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Laboratoire de Mathématiques et de leurs Application de Pau, CNRS UMR 5142

Universite de Pau et des Pays de l’Adour, Pau, France
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1 Introduction

Mixture experiments are well known since the initial paper of Scheffe (1958). In this situation

we assume that the response is a function only of the proportions of the components which

are present in the mixture. Classical designs for mixtures are simplex lattice designs, simple

centröıd designs or axial designs. We are interested in this paper by a method proposed by

Prescott (2000) in order to derive mixture designs from the projection of a response surface

design.

The main problem of such a method is the size of response surface designs which is often

too large for mixture designs (because models for fitting mixtures are submodels of classical

polynomial models). Our idea in this paper is then to use small-size designs for response surfaces

and more precisely saturated degins obtained by augmenting simplex designs for fitting order one

model. In the class of such designs we are then looking numerically for D-optimal configurations.

This paper is organized as follows. A first part is devoted to recalls, notations and general

results about augmented pair designs and projected design. A second part deals with the

application of projected methods in order to obtain new mixtures designs and how to consider

optimal configurations. Extentions of this method to constrained domains is presented in the

last section.
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2 Augmented and projected designs

2.1 Augmented pair designs

Consider a random phenomenon depending on m quantitative factors and n experimental units.

We denote by Yu,x the observed value of the response when the treatment x = (x1, . . . , xm)
′
is

applied to the experimental unit u and by E ⊂ Rm the experimental domain. An augmented

design is firstly constituted by an initial design for fitting the order one classical model:

∀ x ∈ E , Yu,x = β0 +

m∑
i=1

βixi + εu,x.

In the following n1 denotes the number of runs of this initial design and D1 its design matrix

(that is the n1 ×m matrix such that its rows are made up by the design point’s coordinates).

The goal is then to add some runs to the initial design in order to fit the response surface

model (see, for example, Khuri and Cornell (1996) for the general subject of response surfaces

methodology):

∀ x ∈ E , Yu,x = β0 +

m∑
i=1

βixi +

m∑
i=1

βiix
2
i +

∑∑
i<j

βijxixj + εu,x. (1)

For an augmented pair design (introduced by Morris (2000)) the idea is to consider each pair of

runs (xs, xt) , s < t, of the initial design and then add the run αxst with α ∈ R and xst = xs+xt.

In other words the design matrix of the augmented design is Drsm given by:

D′
rsm = [D′

1 | αD′
2]

with D2 the n2×m (m− 1) /2 matrix of the augmented part (its rows are made up by the design

point’s xst coordinates). Note also that n2 =
(
n1

2

)
= n1 (n1 − 1) /2. Two points are essential in

the construction of an augmented design: the initial design and the value of α.

For the choice of the initial design it is possible to use a factorial design or a regular fraction

of resolution III adapted to the first order model as proposed by Fand and Mukerjee (2004).

Such designs have simple levels but are not necessarily saturated. On the other side the goal

may be to consider a small initial design. Such design can be saturated using, for example, a

simplex design. The matrix D1 for a simplex design can be constructed in different ways: with

a upper triangular block (see Khuri and Cornell (1996)), with cyclic permutations (see Crosier

(1996)), etc. But these methods lead in general to a large number of different levels for the

factors. An alternative method, suggested by Mee (2002), is to consider initial designs with only

three different levels (a, b and c) such that (with Jm = ImI′m the m×m matrix of ones):

D1 = D1 (a, b, c) =

 aI′m

(b− c) Im + cJm

 (2)
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It is easy to check that such design is saturated (n1 = m+ 1) and is also a simplex orthogonal

design (that is
(
1/
√
m+ 1

)
X is an orthognal matrix) if and only if a = ±1 and the choices for

b and c are given by:


a = −1

b =
(
1− (m− 1)

√
m+ 1

)
/m

c =
(
1 +

√
m+ 1

)
/m

or


a = −1

b =
(
1 + (m− 1)

√
m+ 1

)
/m

c =
(
1−

√
m+ 1

)
/m

(3)

Two other alternatives when a = 1 are possible, they are obtained by reversing all the signs in

the previous relations.

For the choice of the scale parameter α several “optimal” values have been proposed. Aug-

mented pair design are particular case of a general theoretical method proposed by Box and

Beehnken (1960) for simplex-sum designs. For these designs they have suggested to take α = 1/2

(see also Spendley et al. (1962)) that is to add to the initial design all the midpoints of its edges.

More recently, Morris (2000) or Fang and Mukerjee (2004) have proved that taking α = −1/2

lead us to more efficient designs. But for an inital design given by the matrix (2) and a spherical

experimental region the choice α = −
√
m/2 (m− 1) leads in most cases to more efficient designs

than those proposed by Morris (2000), see the paper of Tinsson (2007).

2.2 Projected designs

The aim of this method (see Prescott (2000)) is to derive mixture designs from response surface

designs. Recall that mixture experiments involve m components and we are interested by the

proportion xi of each of them so 0 ≤ xi ≤ 1 for i = 1, ...,m and

m∑
i=1

xi = 1 (4)

The classical second-ordre model for mixture is (under the constraint (4)):

∀ x ∈ E , Yu,x =

m∑
i=1

bixi +
∑∑

i<j

bijxixj + εu,x. (5)

The procedure to obtain a projected mixture design from an initial response surface design is

given by the following steps:

1) use a response surface design in n runs and m factors given by the matrix Drsm,

2) construct the corrected matrix D∗
rsm such that its rows sum to zero, so:

D∗
rsm = Drsm

(
In − 1

n
Jn

)
.
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3) transform the matrix D∗
rsm into matrix D such that its rows sum now to one

(with δ ∈ R and Jn,m = InI′m the n×m matrix of ones):

D = δD∗
rsm +

1

m
Jn,m.

4) find the values for the parameter δ in order to identify the matrix D to a mixture

design matrix (that is all its values dij must be such that 0 ≤ dij ≤ 1).

3 Application to mixture experiments

3.1 Actual context

Papers concerning projected designs are based on the projection of response surfaces designs like

central composite designs (see Prescott (2000)) or on the projection of augmented pair designs

with a full factorial design or a regular fraction for the initial design (see Prescott (2004)). The

main problem with such methods is the size of these designs and the fact that second order

models for mixtures are submodels of the classical response surface models. More precisely

the number of unknown parameters are given by:

prsm =
(m+ 1) (m+ 2)

2
for model (1) and pmix =

m (m+ 1)

2
for model (5)

so prsm = pmix + (m+ 1) and designs for response surfaces have in general too many runs

in order to become “economical” projected mixture designs. For example in Prescott (2004) a

projected mixture design for m = 3 components is obained from an augmented pair design made

with the full factorial design. In such a situation the initial full factorial design has n1 = 8 runs

so n2 = 28 augmented runs are added and the final projected mixture design is in n = 36 runs.

When all the experiments are expensive it is clear tha such a design is not appropriate (we have

here prsm = 10 and pmix = 6). In a second time the author explains that the initial design can

be reduced to a resolution III regular fraction of the full factorial design and then n1 = 4 so

n2 = 6 and the final projected mixture design has just n = 10 runs which is a more suitable size.

But such a situation works well because we are in a special case where the regular fraction is a

satured first-order design, or in other words the regular fraction is also a Plackett and Burman

design (see Plackett and Burman (1946)) but such experimental designs don’t always exist (it

is necessary that m ≡ 3mod [4]). For example the same method applied to m = 4 factors with

the smallest regular fraction is such that n1 = 24−1 = 8 so n2 = 28 and then the final projected

mixture design has n = 36 runs. It is not economically usable since pmix = 10 here.

This construction method, based on full or fractional factorial designs is very efficient in the

situation of blocked designs because as Prescott says (see Prescott (2004)): “the orthogonal

blocking property is preserved when the response surface design is projected into the mixture
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space”. So such projected designs work well, and aren’t too big, when heterogeneous experi-

mental conditions require the use of two or more blocks. We’ll now turn our attention to the

case without blocks and look for a class of projected designs for mixtures of acceptable size.

3.2 New designs constructions

Our first goal is to obtain projected mixture design from saturated response surface designs.

This can be done using three-levels simplex orthogonal designs presented in point (2). These

designs are saturated for the first order model so the resulting augmented pair designs are also

saturated for the response surface model (so constituted by n = (m+ 1) (m+ 2) /2 runs). The

second goal is to have a large class of projected designs and this will be achieved by the choice

of the two parameters α for the augmented pair design and δ for the projected method (see

section 2). We denote in the following by PMDm (α, δ) such "projected mixture design".

We describe in the following the construction method for the particular case where m = 3

components are used for a mixture formulation. We start with the construction of the initial

simplex orthogonal saturated design (n1 = 4) with three levels presented in (2) so (using the

second relation in (3)):

D1 =


−1 −1 −1

5/3 −1/3 −1/3

−1/3 5/3 −1/3

−1/3 −1/3 5/3


Adding the n2 = n1 (n1 − 1) /2 = 6 augmented runs on the form xst = α (xs + xt) we obtain

the following matrix for the augmented pair design:

Drsm =



−1 −1 −1

5/3 −1/3 −1/3

−1/3 5/3 −1/3

−1/3 −1/3 5/3

2α/3 −4α/3 −4α/3

−4α/3 2α/3 −4α/3

−4α/3 −4α/3 2α/3

4α/3 4α/3 −2α/3

4α/3 −2α/3 4α/3

−2α/3 4α/3 4α/3


The corrected projected matrix D∗

rsm (with rows sum to zero) and the final matrix D = δD∗
rsm+

(1/3) J10,3 are then respectively given by:
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D∗
rsm =



0 0 0

4/3 −2/3 −2/3

−2/3 4/3 −2/3

−2/3 −2/3 4/3

4α/3 −2α/3 −2α/3

−2α/3 4α/3 −2α/3

−2α/3 −2α/3 4α/3

2α/3 2α/3 −4α/3

2α/3 −4α/3 2α/3

−4α/3 2α/3 2α/3



and D =
1

3



1 1 1

4δ + 1 −2δ + 1 −2δ + 1

−2δ + 1 4δ + 1 −2δ + 1

−2δ + 1 −2δ + 1 4δ + 1

4αδ + 1 −2αδ + 1 −2αδ + 1

−2αδ + 1 4αδ + 1 −2αδ + 1

−2αδ + 1 −2αδ + 1 4αδ + 1

2αδ + 1 2αδ + 1 −4αδ + 1

2αδ + 1 −4αδ + 1 2αδ + 1

−4αδ + 1 2αδ + 1 2αδ + 1


Now we have to select values for the parameter δ in order that the matrix D be the design

matrix of a PMD3 (α, δ) mixture design. If, for example, the augmented design is build with

an α such that -0.5 ≤ α ≤ 0.5 it is easy to check that the extremal values in the matrix D are

4δ + 1 and −2δ + 1 so it is necessary that 0 ≤ 4δ + 1 ≤ 1 and 0 ≤ −2δ + 1 ≤ 1 so:

−0.25 ≤ δ ≤ 0.5.

More generally, for m components and α ∈ R, denoting x the smallest value in the matrix D∗
rsm

and y its largest value all the terms in the final matrix D are mixture propostions if and only if

0 ≤ δa+ 1/m ≤ 1 and 0 ≤ δb+ 1/m ≤ 1 that is (note that x is always negative):

Max

(
−1

my
,
(m− 1)

mx

)
≤ δ ≤ Min

(
−1

mx
,
(m− 1)

my

)
.

3.3 Results : optimal designs

In this section the goal is to find optimal designs for the classical criteria of D-efficiency so denot-

ing Xα,δ the mixture model matrix obtained with the previous method we try to minimize the

quantity
(
det

[
(tXX)

−1
])1/p

or equivalently maximize the value of (det (tXX))
1/p

(denoting

now “Deff” in the following figures).

Firstly, all numerical results show that large values must be used for the parameter δ, that

is Max (−1/mb, (m− 1) /ma) if |Max (−1/mb, (m− 1) /ma)| > |Min (−1/ma, (m− 1) /mb)|,

Min (−1/ma, (m− 1) /mb) otherwise. Figure 1 shows some examples for m = 4 components.

Note that this result is logical since low values for δ (close to zero) lead to low-efficiency mixture

designs because all the design’s points are then close to the centröıd of the experimental domain

(from the relation D = δD∗
rsm + (1/m)Jn,m).
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Figure 1

D-efficiencies for m = 4 components and several fixed values of α

We now simply denote by PMDm (α) every projected mixture design obtained with the preced-

ing optimal choice for the parameter δ. Now it is possible to compute the D-efficiencies of these

designs as a function of α. Several examples are given below and lead to the same constation,

that is:

Proposition 1. For every projected mixture design PMDm (α) the D-optimal configuration is

obtained for α = 1/2.
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Figure 2

D-efficiencies depending on the value of α

We give in the following explicitely design matrices of these design from m = 3 components

to m = 8 components. On order to simplify the presentation of large matrices we introduce the

notation Ps(u), for every vector u ∈ Rn, for the s permutations (often with repetitions) of the

elements of u. For m = 3 components the optimal design PMD3 (1/2) is given by:

D =



1/3 1/3 1/3

1 0 0

0 1 0

0 0 1

2/3 1/3 1/3

1/3 2/3 1/3

1/3 1/3 2/3

1/2 1/2 0

1/2 0 1/2

0 1/2 1/2



=


P1(1/3, 1/3, 1/3)

P3(1, 0, 0)

P3 (2/3, 1/3, 1/3)

P3(1/2, 1/2, 0)


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Note that for α = −1/2 we obtain in this case exactly the same design. For m = 4 components

the optimal design PMD4 (1/2) is given by:

D =



0.25 0.25 0.25 0.25

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0.625 0.125 0.125 0.125

0.125 0.625 0.125 0.125

0.125 0.125 0.625 0.125

0.125 0.125 0.125 0.625

0.5 0.5 0 0

0.5 0 0.5 0

0.5 0 0 0.5

0 0.5 0.5 0

0 0.5 0 0.5

0 0 0.5 0.5



=


P1(0.25, 0.25, 0.25, 0.25)

P4(1, 0, 0, 0)

P4 (0.625, 0.125, 0.125, 0.125)

P6(0.5, 0.5, 0, 0)



For m = 5, 6, 7, 8 components the optimal designs PMDm (1/2) are respectively given by:

D =


P1(0.2, 0.2, 0.2, 0.2, 0.2)

P5(1, 0, 0, 0, 0)

P5 (0.6, 0.1, 0.1, 0.1, 0.1)

P10(0.5, 0.5, 0, 0, 0)

 , D =


P1(0.167, 0.167, 0.167, 0.167, 0.167, 0.167)

P6(1, 0, 0, 0, 0, 0)

P6 (0.583, 0.083, 0.083, 0.083, 0.083, 0.083)

P15(0.5, 0.5, 0, 0, 0, 0)



D =


P1(0.143, 0.143, 0.143, 0.143, 0.143, 0.143, 0.143)

P7(1, 0, 0, 0, 0, 0, 0)

P7 (0.571, 0.071, 0.071, 0.071, 0.071, 0.071, 0.071)

P21(0.5, 0.5, 0, 0, 0, 0, 0)



D =


P1(0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125)

P8(1, 0, 0, 0, 0, 0, 0, 0)

P8 (0.562, 0.062, 0.062, 0.062, 0.062, 0.062, 0.062, 0.062)

P28(0.5, 0.5, 0, 0, 0, 0)


3.4 Discussion

We can see from the previous results that optimal projected mixture design for m components

is always made up of:

1) one balanced mixture in m components (at the center of the centröıd),
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2) all the m single-component (at the vertices of the centröıd),

3) m true mixtures in m components (on the Cox-axis),

4) m (m− 1) /2 balanced mixtures in 2 components (at the middle of each edge).

The sizes of these designs are given below (with also the number p of unknown parameters of

the mixture model).

n p

m = 3 10 6

m = 4 15 10

m = 5 21 15

n p

m = 6 28 21

m = 7 36 28

m = 8 45 36

Note that parts 2 and 4 form a classical simplex lattice design {m, 2}. Part 3 is sometimes used

in "axial" mixture design adding runs on the Cox-axes (the i-th Cox-axis is the line extending

between single-component i and the mixture such that xi = 0 and xj = 1/ (m− 1) for j ̸= i). So

projected method applied to an initial saturated augmented pair design for response surface lead

us to a class of "augmented" simplex lattice designs. The lattice design {m, 2} is economical

but has the disadvantage of offering very simple mixtures (single-component or mixtures with

only two components). Designs PDMm (1/2) are better in the sense that they offer a few more

complex mixtures, while remaining relatively economical (with only m + 1 additional runs).

Note also that if the budget allows this, we can also carry out more central experiments and,

for example, have a more precise decomposition of SSE with pure error and lack of fit error.

Note. The optimal choice α = 1/2 may seem surprising because from Morris (2000) or Fang

and Mukerjee (2004) α = −1/2 lead to more efficient designs. But the result of Morris or Fang

and Mukerjee is true for "classical" designs, that is for polynomial models that are not those

used with mixtures.

Note. The initial simplex orthogonal saturated designs used here always have the matrix formu-

lation presented in (2) with the second relation in (3) concerning the values of a, b and c. The

other choice for a, b and c does not lead to a symmetrical situation but to less efficient designs.

4 Derivated designs

Classical simplex lattice designs or "augmented" simplex lattice designs have the practical draw-

back that they are not always adapted to the needs of the customers because some of their runs

are too simple (or, in other words, they have too much points at the boundaries of the experi-

mental domain). We assume in this part that all the runs must be true m-components mixtures

that is:

∀ i = 1, ...,m , xi ≥ pmin with pmin > 0. (6)
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It is then easy to generalise the method proposed in section 2.2 in order to obtain efficient

projected mixture designs satisfying such conditions. The last point (point 4) of this method

just needs to be replaced by : find the values of the parameter δ in order to identify the matrix

D = δD∗
rsm +

1

m
Jn,m.

to a matrix mixture design under the constraint (6), that is all its values dij must be such that

pmin ≤ dij ≤ 1. The admissible field of variations for the scale parameter δ is therefore more re-

stricted than what we had before. Conider, for example, the construction of a projected mixture

design for m = 4 components with the restriction that all of them must have a concentration

such that xi ≥ 0.05. Using the value a = 1/2 (from proposition 1) for the construction of the

augmented pair design the variations of the parameter δ lead to the following figure for the

D-efficiency of the projected mixture design.

Figure 3

D-efficiencies depending on δ and restricted domain for m = 4 and pmin = 0.05

This figure is like one the representation of figure 1 but now the dashed parts of the curve are

no longer usable. Numerical results show that the parameter δ must be such that −0.119 ≤ δ ≤

0.358 in order to obtain a projected mixture design with all the proportions greater than 0.05.

The D-optimal design is obtained for δ = 0.358 and has the following matrix D:
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D =



0.25 0.25 0.25 0.25

0.85 0.05 0.05 0.05

0.05 0.85 0.05 0.05

0.05 0.05 0.85 0.05

0.05 0.05 0.05 0.85

0.55 0.15 0.15 0.15

0.15 0.55 0.15 0.15

0.15 0.15 0.55 0.15

0.15 0.15 0.15 0.55

0.45 0.45 0.05 0.05

0.45 0.05 0.45 0.05

0.45 0.05 0.05 0.45

0.05 0.45 0.45 0.05

0.05 0.45 0.05 0.45

0.05 0.05 0.45 0.45



=


P1(0.25, 0.25, 0.25, 0.25)

P4(0.85, 0.05, 0.05, 0.05)

P4 (0.55, 0.15, 0.15, 0.15)

P6(0.45, 0.45, 0.05, 0.05)



As for designs without constraints we had to carry out n =15 runs in order to fit a mixture

model in p = 10 unknown parameters. Concerning the structure of these runs we find again

the centröıd of the simplex. The for vertices of the projected mixture design without constraint

are than replaced by four point on the Cox axes (one proportion at 0.85 and the three other at

0.15). The following four point of projected mixture design without constraint PDM4 (1/2)(see

part 3.3) were on the Cox axes with one proportion at 0.625 and the three other at 0.125. They

satisfy the constraints but they are replaced in the optimal design by the points on the Cox

axes with one proportion at 0.55 and the three other at 0.15. And finally the six points of the

projected mixture design without constraint at the center of each edge are replaced with six

points usinf two proportion at 0.45and the two other at 0.05.

5 Conclusion

We have seen in this paper that small size mixture optimal designs can be obtained from satu-

rated response surface designs. These projected mixture designs have a more complex structure

than the classical lattice or centröıd designs . Moreover they are small but not saturated de-

signs so it is possible to estimate other effets that model’s components. We have seen also that

numerical generalisations can be easily obtained in order to satisfy some other constraints. At

the end of this paper we have implemented constructions of such designs for constraints on the

form xi ≥ pmin but it can be easily extend to more complicated constraints like xi ≤ pmax or

pmin ≤ xi ≤ pmax.
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