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A Finite-Horizon Inverse Differential Game Approach for Optimal Trajectory-Tracking Assistance with a Wrist Exoskeleton

Exoskeletons are appealing robotic devices to physically assist humans in various motor tasks. To provide a part of the effort required for performing a task, they should be intuitive to use and adapt to the user's goal. Differential game theory offers an interesting framework to formalize the shared control problem underlying physical human-robot interaction.

In the present paper, we introduce an approach based on finitehorizon inverse differential games, which allows to iteratively infer the user's internal goals and design a Nash-equilibrium control policy. Here, we focus on a case study in which a user has to move a load along a target trajectory while assisted by a wrist exoskeleton. The method is first validated in simulations and then applied to the control of the HRX-1 wrist interface. The results show that the controller has a positive impact tracking performance and reduces the joint torque provided by the users while enabling them to remain active. Interestingly, it also yields to a more balanced sharing of task efforts and a better coordination between the robot and the user compared to a user-agnostic linear-quadratic control guidance.

I. INTRODUCTION

Physical human-robot interaction is at the heart of many applications designed to help humans perform motor tasks, e.g. in industrial or medical settings [START_REF] Ajoudani | Progress and prospects of the human-robot collaboration[END_REF], [START_REF] Losey | A review of intent detection, arbitration, and communication aspects of shared control for physical human-robot interaction[END_REF]. Besides hardware [START_REF] Vanderborght | Variable impedance actuators: A review[END_REF] and ergonomic considerations [START_REF] Lorenzini | Ergonomic human-robot collaboration in industry: A review[END_REF], the topic of interaction control [START_REF] Li | A review on interaction control for contact robots through intent detection[END_REF], that is, deciding how to share task control with the human, is of crucial importance for the efficiency and acceptability of the device. Shared control should not only maximize task performance but also about enable intuitive interaction. Arguably, a robot controller that integrates the internal motor goals of the human user would lead to improved interaction.

Differential Games (DG) can be used to mathematically formalize shared control problems where all players are dynamically coupled and each player aims at minimizing their own cost function, which results in a so-called noncooperative DG [START_REF] Başar | Dynamic Noncooperative Game Theory, 2nd Edition[END_REF]. Interestingly, Jarrassé et al. provided a DG framework for human-robot interaction and classified interaction paradigms in two-player interactive tasks according to the cost functions that agents aim to minimise [START_REF] Jarrassé | A framework to describe, analyze and generate interactive motor behaviors[END_REF]. Furthermore, human-human interaction has been found to exhibit the characteristics of optimal strategies in a gametheoretic sense, i.e. Nash equilibria, especially when enough AH and BB are with the CIAMS, Université Paris-Saclay, 91405 Orsay, France. CIAMS, Université d'Orléans, Orléans, France. Corresponding email: abdelwaheb.hafs@universite-paris-saclay.fr.
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information can be gathered about the partner's strategy [START_REF] Braun | Nash equilibria in multi-agent motor interactions[END_REF], [START_REF] Chackochan | Incomplete information about the partner affects the development of collaborative strategies in joint action[END_REF]. In physical human-human and human-robot interaction, it has been shown that haptic feedback is a fundamental modality that allows players called connected agents, to exchange information about common movement goals [START_REF] Takagi | Physically interacting individuals estimate the partner's goal to enhance their movements[END_REF], [START_REF] Takagi | Haptic communication between humans is tuned by the hard or soft mechanics of interaction[END_REF].

Li et al. successfully used non-cooperative DG to optimally assist humans with an endpoint robot interface during reaching movements [START_REF] Li | Differential game theory for versatile physical human-robot interaction[END_REF]. They considered an infinitehorizon linear-quadratic DG framework with fixed targets and demonstrated that, when combined with an observer to identify the human user goal, an efficient and stable interaction between the robot and the human user was obtained. Music et al. generalized this approach to the tracking of arbitrary trajectories [START_REF] Musić | Haptic shared control for human-robot collaboration: A game-theoretical approach[END_REF]. While they considered a finite-horizon linear-quadratic DG problem and also estimated the human user strategy with an adaptive observer, their solution involved taking the horizon limit to infinity. Recently, Pezeshki et al. developed an adaptive assist-as-needed control for rehabilitation with a neural network approximation to identify the human strategy considering infinite-horizon linearquadratic DG [START_REF] Pezeshki | Cooperative assist-as-needed control for robotic rehabilitation: A twoplayer game approach[END_REF]. In summary, previous works used an infinite planning horizon in their practical implementations, which may appear unlikely in real scenarios. Necessarily, the human user will have knowledge of the upcoming trajectory only for a relatively short time horizon. Consequently, if the robot were to infer the intended trajectory of a human, this prediction should also be limited to a short time horizon [START_REF] Bashford | Motor skill learning decreases movement variability and increases planning horizon[END_REF].

In this paper, we wanted to circumvent this infinite-horizon limitation to implement an online game-theoretic controller. To do so, we relied on recent development about inverse DG [START_REF] Molloy | Inverse Optimal Control and Inverse Noncooperative Dynamic Game Theory: A Minimum-Principle Approach[END_REF]. Inverse optimal control and inverse DG provide a set of methods to uncover cost functions from the observation of experimental trajectories. Inverse optimal control has been used successfully in the human motor control literature [START_REF] Berret | Evidence for composite cost functions in arm movement planning: An inverse optimal control approach[END_REF] while inverse DG methods are better suited for human-robot interaction. Several methods have been developed for inverse DG [START_REF] Inga | Solution sets for inverse non-cooperative linear-quadratic differential games[END_REF], [START_REF] Molloy | Inverse open-loop noncooperative differential games and inverse optimal control[END_REF] but we will rely on a bi-level approach with the aim to make it usable in real-time on a receding finite horizon. This paper focuses on a one degree-of-freedom task that consists of moving a load along a desired trajectory in the sagittal plane with the help of a wrist exoskeleton. The methodology is generalizable to more degrees of freedom but this simple setting allows to test it systematically and in particular verify that (1) the method works in simulation and (2) the game-theoretic controller allows stable and efficient interaction with a human user.

The paper is organized as follows. Section II describes the inverse DG approach for the task under consideration. Section III presents simulation results to validate the algorithm with a ground truth for the human cost and experimental results to test the resulting interactive behavior with a human. Concluding remarks and future work are given in Section IV.

II. METHODS

A. Dyadic system model

Let us consider a physical interaction between a wrist exoskeleton and a human user during a trajectory-tracking task in a common dynamic setting including gravity and friction. The interaction dynamics can thus be described by the following equation:

u r + u h = I q + D q + G(q) (1) 
where u r and u h are respectively the robot and the human control variables that can change the exoskeleton's state x ≜ [q, q] ⊤ . In the rest of the paper, the subscript r will refer to the robotic exoskeleton and h to the human user. The parameters I, D, and G, represent the exoskeleton's inertia, damping and gravitational terms (including the potential load attached to it) respectively. Note that G is a nonlinear function proportional to cos(q).

Here, the task is to track a desired trajectory in the vertical plane which is a priori known, as shown in Figure 1a. This desired trajectory defined in the exoskeleton's joint coordinates is denoted by q d (t) for t ∈ [0, T ], where T is the total duration of the tracking task. The desired state trajectory will be denoted by x d (t) ≜ [q d (t), qd (t)] ⊤ . There is an associated control u d (t) satisfying [START_REF] Ajoudani | Progress and prospects of the human-robot collaboration[END_REF], that is u d = I qd + D qd + G(q d ).

By linearizing the dynamics in (1) around this reference trajectory-control pair, we get the following affine system to describe the interaction dynamics:

ξ = Aξ + B(u r + u h ) + c, ξ ≜ x -x d A ≜ 0 1 -G ′ (q d )/I -D/I , B ≜ 0 1/I c ≜ -Bu d (2)
where G ′ = dG/dq represents the derivative of G. Note that A and c are time-varying functions after linearization of the state-space dynamics around x d (t).

B. Human-Exoskeleton differential game

Here, we focus on the problem of effort sharing between the exoskeleton and the human user. To this aim, we assume that the two agents (human user and exoskeleton) continuously play a DG over a finite time horizon (referred to as the planning horizon). Where each agent minimises a quadratic cost function as follows:

J r = tc+∆p tc ξ(t) ⊤ Q r ξ(t) + u r (t) 2 + u h (t) 2 dt (3) 
J h = tc+∆p tc ξ(t) ⊤ Q h ξ(t) + u h (t) 2 dt ( 4 
)
where t c is the current (initial) time and ∆ p is the planning horizon used for the fixed-time DG problem. The matrices Q r and Q h ∈ R 2×2 are positive semi-definite (assumed to be diagonal here for simplicity) that define the weights associated with tracking error ξ.

The cost functions defined in ( 3) and ( 4) state that the human user aims at minimising tracking error and their own effort expenditure u h . Similarly, the exoskeleton aims at minimising tracking error and its effort u r . However, for the assistance to be beneficial to the human user, we further assume that the exoskeleton also aims at minimising the effort of the human user u h leading to a teacher-student relationship as in [START_REF] Jarrassé | A framework to describe, analyze and generate interactive motor behaviors[END_REF], [START_REF] Musić | Haptic shared control for human-robot collaboration: A game-theoretical approach[END_REF].

For the DG problem, a Nash equilibrium exists, and the optimal control of each agent can be obtained by solving the following set of ordinary differential equations backwards in time [6, p. 323]:

-Ṗr = F ⊤ P r + P r F + Q r + P r BB ⊤ P r + P h BB ⊤ P h (5a) -Ṗh = F ⊤ P h + P h F + Q h + P h BB ⊤ P h (5b) -αr = F ⊤ α r + P r β + P r BB ⊤ α r + P h BB ⊤ α h (5c) -αh = F ⊤ α h + P h β + P h BB ⊤ α h (5d) 
where

F ≜ A -BB ⊤ (P r + P h ) (6a) β ≜ c -BB ⊤ (α r + α h ). (6b) 
With no terminal cost, the values at time

t f = t c + ∆ p are α h (t f ) = α r (t f ) = 0 and P h (t f ) = P r (t f ) = 0.
Then, the actual optimal controls of each agent, denoted by u ⋆ r and u ⋆ h respectively, can be expressed as follows:

u ⋆ r = -B ⊤ (P r ξ + α r ), u ⋆ h = -B ⊤ (P h ξ + α h ) (7)
We note that optimal controls have both open-loop α h,r and feedback gain P h,r terms. In practice, α h and P h are unknown but could be estimated if we knew the parameters of the human cost function, i.e. the weights defined in Q h .

C. Bi-level estimation method

We present below a method to estimate the human cost function parameters, which corresponds to an inverse DG problem [START_REF] Molloy | Inverse Optimal Control and Inverse Noncooperative Dynamic Game Theory: A Minimum-Principle Approach[END_REF]. The inverse DG was resolved using a bilevel approach. The method consists in repeatedly solving the above DG problem (Eqs. 3, 4) on the current planning horizon starting at time t c (referred to as the lower-level problem) while minimising the control estimation error over some past time interval (referred to as the upper-level problem) as follows:

min θ tc tc-∆e ∥u ⋆ h,θ (t) -u ⋆ h, θ (t)∥ 2 dt (8) 
where θ = [θ 1 θ 2 ] ⊤ is the vector of the human cost parameters (here θ 1 is the position error weight and θ 2 is the velocity error weight), u ⋆ h,θ is the optimal human control with these true (yet unknown) cost parameters θ, and u ⋆ h, θ is the optimal control of the DG with the currently estimated cost parameters θ. The estimation time interval is [t c -∆ e , t c ], i.e. we use past observations where u ⋆ h,θ can be measured (e.g., via interaction torque) or computed (e.g., via inverse dynamics) to evaluate the estimation error in the upper level.

The main difficulty with this bi-level approach is that it can be computationally costly, which can limit its application in real-time control. However, it is possible to use only a few iterations of the upper-level optimization to improve θ and to use the current estimate as the initial guess for the next time step of the exoskeleton control loop [START_REF] Hafs | Optimizing human-robot interactions through differential gamecontrol[END_REF] (see Fig. 1b). Finally, it is worth noting that the method is applied in a receding horizon fashion, so the problem will be different as new observations come in at each time step of the exoskeleton control loop.

D. Human-Exoskeleton Co-activity

For the sake of comparison, a linear-quadratic controller was implemented. This controller ignores the human, where equation (3) becomes:

J r = tc+∆p tc ξ(t) ⊤ Q r ξ(t) + u r (t) 2 dt (9)
with the corresponding ordinary differential equations [START_REF] Kappen | Optimal control theory and the linear Bellman equation[END_REF]:

-Ṗr = A ⊤ P r + P r A + Q r -P r BB ⊤ P r (10a) -αr = (A -BB ⊤ P r ) ⊤ α r + P r c. (10b) 

E. Simulation settings

To test our method, we first simulated the motor task shown in Figure 1a. The desired trajectory is a sum of sine waves with different frequencies:

q d (t) = π 16 [1 -cos(0.97t) -cos(2.34t) -cos(4.11t)] (11) 
The sampling time was t s = 1 ms in our simulations. We modeled a human hand for a person with a height of 1.70 m and weight of 70 kg and extracted the dynamics parameters using anthropometric tables [START_REF] Winter | The biomechanics and motor control of human gait: normal, elderly and pathological[END_REF]. We also modeled a cylindrical 1-DoF wrist exoskeleton with mass of m = 1 kg, length of 20 cm, and a radius of 3 cm. The dynamic parameters of the exoskeleton were set as I = 0.0152 kg.m 2 , and D = 0.5 kg.m 2 /s. The gravity term was G(q) = mgl cos (q) with l = 0.1 m. The simulated human was assumed to know the exoskeleton control strategy (i.e. its cost function), while the simulated exoskeleton had to estimate the human control strategy. The exoskeleton cost matrix was set as Q r = diag(30, 0.1) while we simulated different values of the human cost matrix to test the robustness of the method. The human cost matrix Q h was assumed to be diagonal Q h = diag(θ) where θ = [θ 1 , θ 2 ] . The total simulation duration was set to T = 5 s. The planning window was set at ∆ p = 1.5 s and the estimation window at ∆ e = 0.5 s. To solve the upper-level problem from Equation (8), we employed a derivative free optimization algorithm called BOBYQA. We used the NLopt toolbox in MATLAB [START_REF] Johnson | The NLopt nonlinear-optimization package[END_REF], [START_REF] Powell | The BOBYQA algorithm for bound constrained optimization without derivatives[END_REF], with the following configuration settings: a maximum number of iterations set to 10 and an initial trust-region radius of 0.2. Finally, we ran the simulation with randomly attributed initial guesses θ0 ∈ [0, 30] × [0, 1].

F. Experimental setup 1) Participants:

The method was then tested on ten healthy participants (4 males and 6 females, with age = 24.6 ± 2.27 years, height = 1.68 ± 0.10 m, and weight = 63.3±12.18 kg). The experimental protocol was approved by the ethical committee for research (CER-Paris-Saclay-2022-071) and the written consent of participants was obtained.

2) HRX-1 exoskeleton: The experiment was conducted on the HRX-1 robotic wrist exoskeleton, with an extra 1 kg load to simulate a load-carrying task (see Fig. 1a). This interface (load + exoskeleton link) can be modeled as in Equation ( 2) with I = 0.0109 kg.m 2 , D = 0.006 kg.m 2 /s, m = 1.2 kg and l = 0.0954 m. The human user was attached to the exoskeleton using straps. In addition to the haptic feedback inherent to human-exoskeleton interaction, visual feedback of the current position and upcoming desired trajectory was provided on a screen (see Fig. 1a).

The control rate of HRX-1 was 10 ms and uses the cost function defined in Equation ( 3), with Q r = diag(30, 0.1). The BOBYQA parameters were set as in simulation with null initial guess. An adaptive initial trust-region radius reduction was added based on the estimation error, where the initial radius was fixed to (0.1, 0.0001), which dynamically adapted in proportion to the estimation error defined in Equation ( 8). This adaptive mechanism triggers when the error reaches 0.2 Nm, making the algorithm less sensitive to the noise in the human controller when the fitting error is small enough. We also set an upper boundary to the second estimated parameter of the human cost θ2 (velocity error weight) to 0.1, to ensure the system stability. Finally, the estimation time interval was set to ∆ e = 0.5 s and the planning horizon was ∆ p = 1.5 s.

3) Evaluation task: The desired trajectory was the same sum of sine waves as in Equation [START_REF] Takagi | Haptic communication between humans is tuned by the hard or soft mechanics of interaction[END_REF], which was displayed as a sliding sequence of dots on a finite horizon. This horizon corresponded to the planning horizon. To compare our gametheoretic controller to other controllers, we conducted an experiment with three conditions in separate blocks. No assistance (NA) condition was without assistance of the exoskeleton. In this case, the exoskeleton torque u r was simply set to zero so that the exoskeleton would not assist the movement. A second Co-activity (LQ) condition was with assistance from a standard linear-quadratic regulator [START_REF] Jarrassé | A framework to describe, analyze and generate interactive motor behaviors[END_REF]. A third Collaboration (DG) condition was with the proposed DG-based controller [START_REF] Jarrassé | A framework to describe, analyze and generate interactive motor behaviors[END_REF]. Each participant was instructed to follow the displayed trajectory regardless of the exoskeleton contribution to the task. The experiment started with two familiarization trials of 1 minute each, which were both performed in the NA condition. Then the three conditions were tested during separate 2-minute blocks, which were performed in a random order across participants. A 1-minute break was taken between blocks to avoid effects of fatigue.

4) Data acquisition and analysis: The angular positions of the human user and the exoskeleton were filtered (moving average filter with a window size of 5 samples) before numerical differentiation, which allowed for the computation of the real-time velocity and acceleration. This proceduce allowed us to compute an estimation of u h in real time using inverse dynamics. The resulting u h was low-pass filtered (Butterworth, second order, 5 Hz cut-off frequency) after the experiment for analyses. Main possible effects of the tested conditions on the interaction were first assessed by a oneway ANOVA with p < 0.05 as significance level. Whenever a significant difference was found, the η 2 was provided to report the effect size. Pairwise t-tests were employed to assess the main effect of the conditions, with a significance level set at p < 0.05. Whenever a significant difference was detected, Cohen's D was provided to report the effect size. All the statistical analyses were conducted with MATLAB.

III. RESULTS

Below we present the simulation and experimental results for the proposed game-theoretic approach for the one-dimensional tracking task described above.

A. Simulation results

Figure 2 illustrates the simulated and estimated human cost parameters with the corresponding optimal control inputs. The simulation results exhibit a rapid estimation of parameters θ across different values of Q h , even when starting from randomly assigned initial guesses. They also show the convergence of both the estimated human torque and the exoskeleton torque to the correct Nash-equilibrium solution. Therefore, these simulations validated the method, yielding correct results across a wide range of human cost parameters.

B. Experimental results

In this section, we present the results of the game-theoretic controller for all participants and the three exoskeleton control conditions.

1) Estimation: Figure 3 illustrates the estimated cost parameters for a representative participant over a 10-second window. Note that cost parameters were estimated in the three conditions using the same algorithm. Notably, in the DG condition, the parameters quickly reached a plateau in all cases, which is compatible with a Nash equilibrium. The steadiness of the estimated cost parameters further corroborates that the DG condition fosters a more consistent and reliable interaction between the human and the exoskeleton. In contrast, the other control conditions displayed fluctuations in the estimated cost parameters, thus failing to achieve any clear equilibrium state throughout the block.

We performed further analyses on all the participants to quantify these observations. Figure 4 illustrates the mean values of human cost parameters for each participant during the second half of each block. First, we observe that there are inter-individual differences on those parameters, suggesting that the method can adapt to each individual. Second, the position error weights θ1 take higher values in the NA condition. This could be expected due to the absence of the exoskeleton's involvement in the task, leading to error corrections handled by the human alone. In contrast, the LQ condition led to smaller estimated weights. In this condition the human essentially became a follower and the exoskeleton a leader. Furthermore, the value of the estimated weights in the DG condition appeared to be quite stable compared to the other conditions (lower standard deviation). This reinforces the idea that this cost parameter could be proper to an individual in the task. This stability also confirms that the parameter reached a clear plateau in the DG condition. Regarding the velocity error weight θ2 , we observed no repeatable difference in the mean values among the three control conditions but the inter-individual variability was again quite low in the DG condition. The lack of a clear pattern across conditions might be due to the relatively low values assigned to this weight and its limited importance for a system with a small inertia. 2) Control performance: To analyse the effects of the differences in the estimated cost functions, we examined the torque applied by the human user and the exoskeleton in all conditions. In Figure 5, we depict the human and exoskeleton torques alongside the system trajectory over the same time window. In the NA condition, both the tracking error and the human torque were higher. This was expected since the exoskeleton torque was null and the human performed the task alone in this condition. However, in the DG condition the torques were more evenly distributed between the human and the exoskeleton, reflecting a shared control of taskrelated efforts. The tracking errors were also smaller. In the LQ condition, the human torque approached zero and even attained negative values indicating that the human could transiently resist the applied exoskeleton torque, or just be passive [START_REF] Li | Differential game theory for versatile physical human-robot interaction[END_REF]. The tracking error was low in this condition as well because the exoskeleton was active and aimed at performing the tracking task. These results are consistent with what could be expected from the different control conditions and support the relevance of our estimation method. They also suggest that shared task control may be more effective in the DG condition. Figure 6 provides a detailed analysis of the mean absolute torques of the human and the exoskeleton throughout the entire block duration in the three control conditions. The mean values of all absolute tracking errors are presented in the same figure to appreciate task performance concurrently. The results revealed a significant difference in the human torque for all conditions (p < 10 -23 , η 2 > 0.98) and a larger level of human torque in DG compared to LQ (p < 10 -10 , d > 0.77). There was no significant difference in tracking error between the two conditions (p > 0.44 for the position and p > 0.29 for the velocity, see Fig. 7) despite the important effect size returned by ANOVA (η 2 > 0.75 for the position and η 2 > 0.91 for the velocity). This observation reveals that in the DG condition, the human contribution is augmented but it still achieves a good tracking performance through the shared control with the exoskeleton, in contrast to the NA condition. Moreover, in the DG condition, there was a decrease of the absolute 10 -3 , d > 2.1). This means that after 2 minutes of adaptation in a block, the human and the exoskeleton had a shared task control with better synchronization in the sense that their torque inputs were better correlated (r = 0.77 on average). Moreover, CI tended to significantly improve within a block in the Collaboration condition (p = 0.0471, d > 0.95).

IV. CONCLUSION

We have presented a game-theoretic method for interaction control between a human and a robotic exoskeleton. The rationale of our approach was to estimate the human cost parameters to predict their upcoming contribution to the task and exploit this knowledge in the exoskeleton control policy [START_REF] Hafs | Optimizing human-robot interactions through differential gamecontrol[END_REF]. For a trajectory-tracking task, we formulated a finitehorizon affine-quadratic DG and used a bi-level optimization to estimate the human cost parameters in real time. On the methodological side, this extends previous approaches in which DG controllers assumed an infinite horizon in practice [START_REF] Li | Differential game theory for versatile physical human-robot interaction[END_REF], [START_REF] Musić | Haptic shared control for human-robot collaboration: A game-theoretical approach[END_REF], [START_REF] Pezeshki | Cooperative assist-as-needed control for robotic rehabilitation: A twoplayer game approach[END_REF]. Our premise was that humans may only consider the desired trajectory on a relatively short time horizon in practice. After validating the proposed method in simulation for a 1-DOF wrist system with known ground truth, we successfully implemented the method during a real task with a robotic wrist exoskeleton. Efforts in this task mainly originated from gravitational torques due to the carried load. It is worth noting that the nonlinear effects of gravity can be easily integrated in our settings although it leads to time-varying affine dynamics.

Our findings indicate that the Collaboration condition promotes a more effective and collaborative control strategy that goes beyond the classical leader/follower dichotomy. Here, the exoskeleton was mostly a leader in the Co-activity condition whereas it was mostly a follower in the No assistance condition. Our results confirm that the Collaboration condition may lead to more intuitive collaborations with the exoskeleton as it naturally adapted to the human torque contribution without compromising the tracking performance. Another interesting finding is the higher coordination (or synchronization) between the human and the exoskeleton obtained with the game-theoretic controller. A limitation was the relatively small velocity weights that could be tested and identified. Simulation findings indicate that this weight may become more important for systems with a larger inertia.

Overall, our results demonstrate the effectiveness of our method to address real-world problems for 1-DOF systems when the upcoming trajectory can be predicted over a short time horizon. Future work should investigate the minimal planning horizon that is needed to maintain an efficient interaction control with this approach. When the desired trajectory is not known a priori, complementary methods should also be used to make a prediction on some time horizon [START_REF] Takagi | Physically interacting individuals estimate the partner's goal to enhance their movements[END_REF], but this is beyond the scope of this paper. Considering 1-DOF system with known trajectory is already interesting because effective wearable robotic exoskeletons often consider only one joint and rhythmical patterns (e.g., during walking), and rehabilitation applications often target a specific joint and can impose trajectories during exercises (e.g. wrist rehabilitation) [START_REF] Colombo | Robotic techniques for upper limb evaluation and rehabilitation of stroke patients[END_REF], [START_REF] Jarrassé | Robotic exoskeletons: A perspective for the rehabilitation of arm coordination in stroke patients[END_REF], [START_REF] Siviy | Opportunities and challenges in the development of exoskeletons for locomotor assistance[END_REF], [START_REF] Slade | Personalizing exoskeleton assistance while walking in the real world[END_REF]. Extensions to multi-DOF systems are possible with a similar approach but the bi-level optimization would be more challenging.
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 1 Fig. 1: Task description. (a): Experimental setup. (1) The desired trajectory displayed on a screen as white sliding dots with the actual position depicted as a dot. (2) The human and the exoskeleton (HRX-1) that can collaborate to accomplish the task. (b): Control and estimation workflow. ξ is the state deviation, u ⋆ h,θ is the (optimal) human control, θ and u ⋆ h, θ are the estimated human cost parameters and corresponding (optimal) human control, u ⋆ r, θ is the exoskeleton (optimal) control based on the estimated human cost parameters. θ0 is the initial guess of the parameters of the cost function. ∆p and ∆e are the planning horizon and estimation epoch respectively.
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 2 Fig. 2: Estimation of the human cost parameters in simulation. A: The true human cost parameters (position error weight θ1 and velocity error weight θ2) are dashed lines and the estimated parameters are solid lines. B: The true Nash equilibrium torques are dashed lines and the torques recovered the inverse DG method are solid lines.
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 3 Fig. 3: Estimated parameters of the human cost parameters in experiment for one representative subject during 10 seconds of tracking in the different exoskeleton control conditions.
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 4 Fig. 4: Estimated human cost parameters for all participants during the last minute of the block.
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 5 Fig. 5: Applied torques and tracking performance of one representative subject during 10 seconds with different exoskeleton control conditions.
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 678 Fig. 6: Boxplot illustrating the mean of absolute values of human and exoskeleton torques, across all participants during the last minute of task duration in three control conditions