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A Finite-Horizon Inverse Differential Game Approach for Optimal
Trajectory-Tracking Assistance with a Wrist Exoskeleton

Abdelwaheb Hafs , Dorian Verdel , Etienne Burdet , Olivier Bruneau , Bastien Berret

Abstract— Exoskeletons are appealing robotic devices to
physically assist humans in various motor tasks. To provide a
part of the effort required for performing a task, they should be
intuitive to use and adapt to the user’s goal. Differential game
theory offers an interesting framework to formalize the shared
control problem underlying physical human-robot interaction.
In the present paper, we introduce an approach based on finite-
horizon inverse differential games, which allows to iteratively
infer the user’s internal goals and design a Nash-equilibrium
control policy. Here, we focus on a case study in which a user
has to move a load along a target trajectory while assisted by a
wrist exoskeleton. The method is first validated in simulations
and then applied to the control of the HRX-1 wrist interface.
The results show that the controller has a positive impact
tracking performance and reduces the joint torque provided by
the users while enabling them to remain active. Interestingly,
it also yields to a more balanced sharing of task efforts and a
better coordination between the robot and the user compared
to a user-agnostic linear-quadratic control guidance.

I. INTRODUCTION

Physical human-robot interaction is at the heart of many
applications designed to help humans perform motor tasks,
e.g. in industrial or medical settings [1], [2]. Besides hard-
ware [3] and ergonomic considerations [4], the topic of
interaction control [5], that is, deciding how to share task
control with the human, is of crucial importance for the
efficiency and acceptability of the device. Shared control
should not only maximize task performance but also about
enable intuitive interaction. Arguably, a robot controller that
integrates the internal motor goals of the human user would
lead to improved interaction.

Differential Games (DG) can be used to mathematically
formalize shared control problems where all players are
dynamically coupled and each player aims at minimizing
their own cost function, which results in a so-called non-
cooperative DG [6]. Interestingly, Jarrassé et al. provided
a DG framework for human-robot interaction and classified
interaction paradigms in two-player interactive tasks accord-
ing to the cost functions that agents aim to minimise [7].
Furthermore, human-human interaction has been found to
exhibit the characteristics of optimal strategies in a game-
theoretic sense, i.e. Nash equilibria, especially when enough
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information can be gathered about the partner’s strategy [8],
[9]. In physical human-human and human-robot interaction,
it has been shown that haptic feedback is a fundamental
modality that allows players called connected agents, to
exchange information about common movement goals [10],
[11].

Li et al. successfully used non-cooperative DG to opti-
mally assist humans with an endpoint robot interface dur-
ing reaching movements [12]. They considered an infinite-
horizon linear-quadratic DG framework with fixed targets
and demonstrated that, when combined with an observer to
identify the human user goal, an efficient and stable inter-
action between the robot and the human user was obtained.
Music̀ et al. generalized this approach to the tracking of arbi-
trary trajectories [13]. While they considered a finite-horizon
linear-quadratic DG problem and also estimated the human
user strategy with an adaptive observer, their solution in-
volved taking the horizon limit to infinity. Recently, Pezeshki
et al. developed an adaptive assist-as-needed control for
rehabilitation with a neural network approximation to iden-
tify the human strategy considering infinite-horizon linear-
quadratic DG [14]. In summary, previous works used an
infinite planning horizon in their practical implementations,
which may appear unlikely in real scenarios. Necessarily, the
human user will have knowledge of the upcoming trajectory
only for a relatively short time horizon. Consequently, if the
robot were to infer the intended trajectory of a human, this
prediction should also be limited to a short time horizon [15].

In this paper, we wanted to circumvent this infinite-horizon
limitation to implement an online game-theoretic controller.
To do so, we relied on recent development about inverse DG
[16]. Inverse optimal control and inverse DG provide a set
of methods to uncover cost functions from the observation
of experimental trajectories. Inverse optimal control has been
used successfully in the human motor control literature [17]
while inverse DG methods are better suited for human-robot
interaction. Several methods have been developed for inverse
DG [18], [19] but we will rely on a bi-level approach with
the aim to make it usable in real-time on a receding finite
horizon. This paper focuses on a one degree-of-freedom task
that consists of moving a load along a desired trajectory in
the sagittal plane with the help of a wrist exoskeleton. The
methodology is generalizable to more degrees of freedom
but this simple setting allows to test it systematically and in
particular verify that (1) the method works in simulation and
(2) the game-theoretic controller allows stable and efficient
interaction with a human user.

The paper is organized as follows. Section II describes the
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inverse DG approach for the task under consideration. Sec-
tion III presents simulation results to validate the algorithm
with a ground truth for the human cost and experimental
results to test the resulting interactive behavior with a human.
Concluding remarks and future work are given in Section IV.

II. METHODS

A. Dyadic system model

Let us consider a physical interaction between a wrist
exoskeleton and a human user during a trajectory-tracking
task in a common dynamic setting including gravity and
friction. The interaction dynamics can thus be described by
the following equation:

ur + uh = Iq̈ +Dq̇ +G(q) (1)

where ur and uh are respectively the robot and the human
control variables that can change the exoskeleton’s state
x ≜ [q, q̇]⊤. In the rest of the paper, the subscript r will
refer to the robotic exoskeleton and h to the human user. The
parameters I , D, and G, represent the exoskeleton’s inertia,
damping and gravitational terms (including the potential
load attached to it) respectively. Note that G is a nonlinear
function proportional to cos(q).

Here, the task is to track a desired trajectory in the vertical
plane which is a priori known, as shown in Figure 1a.
This desired trajectory defined in the exoskeleton’s joint
coordinates is denoted by qd(t) for t ∈ [0, T ], where T
is the total duration of the tracking task. The desired state
trajectory will be denoted by xd(t) ≜ [qd(t), q̇d(t)]

⊤. There
is an associated control ud(t) satisfying (1), that is ud =
Iq̈d +Dq̇d +G(qd).

By linearizing the dynamics in (1) around this reference
trajectory-control pair, we get the following affine system to
describe the interaction dynamics:

ξ̇ = Aξ +B(ur + uh) + c, ξ ≜ x− xd

A ≜

[
0 1

−G′(qd)/I −D/I

]
, B ≜

[
0

1/I

]
c ≜ −Bud

(2)

where G′ = dG/dq represents the derivative of G. Note that
A and c are time-varying functions after linearization of the
state-space dynamics around xd(t).

B. Human-Exoskeleton differential game

Here, we focus on the problem of effort sharing between
the exoskeleton and the human user. To this aim, we assume
that the two agents (human user and exoskeleton) continu-
ously play a DG over a finite time horizon (referred to as the
planning horizon). Where each agent minimises a quadratic
cost function as follows:

Jr =

∫ tc+∆p

tc

ξ(t)⊤Qrξ(t) + ur(t)
2
+ uh(t)

2
dt (3)

Jh =

∫ tc+∆p

tc

ξ(t)⊤Qhξ(t) + uh(t)
2
dt (4)

where tc is the current (initial) time and ∆p is the planning
horizon used for the fixed-time DG problem. The matrices
Qr and Qh ∈ R2×2 are positive semi-definite (assumed
to be diagonal here for simplicity) that define the weights
associated with tracking error ξ.

The cost functions defined in (3) and (4) state that the
human user aims at minimising tracking error and their own
effort expenditure uh. Similarly, the exoskeleton aims at
minimising tracking error and its effort ur. However, for
the assistance to be beneficial to the human user, we further
assume that the exoskeleton also aims at minimising the
effort of the human user uh leading to a teacher-student
relationship as in [7], [13].

For the DG problem, a Nash equilibrium exists, and the
optimal control of each agent can be obtained by solving the
following set of ordinary differential equations backwards in
time [6, p. 323]:

−Ṗr = F⊤Pr +PrF+Qr +PrBB⊤Pr

+PhBB⊤Ph

(5a)

−Ṗh = F⊤Ph +PhF+Qh +PhBB⊤Ph (5b)

−α̇r = F⊤αr +Prβ +PrBB⊤αr +PhBB⊤αh (5c)

−α̇h = F⊤αh +Phβ +PhBB⊤αh (5d)

where

F ≜ A−BB⊤(Pr +Ph) (6a)

β ≜ c−BB⊤(αr +αh). (6b)

With no terminal cost, the values at time tf = tc +∆p are
αh(tf ) = αr(tf ) = 0 and Ph(tf ) = Pr(tf ) = 0.

Then, the actual optimal controls of each agent, denoted
by u⋆

r and u⋆
h respectively, can be expressed as follows:

u⋆
r = −B⊤(Prξ +αr), u⋆

h = −B⊤(Phξ +αh) (7)

We note that optimal controls have both open-loop αh,r

and feedback gain Ph,r terms. In practice, αh and Ph are
unknown but could be estimated if we knew the parameters
of the human cost function, i.e. the weights defined in Qh.

C. Bi-level estimation method

We present below a method to estimate the human cost
function parameters, which corresponds to an inverse DG
problem [16]. The inverse DG was resolved using a bi-
level approach. The method consists in repeatedly solving
the above DG problem (Eqs. 3, 4) on the current planning
horizon starting at time tc (referred to as the lower-level
problem) while minimising the control estimation error over
some past time interval (referred to as the upper-level prob-
lem) as follows:

min
θ̂

∫ tc

tc−∆e

∥u⋆
h,θ(t)− u⋆

h,θ̂
(t)∥2dt (8)

where θ = [θ1 θ2]
⊤ is the vector of the human cost

parameters (here θ1 is the position error weight and θ2
is the velocity error weight), u⋆

h,θ is the optimal human
control with these true (yet unknown) cost parameters θ,



(a) (b)

Fig. 1: Task description. (a): Experimental setup. (1) The desired trajectory displayed on a screen as white sliding dots with the actual
position depicted as a grey dot. (2) The human and the exoskeleton (HRX-1) that can collaborate to accomplish the task. (b): Control and
estimation workflow. ξ is the state deviation, u⋆

h,θ is the (optimal) human control, θ̂ and u⋆
h,θ̂

are the estimated human cost parameters
and corresponding (optimal) human control, u⋆

r,θ̂
is the exoskeleton (optimal) control based on the estimated human cost parameters. θ̂0

is the initial guess of the parameters of the cost function. ∆p and ∆e are the planning horizon and estimation epoch respectively.

and u⋆
h,θ̂

is the optimal control of the DG with the currently

estimated cost parameters θ̂. The estimation time interval is
[tc −∆e, tc], i.e. we use past observations where u⋆

h,θ can
be measured (e.g., via interaction torque) or computed (e.g.,
via inverse dynamics) to evaluate the estimation error in the
upper level.

The main difficulty with this bi-level approach is that it
can be computationally costly, which can limit its application
in real-time control. However, it is possible to use only a
few iterations of the upper-level optimization to improve
θ̂ and to use the current estimate as the initial guess for
the next time step of the exoskeleton control loop [20]
(see Fig. 1b). Finally, it is worth noting that the method is
applied in a receding horizon fashion, so the problem will
be different as new observations come in at each time step
of the exoskeleton control loop.

D. Human-Exoskeleton Co-activity

For the sake of comparison, a linear-quadratic controller
was implemented. This controller ignores the human, where
equation (3) becomes:

Jr =

∫ tc+∆p

tc

ξ(t)⊤Qrξ(t) + ur(t)
2 dt (9)

with the corresponding ordinary differential equations [21]:

−Ṗr = A⊤Pr +PrA+Qr −PrBB⊤Pr (10a)

−α̇r = (A−BB⊤Pr)
⊤αr +Prc. (10b)

E. Simulation settings

To test our method, we first simulated the motor task
shown in Figure 1a. The desired trajectory is a sum of sine
waves with different frequencies:

qd(t) =
π

16
[1− cos(0.97t)− cos(2.34t)− cos(4.11t)]

(11)
The sampling time was ts = 1 ms in our simulations. We
modeled a human hand for a person with a height of 1.70 m
and weight of 70 kg and extracted the dynamics parame-
ters using anthropometric tables [22]. We also modeled a

cylindrical 1-DoF wrist exoskeleton with mass of m = 1
kg, length of 20 cm, and a radius of 3 cm. The dynamic
parameters of the exoskeleton were set as I = 0.0152
kg.m2, and D = 0.5 kg.m2/s. The gravity term was G(q) =
mgl cos (q) with l = 0.1 m. The simulated human was
assumed to know the exoskeleton control strategy (i.e. its cost
function), while the simulated exoskeleton had to estimate
the human control strategy. The exoskeleton cost matrix was
set as Qr = diag(30, 0.1) while we simulated different
values of the human cost matrix to test the robustness of
the method. The human cost matrix Qh was assumed to
be diagonal Qh = diag(θ) where θ = [θ1, θ2] . The total
simulation duration was set to T = 5 s. The planning window
was set at ∆p = 1.5 s and the estimation window at ∆e =
0.5 s. To solve the upper-level problem from Equation (8),
we employed a derivative free optimization algorithm called
BOBYQA. We used the NLopt toolbox in MATLAB [23],
[24], with the following configuration settings: a maximum
number of iterations set to 10 and an initial trust-region
radius of 0.2. Finally, we ran the simulation with randomly
attributed initial guesses θ̂0 ∈ [0, 30]× [0, 1].

F. Experimental setup

1) Participants: The method was then tested on ten
healthy participants (4 males and 6 females, with age =
24.6 ± 2.27 years, height = 1.68 ± 0.10 m, and weight =
63.3±12.18 kg). The experimental protocol was approved by
the ethical committee for research (CER-Paris-Saclay-2022-
071) and the written consent of participants was obtained.

2) HRX-1 exoskeleton: The experiment was conducted on
the HRX-1 robotic wrist exoskeleton, with an extra 1 kg load
to simulate a load-carrying task (see Fig. 1a). This interface
(load + exoskeleton link) can be modeled as in Equation (2)
with I = 0.0109 kg.m2, D = 0.006 kg.m2/s, m = 1.2 kg
and l = 0.0954 m. The human user was attached to the
exoskeleton using straps. In addition to the haptic feedback
inherent to human-exoskeleton interaction, visual feedback
of the current position and upcoming desired trajectory was
provided on a screen (see Fig. 1a).



The control rate of HRX-1 was 10ms and uses the cost
function defined in Equation (3), with Qr = diag(30, 0.1).
The BOBYQA parameters were set as in simulation with null
initial guess. An adaptive initial trust-region radius reduction
was added based on the estimation error, where the initial
radius was fixed to (0.1, 0.0001), which dynamically adapted
in proportion to the estimation error defined in Equation (8).
This adaptive mechanism triggers when the error reaches
0.2 Nm, making the algorithm less sensitive to the noise in
the human controller when the fitting error is small enough.
We also set an upper boundary to the second estimated
parameter of the human cost θ̂2 (velocity error weight) to
0.1, to ensure the system stability. Finally, the estimation
time interval was set to ∆e = 0.5 s and the planning horizon
was ∆p = 1.5 s.

3) Evaluation task: The desired trajectory was the same
sum of sine waves as in Equation (11), which was displayed
as a sliding sequence of dots on a finite horizon. This horizon
corresponded to the planning horizon. To compare our game-
theoretic controller to other controllers, we conducted an
experiment with three conditions in separate blocks. No
assistance (NA) condition was without assistance of the
exoskeleton. In this case, the exoskeleton torque ur was
simply set to zero so that the exoskeleton would not assist
the movement. A second Co-activity (LQ) condition was with
assistance from a standard linear-quadratic regulator [7]. A
third Collaboration (DG) condition was with the proposed
DG-based controller [7].
Each participant was instructed to follow the displayed
trajectory regardless of the exoskeleton contribution to the
task. The experiment started with two familiarization trials
of 1 minute each, which were both performed in the NA con-
dition. Then the three conditions were tested during separate
2-minute blocks, which were performed in a random order
across participants. A 1-minute break was taken between
blocks to avoid effects of fatigue.

4) Data acquisition and analysis: The angular positions
of the human user and the exoskeleton were filtered (moving
average filter with a window size of 5 samples) before
numerical differentiation, which allowed for the computation
of the real-time velocity and acceleration. This proceduce
allowed us to compute an estimation of uh in real time using
inverse dynamics. The resulting uh was low-pass filtered
(Butterworth, second order, 5 Hz cut-off frequency) after the
experiment for analyses. Main possible effects of the tested
conditions on the interaction were first assessed by a one-
way ANOVA with p < 0.05 as significance level. Whenever
a significant difference was found, the η2 was provided to
report the effect size. Pairwise t-tests were employed to
assess the main effect of the conditions, with a significance
level set at p < 0.05. Whenever a significant difference was
detected, Cohen’s D was provided to report the effect size.
All the statistical analyses were conducted with MATLAB.

III. RESULTS

Below we present the simulation and experimental re-
sults for the proposed game-theoretic approach for the one-

dimensional tracking task described above.

A. Simulation results

Figure 2 illustrates the simulated and estimated human cost
parameters with the corresponding optimal control inputs.
The simulation results exhibit a rapid estimation of param-
eters θ across different values of Qh, even when starting
from randomly assigned initial guesses. They also show the
convergence of both the estimated human torque and the
exoskeleton torque to the correct Nash-equilibrium solution.
Therefore, these simulations validated the method, yielding
correct results across a wide range of human cost parameters.

B. Experimental results

In this section, we present the results of the game-theoretic
controller for all participants and the three exoskeleton
control conditions.

1) Estimation: Figure 3 illustrates the estimated cost pa-
rameters for a representative participant over a 10-second
window. Note that cost parameters were estimated in the
three conditions using the same algorithm. Notably, in the
DG condition, the parameters quickly reached a plateau in
all cases, which is compatible with a Nash equilibrium. The
steadiness of the estimated cost parameters further corrobo-
rates that the DG condition fosters a more consistent and re-
liable interaction between the human and the exoskeleton. In
contrast, the other control conditions displayed fluctuations
in the estimated cost parameters, thus failing to achieve any
clear equilibrium state throughout the block.

We performed further analyses on all the participants to
quantify these observations. Figure 4 illustrates the mean
values of human cost parameters for each participant during
the second half of each block. First, we observe that there are
inter-individual differences on those parameters, suggesting
that the method can adapt to each individual. Second, the
position error weights θ̂1 take higher values in the NA
condition. This could be expected due to the absence of
the exoskeleton’s involvement in the task, leading to error
corrections handled by the human alone. In contrast, the LQ
condition led to smaller estimated weights. In this condition
the human essentially became a follower and the exoskeleton
a leader. Furthermore, the value of the estimated weights in
the DG condition appeared to be quite stable compared to the
other conditions (lower standard deviation). This reinforces
the idea that this cost parameter could be proper to an
individual in the task. This stability also confirms that the
parameter reached a clear plateau in the DG condition.
Regarding the velocity error weight θ̂2, we observed no
repeatable difference in the mean values among the three
control conditions but the inter-individual variability was
again quite low in the DG condition. The lack of a clear
pattern across conditions might be due to the relatively low
values assigned to this weight and its limited importance for
a system with a small inertia.



A B

Fig. 2: Estimation of the human cost parameters in simulation. A: The true human cost parameters (position error weight θ1 and velocity
error weight θ2) are dashed lines and the estimated parameters are solid lines. B: The true Nash equilibrium torques are dashed lines and
the torques recovered the inverse DG method are solid lines.

Fig. 3: Estimated parameters of the human cost parameters in experiment for one representative subject during 10 seconds of tracking in
the different exoskeleton control conditions.

Fig. 4: Estimated human cost parameters for all participants during
the last minute of the block.

2) Control performance: To analyse the effects of the
differences in the estimated cost functions, we examined the
torque applied by the human user and the exoskeleton in all
conditions. In Figure 5, we depict the human and exoskeleton
torques alongside the system trajectory over the same time
window. In the NA condition, both the tracking error and
the human torque were higher. This was expected since the
exoskeleton torque was null and the human performed the
task alone in this condition. However, in the DG condition

the torques were more evenly distributed between the human
and the exoskeleton, reflecting a shared control of task-
related efforts. The tracking errors were also smaller. In
the LQ condition, the human torque approached zero and
even attained negative values indicating that the human could
transiently resist the applied exoskeleton torque, or just be
passive [12]. The tracking error was low in this condition
as well because the exoskeleton was active and aimed at
performing the tracking task. These results are consistent
with what could be expected from the different control con-
ditions and support the relevance of our estimation method.
They also suggest that shared task control may be more
effective in the DG condition. Figure 6 provides a detailed
analysis of the mean absolute torques of the human and the
exoskeleton throughout the entire block duration in the three
control conditions. The mean values of all absolute tracking
errors are presented in the same figure to appreciate task
performance concurrently. The results revealed a significant
difference in the human torque for all conditions (p <
10−23, η2 > 0.98) and a larger level of human torque in
DG compared to LQ (p < 10−10, d > 0.77). There was
no significant difference in tracking error between the two
conditions (p > 0.44 for the position and p > 0.29 for the
velocity, see Fig. 7) despite the important effect size returned
by ANOVA (η2 > 0.75 for the position and η2 > 0.91 for the
velocity). This observation reveals that in the DG condition,
the human contribution is augmented but it still achieves a
good tracking performance through the shared control with
the exoskeleton, in contrast to the NA condition. Moreover,
in the DG condition, there was a decrease of the absolute



Fig. 5: Applied torques and tracking performance of one represen-
tative subject during 10 seconds with different exoskeleton control
conditions.

exoskeleton torque compared to LQ (p < 10−15, d > 0.8),
indicating a shift toward a more balanced sharing of task
control with the human user.

Fig. 6: Boxplot illustrating the mean of absolute values of human
and exoskeleton torques, across all participants during the last
minute of task duration in three control conditions

Furthermore, Figure 8 introduces a Coordination Index
(CI) (i.e. correlation coefficient between the human and
exoskeleton torques) to quantify how the exoskeleton and the
human dynamically synchronize to track the trajectory. It was
computed for each participant separately during the first 10
seconds and the last 10 seconds in both LQ and DG condi-
tions. Interestingly, the results reveal a significant difference
on CI in DG compared to LQ in the last 10 seconds (p <

Fig. 7: Boxplots illustrating the mean values of absolute tracking
position errors and velocity errors, across all participants during the
entire task duration in three control conditions

Fig. 8: Human-exoskeleton coordination index during the first
and last 10 seconds of the task. Significant effects on the tested
conditions are represented by ∗ if p < .05 and ∗ ∗ ∗ if p < .001

10−3, d > 2.1). This means that after 2 minutes of adaptation
in a block, the human and the exoskeleton had a shared task
control with better synchronization in the sense that their
torque inputs were better correlated (r = 0.77 on average).
Moreover, CI tended to significantly improve within a block
in the Collaboration condition (p = 0.0471, d > 0.95).

IV. CONCLUSION

We have presented a game-theoretic method for interaction
control between a human and a robotic exoskeleton. The
rationale of our approach was to estimate the human cost
parameters to predict their upcoming contribution to the task
and exploit this knowledge in the exoskeleton control policy
[20]. For a trajectory-tracking task, we formulated a finite-
horizon affine-quadratic DG and used a bi-level optimization
to estimate the human cost parameters in real time. On the
methodological side, this extends previous approaches in
which DG controllers assumed an infinite horizon in practice
[12], [13], [14]. Our premise was that humans may only
consider the desired trajectory on a relatively short time
horizon in practice. After validating the proposed method in
simulation for a 1-DOF wrist system with known ground
truth, we successfully implemented the method during a
real task with a robotic wrist exoskeleton. Efforts in this
task mainly originated from gravitational torques due to the
carried load. It is worth noting that the nonlinear effects of
gravity can be easily integrated in our settings although it
leads to time-varying affine dynamics.



Our findings indicate that the Collaboration condition
promotes a more effective and collaborative control strategy
that goes beyond the classical leader/follower dichotomy.
Here, the exoskeleton was mostly a leader in the Co-activity
condition whereas it was mostly a follower in the No assis-
tance condition. Our results confirm that the Collaboration
condition may lead to more intuitive collaborations with the
exoskeleton as it naturally adapted to the human torque con-
tribution without compromising the tracking performance.
Another interesting finding is the higher coordination (or
synchronization) between the human and the exoskeleton
obtained with the game-theoretic controller. A limitation was
the relatively small velocity weights that could be tested and
identified. Simulation findings indicate that this weight may
become more important for systems with a larger inertia.

Overall, our results demonstrate the effectiveness of our
method to address real-world problems for 1-DOF systems
when the upcoming trajectory can be predicted over a short
time horizon. Future work should investigate the minimal
planning horizon that is needed to maintain an efficient
interaction control with this approach. When the desired
trajectory is not known a priori, complementary methods
should also be used to make a prediction on some time
horizon [10], but this is beyond the scope of this paper.
Considering 1-DOF system with known trajectory is already
interesting because effective wearable robotic exoskeletons
often consider only one joint and rhythmical patterns (e.g.,
during walking), and rehabilitation applications often target
a specific joint and can impose trajectories during exercises
(e.g. wrist rehabilitation) [25], [26], [27], [28]. Extensions to
multi-DOF systems are possible with a similar approach but
the bi-level optimization would be more challenging.
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