni), there exists a θ > 0 such
that ∇Ci(z1, z2) · (1, θ) < 0 for i = 1, 2. This implies that at any interior point
there exists a direction in which both providers can reduce their cost. Further,
θ > 0 implies that the direction of improvement is towards ki = Ni for at least
one i since this direction takes us to the box (z1, N1]× (z2, N2]. We now show
that the three conditions in Thm. 1 are sufficient for the existence of such a θ.
Condition (3) implies that there exists a θ such that

∂C1

∂z1

∂C2

∂z2
< θ <

∂C1

∂z2

∂C2

∂z1
.

Conditions (1) and (2) ensure that θ > 0. From the above inequalities and
Conditions (1) and (2), it also follows that

θ > −
∂C1

∂z1
∂C1

∂z2

, θ < −
∂C2

∂z1
∂C2

∂z2

. (26)

It can be easily seen that the two inequalities in (26) are equivalent to∇Ci(z1, z2)·
(1, θ) < 0, for i = 1, 2.

B Proof of Theorem 2

Following [18], we will check that the product form verifies the partial balance
equations (PBE) in each state. In particular, the rate of leaving a state due to
arrivals should be equal to the rate of entering this state due to departures.

To simplify the notation, in regions 4,5, and 6, we will omit the number of
servers in the argument of π. For example, we will write π(xcov, x2) instead of

π(xcov, Ñ1, x2, Ñ2, Ñc). and π(xcov) for a state in S6.

1. For s ∈ S6, the PBE is

Λπ(xcov, x2) = Ñ1

x2−1∑
l=0

π(xcov + l + 1, x2 − l)

(
λ2

Λ

)l(
λ1

Λ

)
+ Ñ1π(xcov + x2 + 1)

(
λ2

Λ

)x2
(
λ1

Λ

)
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+ (Ñ2 + Ñc)π(xcov, x2 + 1).

The first two terms on the RHS are generated by departures from the
dedicated pool of P1. The summation accounts for the covered customers
which were assigned to class 2 during the uncovering process. Note that
the l < x2 and l = x2 states have to be separated since the former is in
S6 while the latter is in S4 and they have different factors in the product-
form. The third and the fourth terms take a customer directly into service
(without the uncovering process) since the departure was either from the
common pool or from the pool of P2.

Now, substitute (3) in the above and divide both sides by π(xcov, x2). The
RHS becomes

RHS = λ1
Ñ1

N

x2−1∑
l=1

(
Ñ2 + Ñc

N

)l

+ λ1
N

N

(
Ñ2 + Ñc

N

)x2

+ λ2

=

x2−1∑
l=0

(
Ñ2 + Ñc

N

)l

+ λ1
Ñ1 + Ñ2 + Ñc

N

(
Ñ2 + Ñc

N

)x2

+ λ2

= λ1
Ñ1

N

x2∑
l=0

(
Ñ2 + Ñc

N

)l

+ λ1

(
Ñ2 + Ñc

N

)x2+1

+ λ2

= λ1

(1− Ñ2 + Ñc

N

)
x2∑
l=0

(
Ñ2 + Ñc

N

)l

+

(
Ñ2 + Ñc

N

)x2+1
+ λ2 = Λ,

where to go from the first to the second line we used N = Ñ1 + Ñ2 + Ñc

in the numerator of the second term, and the last line follows from since
the geometric sum is just 1.

2. The case s ∈ S5 is symmetric to the case s ∈ S6.

3. s ∈ S4. This state can be entered after a departure from regions S4, S5,
and S6. The PBE is

Λπ(xcov) = Ñ1π(xcov + 1)
λ1

Λ
+ Ñ2π(xcov + 1)

λ2

Λ
+ Ñcπ(xcov + 1)

+ (Ñ1 + Ñc)π(xcov, x1 = 1) + (Ñ2 + Ñc)π(xcov, x2 = 1)

After the substitutions and division by π(s), we get

RHS = λ1
Ñ1

N
+ λ2

Ñ2

N
+ Λ

Ñc

N
+ λ1

Ñ2

N
+ λ2

Ñ1

N
= Λ.

4. For s ∈ S3, the PBE needs to checked for two separate cases.
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(a) n1 = Ñ1 − 1 for which the PBE is

Λπ(Ñ1 − 1, x2, Ñ2, Ñc) = Ñ1

x2−1∑
l=0

π(l, x2 − l)

(
λ2

Λ

)l

+ Ñ1π(xcov = x2)

(
λ2

Λ

)x2

+ (Ñ2 + Ñc)π(Ñ1 − 1, x2 + 1, Ñ2, Ñc).

Here, the first two terms account for a departure from the P1 pool
that does not find a waiting customer of its type to enter service.
After the substitutions and division, we get

RHS =
Ñ1

N
λp1

(Ñ1 − 1, Ñ2, Ñc)

x2−1∑
l=0

(
Ñ2 + Ñc

N

)l

+ λp1(Ñ1 − 1, Ñ2, Ñc)

(
Ñ2 + Ñc

N

)x2

+ λ2

= Λ,

where we have used the fact that the activation rate of pool 1 when
it is only one with free servers is λ1. The geometric sum is 1 just as it
was in the case S6. Note that the above steps also work for xcov = 0
with the convention that the empty sum is 0.

(b) n1 < Ñ1 − 1 for which the PBE is

Λπ(n1, x2, Ñ2, Ñc) = (n1 + 1)π(n1 + 1, x2, Ñ2, Ñc)

+ (Ñ2 + Ñc)π(n1, x2 + 1, Ñ2, Ñc),

which after the substitutions and division gives

RHS = λp1(n1, Ñ2, Ñc) + λ2 = Λ.

5. The case s ∈ S2 is symmetric to the case s ∈ S3.

6. s ∈ S1. Again there are two cases:

(a) nc = Ñc. This state cannot be entered due to a departure from the
common pool since it would mean that there were queued customers
in a state with n1 < Ñ1 and n2 < Ñ2. This is not possible because
there is at least one free server in each of the two dedicated pools.
Thus, PBE only has departures from the two dedicated pools:

Λπ(n1, n2, Ñc) = (n1 + 1)π(n1 + 1, n2, Ñc) + (n2 + 1)π(n1, n2 + 1, Ñc)

In the above, for the state (Ñ1 − 1, n2, Ñc), on the RHS the term

π(Ñ1, n2, Ñc) is actually π(n2, 0, Ñ1, Ñc). A similar caveat applies to

the state (Ñ1−1, n2, Ñc). After the usual substitutions and division,
we get

RHS = λp1
(n1, n2, Ñc) + λp2

(n1, n2, Ñc) = Λ
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Figure 18: Typical state corresponding to (n1, n2) ∈ N2. Jobs in service are
represented by solid circles, while waiting jobs are represented by dashed circles.

(b) nc < Ñc. Analogous reasoning to the previous case implies that a

state with ni = Ñi cannot be entered after a departure from pool i.
We get the PBE

Λπ(n1, n2, nc) = 1n1<Ñ1
(n1 + 1)π(n1 + 1, n2, nc)

+ 1n2<Ñ2
(n2 + 1)π(n1, n2 + 1, nc)

+ (nc + 1)π(n1, n2, nc + 1)

which can be seen to satisfied. Again, we have simplified some nota-
tion on the RHS where, for example, π(0, Ñ1, Ñ2, Ñc) is replaced by

π(Ñ1, Ñ2, Ñc). A similar simplification is done for some other states
as well. This does not affect the final conclusion since all these terms
have a factor of 1 in the product-form.

C Proof of Theorem 4

We shall give the proof for (n1, n2) ∈ N2. The other cases are similar.
A direct application of (4) gives the aggregate stationary probability of

(n1, n2) ∈ N2 to be

π̃(n1, n2) = π(0)

γ2(n1,n2)︷ ︸︸ ︷
n1∑
r=0

λn1
1 λn2

2

(n1 + n2)!

(r + n2 − 1)!

(n2 − 1)!r!

n1−r∏
j=0

(
1

1− λ2

(r+n2+j)

)
(27)

To see this, note that a typical (queue) state corresponding to (n1, n2) ∈ N2

has the form depicted in Figure 18, where the head of the line is on the right.
Note that there are n2 − 1 type 2 jobs and r type 1 jobs in service to the
right of (i.e., ahead of) the ‘last’ type 2 job in service (in some order), where
0 ≤ r ≤ n1. Further along the queue, there are waiting type 2 jobs interspaced
between n1 − r type 1 jobs in service. Specifically, there are m0 waiting type 2
jobs between the rth and (r + 1)th type 1 job in service, m1 waiting type 2
jobs between the (r+ 1)th and (r+ 2)th type 1 job in service, and so on. Now,
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considering there are
(
n2+r−1

r

)
ways of arranging the first n2+ r− 1 head of the

line jobs in service, the total probability associated with states of this type is:

π̃(n1, n2) = π(0)

n1∑
r=0

∞∑
m0=0

· · ·
∞∑

mn1−r=0

λn1
1 λn2

2

(n1 + n2)!

(r + n2 − 1)!

(n2 − 1)!r!

n1−r∏
j=0

(
λ2

r + n2 + j

)mj

= π(0)

n1∑
r=0

λn1
1 λn2

2

(n1 + n2)!

(r + n2 − 1)!

(n2 − 1)!r!

n1−r∏
j=0

(
1

1− λ2

(r+n2+j)

)

We show that this expression can be simplified to that in Thm. 4. First,
rewrite the terms inside the summation of γ2 as

γ2(n1, n2) =

n1∑
r=0

λn1
1 λn2

2

(n1 + n2)!

(r + n2 − 1)!

r!(n2 − 1)!

n1−r∏
j=0

(
r + n2 + j

r + n2 + j − λ2

)

=

n1∑
r=0

λn1
1 λn2

2

(n1 + n2)!

(r + n2 − 1)!

r!(n2 − 1)!

(
(n1 + n2)!

(r + n2 − 1)!

Γ(r + n2 − λ2)

Γ(n1 + n2 − λ2 + 1)

)

=

n1∑
r=0

λn1
1 λn2

2

r!(n2 − 1)!

Γ(r + n2 − λ2)

Γ(n1 + n2 − λ2 + 1)

Now, start with γ2(n1, n2 + 1) and express it in terms of γ2(n1, n2).

γ2(n1, n2 + 1) =

n1∑
r=0

λn1
1 λn2+1

2

r!n2!

Γ(r + n2 + 1− λ2)

Γ(n1 + n2 + 1− λ2 + 1)
(28)

=

n1∑
r=0

λn1
1 λn2+1

2

r!n2!
(r + n2 − λ2)

Γ(r + n2 − λ2)

Γ(n1 + n2 + 1− λ2 + 1)
(29)

=

n1∑
r=0

λn1
1 λn2+1

2

(r − 1)!n2!

Γ(r + n2 − λ2)

Γ(n1 + n2 + 1− λ2 + 1)

+

n1∑
r=0

λn1
1 λn2+1

2

r!n2!
(n2 − λ2)

Γ(r + n2 − λ2)

Γ(n1 + n2 + 1− λ2 + 1)
(30)

=

n1−1∑
r=0

λn1
1 λn2+1

2

r!n2!

Γ(r + 1 + n2 − λ2)

Γ(n1 + n2 + 1− λ2 + 1)
+ θ (31)

= γ2(n1, n2 + 1)− λn1
1 λn2+1

2

n1!n2!

Γ(n1 + 1 + n2 − λ2)

Γ(n1 + n2 + 1− λ2 + 1)
+ θ,

(32)

where to go from (30) to (31) we denote the second sum by θ and adjust the
index in the first sum. From (32), we get

θ =
λn1
1 λn2+1

2

n1!n2!

Γ(n1 + 1 + n2 − λ2)

Γ(n1 + n2 + 1− λ2 + 1)
. (33)
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Starting from the original definition of θ, we will express it in terms of γ2(n1, n2).

θ =

n1∑
r=0

λn1
1 λn2+1

2

r!n2!
(n2 − λ2)

Γ(r + n2 − λ2)

Γ(n1 + n2 + 1− λ2 + 1)
(34)

=

(
n1∑
r=0

λn1
1 λn2

2

r!(n2 − 1)!

Γ(r + n2 − λ2)

Γ(n1 + n2 − λ2 + 1)

)
λ2

n2
(n2 − λ2)

Γ(n1 + n2 − λ2 + 1)

Γ(n1 + n2 + 1− λ2 + 1)

(35)

= γ2(n1, n2)
λ2

n2
(n2 − λ2)

Γ(n1 + n2 − λ2 + 1)

Γ(n1 + n2 + 1− λ2 + 1)
(36)

= γ2(n1, n2)λ2

(
1− λ2

n2

)
Γ(n1 + n2 − λ2 + 1)

Γ(n1 + n2 + 1− λ2 + 1)
(37)

Equating (33) and (37), the equality in claim for (n1, n2) ∈ N2 follows.

D Characterization of the Pareto Frontier for
PPDS and PPR

In both PPDS and PPR the fractional sharing configurations are obtained by
time-sharing between the four neighbouring integer points. For N1 = N2 = 1
and 0 ≤ zi ≤ 1,

Ci(z1, z2) = (1−z1)(1−z2)Ci(0, 0)+(z1)(1−z2)Ci(1, 0)+(1−z1)z2Ci(0, 1)+z1z2Ci(1, 1).

For the proofs of Thms 3 and 5, we will need the following simple lemma for
computing the partial derivatives of the Cis for a sharing strategy (z1, z2) in
terms of those of the boundary points (0, 0), (0, 1), (1, 0), and (1, 1).

Lemma 1. For any z1 ∈ (0, 1) and z2 ∈ (0, 1),

∂Ci

∂z1
=(1− z2)

[
Ci(1, 0)− Ci(0, 0)

]
+ z2[Ci(1, 1)− Ci(0, 1)

]
,

∂Ci

∂z2
=(1− z1)

[
Ci(0, 1)− Ci(0, 0)

]
+ z1[Ci(1, 1)− Ci(1, 0)

]
,

and
∂C1

∂z2

∂C2

∂z1
− ∂C1

∂z1

∂C2

∂z2
= αz1 + βz2 + γ,

where

α =
[
C1(1, 0)− C1(0, 0)

][
C2(0, 1)− C2(1, 1)

]
−
[
C1(1, 1)− C1(0, 1)

][
C2(0, 0)− C2(1, 0)

]
,

β =
[
C1(1, 0)− C1(1, 1)

][
C2(0, 1)− C2(0, 0)

]
−
[
C1(0, 0)− C1(0, 1)

][
C2(1, 1)− C2(1, 0)

]
,

γ =
[
C1(0, 0)− C1(0, 1)

][
C2(0, 0)− C2(1, 0)

]
−
[
C1(1, 0)− C1(0, 0)

][
C2(0, 1)− C2(0, 0)

]
.
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D.1 Proof of Theorem 3

For PPDS, applying Cor. 1 and Thm. 2, we can explicitly compute Ci(0, 0), Ci(1, 0), Ci(0, 1)
and Ci(0, 1) as:

C1(0, 0) =λ1,

C1(1, 0) =
(2− λ1 + λ2 − λ1λ2)(λ1 + λ2)

2

Ω1
,

C1(0, 1) =
λ1(2− λ2)(λ1 + λ2)

2

Ω2
,

C1(1, 1) =
(λ1 + λ2)

2

2 + λ1 + λ2
,

C2(0, 0) =λ2,

C2(1, 0) =
λ2(2− λ1)(λ1 + λ2)

2

Ω1
,

C2(0, 1) =
(2 + λ1 − λ2 − λ1λ2)(λ1 + λ2)

2

Ω2
,

C2(1, 1) =
(λ1 + λ2)

2

2 + λ1 + λ2
.

where
Ω1 = (λ1 + λ2 + λ2

2)(1− λ1) + λ1(1− λ1λ2) + 3λ2 + λ2
2 > 0,

Ω2 = (λ1 + λ2 + λ2
1)(1− λ2) + λ2(1− λ1λ2) + 3λ1 + λ2

1 > 0.

Now, we will check that the three conditions of Thm. 1 are verified which
will then allow us to conclude that ki = Ni for some i.

For conditions (1) and (2), applying Lemma 1 with i = 1,

∂C1

∂z1
=
(1− z2)

Ω1
(2− λ1 + λ2 − λ1λ2 − λ2

1)λ
2
2 +

z2
Ω2

(2− λ1 − λ2)λ2(λ1 + λ2)
2 > 0.

∂C1

∂z2
=
(1− z1)

Ω2
λ1(1− λ2)[λ1(λ2 − 4) + λ2(λ2 − 2)] +

z1
Ω1

(λ1λ2 + λ2
2 + 2λ1 − 4)(λ1 + λ2)

2 < 0,

Similarly due to symmetry, it can be shown that ∂C2

∂z1
< 0 and ∂C2

∂z2
> 0.

Hence, Ci(z1, z2) is a strictly decreasing function of z−i, and Ci(z1, z2) is a
strictly increasing function of zi.

Finally, for condition (3),

∂C1

∂z2

∂C2

∂z1
− ∂C1

∂z1

∂C2

∂z2
= αz1 + βz2 + γ,

where,

α =
2(1− λ1)(2− λ1 − λ2)(2 + λ1 − λ2 + λ2

1 + λ1λ2)

(2 + λ1 + λ2)Ω1Ω2
> 0,

β =
2(1− λ2)(2− λ1 − λ2)(2 + λ2 − λ1 + λ2

2 + λ1λ2)

(2 + λ1 + λ2)Ω1Ω2
> 0,

γ =
4λ1λ2(1− λ1)(1− λ2)(2− λ1 − λ2)

Ω1Ω2
> 0.

Hence we have, ∂C1

∂z2
∂C2

∂z1
− ∂C1

∂z1
∂C2

∂z2
> 0.

The structure of the Pareto frontier, as elaborated in Cases 1–3, follows from
reasoning in [17]; specifically, these results follow directly from the continuity
and monotonicity of the waiting probabilities with respect to (k1, k2).
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D.2 Proof of Theorem 5

The proof follows the same approach as that of Thm. 3. First, we shall provide
expressions for the waiting probabilities and then check that the three conditions
of Thm. 1 are met by these probabilities.

Recall from Fig. 9, the waiting probability for the P2 is π̃2+π̃4+π̃5. The one
for P1 is analogously defined. These aggregate probabilities can be computed
from Thm. 4, and are:

C1(0, 0) =λ1,

C1(1, 1) =
(λ1 + λ2)

2

2 + λ1 + λ2
,

C1(0, 1) =λ1

(
λ2(2− λ1 − λ2) + λ1

2 + λ1(1− λ2)− λ2

)
,

C1(1, 0) =λ1 +
λ2
2(1− λ1)

2 + λ2(1− λ1)− λ1

C2(0, 0) =λ2

C2(1, 1) =
(λ1 + λ2)

2

2 + λ1 + λ2

C2(0, 1) =λ2 +
λ2
1(1− λ2)

2 + λ1(1− λ2)− λ2

C2(1, 0) =λ2

(
λ2(1− λ1) + λ1(2− λ1)

2 + λ2(1− λ1)− λ1

)
Now, we will check that the three conditions of Thm. 1 are verified which

will then allow us to conclude that ki = Ni for some i.
For conditions (1) and (2), applying Lemma 1,

∂C1

∂z1
=
(1− z2)

ΩA
(λ2

2(1− λ1)) +
z2
ΩB

λ2
2(2− λ1 − λ2) > 0.

∂C1

∂z2
=
(1− z1)

ΩC
λ1(λ2 − 1)(2− λ2) +

z1
ΩD

λ1(2λ1 + λ2(λ1 + λ2)− 4) < 0,

where
ΩA = 2 + λ2(1− λ1)− λ1 > 0,
ΩB = (2 + λ1 + λ2)(2 + λ1(1− λ2)− λ2) > 0,
ΩC = 2 + λ1(1− λ2)− λ2 > 0,
ΩD = (2 + λ1 + λ2)(2 + λ2(1− λ1)− λ1) > 0.
Further,

∂C2

∂z1
=
(1− z2)

ΩA
λ2(λ1 − 1)(2− λ1) +

z2
ΩB

λ2(2λ2 + λ1(λ1 + λ2)− 4) < 0,

∂C2

∂z2
=
(1− z1)

ΩC
(λ2

1(1− λ2)) +
z1
ΩD

λ2
1(2− λ1 − λ2) > 0,

Hence, applying symmetry, allows us to conclude that Ci(z1, z2) is a strictly
decreasing function of z−i, and Ci(z1, z2) is a strictly increasing function of zi.

Finally, for condition (3),

∂C1

∂z2

∂C2

∂z1
− ∂C1

∂z1

∂C2

∂z2
= αz1 + βz2 + γ,

where,

α =
2λ3

2λ1(1− λ1)(2− λ1 − λ2)

ΩX
> 0,
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β =
2λ3

1λ2(1− λ2)(2− λ1 − λ2)

ΩX
> 0,

γ =
2λ1λ2(1− λ1)(1− λ2)(2− λ1 − λ2)

ΩY
> 0.

where
ΩY = (2 + λ1(1− λ2)− λ2)(2 + λ2(1− λ1)− λ1) > 0,
ΩX = ΩY (2 + λ1 + λ2) > 0.
Hence we have, ∂C1

∂z2
∂C2

∂z1
− ∂C1

∂z1
∂C2

∂z2
> 0.
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