
HAL Id: hal-04443391
https://hal.science/hal-04443391

Submitted on 7 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A GNN Approach for Cell-Free Massive MIMO
Lou Salaun, Hong Yang, Shashwat Mishra, Chung Shue Chen

To cite this version:
Lou Salaun, Hong Yang, Shashwat Mishra, Chung Shue Chen. A GNN Approach for Cell-Free Massive
MIMO. GLOBECOM 2022 - 2022 IEEE Global Communications Conference, Dec 2022, Rio de Janeiro,
France. pp.3053-3058, �10.1109/GLOBECOM48099.2022.10001647�. �hal-04443391�

https://hal.science/hal-04443391
https://hal.archives-ouvertes.fr


A GNN Approach for Cell-Free Massive MIMO
Lou Salaün∗, Hong Yang†, Shashwat Mishra∗ and Chung Shue Chen∗

∗Nokia Bell Labs, 1 Route de Villejust, Nozay, 91620 France,
†Nokia Bell Labs, 600 Mountain Avenue, Murray Hill, NJ 07974 USA,

Email: lou.salaun@nokia-bell-labs.com, h.yang@nokia-bell-labs.com,
shashwat.mishra@nokia.com, chung_shue.chen@nokia-bell-labs.com

Abstract—Beyond 5G wireless technology Cell-Free Massive
MIMO (CFmMIMO) downlink relies on carefully designed pre-
coders and power control to attain uniformly high rate coverage.
Many such power control problems can be calculated via second
order cone programming (SOCP). In practice, several order of
magnitude faster numerical procedure is required because power
control has to be rapidly updated to adapt to changing channel
conditions. We propose a Graph Neural Network (GNN) based
solution to replace SOCP. Specifically, we develop a GNN to
obtain downlink max-min power control for a CFmMIMO with
maximum ratio transmission (MRT) beamforming. We construct
a graph representation of the problem that properly captures the
dominant dependence relationship between access points (APs)
and user equipments (UEs). We exploit a symmetry property,
called permutation equivariance, to attain training simplicity and
efficiency. Simulation results show the superiority of our approach
in terms of computational complexity, scalability and generaliz-
ability for different system sizes and deployment scenarios.

Index Terms—Cell-Free Massive MIMO, max-min power con-
trol, graph neural network, MRT, conjugate beamforming.

I. INTRODUCTION

Since the seminal paper [1], Massive MIMO (mMIMO)
now forms a backbone of 5G physical layer technology. With
magnitudes more service antennas at the base stations, high
precision beamforming becomes possible and uniform service
quality can be made available in a cellular network for the
first time [2], and the spectral efficiency has been greatly
increased over 4G. Similar to previous generations of wireless
technologies, to go beyond 5G, substantial increase in spectral
efficiency is expected for future mobile networks.

To materially increase the spectral efficiency beyond cellular
mMIMO, a cell-free version of mMIMO was first proposed in
[3], and more detailed theoretical investigations were carried
out in [4], [5]. Some key challenges in realizing CFmMIMO
were outlined in [6]. Among them is the practical realization
of downlink power control. Machine learning approaches to
speed up the calculation of power controls are mostly motivated
by real-world deployment requirements. Among existing litera-
ture, [7] used deep learning to perform uplink power allocation
for sum-rate and max-min rate optimization; [8], [9] proposed
unsupervised deep learning to obtain uplink power control for
several optimization objectives. Downlink power control is in
general different from the uplink as each access point (AP)
is not only subject to total power constraint, but also must
judiciously allocate powers to all served user equipments (UEs)
for optimal fairness and interference mitigation. [10] proposed

a deep learning method to approximate a high complexity
heuristic algorithm for max-min power control. [11], [12], [13],
[14] considered neural network approach for the downlink
power optimization. In particular, [13] employed a training data
augmentation scheme and developed a CNN (convolutional
neural network) to obtain a near optimal downlink max-min
power control with reasonable complexity; [14] employed a
deep reinforcement learning approach with deep deterministic
policy gradient algorithm for the problem. It should be noted
that the fully connected layers in [14] can incur large training
complexity and thus limit the scalability and generalizability.

GNN [15] is a relatively recent neural network architecture
that has received a lot of attention in the past few years. It
associates graph components with sets of features that can be
learned through iterative local computations. It can be very
effective for node level, edge level, and graph level prediction
tasks. In this paper, we develop a GNN to solve the downlink
max-min power control problem with MRT precoding. Our
contributions are:

1) We formulate the power control problem as a node level
prediction task and design a graph structure that properly
captures the dominant dependence relationship between
APs and UEs. In our CNN approach [13], a symmetry
property of CFmMIMO was utilized to vastly augment
the training examples. This augmentation becomes un-
necessary now as we recognize some intrinsic properties
of the GNN, known as permutation equivariance [16]. It
allows us to construct a GNN that matches the symmetric
structure of CFmMIMO, which not only greatly simplifies
the training process, but also achieves unprecedented
accuracy, scalability, and reusability for different system
sizes and deployment scenarios.

2) Our model optimizes directly each user’s SINR by back-
propagating the gradient of the SINR loss through the
GNN during training. This further enables our GNN to
produce near-optimal power control directly. In compar-
ison, we used an additional convex optimization in our
CNN approach [13].

3) We show through numerical simulations that a single
trained GNN achieves practically near-optimal perfor-
mance on a wide range of scenarios, with up to 128
APs, 32 UEs and various deployment morphologies. We
compare the complexity of SOCP, CNN and GNN to
confirm the advantage of GNN in large systems.



II. SYSTEM MODEL

A. Cell-Free Massive MIMO

We consider a CFmMIMO system [4], [5] with M APs
deployed throughout the coverage area. All APs are connected
to a central processing unit (CPU) for precoding and decoding
processing and for power control coordination. We assume that
each AP has one service antenna, and the M -AP system serves
K single-antenna UEs simultaneously, where M is much larger
than K.

The channel matrix between the M AP antennas and the K
user antennas is denoted as:

G = (g1 · · · gK) =

 ḡT
1
...

ḡT
M

 ∈ CM×K ,

where gk ∈ CM is the channel vector between the k-th user
and the M AP antennas, and ḡm ∈ CK is the channel vector
between the m-th AP antenna and the K users, where the
superscript T denotes the transpose. The downlink data channel
is modeled as:

x = GT(
√
ρds) +w, (1)

where x ∈ CK is the received signal vector at the K user
terminals, ρd is the downlink signal to noise ratio (SNR)
for each AP, and s ∈ CM is M precoded inputs to the M
antenna ports at the M APs, and w ∈ CK is a circularly-
symmetric Gaussian noise vector. Each AP has a downlink
power constraint, which can be specified as:

∥E(s∗T ⊙ s)∥∞ ≤ 1. (2)

Here, E(·) is the expectation, the superscript ∗ denotes the
complex conjugate transpose and ⊙ denotes the element-wise
multiplication.

B. Downlink Max-Min SINR with MRT

The channel between the m-th service antenna and the k-th
user is denoted by:

gm,k =
√
βm,khm,k, (3)

where βm,k models the large-scale fading that accounts for
geometric attenuation and shadow fading, and hm,k models
the small-scale fading that accounts for random scattering. In
a rich scattering propagation environment, the magnitude of
the signal typically varies randomly according to the Rayleigh
distribution, thus the small-scaling fading hm,k are modeled
as circularly symmetric complex Gaussian, independent and
identically distributed random variables.

Under these assumptions, and with MMSE (minimum mean
square error) channel estimation based on orthogonal uplink
pilot sequence, the ergodic downlink effective SINR for the
CFmMIMO system with MRT precoding is given by [5]:

SINRk =
ρd

(∑M
m=1

√
αm,kηm,k

)2

1 + ρd
∑M

m=1 βm,k

∑K
k′=1 ηm,k′

, (4)

where

αm,k =
ρuτβ

2
m,k

1 + ρuτβm,k
. (5)

αm,k is the mean-square of the channel estimate, and ρd and
ρu are the normalized downlink and uplink SNR respectively.
τ is the length of the uplink pilot sequence that is used for
channel estimation. η = {ηm,k} is the downlink power control
which is subject to per AP power constraint:

K∑
k′=1

ηm,k′ ≤ 1, ∀m. (6)

The max-min power control optimization problem can be
formulated as

max
η

min
k

SINRk,

subject to
K∑

k′=1

ηm,k′ ≤ 1, ∀m,

ηm,k′ ≥ 0, ∀m, k′.

(P)

An optimal solution to problem P can be obtained with SOCP
feasibility bisection search [4], [5], [17]. However, SOCP’s
computational complexity becomes impractical as M and K
increase. For this reason, we develop a GNN that approx-
imates the solution of SOCP but with practical run-times.
The GNN takes as input the large scale fading coefficients,
denoted by B = {βm,k}, and outputs the power control values
η = {ηm,k}. We will show that a single GNN model can
achieve near-optimal performance over a wide range of system
sizes and deployment morphologies.

III. GRAPH NEURAL NETWORK-BASED POWER CONTROL

A. Heterogeneous Graph Representation

We generate datasets composed of optimal (B,η) pairs,
which are used to train and evaluate the neural network.
Each dataset corresponds to a different simulation scenario
characterized by a triplet (M,K,mor), where mor ∈
{urban, suburban, rural} denotes the deployment and radio
propagation morphology. For each example of the dataset, we
generate B with M ×K coefficients, as described in [17] and
following the ITU-R specifications [18]. The corresponding
power control η is obtained by SOCP.

One can notice that, if the AP indices {1, . . . ,M} are
permuted and/or the UE indices {1, . . . ,K} are permuted at the
input B, then the optimal output would be η permuted in the
same order. In other words, problem P does not depend on the
choice of indices for the UEs and APs. This property is called
permutation equivariance, and GNNs are known to inherently
satisfy permutation invariance and equivariance [16].

To apply the GNN on our data, we need to represent them
as graphs. We convert each data sample to a directed graph
G = (V,E), where V is the set of nodes and E the set of
directed edges. We create one node for each pair (m, k) ∈
{1, . . . ,M}×{1, . . . ,K}, for a total of MK nodes. The one-
to-one mapping between the (m, k) pair and the node index i ∈
V = {1, · · · ,MK} is denoted by π(m, k) = i. Conversely,



we have π−1(i) = (m, k). Each node i ∈ V is associated with
a tensor hi called node feature. The initial node features are
the input B of the problem: for all i ∈ V , hi(0) = βm,k,
where π(m, k) = i. Then, the GNN updates the node features
through T iterations, i.e., hi(t), for t = 1, . . . , T . The goal is to
approximate the optimal output of the problem η with the final
features: for all i ∈ V , hi(T ) ≈ ηm,k, where π(m, k) = i. The
intermediate features, for t = 1, . . . , T − 1, are called hidden
features or hidden layers.

Since the GNN performs local computations on each node
and their neighbors connected by an edge, we choose to create
one edge between two nodes if they share the same AP or the
same UE. There is no self-loop, i.e., ∀ i ∈ V, (i, i) /∈ E. Let
e ∈ E, we define type(e) ∈ {AP,UE} to be the edge type.
Each edge is either of type AP if they share the same AP,
or of type UE if they share the same UE. Hence, the edge
construction is summarized by the following two statements,
for all m,m′ ∈ {1, . . . ,M}, m ̸= m′, and k, k′ ∈ {1, . . . ,K},
k ̸= k′:

1) e = (π(m, k), π(m, k′)) ∈ E and type(e) = AP,
2) e = (π(m, k), π(m′, k)) ∈ E and type(e) = UE.

We consider heterogeneous edge types so the GNN can
distinguish between these relationships and apply different
operations on each type of edges. Let i ∈ V , we define its
set of neighbors as:

N (i) = {j ∈ V : (i, j) ∈ E}.

Similarly, we define the set of neighbors of type UE and type
AP as:

NUE(i) = {j ∈ V : (i, j) ∈ E and type(i, j) = UE},
NAP(i) = {j ∈ V : (i, j) ∈ E and type(i, j) = AP}.

Fig. 1 depicts the neighbors of a typical node and its two types
of edges. For i ∈ V , we have:

NUE(i) ∪NAP(i) = N (i),

NUE(i) ∩NAP(i) = ∅.

Each NUE(i) has M − 1 elements, each NAP(i) has K − 1
elements, and each N (i) has M +K − 2 elements.

This node-edge structure associates nodes with 1st order
dependence as neighbors and distinguishes the nodes that share
APs and nodes that share UEs.

B. Data Preprocessing

The graph data preprocessing is done similarly to [13]. We
first apply a log2 transformation to all the input and output
features. This way, the features are within the same order of
magnitude, and the GNN is able to extract useful information.
As an example, if βm,k takes values in

[
10−15, 10−5

]
, then

−50 < log2 βm,k < −16. Then, we normalize the resulting
values so that the input features and output features each have
zero mean and unit standard deviation over all examples of
the dataset. This is a common practice to help speed up the
training, as the model does not have to learn the statistics of
the data.

π(1, k)

NUE(i)

π(m−1, k)

π(m+1, k)

π(M,k)

•
•
•

•
•
•

π(m, 1)

NAP(i)

π(m, k−1)

π(m, k+1)

π(m,K)

•
•
•

•
•
•

π(m, k) = i

UE
type edges AP type ed

ges

Fig. 1. A typical node π(m, k) = i ∈ V and its two types of neighbors

C. The Structure of the Neural Network

In this sub-section, we use notation L to denote the linear
operation that takes as input a tensor x of size n and outputs
a tensor L(x) of size m as follows:

L(x) = Wx+ b,

where W ∈ Rm×n and b ∈ Rm are trainable parameters
called weight and bias. Note that, the linear layers used in
equations (8) and (9) do not share any trainable parameter. To
differentiate them without ambiguity, we write L with different
subscripts and superscripts.

The feature tensor of each node i ∈ V is updated based on
the features of its direct neighbors at the previous iteration.
That is, hi(t + 1) is obtained from hi(t) and hj(t), for j ∈
N (i). The update rule is as follows:

hi(t+ 1) = Norm(ReLU(fAP,t(i) + fUE,t(i))) , (7)

where Norm denotes the layer normalization [19], and ReLU is
the rectified linear unit activation function. The functions f•,t,
for • ∈ {AP,UE}, are inspired from the graph transformer of
the UniMP model [20, Section 3.1], and are defined as:

f•,t(i) =

C⊕
c=1

(
L1
•,c,t(hi(t)) +

∑
j∈N•(i)

α•,c,t(i, j)× L2
•,c,t(hj(t))

)
, (8)

where fAP,t(i) depends on the set of nodes NAP(i) ∪ {i}, and
fUE,t(i) depends on NUE(i)∪{i}. We implement each of these
two functions with C = 2 attention heads. The two attention
heads corresponding to c = 1 and c = 2 are concatenated into
a single tensor. This concatenation operation is denoted by ⊕.
Let d be the tensor size of each attention head, then f•,t(i)
is a tensor of size 2d. Finally, α•,c,t(i, j) is the c-th attention



coefficient between source node i and destination node j, such
that:

α•,c,t(i, j) =
⟨L3

•,c,t(hi(t)),L4
•,c,t(hj(t))⟩∑

u∈N•(i)
⟨L3

•,c,t(hi(t)),L4
•,c,t(hu(t))⟩

, (9)

where ⟨x, y⟩ = exp
(

xT y√
d

)
, is the exponential scale dot-

product [21] and d is the tensor size of each head.
The idea behind the above multi-head attention network is

that each node can focus on a subset of its neighbors that
are of interest instead of equally considering all the neighbors.
Indeed, the attention coefficient controls which feature hj(t)
will contribute to hi(t + 1) through Eqn. (8): the feature is
discarded if α•,c,t(i, j) ≈ 0, and kept otherwise. The level
of dependence between two APs (or UEs) varies due to their
relative geographic location. We use attention to efficiently
learn the complex relationship between nodes. Furthermore,
with multiple heads, different attention levels can be assigned
to the various features of the same neighbor. Here, we imple-
ment C = 2 attention heads. A further increase in the number
of heads does not significantly improve the performance for
this problem. During our study, we observe that the attention
mechanism greatly improves the GNN performance and gen-
eralizability to large number of APs and UEs.

We can see that whenever the input is permuted, the π
mapping is permuted, but the neighborhood of each π(m, k)
node remains the same. Furthermore, the operations defined
above do not depend on any ordering of the neighbors, since
the neighboring features hj(t), for j ∈ N (i), are summed
in (8). As a consequence, the GNN guarantees that the output
is also permuted equivariantly. Thus, the GNN satisfies the
permutation equivariance property of our problem P .

By experiments, we optimized the structure of the GNN to
achieve near-optimal performance with reasonable complexity.
Our GNN model contains 9 hidden layers, i.e., T = 10, with
the following node feature tensor sizes:

Layer sizes: (in=1, 8, 8, 16, 16, 32, 16, 16, 8, 8, out=1).

As expected, the input and output both have a single value
per node representing respectively the large scale fading co-
efficient, and the power control coefficient for each channel.
Each hidden layer, for t = 1, . . . , 9, is obtained from the
previous layer by applying the multi-head attention neural
network defined in Eqn. (7). The final output tensor is obtained
by applying a simple linear activation of the form hi(T ) =
Lout(hi(T − 1)), for all node i ∈ V . To guarantee that the
power constraints in P are satisfied, we apply the following two
operations on the output tensor: (i) If any power coefficient is
negative, we set it to zero. (ii) If the power budget constraint is
violated for an AP m, then we renormalize its transmit powers.
That is, if

∑K
k′=1 ηm,k′ > 1, then for all UE k, we assign

ηm,k ← ηm,k/
∑K

k′=1 ηm,k′ .

D. Training and SINR Loss Function

The training dataset is composed of 4 scenarios:
(M,K,mor) = (32, 6, urban), (32, 9, urban), (64, 9, urban),

(64, 18, urban). Each scenario has 20,000 samples, for a total
of 80,000 training samples. In comparison, the training dataset
in [13] uses 36, 000 raw data for the (32, 6, urban) and
(32, 9, urban) scenarios only. These data are then augmented
to obtain 2.16 × 106 training samples. The augmentation
consists of duplicating the samples 60 times and applying
random row-permutations and column-permutations to them.
This augmentation is needed for the CNN to learn the prob-
lem’s permutation equivariance and achieve good performance.
As explained in the previous sub-section, the GNN inherently
satisfies this property. Therefore, such a data augmentation
is not needed, and the GNN model converges faster during
training. Furthermore, the CNN cannot be extended to larger
scenarios without a massive amount of augmented data, as well
as an increasing number of trainable parameters to represent
the equivariance property. This is a major shortcoming of CNN,
which we overcome with the proposed GNN.

The loss function used for training is the mean square error
of the per-user SINR, which can be calculated as:

1

K

K∑
k=1

(
SINRk − SINR′

k

)2
,

where SINRk is the optimal SINR of user k obtained by
SOCP, and SINR′

k is the SINR computed from the GNN
predicted power coefficients η′. The proposed loss function is
differentiable and varies continuously with each user’s SINR.
By backpropagating the loss through the GNN, it adjusts its
hidden layers based on which user’s SINR should be increased
or decreased at each training step.

We use the Adam optimizer [22] with a learning rate of 7×
10−4 to train the GNN model. The batch size is 64, and the
training is stopped after 100 epochs.

IV. NUMERICAL RESULTS

In this section, we show the performance of our GNN in
terms of spectral efficiency, computational complexity, and
generalizability for different system sizes and deployment
morphologies. We compare it to the results obtained in [13]
for the CNN and the optimal SOCP benchmark. To evaluate
the complexity of each algorithm, we count their number
of floating point operations (FLOPs) during execution. Each
multiplication or addition counts as one FLOP.

The number of APs in our simulations ranges from M = 5 to
128. The number of UEs ranges from K = 5 to 32. These APs
and UEs are randomly distributed in a circular area within a
radius of 500 meters for the urban scenario, 1 km for suburban
and 4 km for rural. We consider the ”NLoS” propagation model
specified in [18], and the path loss parameters used are the
same as in [13].

The figures in this section show the spectral efficiency
cumulative distribution function (CDF) achieved by the differ-
ent algorithms for various simulation scenarios (M,K,mor).
We generate 1,000 large-scale fading realizations for each
simulation scenario. The performance loss at median refers
to the relative difference in spectral efficiency between the



TABLE I
COMPARISON OF GNN AND CNN

Scenario FLOPs Loss at median
GNN CNN GNN CNN

Urban
1.5× 107 3.7× 106 0.72% 14.60%24 APs, 5 UEs

Urban
1.9× 107 3.7× 106 0.48% 2.62%32 APs, 5 UEs

Urban
3.2× 107 3.7× 106 0.58% 2.68%32 APs, 9 UEs

Suburban
3.2× 107 3.7× 106 1.55% 2.81%32 APs, 9 UEs

Rural
3.2× 107 3.7× 106 1.35% 2.84%32 APs, 9 UEs

deep learning scheme (GNN or CNN) and the optimal solution
obtained by SOCP, taken at the median of the CDF. The 95%-
likely performance refers to the spectral efficiency at the 5-th
percentile, i.e., it indicates the coverage quality for 95% of the
users.

All the simulations and algorithms are implemented in
Python 3. The GNN is based on the PyTorch Geometric
library [23]. The CNN is implemented in TensorFlow, and the
SOCP problem P is solved using Mosek [24].

A. Comparison of GNN and CNN

We compare the performance of GNN and CNN on the
scenarios simulated in paper [13]. The results are summarized
in Table I. In the urban deployments with 32 APs, GNN
achieves less than 0.6% performance loss at median, while
CNN has about 2.6% loss. In the suburban and rural scenarios,
the performance losses are respectively of 1.55% and 1.35%
for the GNN versus 2.81% and 2.84% for the CNN. Besides,
we see that the GNN generalizes well when the number of APs
changes to 24, achieving similar performance loss of 0.72%,
while the loss of the CNN degrades significantly to 14.6%.

In terms of FLOPs, GNN requires approximately 4 to 9
times more operations than CNN in these small systems.
Nevertheless, it is implementable in practice as we observe
an execution time of less than 100ms on a CPU1. We will
see in the next subsection that the run-time of GNN remains
practical when the number of APs and UEs increases.

B. GNN Spectral Efficiency and Complexity

Fig. 2 shows the spectral efficiency of GNN and SOCP
on urban scenarios similar to the ones used for training.
GNN reaches unprecedented accuracy, with less than 0.5%
performance loss at median in all 4 scenarios. Moreover, the
95%-likely spectral efficiency is at most 0.017 bits/s/Hz away
from optimal. This demonstrates the relevance of our graph
representation for problem P , and GNN’s effectiveness in
learning the optimal power control. Besides the figures, the
simulation results of this subsection are summarized in Table II.

To see how our model generalizes to different graph sizes,
we run simulations for (M,K,mor) = (48, 12, urban),
(96, 30, urban) and (128, 32, urban), see Fig. 3. Their per-
formance loss at median are respectively 0.77%, 1.56% and

1with the following specifications: Intel Core i5 CPU with 8 GB of RAM,
Windows 10, 64 bits.

Fig. 2. Spectral efficiency on urban scenarios

Fig. 3. Spectral efficiency on urban scenarios with graph sizes (number of
UEs and APs) that have not been seen by the GNN during training

2.05%. We observe that the relative performance decreases
slightly as the graph size increases. Overall, the performance
remains very competitive even for graphs that are twice larger
than the graphs used for training, e.g., 128 APs and 32 UEs.

We also validate our GNN model with other deployment
morphologies. The suburban and rural results are presented in
Table II. In brief, the performance loss at median is at most
1.54% for 32 and 64 APs, and at most 3.2% for 128 APs. The
general trend in all these results is that the GNN inference can
be slightly degraded by bigger graphs and different deployment
morphologies than the ones used for training. However, the
performance remains close to the optimal for all practical
purposes.

Let us discuss about the computational complexity of our
solution. The graph structure defined in Section III-A has MK
nodes, MK(M−1) edges of type UE and MK(K−1) edges
of type AP. Since the GNN operations are computed on the
graph’s nodes and edges, one can show that its asymptotic
computational complexity is O(MK(M +K)). To validate
this by simulation, we run the algorithms on randomly gen-
erated large-scale fading realizations for different values of
M = 1, . . . , 256 and K = 5, . . . , 72, then we plot their FLOPs



Fig. 4. FLOPs of GNN and SOCP as a function of MK(M +K)

TABLE II
COMPARISON OF GNN AND SOCP

Scenario
FLOPs GNN loss GNN 95%

GNN SOCP at median likely loss
Urban:

24 APs, 5 UEs 1.5× 107 1.4× 108 0.73% 1.42%

32 APs, 5 UEs 1.9× 107 2.8× 108 0.48% 1.19%

32 APs, 6 UEs 2.4× 107 2.6× 108 0.43% 0.51%

32 APs, 9 UEs 3.2× 107 2.5× 108 0.47% 1.05%

48 APs, 12 UEs 4.8× 107 7.1× 108 0.77% 1.51%

64 APs, 9 UEs 5.1× 107 5.6× 108 0.19% 0.25%

64 APs, 18 UEs 8.4× 107 2.2× 109 0.35% 0.57%

96 APs, 30 UEs 2.3× 108 1.0× 1010 1.56% 2.39%

128 APs, 32 UEs 3.7× 108 1.5× 1010 2.05% 2.94%

Suburban:
32 APs, 9 UEs 3.2× 107 2.5× 108 1.54% 5.27%

64 APs, 18 UEs 8.5× 107 2.2× 109 1.20% 2.41%

128 APs, 32 UEs 3.7× 108 1.6× 1010 3.20% 4.28%

Rural:
32 APs, 9 UEs 3.2× 107 2.5× 108 1.35% 4.02%

64 APs, 18 UEs 8.4× 107 2.3× 109 0.78% 1.88%

128 APs, 32 UEs 3.7× 108 1.6× 1010 2.97% 3.91%

versus MK(M +K) in Fig. 4. We see that the GNN’s FLOPs
can be well fitted by a linear function in MK(M +K) which
confirms the above result.

In Fig. 4 and Table II, GNN has 10 times fewer FLOPs than
SOCP on small scenarios with 32 APs. For 128 APs, it requires
about 40 times fewer FLOPs than SOCP, and for 256 APs, it
reduces the FLOPs by a factor 105. The same observation can
be made on the run-times: on a CPU1, the GNN computes the
power control for 128 APs and 32 UEs in 1s, while it takes
45s for SOCP to complete. In real-world systems, the GNN
would be implemented on a GPU: we observe under 50ms of
run-times on a Nvidia TITAN RTX GPU.

V. CONCLUSION

In this paper, we propose a GNN to solve the downlink
max-min power control for a CFmMIMO system with MRT
precoded beamforming. Our solution takes advantage of the
problem’s permutation equivariance property to greatly im-
prove the learning efficiency and accuracy. Numerical results
show that a single trained GNN achieves near-optimal per-
formance for various systems sizes and deployment scenarios.

Furthermore, its complexity remains low in all the simulated
use-cases, therefore it is implementable in practice even in very
large systems. The aforementioned two points demonstrate the
superiority of our approach over the state of the art in terms
of scalability and generalizability.

REFERENCES

[1] T. L. Marzetta, “Noncooperative cellular wireless with unlimited numbers
of base station antennas,” IEEE Trans. Wireless Commun., vol. 9, no. 11,
pp. 3590–3600, 2010.

[2] H. Yang and T. L. Marzetta, “A macro cellular wireless network with
uniformly high user throughputs,” in IEEE Veh. Technol. Conf., 2014.

[3] ——, “Capacity performance of multicell large-scale antenna systems,”
in 51st Annual Allerton Conference on Communication, Control, and
Computing, 2013.

[4] H. Q. Ngo, A. Ashikhmin, H. Yang, E. G. Larsson, and T. L. Marzetta,
“Cell-free massive MIMO versus small cells,” IEEE Trans. Wireless
Commun., vol. 16, no. 3, pp. 1834–1850, 2017.

[5] E. Nayebi, A. Ashikhmin, T. L. Marzetta, H. Yang, and B. D. Rao,
“Precoding and power optimization in cell-free massive MIMO systems,”
IEEE Trans. Wireless Commun., vol. 16, no. 7, pp. 4445–4459, 2017.

[6] J. Zhang, E. Björnson, M. Matthaiou, D. W. K. Ng, H. Yang, and D. J.
Love, “Prospective multiple antenna technologies for beyond 5G,” IEEE
J. Sel. Areas Commun., vol. 38, no. 8, pp. 1637–1660, 2020.

[7] C. D’Andrea, A. Zappone, S. Buzzi, and M. Debbah, “Uplink power
control in cell-free massive MIMO via deep learning,” in IEEE 8th
International Workshop on Computational Advances in Multi-Sensor
Adaptive Processing (CAMSAP), 2019.

[8] Y. Zhang, J. Zhang, Y. Jin, S. Buzzi, and B. Ai, “Deep learning-based
power control for uplink cell-free massive MIMO systems,” in IEEE
Globecom, 2021.

[9] N. Rajapaksha, K. B. S. Manosha, N. Rajatheva, and M. Latva-aho,
“Deep learning-based power control for cell-free massive MIMO net-
works,” in IEEE International Conference on Communications, 2021.

[10] Y. Zhao, I. G. Niemegeers, and S. Heemstra de Groot, “Power allocation
in cell-free massive MIMO: A deep learning method,” IEEE Access,
vol. 8, no. 5, pp. 87 185–87 200, 2020.

[11] H. Yan, A. Ashikhmin, and H. Yang, “Optimally supporting IoT with
cell-free massive MIMO,” in IEEE Globecom, 2020.

[12] ——, “A scalable and energy efficient IoT system supported by cell-free
massive MIMO,” IEEE Internet Things J., 2021.

[13] L. Salaün and H. Yang, “Deep learning based power control for cell-free
massive MIMO with MRT,” in IEEE Globecom, 2021.

[14] L. Luo, J. Zhang, S. Chen, X. Zhang, B. Ai, and D. W. K. Ng, “Downlink
power control for cell-free massive MIMO with deep reinforcement
learning,” IEEE Trans. Veh. Technol., 2022, early Access.

[15] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The graph neural network model,” IEEE Trans. Neural Netw., vol. 20,
no. 1, pp. 61–80, 2009.

[16] N. Keriven and G. Peyré, “Universal invariant and equivariant graph
neural networks,” Advances in Neural Information Processing Systems,
vol. 32, 2019.

[17] H. Yang and T. L. Marzetta, “Energy efficiency of massive MIMO: cell-
free vs. cellular,” in IEEE 87th Veh. Technol. Conf., 2018.

[18] M. Series, “Guidelines for evaluation of radio interface technologies for
IMT-Advanced,” Report ITU M.2135-1, 2009.

[19] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv
preprint arXiv:1607.06450, 2016.

[20] Y. Shi, Z. Huang, S. Feng, H. Zhong, W. Wang, and Y. Sun, “Masked
label prediction: Unified message passing model for semi-supervised
classification,” arXiv preprint arXiv:2009.03509, 2020.

[21] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[22] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[23] M. Fey and J. E. Lenssen, “Fast graph representation learning with
PyTorch Geometric,” in ICLR Workshop on Representation Learning on
Graphs and Manifolds, 2019.

[24] E. D. Andersen, C. Roos, and T. Terlaky, “On implementing a primal-dual
interior-point method for conic quadratic optimization,” Mathematical
Programming, vol. 95, no. 2, pp. 249–277, 2003.


