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Double sampling monitoring schemes: A literature review and some future 

research ideas 
 

Collen M. Motsepa1, Jean-Claude Malela-Majika2, Philippe Castagliola3

and Sandile C. Shongwe4 
 

Abstract 

Adapted from the acceptance sampling field, the double sampling monitoring schemes 

implement a two-stage strategy to decide whether the process being monitored is in-control or 

out-of-control. That is, a master sample is split into two separate subgroup samples, with the 

first subgroup sample used in the first stage and, depending on which type of double sampling 

method is used, either only the second or the combined first and second, subgroup sample(s) 

are used in the second stage. This strategy has been proven to effectively decrease the sampling 

effort and, at the same time, to decrease the time to detect potential out-of-control situations. 

For these reasons, it has received some attention in the statistical process monitoring (SPM) 

literature and, in this review paper, all 92 existing publications on the basic double sampling 

monitoring schemes and other different schemes that are integrated with the basic double 

sampling schemes are reviewed. The double sampling schemes are categorized and summarized 

so that any research gaps in the SPM literature can easily be identified. Finally, concluding 

remarks and some directions for future research ideas are given. 
 

Keywords: Control chart, Double sampling, Monitoring scheme, Statistical process monitoring (SPM), 

Run-length, Phase I, Phase II. 

 

1. Introduction 

The double sampling monitoring strategy is one of the most powerful tools used in statistical process 

monitoring (SPM) to detect unexpected changes in various types of processes (such as business, health 

and manufacturing) as quickly as possible. One of the main purposes of any monitoring scheme is to 

distinguish between assignable and common causes of variation. A process that works only in the 

presence of common causes of variability is said to be statistically in-control (IC). When a given sample 

has assignable causes of variation then a process is said to be out-of-control (OOC). Double sampling 

monitoring schemes implement a two-stage monitoring procedure to decide whether the process being 

monitored is IC or OOC. The first introduction of the double sampling strategy in the SPM context was 

reported in Croasdale (1974). Since then, there has been about 91 additional publications on related 

double sampling monitoring schemes, which are outlined in Table 1 and sorted chronologically (from 

1974 to 2021). 
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Table 1: Classification of articles discussing double sampling schemes in SPM (sorted 

chronologically) 
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Croasdale (1974) �     �  �  �  NSSDS �� 

Daudin et al. (1990) �     �  �  �  NSSDS �� 

Daudin (1992) �     �  �  �  NSSDS �� 

Irianto and Shinozaki (1998) �     �  �  �  NSSDS �� 

Carot et al. (2002) �     �  �  �  NSSDS-VSI �� 

He et al. (2002) �     �  �  �  NSSDS & NSSTS �� 

He and Grigoryan (2002)  �    �  �  �  NSSDS � 

He and Grigoryan (2003)  �    �  �  �  NSSDS � 

Hsu (2004) �     �  �  �  NSSDS & NSSTS �� 

Khoo (2004)  �    �  �  �  NSSDS �� 

He and Grigoryan (2005) �     �   � �  MS �� 

Grigoryan and He (2005)  �    �   � �  DS |�| 
He and Grigoryan (2006)   �   �  �  �  NSSDS ��&� 

Hsu (2007)  �    �  �  �  NSSDS � 

Claro et al. (2008) �     �  �   � NSSDS �� 

Costa and Claro (2008) �     �  �   � NSSDS �� 

Champ and Aparisi (2008) �     �   � �  DS �� 

Costa and Machado (2008) �     �   � �  DS Bivariate �� 

Machado and Costa (2008)  �    �   � �  DS Bivariate VMAX 

Torng et al. (2009a) �    � �  �  �  NSSDS �� 

Torng et al. (2009b) �    � �  �   � NSSDS �� 

Torng and Lee (2009) �     �  �  �  NSSDS �� 

Lee et al. (2009) �     �  �   � NSSDS �� 

Irianto and Juliani (2010) �     �  �  �  NSSDS �� 

Torng et al. (2010) �     �  �  �  NSSDS-VSI �� 

Lee et al. (2010)  �    �  �  �  NSSDS � 

Costa and Machado (2011) �     �  �   � NSSDS �� 

De Araújo Rodrigues et al. (2011) �     �  �  �  NSSDS 	
 

Khoo et al. (2011) �     �  �  �  NSS synthetic DS �� 

Faraz et al. (2012) �    � �  �  �  DS �� 

Teoh and Khoo (2013) �     �  �  �  NSSDS �� 

Lee et al. (2012a) �    � �  �  �  NSSDS-VSI �� 

Lee et al. (2012b)  �    �  �  �  NSSDS-VSI � 

Khoo et al. (2013a) �      � �  �  NSSDS �� 

Khoo et al. (2013b) �      � �  �  NSSDS �� 

Khoo et al. (2013c) �      �    � �  synthetic DS �� 

Teoh et al. (2013) �      � �  �  NSSDS �� 

Lee (2013)   �   �  �  �  NSSDS-VSI ��&� 

Chong et al. (2014) �     �  �  �  NSS synthetic DS 	
 

Teoh et al. (2014a) �     �   �  �  NSSDS �� 

Teoh et al. (2014b) �      � �  �  NSSDS �� 

Abbreviations: I.I.D. – independent and identically distributed; NSS – Non-side sensitive; DS – Double sampling; VSI – Variable 

sampling interval; NSSTS – Non-side sensitive triple sampling; MS – Multiple sampling; RSS – Revised side 

sensitive; MSS – Modified side sensitive; VSSI – Variable sampling size and interval; SSGRDS – Side sensitive 

group runs double sampling; MSSGRDS – Modified side sensitive group runs double sampling; EWMA – 

Exponentially weighted moving average; CV – Coefficient of variation; AIB – Auxiliary information based; ME – 

Measurement errors. 
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Costa and Machado (2015) �     �  �  �  RSS synthetic DS �� 

Noorossana et al. (2015) �     �  �  �  NSSDS-VSSI ��  

Teoh et al. (2015) �      � �  �  NSSDS �� 

You et al. (2015) �      � �  �  NSS synthetic DS �� 

Khoo et al. (2015) �     �  �  �  SSGRDS �� 

Joekes et al. (2015) �     �  �  �  NSSDS 
 

Khoo et al. (2016) �     �  �  �  NSSDS �� 

Teoh et al. (2016a) �      � �  �  NSSDS �� 

Teoh et al. (2016b) �      � �  �  NSSDS �� 

Aghaulor and Ezekwem (2016) �     �  �  �  NSS synthetic DS �� 

Costa (2017)  �    �  �  �  NSSDS ��	� 

You (2017) �     �  �  �  NSS synthetic DS �� 

Lee and Khoo (2017a)  �    �  �  �  NSS synthetic DS � 

Lee and Khoo (2017b)   �   �  �  �  NSS synthetic DS ��� 

Lee and Khoo (2017c) �     �  �  �  NSSDS-VSI 	
 

Chong et al. (2017) �     �  �  �  SSGRDS 	
 

Castagliola et al. (2017)  �     � �  �  NSSDS S2 

Yang and Wu (2017a) �     �  �  �   NSSDS EWMA-sign 

Yang and Wu (2017b)  �    �  �  �  NSSDS EWMA-sign 

Chong et al (2018) �     �  �  �  SSGRDS �� 

Haq and Khoo (2018) �     �  �   � NSSDS �� with AIB 

You (2018) �      � �  �  NSS synthetic DS �� 

Ng et al. (2018)   �   �  �  �  NSSDS �� 

Saha et al. (2018) �     �  �  �  MSSGRDS ��  

Chu et al. (2018)  �    �   � �  DS-VSI |�| 
Lee and Khoo (2018a)  �   � �  �  �  NSSDS � 

Lee and Khoo (2018b)  �    �   � �  DS-VSSI |�| 
Khatun et al. (2018) �     �   � �  DS-VSI �� 

Malela-Majika and Rapoo (2019) �     �  �  �  MSS synthetic DS ��   

Malela-Majika (2019)   �   �  �  �  MSS synthetic DS ��&�� 

Lee and Khoo (2019a) �    � �  �   �  NSS synthetic DS �� 

Lee and Khoo (2019b) �    � �   � �  synthetic DS �� 

Lee and Khoo (2019c) �      � �   �  NSSDS 	
 

Haq and Khoo (2019) �     �  �   � NSS synthetic DS �� with AIB 

Rozi et al. (2019)   �   �  �  �  NSSDS �� 

Lee et al. (2019) �     �  �  �  NSSDS �� with ME 

Lee et al. (2020)   �   �  �  �  NSSDS �� 

Katebi and Moghadam (2020) �     �   � �  DS-VSSI �� 

Motsepa et al. (2020) �      � �  �  SSDS �� 

Zhou et al. (2020)   �  � �  �  �  NSSDS 	
� 

Umar et al. (2020a) �     �  �  �  NSSDS-VSI �� with AIB 

Umar et al. (2020b) �     �  �  �  MSSGRDS �� 

Tuh et al. (2020) �     �  �  �  NSSDS 	
 

Mosquera and Aparisi (2020)   �   �  �  �  NSSDS gauge-based 

Eizi et al. (2020)    � �  �  �  � DS ��� & DS �� 

Tomohiro et al. (2020)   �  � �  �  �  NSSDS ��� 

Si et al. (2020) �    � �  �  �  NSSDS �� with ME 

Malela-Majika et al. (2021a) �     �  �  �  SSDS �� 

Shongwe and Malela-Majika (2021) �     �  �   � SSDS �� 

Khired et al. (2021) �     �  �  �  NSSDS �� 

Malela-Majika et al. (2021b) �     �  �  �  NSSDS Precedence 
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Croasdale (1974) adapted the idea of double sampling procedure from the acceptance sampling field 

and implemented its use in the SPM field. Croasdale (1974)’s method entails the use of a sample of size 	� in stage 1 and of size 	� in stage 2 to compute the corresponding charting statistic, both sub-samples 

from the same master sample of size 	 (= 	� + 	�), where 	� > 	�. Consequently, as an improvement 

to Croasdale (1974)’s method, Daudin et al. (1990) and Daudin (1992) showed that the use of the sample 

size 	� in stage 1 and both 	� and  	� (i.e., 	� + 	�) in stage 2 yields an even more improved 

performance and reduces the number of items to be inspected. In real-life applications, the investigation 

of the use of small samples in process monitoring (through control charts) is more important than that 

of the use of large sample sizes. Based on the latter, the vast majority of discussions on double sampling 

schemes done post-1992 were more focused on the method by Daudin (1992) rather than the original 

version by Croasdale (1974). 

There are three main different designs of Shewhart-type univariate double sampling schemes charting 

regions, which are defined as: (i) original non-side-sensitive, (ii) improved non-side-sensitive and, (iii) 

side-sensitive. The first non-side-sensitive double sampling scheme is a two-stage scheme based on two 

unconnected samples (i.e. the first sample of size 	� in stage 1 and the second sample of size 	� in stage 

2). It has only been discussed in 5 research works (see Figure 1(a) for its charting regions) – and it was 

first proposed in Croasdale (1974). The second non-side-sensitive double sampling scheme (by Daudin, 

1992) is the most used design by almost 90% of publications on this topic; see Figure 1(b) for its charting 

regions – henceforth denoted by NSSDS. Unlike Croasdale (1974)’s scheme, the Daudin (1992)’s 

scheme is a two-stage scheme based on two connected samples (i.e. the first sample of size 	� in stage 

1 and the second combined sample of size 	� + 	� in stage 2). The third one is called the side-sensitive 

double sampling with its charting regions given in Figure 1(c) – henceforth denoted by SSDS – this is 

proposed in Malela-Majika et al. (2021a). The SSDS scheme is based on two connected samples. It is 

important to note from Figure 1 that the Croasdale (1974) charting regions imply that a monitoring 

process never go to a state of OOC in stage 1, but it only does in stage 2. However, the charting regions 

in Figures 1(b) and (c) do allow for an OOC signal to take place in stage 1, making it more efficient. It 

is important to note that bivariate and multivariate double sampling schemes have charting that are 

upper one-sided only and consequently, the NSSDS or SSDS regions do not apply for this scenario. 
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(a) The original non-side-sensitive double sampling design 

 
(b) The improved non-side-sensitive double sampling (NSSDS) design 

 
(c) The side-sensitive double sampling (SSDS) design 

Figure 1: The charting regions in stages 1 and 2 of the different double sampling designs 
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While the majority of the double sampling schemes are focused on the monitoring of the process location 

parameter(s), there is a variety of other different parameters that can be monitored by these schemes, 

e.g. the standard deviation, variance, range, coefficient of variation, linear profiles, etc. All the 

publications up to May 2021 that we could find in the literature are summarized in Table 1, with some 

additional information provided in Table 2 (i.e. number of citations, metrics used to evaluate the 

performance and in which mode of analysis were they calculated). The corresponding journals or 

conference proceedings that published these ones are outlined in Table 3. Next, different authors that 

have made a contribution of at least two publications in this area of research are listed in Table 4 along 

with their respective affiliations and number of publications. Based on the summary of the number of 

citations (taken from Google Scholar® on 15 May 2021) in Table 2, it is apparent that the most cited 

article on double sampling is by Daudin (1992). Next, it is observed from Tables 3 and 4 that 

Communications in Statistics – Simulation and Computation as well as Quality and Reliability 

Engineering International journals have the most publications on double sampling schemes, and that 

Prof M.B.C. Khoo (from Universiti Sains Malaysia, Malaysia) significantly has the most publications 

than any other author / researcher.  
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Table 2: Some additional information on articles discussing double sampling schemes in 

SPM (sorted chronologically) 

Paper 
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Croasdale (1974) 92 None None �  ARL 

Daudin et al. (1990) 21 None None �  ARL 

Daudin (1992) 278 None None �  ARL, ATS 

Irianto and Shinozaki (1998) 67 None None �  1-� 

Carot et al. (2002) 75 �  �  AATS 

He et al. (2002) 117 None None �  ARL 

He and Grigoryan (2002) 75 None None �  ASS 

He and Grigoryan (2003) 45 None None �  ARL, ASS 

Hsu (2004) 27 None None �  ARL, ASS 

Khoo (2004) 10 None None �  ARL, ASS 

He and Grigoryan (2005) 43 None None �  ARL 

Grigoryan and He (2005) 47 None None �  1-�, ARL 

He and Grigoryan (2006) 66 None None �  ARL 

Hsu (2007) 11 None None �  ARL, ASS 

Claro et al. (2008) 24 �  �  ARL 

Costa and Claro (2008) 43  � �  ARL 

Champ and Aparisi (2008) 47 �  �  ARL 

Costa and Machado (2008) 18 �  �  ARL, ATS 

Machado and Costa (2008) 38  � �  ARL 

Torng et al. (2009a) 44 �  �  E(C) 

Torng et al. (2009b) 58 �  �  E(C) 

Torng and Lee (2009) 33 None None �  ANOS, AATS, ATS 

Lee et al. (2009) 1 None None �  ANOS, AATS, ATS 

Irianto and Juliani (2010) 8 None None �  1-� 

Torng et al. (2010) 28 None None �  ANOS, ATS, AATS 

Lee et al. (2010) 7 �  �  ANOS 

Costa and Machado (2011) 66 None None �  AATS 

De Araújo Rodrigues et al. (2011) 53 �  �  ARL, ANI 

Khoo et al. (2011) 91  � �  ARL, ANOS 

Faraz et al. (2012) 29  � �  AATS, E(C) 

Teoh and Khoo (2012) 5 None None �  MRL, ASS 

Lee et al. (2012a) 65  � �  E(C) 

Lee et al. (2012b) 36 None None �  AATS, ATS, ANOS 

Khoo et al. (2013a) 7 None None �  ASS, MRL 

Khoo et al. (2013b) 39 �  �  ARL, ASS, SDRL 

Khoo et al. (2013c) 33   � �  ANOS, ARL, ASS 

Teoh et al. (2013) 20 �  �  ARL, ASS, MRL, PRL 

Lee (2013) 32 None None �  AATS, ARATS, EQL 

Chong et al. (2014) 33 �  � � ARL 

Teoh et al. (2014a) 2 None None �  ARL, ASS, SDRL 

Teoh et al. (2014b) 51 �  �  ASS, MRL 

Abbreviations: AATS – Adjusted average time to signal; ATS – Average time to signal; ARL – Average run-length;  AARL – 

Average of the ARL; ANI – Average number inspected until a signal; ASS – Average sample size; ANOS – Average number of 

observations to signal; ARARL – Average ratio of ARL; ARATS – Average ratio of ATS; EATS – Expected ATS; EAATS – 

Expected AATS; EARL – Expected ARL; EANOS – Expected ANOS; EQL – Extra quadratic loss; E(C) – Expected Cost per hour; 

E(L) – Expected loss per hour; MRL – Median run-length; MNOS – Median number of observations to signal; PRL – Percentile run-

length; PNOS – Percentile number of observations to signal; SDRL – Standard deviation of the run-length; SDARL – Standard 

deviation of ARL; (1-�) – Power of the chart. 
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Table 2: (continued) 
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Costa and Machado (2015) 21 None None  � ARL 

Noorossana et al. (2015) 15 None None �  ATS, ANOS, ANSS 

Teoh et al. (2015) 17 �  �  ARL, SDRL, ASS, MRL, PRL 

You et al. (2015) 16  � �  ARL, ANOS, SDRL 

Khoo et al. (2015) 15 �  � � ANOS, EANOS 

Joekes et al. (2015) 10 �  �  ARL, ASS 

Khoo et al. (2016) 0 None None �  ATS 

Teoh et al. (2016a) 6 None None �  ARL, SDRL, ASS, PRL 

Teoh et al. (2016b) 4 None None �  ARL, SDRL 

Aghaulor and Ezekwem (2016) 1  � �  ARL 

Costa (2017) 6  � �  ARL 

You (2017) 10 None None �  ARL, EARL 

Lee and Khoo (2017a) 12  � �  ANOS, ARL, ATS 

Lee and Khoo (2017b) 2  � �  ARL, AATS 

Lee and Khoo (2017c) 4  � �  ATS, AATS, EQL 

Chong et al. (2017) 4 �  �  ARL, ANOS 

Castagliola et al. (2017) 13 None None �  ARL, ASS, SDRL 

Yang and Wu (2017a) 5 �  �  AATS, ARL 

Yang and Wu (2017b) 4 �  �  ARL 

Chong et al (2018) 3 None None �  ANOS, MNOS, PNOS 

Haq and Khoo (2018) 24  � �  ARL 

You (2018) 8 None None �  ARL, EARL 

Ng et al. (2018) 2 None None �  ANOS, EANOS 

Saha et al. (2018) 14 �  � � ANOS, EANOS 

Chu et al. (2018) 0  � �  AATS, ATS 

Lee and Khoo (2018a) 1  � �  ATS, E(C) 

Lee and Khoo (2018b) 10 �  �  ATS 

Khatun et al. (2018) 9 �  � � ATS, AATS, EATS, EAATS 

Malela-Majika and Rapoo (2019) 4 �  � � ARL, ANOS, ASS, EQL 

Malela-Majika (2019) 3 �  � � ARL, ANOS, SDRL, EQL, ARARL 

Lee and Khoo (2019a) 8  � �  ATS, E(C) 

Lee and Khoo (2019b) 4  � �  ATS, ANOS, E(C) 

Lee and Khoo (2019c) 2  � �  AARL, SDARL, ASS 

Haq and Khoo (2019) 5  � �  ARL 

Rozi et al. (2019) 0 None None �  ANOS 

Lee et al. (2019) 3 �  �  ARL 

Lee et al. (2020) 0 None None �  ANOS 

Katebi and Moghadam (2020) 2 �  �  AATS 

Motsepa et al. (2020) 2 �  �  ARL, ASS, ANOS, SDRL, PRL, EQL, ARARL 

Zhou et al. (2020) 2  � �  ARL, E(C) 

Umar et al. (2020a) 7 �   � ATS, EATS 

Umar et al. (2020b) 0 None None �  ANOS, MNOS, PNOS 

Tuh et al. (2020) 0 None None �  MRL, PRL 

Mosquera and Aparisi (2020) 2  � �  ARL, ASS, ANOS 

Eizi et al. (2020) 0 �  �  E(L), ARL 

Tomohiro et al. (2020) 4  � �  1-�, E(C) 

Si et al. (2020) 0  � �  ARL, E(C) 

Malela-Majika et al. (2021a) 7 �  �  ARL, ASS, ANOS, SDRL, PRL, EQL, ARARL 

Shongwe and Malela-Majika (2021) 0 �  �  ARL, ARARL, EARL 

Khired et al. (2021) 0 � � �  ARL, SDRL 

Malela-Majika et al. (2021b) 0 �    ARL, ASS, SDRL, EARL, EANOS 

 



9 

 

 

Table 3: Journals / conference proceedings that published research on double sampling monitoring 

schemes  

Journal / Conference proceedings title 
Number of 

publications 

Quality and Reliability Engineering International 10 

Communications in Statistics – Simulation and Computation 9 

International Journal of Production Research 7 

Communications in Statistics – Theory and Methods 6 

International Journal of Production Economics 6 

Computers & Industrial Engineering 6 

Journal of Applied Statistics 3 

European Journal of Operational Research  2 

IIE Transactions 2 

International Journal of Advanced Manufacturing Technology 2 

Journal of Statistical Computation and Simulation 2 

South African Journal of Industrial Engineering 2 

Academic Journal of Science 1 

Advances in Mathematics: Scientific Journal 1 

COMPUSOFT, An International Journal of Advanced Computer Technology 1 

European Journal of Industrial Engineering 1 

Expert Systems with Applications 1 

IEEE Access 1 

IEEE International Conference on Control and Robotics Engineering 1 

IEEE International Conference on Industrial Engineering and Engineering Management 1 

International Conference on Management Engineering, Software Engineering and Service Sciences 1 

International Conference on Smart Sensors and Application 1 

International Journal of Applied Engineering Research  1 

International Journal of Chemical Engineering and Applications 1 

International Journal of Computing and Mathematics  1 

International Journal of Difference Equations 1 

International Journal of Engineering Research & Technology 1 

International Journal of Industrial Engineering – Theory, Applications & Practice 1 

International Journal of Production Development 1 

International Journal of Pure and Applied Mathematics 1 

International Journal of Quality Research 1 

IOP Conference Series: Materials Science and Engineering 1 

ITB Journal of Engineering Science 1 

Journal of Probability and Statistics 1 

Journal of Quality Measurement and Analysis 1 

Journal of Quality Technology 1 

Journal of Testing and Evaluation 1 

Kongzhi yu Juece / Control and Decision 1 

MATEC Web of Conferences 1 

Pesquisa Operacional 1 

PLoS ONE 1 

Quality Engineering 1 

Quality Technology and Quantitative Management 1 

Revue de Statistique Appliquée 1 

Statistical Methodology 1 

Stat 1 

Transactions of the Institute of Measurement and Control 1 

TOTAL 92 
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Table 4: Top researchers in SPM with at least two publications on double sampling schemes 

Author Affiliation 
Number of 

publications 
Khoo, M.B.C. Universiti Sains Malaysia; Malaysia 33 

Lee, M.H. Swinburne University of Technology; Malaysia 15 

Teoh, W.L. Heriot-Watt University Malaysia; Malaysia 13 

Castagliola, P. Université de Nantes & LS2N UMR CNRS 6004; France 10 

Lee, P.-H. Fujian University of technology, China 10 

Torng, C.-C. National Yunlin University of Science and Technology; Taiwan 9 

Costa, A.F.B. Sao Paulo State University; Brazil 7 

Yeong, W.C. University of Malaya; Malaysia 7 

Teh, S.Y. Universiti Sains Malaysia; Malaysia 6 

He, D. University of Illinois; USA 6 

Grigoryan, A. University of Illinois; USA 6 

Malela-Majika, J.-C. University of Pretoria; South Africa 6 

Chong, Z.L. Universiti Sains Malaysia; Malaysia 6 

Machado, M.A.G. Sao Paulo State University; Brazil 5 

Haq, A. Quaid-i-Azam University, Pakistan 3 

Irianto, D. Institute of Technology Bandung; Indonesia 3 

Lau, E.M.F. Swinburne University of Technology, Australia 3 

Saha, S. International University of Business Agriculture and Technology, Bangladesh 3 

Shongwe, S.C. University of the Free State; South Africa 3 

Then, P.H.H. Swinburne University of Technology, Malaysia 3 

Tseng, C.-C. National Yunlin University of Science and Technology; Taiwan 3 

You, H.W. Universiti Kebangsaan Malaysia; Malaysia 3 

Aparisi, F. Universidad Politécnica de Valencia, Spain 2 

Chakraborti, S. University of Alabama; USA 2 

Chew, X.Y. Universiti Sains Malaysia; Malaysia 2 

Claro, F.A.E. Sao Paulo State University; Brazil 2 

Daudin, J.J. UMR MIA 518 AgroParisTech/INRA; France 2 

Hsu, L.F. City University of New York; USA 2 

Lee, H.C. Universiti Sains Malaysia; Malaysia 2 

Liao, H.-S. National Yunlin University of Science and Technology; Taiwan 2 

Liao, N.-Y. National Yunlin University of Science and Technology; Taiwan 2 

Motsepa, C.M. University of South Africa; South Africa 2 

Si, K.S.K.Y. Swinburne University of Technology; Malaysia 2 

Umar, A.A. Universiti Sains Malaysia; Malaysia 2 

Wu, Z. Nanyang Technological University; Singapore 2 

Wu, S.-H. National Chengchi University; Taiwan 2 

Yang, S.-F. National Chengchi University; Taiwan 2 

 

The rest of the review is structured as follows: The operation of the NSSDS scheme is outlined in Section 

2 and the corresponding run-length properties are discussed in the Appendix. Univariate and 

multivariate double sampling schemes are discussed in Sections 3 and 4, respectively. A variety of 

monitoring schemes combined with the double sampling procedure are discussed in Section 5. Finally, 

in Section 6, concluding remarks and future research ideas are given.  

 

2. Operation of the basic double sampling monitoring scheme  

Remark: from Table 1, all the publications on double sampling schemes are based on observations 

sampled from an i.i.d. (independent and identically distributed) sequence of data from some underlying 
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parametric distribution (except for Yang and Wu (2017a, b) as well as Malela-Majika et al. (2021b) and 

the seven publications that are based on serially correlated data).  

Assume that � ! are i.i.d. observations from a specified distribution used to calculate some quality 

characteristic of interest. Using these � ! observations, a master sample of size 	 is formed. Then, from 

the master sample, a first subgroup sample of size 	� is collected at the " # sampling time (denoted as �� !, " = 1, 2, …, and $ = 1, 2, …, 	�). If the standardized charting statistic based on the first sample 

falls on a region that requires a second stage to make a decision, then a second subgroup sample of size 	�  is also collected from the master sample at the " # sampling time (denoted as �� !, " = 1, 2, …, and 

$ = 1, 2, …, 	�); where, in most publications, 	� ≥ 	�. Then any double sampling monitoring scheme 

uses these two separate sub-samples taken from the same master sample to decide whether the process 

is IC or OOC, and these sub-samples are used to compute the charting statistics of the two stages shown 

in Figure 1. Since the majority of the double sampling schemes in Table 1 are based on the univariate 

sample mean using the standard normal distribution, hence, for illustration purpose of the stages and the 

operation, we use the NSSDS �� scheme when parameters are known (i.e. Case K) in Section 2.1 and 

unknown (i.e. Case U) in Section 2.2. 

2.1 Case K 

For Case K, the stages are implemented as discussed below. 

Stage 1: Let ��� = ∑ �� ! 	�⁄()!*�  be the mean of the first sample of subgroup size 	� at the " # sampling 

time. Hence, the standardized statistic for the first sample at the " # sampling time is then given 

by  

+� = ��� − -./. √	�⁄  (1) 

where ��� ~2(-. + 3/. , 56√()) and 3 = |-� − -.| /.⁄  represents the magnitude of the 

standardized mean shift with the OOC mean -� (-� = -. + 3/.), so that 3 = 0 means that the 

process is IC. In this case, +�  follows a standard normal distribution (i.e. +� ~2(0,1)). 

However, when 3 ≠ 0, the process is OOC and +� ~2(3, 1).   

Stage 2: At the " # sampling time of the second sample, the sample mean, i.e. ��� = ∑ �� ! 	�⁄(:!*� , and 

the combined (or pooled) sample mean, i.e. �� = (	���� + 	���� )/(	� + 	�) are calculated, 

respectively. Hence, the standardized charting statistic for the combined samples at the " #  sampling time is then given by 

+� = �� − -./. √	� + 	�⁄ . (2) 

where �� ~2(-. + 3/. , 56√()=(:). When the process is IC, +� ~2(0, 1) since 3 = 0 and when 

the process is OOC, +� ~2(3, 1). 
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2.2 Case U  

For Case U, there is a need to first conduct a Phase I parameter estimation (see the parameter estimation 

reviews by Jensen et al. (2006) and Psarakis et al. (2013)), and then implement the stages in Phase II. 

Phase I parameter estimation 

Since the IC process parameters, -. and /., are usually unknown they have to be estimated from m 

Phase I subgroup samples, each of size 	, i.e. �>!, ? = 1,2, … , B and $ = 1,2, … , 	. Hence, the estimated 

IC process parameters, -̂. and /D., are given by -̂. = ��( ∑ ∑ �>!(!*��>*�  and /D. =
E ��((F�) ∑ ∑ G�>! − ��>H�(!*��>*� , respectively, where ��> = ∑ �>!/	(!*� .   

 

Phase II charting statistics and operation procedure: Stages 1 and 2 

Let � ! be the Phase II observations from i.i.d. 2(-� , /.), where -� is as defined in Case K. In Phase II 

of the NSSDS �� scheme, there are two distinct standardized charting statistics in Case U (i.e. +��  and +�� , shown below) used during stages 1 and 2, respectively.  

Stage 1: Similarly, as in Case K, ��� = ∑ �� ! 	�⁄()!*� ; so that 

+�� = ��� − -̂./D. √	�⁄ . (3) 

Stage 2: Similarly, as in Case K, ��� = ∑ �� ! 	�⁄(:!*�  and  �� = (	���� + 	���� )/(	� + 	�), so that 

+�� = �� − -̂./D. √	� + 	�⁄ . (4) 

In essence, Equations (1) to (4) imply that there are two distinct standardized charting statistics used 

during stages 1 and 2 (if needed), respectively. Consequently, based on the abovementioned stages, then 

it follows that the Phase I and Phase II operational procedure of the NSSDS �� scheme is as summarized 

in Figure 2. Note that when the parameters are assumed known, only the Phase II portion is relevant. 

Although Figure 2 is done for the NSSDS �� scheme, it can easily be modified to account for the different 

designs outlined in Figure 1 as well as for different charting statistics, i.e. the median, standard deviation, 

coefficient of variation, etc. 
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Figure 2: Flowchart of the operation of the NSSDS �� scheme in Phase I and Phase II 

 

3. Univariate double sampling monitoring schemes 

In this section, the publications discussing basic double sampling schemes for location, variability and 

both the mean and variability simultaneously, are discussed in sub-sections 3.1, 3.2 and 3.3, respectively. 

Note that double sampling schemes combined with other monitoring schemes to monitor location, 

variability and both the mean and variability simultaneously, are discussed in Section 5. 

 3.1 Location 

In an effort to design double sampling schemes for monitoring the mean, many authors have studied the 

same scheme; however, they have designed it by taking into account different design aspects. For 

instance, Irianto and Juliani (2010) outlined the following three design criterions:  

(i)  Minimize the expected number of sampling and inspections,  

(ii)  Maximize the OOC detection power (or minimizing the customer risk),  

(iii)  Minimize the false alarm rate (or minimizing the producer risk). 

Daudin (1992)’s method (i.e. Figure 1(b)) prioritized (i) and (iii), whereas Irianto and Shinozaki (1998) 

used the charting regions in Figure 1(a) as these regions mainly prioritizes (ii). Irianto and Juliani (2010) 

used the charting regions in Figure 1(a) and formulated a model that takes into account (ii) and (iii), 

simultaneously. Although the latter two papers used Croasdale (1974)’s charting regions, in stage 2, 

they used a combined sample of size 	� + 	� instead of just 	� as done in Croasdale (1974).  Next, other 
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publications discussed here, tend to ignore design criterion (iii), by keeping the false alarm rate constant 

and prioritizing (i) and (ii), simultaneously. It is worth mentioning that Teoh and Khoo (2012) were the 

first to design the NSSDS scheme using the MRL instead of the ARL performance metric. 

He et al. (2002) compared the performance of the NSSDS scheme to a triple sampling scheme (i.e. with 

3 stages) and they observed that increasing the number of stages improves the detection ability of a 

monitoring scheme. However, Hsu (2004) raised some valid concerns regarding the manner in which 

the generic algorithm in He et al. (2002) was designed as it only took into account the ASS only, without 

using other run-length performance measures.  

As outlined in Table 1, seven publications for serially dependent observations using the NSSDS �� 

scheme. Costa and Claro (2008) used the autoregressive moving average with order (1,1), whereas Claro 

et al. (2008) and Costa and Machado (2011) used the first-order autoregressive model; however, Torng 

et al. (2009a) and Lee et al. (2009) used a correlation model proposed in Yang and Hancock (1990). 

Finally, Haq and Khoo (2018) designed a NSSDS �� scheme based on a regression-type estimator of the 

process mean with an auxiliary variable under some specific conditions of correlation. 

Torng and Lee (2009) studied the NSSDS �� scheme using a variety of t- and gamma distributions with 

different parameters and observed that it is as good as the variable parameter �� scheme; however, it 

turns to be much better than the basic �� scheme in terms of a variety of run-length performance 

measures. Shongwe and Malela-Majika (2021) showed that the SSDS �� scheme outperforms the 

corresponding NSSDS �� scheme by Claro et al. (2008) for autocorrelated data and further implemented 

an approach to reduce the negative effect of autocorrelated observations. 

There have been numerous articles that have investigated the performance of the NSSDS �� scheme 

when parameters are unknown, these are: Khoo et al. (2013a, b), Teoh et al. (2013, 2014b, 2015, 2016a, 

2016b), You et al. (2015) and You (2018). That is, these latter articles studied the NSSDS scheme in 

Case U for a variety of design criterion and contexts. The design parameters that are obtained while the 

process is IC are such that the following performance metrics used in the latter articles (e.g. the 

unconditional average run-length (I�J), the unconditional median run-length (MRL), the unconditional 

expected I�J (KI�J), the unconditional average sample size (I��), the unconditional average number 

of observations to signal (I2L�), etc.) are minimized when the process is in a state of OOC. Some of 

these Case U metrics are shown how they were derived in Appendix B. In the case of SSDS �� scheme, 

Motsepa et al. (2020) studied the effect of parameter estimation as well as the effect of Phase I sample 

size on the Phase II OOC performance.  

The economic and economic-statistical design of the NSSDS �� scheme in Case K have been conducted 

in an effort to find the optimal set of parameters which minimizes the net sum of all costs involved, so 

that the scheme can be operated at an economically optimal level by using the classical cost model in 

Lorenzen and Vance (1986) as well as the sensitivity analysis. The latter was studied by Torng et al. 

(2009a, b) when observations are serially correlated and i.i.d., respectively.  
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Until more recently, all the publications on NSSDS �� schemes have assumed that the observations were 

obtained using perfect measurements, i.e. without contaminated observations. Note that as discussed in 

Maleki et al. (2017), this is hardly ever true in real life applications; hence, Lee et al. (2019) investigated 

the effect of measurement errors on the NSSDS scheme using a linearly covariate error model to capture 

the inherent measurement inaccuracy. To reduce the negative effect of measurement errors, Lee et al. 

(2019) used the multiple measurements sampling strategy (instead of the standard single measurement) 

and more recently, Si et al. (2020) studied the effect of measurement errors on the economic design of 

the NSSDS �� scheme. 

Following a similar operational procedure as that in Figure 2, De Araújo Rodrigues et al. (2011) 

formulated the first double sampling scheme for attribute data called the NSSDS 	
 scheme which 

monitors the number of nonconforming items in a sample and it was shown to have a significantly better 

performance than the basic 	
 scheme in terms of the ARL metric. However, Tuh et al. (2020) criticized 

the use of the ARL metric as a sole performance measure because it does not provide a clear picture 

about the NSSDS 	
 scheme’s performance when the run-length distribution is too skewed. Thus, they 

designed the NSSDS 	
 scheme using the MRL metric as it provides a better interpretation of the run-

length distribution. Joekes et al. (2015) showed that De Araújo Rodrigues et al. (2011)’s scheme is 

applicable in the case of large sample sizes only because the binomial-normal approximation used is 

valid for large sample sizes. Thus, they proposed the use of a Cornish-Fisher corrected control limits in 

the first stage of the NSSDS 
 scheme so that the binomial-normal approximation is also valid for small 

sample sizes. More recently, Lee and Khoo (2019c) investigated the performance of the NSSDS 	
 

scheme in Phase II when the process parameter is estimated from some IC historical Phase I data.  

More recently, Malela-Majika et al. (2021b) proposed a new distribution-free NSSDS scheme based on 

the precedence statistic. Moreover, the authors showed that the proposed NSSDS precedence scheme 

outperforms the basic Shewhart DS scheme with and without runs-rules. 

 3.2 Variability 

The first NSSDS scheme for variability was proposed in He and Grigoryan (2002), where the sample 

standard deviation is computed by, � = �( ∑ G� ! − ��H�(!*�  in each stage, accordingly, by using the 

operational procedure in Figure 2. Lee et al. (2010) illustrated a real-life application of the NSSDS � 

scheme using a wire bonding process of packaging, where they showed the effectiveness of the scheme 

in reducing the cost as it requires fewer samples. Next, He and Grigoryan (2003) presented an improved 

version of the scheme in He and Grigoryan (2002) without the normality assumption for the sample 

standard deviation. Similar to the manner that Hsu (2004) showed that the sole use of the ASS without 

other run-length measures may, in some cases, yield misleading results; Hsu (2007) showed that He and 

Grigoryan (2003)’s sole use of the ASS is questionable because the conclusion is invalid when using 

other run-length properties. The economic-statistical design that minimizes cost using statistical 

constraints for the NSSDS � scheme was studied by Lee and Khoo (2018a). A comparison analysis 
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shows that it is more cost-efficient than the basic Shewhart � scheme. Next, Khoo (2004) investigated 

the performance of the NSSDS scheme for monitoring the variability using the S2 statistic when the 

underlying parameters are known and later, Castagliola et al. (2017) conducted the same study when the 

underlying parameters were estimated from a Phase I IC data and they also investigated the effect of 

Phase I sample size on the Phase II OOC performance.      

Contrary, to the above publications that use either the standard deviation or the variance to monitor 

variability, Costa (2017) proposed an NSSDS scheme based on the sample ranges. 

 3.3 Location and variability 

In the review paper by McCracken and Chakraborti (2012), the authors observed that monitoring the 

process mean alone would imply ignoring the changes in the process standard deviation, despite being 

well known that the latter can be greatly affected when the mean value gives a poor measure of central 

tendency. For monitoring both the mean and variability simultaneously, it is assumed that the process is 

OOC if either the process mean shifts from -. to -� = -. ± 3/. (i.e., |3| > 0) and/or the process 

standard deviation shifts from /. to /� = N/. (i.e., N > 1 for increase in /., or 0 < N < 1 for decrease 

in /.). The process is IC if 3 = 0 and N = 1. He and Grigoryan (2006) first proposed the NSSDS scheme 

to monitor both the mean and standard deviation simultaneously using the NSSDS �� sub-scheme by 

Daudin (1992) and the NSSDS � sub-scheme by He and Grigoryan (2002) i.e., with separate schemes 

for the mean and standard deviation. Later, Lee and Khoo (2017b) proposed the use of the single max-

type plotting statistic (see Chen and Cheng, 1998); that is, instead of separately plotting the standardized 

mean or standard deviation, one needs to plot the maximum value of either the standardized mean or 

standard deviation at each sampling point (for stage 1, and if needed, for stage 2 also) using the upper 

one-sided version of the charting regions in Figure 1(b).   

Since there are cases in SPM application where the process mean and standard deviation may not be 

constant when the process is in an IC state; however, their corresponding ratios are proportional, then 

Ng et al. (2018) implemented the SSDS charting regions in Figure 1(c) to monitor the coefficient of 

variation (CV) measuring the run-length performance with the ANOS; however, using samples of size 	� in stage 1, and 	� only in stage 2. Next, Rozi et al. (2019) instead implemented the NSSDS charting 

regions in Figure 1(b) with samples of size 	� in stage 1, and the combined samples of size 	� + 	� in 

stage 2 also using the ANOS. Unaware of the publications by Rozi et al. (2019), Lee et al. (2020) also 

studied the design and performance of the NSSDS CV scheme. 

Wu et al. (2009) proposed a scheme that monitors the mean shifts of a process by using combined 

attribute-variable inspection (denoted as 	
� scheme). Given the advantage of the 	
� scheme over both 

the attributes 	
 scheme and the variables �� scheme, recently, Zhou et al. (2020) studied the statistical 

and economic designs of the NSSDS 	
� scheme to monitor the process mean and variance. In an effort 

to minimize cost and improve statistical performance in an uncertain environment, a robust ‘weighted 

signal-to-noise ratio (WSNR)’ approach (used to control the variance) has been incorporated in the 
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NSSDS 	
� scheme’s model. Consequently, using the ARL and expected cost, it is shown that the 

NSSDS 	
� scheme is more effective than the Wu et al. (2009)’s 	
� scheme.     

Gauge-based monitoring schemes are generally known to be inferior to basic Shewhart schemes. In an 

effort to improve their performance, Mosquera and Aparisi (2020) showed that the NSSDS gauge-based 

scheme is more efficient than the basic ��, � and the joint �� & � schemes in reducing sampling cost and 

in quickly detecting shifts in the mean and variability. 

Process capability index (���) uses the process variability and process specifications limits to determine 

whether the process is ‘capable’; that is, it compares different processes to check whether they come up 

to expectation. Tomohiro et al. (2020) used the Taguchi’s quality loss function to evaluate the economic 

and statistical efficiency of the NSSDS ��� scheme and showed that it has a significantly higher power 

and lower expected operational costs than the corresponding single sampling scheme.  

 

4. Multivariate double sampling monitoring schemes 

A majority of publications on double sampling control charts are based on univariate monitoring 

schemes, with just only 11 (out of 91) publications on multivariate schemes - see the outline on Table 

1. When more than one characteristics (either i.i.d. or correlated) are to be monitored, multivariate charts 

must be used. If observations are 
-variate normal random variable with mean PQ and variance R., then 

the sequence of observations is denoted by {S ! = T�� !  �� !   …   �� !UV: t ≥ 1; j = 1, 2,…, n}. The 

upper one-sided DS schemes for multivariate data are based on the Hotelling’s �� = 	(SX −PQ)VR.F�(SX − PQ) statistic and the generalized sample variance (or equivalently, the determinant of the 

sample covariance matrix) |�| = Y�( ∑ GS ! − SXH′GS ! − SXH(!*� Y which are usually used to monitor the 

multivariate sample mean and standard deviation, respectively. The latter were first proposed by Champ 

and Aparisi (2008) and Grigoryan and He (2005), respectively. It is worth mentioning that He and 

Grigoryan (2005) presented a general case of multiple (instead of specifically double) sampling 

Hotelling’s �� scheme where it was shown that as the number of sampling stages (which is equal to 2) 

are greater than or equal to 2, the monitoring scheme has a higher capability in detecting small shifts. 

Moreover, when the sampling stages are greater than 2, the Hotelling‘s �� scheme had an improved 

small shifts performance than the multivariate CUSUM and EWMA schemes in most situations.  

Note that, unlike the univariate double sampling schemes, the multivariate ones tend to be designed as 

one-sided schemes. Faraz et al. (2012) conducted an intensive economic-statistical design for the 

optimal set of parameters for the DS �� scheme and they showed that, in most cases, it even outperforms 

the well-known multivariate EWMA �� scheme. 

For the specific bivariate case, Costa and Machado (2008) showed that the one-sided DS �� scheme has 

a better performance than the basic, VSS, VSI �� schemes. Moreover, they observed that the one-sided 

version of Croasdale (1974)’s regions in Figure 1(a) are more favourable in terms of implementation it 

is known that the OOC signal can only take place in stage 2, and in some cases, it yields better OOC 
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performance than the DS �� scheme. Next, for the bivariate sample variability, Machado and Costa 

(2008) proposed a DS scheme based on the VMAX statistic which can be used for monitoring a 

covariance matrix of a bivariate normal process, i.e. VMAX statistic utilizes the sample variances of 

two correlated random variables given by VMAX = max {���, �c�}, where ��� = ∑ �!�(!*� 	⁄ , �c� =
∑ e!�(!*� 	⁄  and the samples are denoted by (�!, e!), $ = 1,2, … , 	. 

Profile monitoring entails the application of SPM in a process that is characterized by a relationship 

between two or more variables of interest. More recently, Eizi et al. (2020) studied the statistical and 

economic-statistical designs of the DS schemes to monitor linear profiles in Phase II. It is shown that 

since the ARLs depends only on the shift of the slope parameter (���), but not on the constant parameter 

(��.); hence, the first chart is termed as the DS ��� scheme and the second one is termed as the DS �� 

scheme. When the correlation between parameters ��. and ��� is low, the DS ��� scheme is shown to have 

the smallest expected loss as compared to the DS �� scheme; otherwise, the converse is true. Moreover, 

it is recommended to implement the economic-statistical design rather than the statistical design when 

monitoring ��� using a DS scheme as it yields the smallest expected loss. Finally, the DS ��� scheme 

yields the smallest expected loss as compared to the single sampling ��� scheme. 

Other multivariate double sampling schemes are discussed under the appropriate sub-sections of Section 

5. 

 

5. Other monitoring schemes combined with the double sampling scheme 

Khoo et al. (2016) and Teoh et al. (2014a) compared the performance of the double sampling �� scheme 

against the VSI and VSS �� schemes, respectively. It was observed that the VSI schemes had a better 

OOC performance when moderate to large shifts are of interest using the ATS; that is, the NSSDS 

scheme has a better performance for small shifts only. Next, the NSSDS scheme has a better OOC 

performance than the VSS scheme when using the ARL and SDRL; however, the converse is true when 

using the ASS.  

Because the purpose of integrating different monitoring schemes is to produce an improved scheme that 

has a better performance than the individual combined schemes, several monitoring schemes have been 

integrated with the basic double sampling scheme in an effort to improve its performance. Such 

monitoring schemes that we are aware of, so far, that have been integrated with the basic double 

sampling schemes are: (i) Variable sampling interval (VSI) scheme, (ii) Variable sample size and 

interval (VSSI) scheme, (iii) Synthetic scheme, (iv) Group-runs scheme and (v) Exponentially weighted 

moving average (EWMA) procedure.     

 5.1 VSI and VSSI procedure 

For a better understanding of VSI and VSSI schemes, the reader is referred to the literature review by 

Psarakis (2015). Assume that the possible sample sizes are 	� < 	� and we define the long and short 

sampling intervals as f� and f�, respectively, where f� > f�. Carot et al. (2002) were the first to 



19 

 

combine the NSSDS scheme with the VSI design using the charting regions in Figure 1(b). At each 

sampling point ", in stage 1, the sample size is fixed at 	�; however, the sampling interval is allowed to 

vary as follows 

gf�,  if +�, F� ∈ Region B or Cf�,  if +�, F� ∈ Region A.        
  

Later, Torng et al. (2010) studied the corresponding works with the normality assumption relaxed by 

using various t- and gamma distributions with different parameters. Note though, slightly different 

charting regions were used in stage 1 – see Figure 3. That is, Torng et al. (2010) defined the 

implementation of the sampling intervals at +�  as follows 

gf�,  if +�, F� ∈ Region B1 or B2 or C   f�,  if +�, F� ∈ Region A.                      
  

Moreover, unlike Carot et al. (2002), the charting procedure moves to stage 2 when +�  falls in Region 

B2 in stage 1. As an improvement to Haq and Khoo (2018), Umar et al. (2020a) investigated the 

performance of the NSSDS scheme combined with the VSI design for monitoring the process mean with 

regression-type estimators under specific conditions of correlation (i.e. with auxiliary based 

information). 

Figure 3: The charting regions in stages 1 and 2 of the VSI double sampling scheme 

 

However, Noorossana et al. (2015) combined the NSSDS scheme with the VSSI design using the 

charting regions in Figure 3. While the NSSDS with the VSI design has 	� and 	� only, the double 

sampling with VSSI design has 	�, 	� and 	i (with 	� < 	� < 	i). Consequently, at each sampling 

point ", the sample size and sampling interval (denoted as (	>, f>)) are defined as follows 

j(	i, 0)  if +�, F� ∈ Region B2           (	�, f�)  if +�, F� ∈ Region B1 or C(	�, f�)  if +�, F� ∈ Region A.          
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That is, when a plotting statistic falls in Region B2, the charting procedure moves to stage 2 immediately 

(at that sampling point, i.e. the sampling interval is equal to zero) using a combined sample of size either 

(	� + 	i) or (	� + 	i) depending on which region did the previous sample (i.e. +�, F�) plot on. 

Unlike Torng et al. (2010) who used integral equations to evaluate the run-length distribution, Carot et 

al. (2002) and Noorossana et al. (2015) used the Markov chain approach outlined in Jensen et al. (2008) 

to obtain the ATS, average number of samples to signal (ANSS) and ANOS. Using these run-length 

properties, Noorossana et al. (2015) showed that the double sampling scheme with the VSSI design has 

a better performance than the corresponding VSI counterpart. Moreover, it performs better than all the 

corresponding basic Shewhart VSS, VSI and VSSI �� schemes. Note that the economic design of the 

VSI double sampling �� scheme is studied in Lee et al. (2012a).  

The NSSDS � scheme combined with the VSI design for monitoring the standard deviation is discussed 

in Lee et al. (2012b). The corresponding scheme that jointly monitors the mean and the standard 

deviation (i.e., which in essence incorporates the VSI design to the He and Grigoryan (2006)’s joint �� 

and � NSSDS scheme) was proposed in Lee (2013). Similarly; however, in the case of attributes data, 

Lee and Khoo (2017c) combined the NSSDS 	
 scheme with the VSI design. 

For multivariate data, Khatun et al. (2018) and Katebi and Moghadam (2020) investigated the 

performance of the one-sided DS �� scheme combined with the VSI and VSSI designs, respectively. In 

addition, the VSSI design incorporated into the one-sided DS �� scheme outperforms that of the VSI 

design in detecting shifts in the vector of process means. Chu et al. (2018) and Lee and Khoo (2018b) 

investigated the performance of the one-sided DS |S| scheme combined with the VSI and VSSI designs, 

respectively. In the latter multivariate articles, the combined schemes were shown to yield much better 

performance than their individual counterparts. 

 5.2 Synthetic scheme 

For a better understanding of synthetic schemes, the reader is referred to the literature review by Rakitzis 

et al. (2019). The conforming run-length (CRL) is defined as the number of samples observed between 

two consecutive nonconforming samples, inclusive of the nonconforming sample at the end. The main 

difference between a basic NSSDS scheme (in Figure 1(b)) and a non-side-sensitive (NSS) synthetic 

DS scheme (in Figure 4(a)) is that the latter does not issue OOC signal at the first sample point that falls 

on the nonconforming regions (i.e., the ‘OOC regions’ in Figure 1(b)). That is, the process waits until a 

second sample point falls on the nonconforming region and, if these two nonconforming samples are 

relatively close to each other (say, CRL ≤ H), then an OOC signal is triggered. Note that H is a positive 

integer greater than 0 and it is defined as a control limit of the CRL scheme.  
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(a) NSS synthetic double sampling regions 

 
(b) SSS and RSS synthetic double sampling regions 

 
(c) MSS synthetic double sampling regions 

Figure 4: The charting regions in stages 1 and 2 of the synthetic double sampling scheme 
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Khoo et al. (2011) and Khoo et al. (2013) were respectively the first to integrate the operation of a NSS 

synthetic DS scheme with regions given in Figure 4(a) using the �� and �� charting statistics and the 

CRL sub-scheme. It was observed that the integrated scheme has a significant improvement over the 

individual synthetic or NSSDS scheme. Next, the corresponding economic designs were studied in Lee 

and Khoo (2019a, b) under a variety of constraints for the univariate and multivariate NSS synthetic DS 

schemes, respectively. Aghaulor and Ezekwem (2016) designed the NSS synthetic DS scheme in a 

slightly different manner than Khoo et al. (2011); that is, they implemented an algorithm such that the 

samples of sizes 	� and 	� used in stages 1 and 2, respectively, are such that: 	� < 	, 	� < 2	 and 	� + 	� < 	. 

Next, Costa and Machado (2015) realized that a side-sensitive version of the Khoo et al. (2011) scheme 

yields an improved performance; hence they proposed the standard side-sensitive (SSS) synthetic DS 

scheme using the regions in Figure 4(b). Malela-Majika and Rapoo (2019) proposed the revised and 

modified side-sensitive (denoted by RSS and MSS, respectively) synthetic DS schemes; and they 

showed that the latter two schemes outperform the other synthetic DS schemes. More recently, Motsepa 

et al. (2020) briefly studied the parameter estimation effect of the MSS synthetic DS �� chart and showed 

that it has a better OOC performance than the basic  SSDS �� chart in Case U. 

As an improvement to the NSSDS scheme for monitoring the mean with auxiliary variable (by Haq and 

Khoo, 2018), Haq and Khoo (2019) proceeded by combining the latter with the CRL sub-scheme to 

form a more effective NSS synthetic DS �� chart using the regions in Figure 4(a).  

Given that there was no synthetic DS scheme dedicated to simultaneously monitoring the mean and 

standard deviation, Malela-Majika (2019) used the regions in Figure 4(c) and the CRL sub-scheme to 

propose the MSS synthetic DS scheme with an OOC performance better than all its Shewhart-type 

competitors. 

Having observed the performance of the basic NSSDS np scheme by De Araújo Rodrigues et al. (2011), 

Chong et al. (2014) investigated the corresponding NSS synthetic DS np scheme. For the variability 

case, Lee and Khoo (2017a) extended on He and Grigoryan (2002) work and proposed a NSS synthetic 

DS � scheme.  

 5.3 Group-runs scheme 

For a better understanding of group-runs schemes, the reader is referred to Gadre and Rattihalli (2007). 

Khoo et al. (2015) and Chong et al. (2017) proposed the side-sensitive group-runs DS (SSGRDS) 

scheme for the process mean and number of nonconforming items in a sample, respectively. Looking at 

group-runs schemes in a different way, it is a generalized version of the synthetic schemes in Section 

5.2, i.e. it is similar to the CRL sub-scheme except in the decision making procedure. That is, the group-

runs schemes give an OOC signal when the first CRL charting statistic is less or equal to H (i.e., CRL1 ≤ H), or any two consecutive CRL charting statistics are both less than or equal to H (i.e., ��J> ≤ H 

and ��J>=� ≤ H, ?=2,3,…). The SSGRDS scheme uses the charting regions in Figure 4(b) similar to 

those of the RSS synthetic schemes. The zero- and steady-state OOC performance of these schemes 
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were computed using the ANOS. Chong et al. (2018) studied the run-length in more details by evaluating 

additional run-length properties for the work in Khoo et al. (2015), i.e., the median and percentile 

number of observations to signal (these are denoted by MNOS and PNOS, respectively).  

Thereafter, Saha et al. (2018) enhanced the SSGRDS scheme by re-defining the CRL sub-scheme so 

that it has two limits, i.e. a warning limit (denoted by l�) and a control limit (denoted by l�), with l� <l�, where l� and l� are positive integers greater than 0. This new scheme was called the modified 

SSGRDS (MSSGRDS). The MSSGRDS scheme gives an OOC signal when the first CRL charting 

statistic is less or equal to l� (i.e., CRL1 ≤ l�), or any two consecutive ��J> ≤ l� and ��J>=� ≤ l�, ?=2,3,…). Using the ANOS and EANOS, the MSSGRDS scheme has been shown to outperform the 

SSGRDS scheme and a variety of other Shewhart-type competitors. Finally, Umar et al. (2020b) studied 

the run-length of the MSSGRDS scheme proposed by Saha et al. (2018) in more details by evaluating 

the ANOS, MNOS and PNOS.    

 5.4 EWMA procedure 

Yang and Wu (2017a) used an asymmetric version of the control limits in Figure 1(b) to study the 

EWMA double sampling scheme based on the nonparametric sign statistic. This latter scheme was 

studied, and shown to yield a better performance than a variety of parametric and distribution-free 

schemes under the normal, double exponential, uniform, chi-square and exponential distributions. 

Similarly, Yang and Wu (2017b) showed that the asymmetric EWMA double sampling scheme for 

monitoring the variance has a better performance compared with the parametric and distribution-free 

schemes for monitoring variability. 

 

6. Concluding remarks and future research ideas 

Basic double sampling monitoring schemes are very effective in reducing sampling effort (hence a 

reduction in operational costs) and detect OOC situations much quicker than most Shewhart or 

Hotelling’s competitors. Readers are also referred to Khired et al. (2021) for a recently proposed refined 

double sampling scheme with improved detection ability which does not use a combined sample in the 

second stage. Moreover, double sampling schemes combined with other procedures / schemes (e.g. VSI, 

VSSI, synthetic, group-runs, EWMA, gauge-based) have an even better OOC performance. Thus, this 

indicates that these monitoring schemes can be useful in many real life applications where the currently 

basic Shewhart or Hotelling’s schemes are in use. Implementation tools need to be developed (e.g. using 

statistical software like R, Minitab, SAS, Matlab, SPSS, etc.) so that these schemes can be implemented 

in monitoring real-life applications.  

While a majority of research work has been dedicated to NSSDS schemes, very little has been dedicated 

to the better performing SSDS schemes. Also, while there are a number of estimated parameter(s) 

research works for double sampling schemes – except the NSSDS S2 scheme by Castagliola et al. (2017), 

these are only for the univariate process location, with none dedicated to simultaneous monitoring of 

the location and variability, the coefficient of variation, etc. With the exception of Eizi et al. (2020)’s 
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work on linear profiles, no parameters unknown investigation has been done for bivariate or multivariate 

double sampling schemes in the case of i.i.d. or non-i.i.d. observations.   

Finally, we provide below a list of some possible future research ideas that may be of interest to 

researchers who are interested in pursuing enhancements of double sampling schemes: 

1. Majority of double sampling schemes focuses on the monitoring of process location 

parameter(s) for a normally distributed i.i.d. process. There are a number of pitfalls in ignoring 

or assuming that the corresponding standard deviation is constant or unaffected by changes in 

the location parameter. Thus, future research works need to focus more on monitoring both the 

location and variability parameters simultaneously in the case of non-normal distributions. Also, 

it worth monitoring the time between events using, say, the exponential distribution. 

2. Double sampling schemes are mostly based on the assumption that the subgroup samples do not 

have either autocorrelation (within-sample correlation) or cross-correlation (between-samples 

correlation). However, for sequential observations, there tend to be some inherent underlying 

correlation within the observations – see for instance, Qiu (2019). Therefore, it is important to 

also focus on double sampling with more emphasis on autocorrelated observations as well as on 

nonparametric or distribution-free monitoring schemes.  

3. With the exception of Haq and Khoo (2018, 2019), no other double sampling scheme takes into 

account auxiliary information. Also, there is only a single research work that takes into account 

measurement errors, i.e. Lee et al. (2019). Considering the importance of auxiliary information 

and measurement errors in real life applications; these important factors require more attention 

for different types of double sampling schemes. 

4. With only eleven publications on multivariate schemes, there is a lot of research that need to be 

done based on parametric multivariate double sampling schemes as well as those for 

distribution-free double sampling schemes – with Qiu (2014) being the more appropriate 

starting point in this scenario. Moreover, for the parametric case, there is a need for a 

multivariate double sampling schemes based on the joint monitoring of location and variability, 

as well as the coefficient of variation statistic. 

5. Since the combined schemes usually perform better than the individual integrated schemes, a 

fact that has been shown in the case of double samples with synthetic, VSI, VSSI and group-

runs schemes. The latter fact needs to be tested whether it holds in the case of using double 

sampling approach in the case of memory-type schemes (i.e. exponentially weighted moving 

average (EWMA), cumulative sum (CUSUM), generally weighted moving average (GWMA), 

homogeneously weighted moving average (HWMA)). The only publications that have done this 

so far in the literature are on distribution-free method using the EWMA double sampling 

scheme; see Yang and Wu (2017a, b). The latter methodologies need to be adopted for the 

parametric scenarios and also be extended for other nonparametric scenarios. Moreover, for 
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complex double sampling schemes, research may investigate the possibility of combining the 

synthetic or group-runs double sampling schemes with the VSI or VSSI designs.  

6. Only a few studies on the economic and economic-statistical designs have been done in the 

literature. Hence, more effort needs to be done, especially when there is no assumption of i.i.d. 

and normality; and more importantly, when parameters are estimated.  

7. With only a few studies on attributes data as well as combined attribute-variable inspection, 

more investigations are required in the area of double sampling schemes, specifically based on 

the number of nonconformities as well as high-yield processes; see the Woodall (1997) and Wu 

et al. (2009) as possible starting points.  

In closing, the objective of this review was to give more intensive as well as more detailed background 

on this important branch of Shewhart-type schemes; with the hope that this will stimulate future 

researches on simple as well as complex double sampling schemes for monitoring a variety of quality 

characteristics. 

 

Appendix: Run-length properties of the NSSDS SX scheme 

Run-length properties when the monitored observations are from a normal distribution with the 

underlying parameters known (i.e. Case K) and unknown (i.e. Case U) are discussed in Appendices A 

and B, respectively. Except for four publications, the entire double sampling schemes herein have an 

assumed underlying normal distribution; hence, the run-length properties are shown for this scenario. 

For non-normal discussions see Torng and Lee (2009), Torng et al. (2010), Yang and Wu (2017a, b) and 

Malela-Majika et al. (2021b).  

It is worth mentioning that, for double sampling schemes, using different run-length metrics yield 

different outcomes; see the best examples in Hsu (2004, 2007) and Teoh et al. (2014a). Consequently, 

it is important to evaluate the run-length distribution of a double sampling monitoring scheme with 

different metrics rather than a single one.  

 

Appendix A: Case K 

Let m.n represents the probability that the process is regarded as IC at stage o, where o = 1, 2. Then,  m. = m.� + m.� is the probability that the process is IC, where: 

m.� = m(+� ∈ A) = ΦTJ� + 3q	�U − ΦT−J� + 3q	�U, 
and m.� = mr+� ∈ B and +� ∈ Ew 

= ∫y)z∈{∗∗}ΦT~J� + �~3 − �q	� 	�⁄ U − ΦT−~J� + �~3 − �q	� 	�⁄ U� �(�)f�  

where Φ(.) and �(.) are the c.d.f. (cumulative distribution function) and p.d.f. (probability density 

function) of the standard normal random variable, respectively; �� = 	� + 	�, ~ = � √	�⁄ , and I∗∗ =r−J + 3√	�, −J� + 3√	�) ∪ (J� + 3√	�, J + 3√	�w . Given that the NSSDS �� scheme is a Shewhart-
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type one, its run-length (RL) follows a geometric distribution. Therefore, the c.d.f. of the RL distribution 

(denoted ���(ℓ)) is obtained as ���(ℓ) = m(�J ≤  ℓ) = 1 − m., ℓ where ℓ ∈ {1, 2, 3, … }. Then, the 

(100�) # percentile of the RL distribution, ℓ�, is given by mG�J ≤ ℓ� − 1H ≤ � and mG�J ≤ ℓ�H > �. 

Note that the most used values to evaluate the run-length distribution are � = 0.05, 0.25, 0.50, 0.75 and 

0.95, which denote the 5th, 25th, 50th (or median), 75th and 95th percentiles, respectively. Other well-

known RL properties are the average run-length (ARL), standard deviation of the run-length (SDRL), 

average sample size (ASS) and average number of observations to signal (ANOS), in Case K, these are 

given by  

I�J = 11 − m., 
���J = qm.1 − m., 

I�� = 	� + 	�m� 

and  I2L� = I�� × I�J, 
respectively; where m� = m(+� ∈ �) is the probability of taking the second sample, and it is given by  

m� = ΦGJ + 3q	�H − ΦGJ� + 3q	�H + ΦG−J� + 3q	�H − ΦG−J + 3q	�H. 
Since the ANOS depends on the ASS and ARL values, a larger ANOS value implies that either the 

monitoring scheme is inefficient and/or the cost of inspection is higher. A variety of other RL 

performance measures have been used in the literature, these include the ATS, ANSS, average number 

of switches (ANSW), standard deviation of time to signal (SDTS), standard deviation of number of 

samples to signal (SDNSS), standard deviation of number of switches (SDNSW) – most of these are 

thoroughly discussed in Noorossana et al. (2015).      

 

Appendix B: Case U 

In order to calculate the unconditional RL properties, we need to first derive the conditional ones, see 

for instance, You et al. (2018). Hence, the conditional c.d.f. of +�� , given -̂. and /D. is defined as 

�y�)z(�|-̂., /D.) = Φ �UE ()�( + �� − 3√	��, where � = (-̂. − -.) √�(56  and � = /D. /.⁄ . Consequently, 

the conditional p.d.f. of +�� , is given by  

�y�)z(�|-̂., /D.) = �� �UE 	�B	 + �� − 3q	��. 
Since -̂.~2(-., 56:�(), then �~2(0,1) so that the p.d.f. of the random variable � is simply, ��(�) =
�(�). Next, using the fact that  �� = (/D. /.⁄ )� has a gamma distribution with parameters B(	 − 1)/2 

and 2/rB(	 − 1)w, then the p.d.f. of  � is defined as  

��(�|B, 	) = 2��� ���� B(	 − 1)2 , 2B(	 − 1)�, 
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where ��(. ) is the p.d.f. of the gamma distribution with parameters 
�((F�)�  and 

��((F�). 
Consequently, to derive the unconditional c.d.f. of the RL of the proposed monitoring scheme, we need 

to first derive the unconditional probability of the IC process. Let m�.n denote the probability that the 

process with estimated parameters remains IC at the sampling stage o (with o = {1, 2}). Then, the 

probability that the process is IC is given by m�. = m�.� + m�.�, where,  

m�.� = Φ ��E 	�B	 + �J� − 3q	�� − Φ ��E 	�B	 − �J� − 3q	�� 

and  
m�.� = � m� �y�)z(�|-̂., /D.)f�.

y∈{∗∗ ; 
with   

m�  = Φ ¢�E 	�B	 + � �J�√	� + 	� − �√	�√	� � − 3q	�£
− Φ ¢�E 	�B	 − � �J�√	� + 	� − �√	�√	� � − 3q	�£. 

Then, the unconditional c.d.f. of the NSSDS �� scheme is given by  
���(ℓ) = � � G1 − m�.ℓH��(�)�¤(�) f� f�,=¥

.
=¥

F¥  

where ℓ ∈ {1, 2, 3, … . , }. Therefore, the unconditional I�J and ���J of the NSSDS �� scheme are given 

by  

I�J = � � � 11 − m�.� ��(�)�¤(�) f� f�=¥
.

=¥
F¥  

and 

���J = ¢� � �1 + m�.1 − m�.� ��(�)�¤(�) f� f�=¥
.

=¥
F¥ − I�J�£�/�. 

The I�� is given by  

I�� = � � G	� + 	�m��H��(�)�¤(�) f� f�,=¥
.

=¥
F¥  

where m�� is the probability of taking the second sample, which is given by m�� = mG+�� ∈ B¦-̂., /D.H, or 

simply,  

m�� = Φ ��E ()�( + �J − 3√	�� − Φ ��E ()�( + �J� − 3√	�� + Φ ��E ()�( − �J� − 3√	�� −
Φ �UE ()�( − �J − 3√	��.  

Then, the I2L� is given by  

I2L� = � � G	� + 	�m��H � 11 − m�.� ��(�)�¤(�) f� f�=¥
.

=¥
F¥ . 
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Numerous authors have revealed that if a double sampling scheme is designed based on one specific 

size of a mean shift, it will perform poorly when the actual size of the shift is significantly different from 

the assumed size (see for instance You, 2017, 2018; Malela-Majika et al., 2019). Moreover, it is well-

known that the RL distribution of a monitoring scheme is generally highly right-skewed when 

parameters are estimated. Also, the ARL is criticized because of its ineffectiveness in assessing the 

overall performance, especially when the aim of the study is to assess the performance of a monitoring 

scheme over a range of shifts. Hence, they recommended designing double sampling schemes to 

minimize the quality loss, which is measured by a quantity called the expected weighted run-length 

(EWRL) which is given by  

K§�J = Kr¨(3) × ©(3)w = � G¨(3) × ©(3)Hª«¬

ª«®¯
× ℎ(3)f3, 

where 3 follows some p.d.f. with a density function ℎ(3) and a range [3�>(, 3�±�], where 3�>( and 3�±� are the lower and upper bound of the range of 3, ¨(3) is a weight function associated with 3; and ©(3) is some specific shift run-length metric, e.g., ARL(3), ANOS(3), ATS(3), etc. In the double 

sampling literature, the EWRL has been utilised by a number of different authors to formulate a bi-

objective algorithm to obtain optimal parameter values, see for instance, Chong et al. (2014), Lee and 

Khoo (2017c), etc. More specifically, You (2017) used ¨(3)=1 to design the NSSDS scheme; while 

Malela-Majika et al. (2021a) used ¨(3)=3� to design the SSDS scheme. 

 

References 

Aghaulor, C.D., and C. Ezekwem. 2016. An economic design of a modified synthetic double sampling 

control chart for process monitoring. International Journal of Engineering Research & 

Technology 5(11):445-460.  

Carot, V., J.M. Jabaloyes, and T. Carot. 2002. Combined double sampling and variable sampling interval 

chart. International Journal of Production Research 40(9):2175-2186.  

Castagliola, P., P.C. Oprime, and M.B.C. Khoo. 2017. The double sampling S2 chart with estimated 

process variance. Communications in Statistics – Theory and Methods 46(7):3556-3573. 

Champ, C.W., and F. Aparisi. 2008. Double sampling Hotelling’s T2 charts. Quality and Reliability 

Engineering International 24(2):153-166. 

Chen, G., and S.W. Cheng. 1998. Max chart: Combining �� chart and s chart. Statistica Sinica 8(1):263-

271. 

Chong, Z.L., M.B.C. Khoo, and P. Castagliola. 2014. Synthetic double sampling np control chart for 

attributes. Computers & Industrial Engineering 75(1):157-169. 

Chong, Z.L., M.B.C. Khoo, W.L. Teoh, W.C. Yeong, and S.Y. Teh. 2017. Group runs double sampling 

np control chart for attributes. Journal of Testing and Evaluation 45(6):2267-2282.  

Chong, N.L., M.B.C. Khoo, Z.L. Chong, and W.L. Teoh. 2018. A study on the run length properties of 

the side sensitive group runs double sampling (SSGRDS) control chart. MATEC Web of 

Conferences. DOI: 10.1051/matecconf/201819201005. 

Chu, W., A.-J. Cai, L. Li, Z. Zhang, and W. Yang. 2020. Bivariate double sampling generalized variance 

control chart with variable sampling interval. Kongzhi yu Juece / Control and Decision 

33(6):1075-1080. 

Claro, F.A.E., A.F.B. Costa, and M.A.G. Machado. 2008. Double sampling �� control chart for a first 

order autoregressive process. Pesquisa Operacional 28(3):545-562. 



29 

 

Costa, A.F.B., and F.A.E. Claro. 2008. Double sampling �� control chart for a first-order autoregressive 

moving average process model. International Journal of Advanced Manufacturing Technology 

39(5-6):521-542. 

Costa, A.F.B., and M.A.G. Machado. 2008. Bivariate control charts with double sampling. Journal of 

Applied Statistics 35(7):809-822. 

Costa, A.F.B., and M.A.G. Machado. 2011. Variable parameter and double sampling �� charts in the 

presence of correlation: the Markov chain approach. International Journal of Production 

Economics 130(2):224-229. 

Costa, A.F.B., and M.A.G. Machado. 2015. The steady-state behavior of the synthetic and side-sensitive 

double sampling �� charts. Quality and Reliability Engineering International 31(2):297-303. 

Costa, A.F.B. 2017. The double sampling range chart. Quality and Reliability Engineering International 

33(8):2739-2745. 

Croasdale, R. 1974. Control charts for a double-sampling scheme based on average production run lengths. 

International Journal of Production Research 12(5):585-592. 

Daudin, J.J., C. Duby, and P. Trecourt. 1990. Plans de Controle Double Optimaux (Maitrise des Procedes 

et Controle de Reception). Rev. Statistique Appliquee 38(4):45-59. 

Daudin, J.J. 1992. Double sampling �� charts. Journal of Quality Technology 24(1):78-87. 

De Araújo Rodrigues, A.A., E.K. Epprecht, and M.S. De Magalhães. 2011. Double-sampling control 

charts for attributes. Journal of Applied Statistics 38(1):87-112. 

Eizi A, B.S. Gildeh, and S.E. Monabbati. 2020. Comparison between two methods of the economic-

statistical design of profile monitoring under the double sampling scheme. Journal of Statistical 

Computation and Simulation 90(18):3400-3421.  

Faraz, A., C. Heuchenne, and E. Saniga. 2011. Optimal T2 control chart with a double sampling scheme 

– an alternative to the MEWMA chart. Quality and Reliability Engineering International 

28(7):751-760. 

Gadre, M.P., and R.N. Rattihalli. 2007. A side-sensitive group runs control chart for detecting shifts in the 

process mean. Statistical Methods and Applications 16(1):27-37. 

Grigoryan, A., and D. He. 2005. Multivariate double sampling |S| charts for controlling process 

variability. International Journal of Production Research 43(4):715-730. 

Haq, A., and M.B.C. Khoo. 2018. A new double sampling control chart for monitoring process mean using 

auxiliary information. Journal of Statistical Computation and Simulation 88(5):869-899.  

Haq, A., and M.B.C. Khoo. 2019. A synthetic double sampling control chart for process mean using 

auxiliary information. Quality and Reliability Engineering International 35(6):1803-1825.  

He, D., A. Grigoryan, and M. Sigh. 2002. Design of double-and triple-sampling �� control charts using 

genetic algorithms. International Journal of Production Research 40(6):1387-1404. 

He, D., and A. Grigoryan. 2002. Construction of double sampling ²-control charts for agile 

manufacturing. Quality and Reliability Engineering International 18(4):343-355.  

He, D., and A. Grigoryan. 2003. An improved double sampling s chart. International Journal of 

Production Research 41(12):2663-2679.  

He, D., and A. Grigoryan. 2005. Multivariate multiple sampling charts. IIE Transactions 37(6):509-521. 

He, D., and A. Grigoryan. 2006. Joint statistical design of double sampling �� and � charts. European 

Journal of Operational Research 168(1):122-142. 

Hsu,  L.F. 2004. Note on ‘Design of double- and triple- sampling X-bar control charts using genetic 

algorithms’. International Journal of Production Research 42(5):1043-1047. 

Hsu, L.F. 2007. Note on ‘Construction of double sampling s-control charts for agile manufacturing’. 

Quality and Reliability Engineering International 23(2):269-272.  

Irianto, D., and N. Shinozaki. 1998. An optimal double sampling �� control chart. International Journal of 

Industrial Engineering - Theory, Applications and Practice 5(3):226-234.  

Irianto, D., and A. Juliani. 2010. A two control limits double sampling control chart by optimizing producer 

and customer risks. ITB Journal of Engineering Science 42(2):165-178. 

Jensen, W.A., L.A. Jones-Farmer, C.W. Champ, W.H. Woodall. 2006. Effects of parameter estimation on 

control chart properties: A literature review. Journal of Quality Technology 38(4):349-364. 

Jensen, W.A., G.R. Bryce, and M.R. Reynolds Jr. 2008. Design issues for adaptive control charts. 

Quality and Reliability Engineering International 24(4):429-445. 



30 

 

Joekes, S., M. Smrekar, E.M. Barbosa. 2015. Extending a double sampling control chart for non-

conforming proportion in high quality processes to the case of small samples. Statistical 

Methodology 23:35-49. 

Katebi, M., and M.B. Moghadam. 2020. A double sampling multivariate T2 control chart with variable 

sample size and variable sampling interval. Communications in Statistics – Simulation and 

Computation. DOI: 10.1080/03610918.2020.1716246. 

Khatun, M., M.B.C. Khoo, W.C. Yeong, W.L., Teoh, and Z.L. Chong. 2018. Adaptive multivariate 

double sampling and variable sampling interval Hotelling’s T2 charts. Quality and Reliability 

Engineering International 34(5):894-911. 

Khired, A.A., M. Aslam, and S.A. Dobbah. 2021. Refined double sampling scheme with measures and 

application. Stat 10:e368. 

Khoo, M.B.C. 2004. S2 control chart based on double sampling. International Journal of Pure and 

Applied Mathematics 13(2):249-258. 

Khoo, M.B.C., H.C. Lee, Z. Wu, C.H. Chen, and P. Castagliola. 2011. A synthetic double sampling 

control chart for the process mean. IIE Transaction 43(1):23-38. 

Khoo, M.B.C., M.H. Lee, W.L. Teoh, J.Y. Liew, and S.Y. Teh. 2013a. The effects of parameter estimation 

on minimizing the in-control average sample size for the double sampling �� chart. South African 

Journal of Industrial Engineering 24(3):58-67.  

Khoo, M.B.C., W.L. Teoh, P. Castagliola, and M.H. Lee. 2013b. Optimal designs of the double sampling 

chart with estimated parameters. International Journal of Production Economics 144(1):345-357.  

Khoo, M.B.C., Z. Wu, P. Castagliola, and H.C. Lee. 2013c. A multivariate synthetic double sampling �� control chart. Computers & Industrial Engineering 64(1):179-189. 

Khoo, M.B.C., E.K. Tan, Z.L. Chong, and S. Haridy. 2015. Side-sensitive group runs double sampling 

(SSGRDS) chart for detecting mean shifts. International Journal of Production Research 

53(15):4735-4753. 

Khoo, M.B.C., J.L. Khoo, W.C. Yeong, and W.L. Teoh. 2016. A comparative study between the variable 

sampling interval �� and double sampling �� charts. IEEE International Conference on Control 

and Robotics Engineering. DOI: 10.1109/ICCRE.2016.7476133. 

Lee, M.H., and M.B.C. Khoo. 2017a. Synthetic double sampling s chart. Communications in Statistics 

- Theory and Methods 46(12):5914-5931. 

Lee, M.H., and M.B.C. Khoo. 2017b. Double sampling max chart. Communications in Statistics - 

Simulation and Computation 46(10):7855-7878. 

Lee, M.H., and M.B.C. Khoo. 2017c. Combined double sampling and variable sampling interval np 

chart. Communications in Statistics - Theory and Methods 46(23):11892-11917. 

Lee, M.H., and M.B.C. Khoo. 2018a. Economic-statistical design of double sampling � control chart. 

International Journal for Quality Research 12(2):337-362. 

Lee, M.H., and M.B.C. Khoo. 2018b. Double sampling |S| control chart with variable sample size and 

variable sampling interval. Communications in Statistics – Simulation and Computation 

47(2):615-628. 

Lee, M.H., and M.B.C. Khoo. 2019a. The economic and economic statistical designs of synthetic double 

sampling �� chart. Communications in Statistics - Simulation and Computation 48(8):2313-

2332. 

Lee, M.H., and M.B.C. Khoo. 2019b. Economic-statistical design of synthetic double sampling T2 chart. 

Communications in Statistics - Theory and Methods 48(23):5862-5876. 

Lee, M.H., and M.B.C. Khoo. 2019c. Double sampling np chart with estimated process parameter. 

Communications in Statistics - Simulation and Computation. DOI: 

10.1080/03610918.2019.1599017. 

Lee, M.H., K.S.K.Y. Si, X.Y. Chew, E.M.F. Lau, and P.H.H. Then. 2019. The effect of measurement 

errors on the double sampling �� chart. COMPUSOFT, An International Journal of Advanced 

Computer Technology 8(9):3395-3401. 

Lee, P.-H., C.-C. Torng, H.-S. Liao, and C.-C., Tseng. 2009. The statistical performance of double 

sampling �� control charts for correlation data. IEEE International Conference on Industrial 

Engineering and Engineering Management. DOI: 10.1109/ieem.2009.5373536. 



31 

 

Lee, P.-H., C.-C. Torng, J.-C. Wu, and C.-C. Tseng. 2010. The effectiveness study of double sampling 

s charts application on destructive testing process. International Journal of Product 

Development 12(3-4):324-335.  

Lee, P.-H., C.-C. Torng, and L.-F. Liao. 2012a. An economic design of combined double sampling and 

variable sampling interval X  control chart. International Journal of Production Economics 

138(1):102-106. 

Lee, P.-H., Y.-C. Chang, and C.-C. Torng. 2012b. A design of s control charts with a combined double 

sampling and variable sampling interval scheme. Communications in Statistics – Theory and 

Methods 41(1):153-165. 

Lee, P.-H. 2013. Joint statistical design of  �� and s charts with combined double sampling and variable 

sampling interval. European Journal of Operational Research 225(2):285-297. 

Lee, P.-H., C.-C. Torng, and H.-R. Jhong. 2020. The performance study of double sampling coefficient 

of variation control charts. Proceedings of the 4th International Conference on Management 

Engineering, Software Engineering and Service Sciences, January 2020, 77-81. DOI: 

10.1145/3380625.3380661. 

Lorenzen, T.J., and L.C. Vance. 1986. The economic design of control charts: A unified approach. 

Technometrics 28(1):3-10. 

Machado, M.A.G., and A.F.B. Costa. 2008. The double sampling and the EWMA charts based on the 

sample variances. International Journal of Production Economics 144(1):134-148. 

Maleki, M.R., A. Amiri, and P. Castagliola. 2017. Measurement errors in statistical process monitoring: 

A literature review. Computers & Industrial Engineering 103:316-329.  

Malela-Majika, J.-C. 2019. Modified side-sensitive synthetic double sampling monitoring scheme for 

simultaneously monitoring the process mean and variability. Computers & Industrial Engineering 

130:798-814. 

Malela-Majika, J.-C., and E.M. Rapoo. 2019. Side-sensitive synthetic double sampling �� control charts. 

European Journal of Industrial Engineering 13(1):117-148. 

Malela-Majika, J.-C., C.M. Motsepa, and M.A. Graham. 2021a. A new double sampling �� control chart 

for monitoring an abrupt change in the process location. Communications in Statistics - 

Simulation and Computation 50(3):917-935. 

Malela-Majika, J.-C., S. C. Shongwe, M. Aslam, Z. L. Chong, and E. M. Rapoo. 2021b. Distribution-

free double sampling precedence monitoring scheme to detect unknown shifts in the location 

parameter. Quality and Reliability Engineering International doi:10.1002/qre.2935. 

McCracken, A., and S. Chakraborti. 2013. Control charts for joint monitoring of mean and variance: An 

overview. Quality Technology and Quantitative Management 10(1):17-36. 

Mosquera, J., and F. Aparisi. 2020. Optimal double sampling control chart based on gauges. Quality 

Engineering 32(4):693-704. 

Motsepa, C.M., J.-C. Malela-Majika, P. Castagliola, and S.C. Shongwe. 2020. A side-sensitive double 

sampling �� monitoring scheme with estimated process parameters. Communications in Statistics 

– Simulation and Computation. DOI: 10.1080/03610918.2020.1722835. 

Ng, P.S., M.B.C. Khoo, S. Saha, and W.C. Yeong. 2018. Double sampling control charts for monitoring 

the coefficient of variation. 2nd International Conference on Smart Sensors and Application. 

DOI: 10.1109/ICSSA.2018.8535900. 

Noorossana, R., A.M. Shekary, and A. Deheshvar. 2015. Combined variable sample size, sampling 

interval and double sampling (CVSSIDS) adaptive control charts. Communications in Statistics 

– Theory and Methods 44(6):1255-1269. 

Psarakis, S., A. Vyniou, and P. Castagliola. 2013. Some recent developments on the effects of parameter 

estimation on control charts. Quality and Reliability Engineering International 30(8):1113-1129. 

Psarakis, S. 2015. Adaptive control charts: Recent developments and extensions. Quality and Reliability 

Engineering International 31(7):1265-1280.  

Qiu, P. 2014. Introduction to Statistical Process Control, Chapman & Hall/CRC Press, Taylor & Francis 

Group, Florida: Baton Rouge. 

Qiu, P. 2019. Some recent studies in statistical process control. In Statistical Quality Technologies: Theory 

and Practice, Eds.: Lio Y., Ng H.K.T., Tsai T.-R., Chen D.-G. Springer: ICSA Book Series in 

Statistics. 



32 

 

Rakitzis, A.C., S. Chakraborti, S.C. Shongwe, M.A. Graham, M.B.C. Khoo. 2019. An overview of 

synthetic-type control charts: Techniques and Methodology. Quality and Reliability 

Engineering International 35(7):2081-2096. 

Rozi, F., U.S. Pasaribu, U. Mukhaiyar, and D. Irianto. 2019. Modified double sampling control chart for 

monitoring the coefficient of variation. Conference on Industrial and System Engineering, In IOP 

Conference Series: Materials Science and Engineering. DOI: 10.1088/1757-899X/598/1/012110. 

Saha, S., M.B.C. Khoo, M.H. Lee, and P. Castagliola. 2018. A side-sensitive modified group runs double 

sampling (SSMGRDS) control chart for detecting mean shifts. Communications in Statistics - 

Simulation and Computation 47(5):1353-1369. 

Shongwe, S.C., and J.-C. Malela-Majika. 2021. A new double sampling scheme to monitor the process 

mean of autocorrelated observations using an AR(1) model with a skip sampling strategy. 

Computers & Industrial Engineering 153:107084. 

Si, K.S.K.Y., M.H. Lee, X.Y. Chew, M.F. Lau, K. Melinda, P.H.H. Then, S. Rashid. 2020. The 

economic design of the double sampling �� chart with measurement errors. International Journal 

of Difference Equations 15(2):259-274. 

Teoh, W.L., and M.B.C. Khoo. 2013. Optimal design of the double sampling �� chart based on median 

run length. International Journal of Chemical Engineering and Applications 3(5):303-306. 

Teoh, W.L., M.B.C. Khoo, and S.Y. Teh. 2013. Optimal designs of the median run length based double 

sampling �� chart for minimizing the average sample size. PLoS ONE 8(7):e68580. 

Teoh, W.L., K.L. Liow, M.B.C. Khoo, W.C. Yeong, S.Y. Teh. 2014a. A comparison between the 

performance of the double sampling �� and variable sample size �� charts. Journal of Quality 

Measurement and Analysis 10(2):15-31.   

Teoh, W.L., M.B.C. Khoo, P. Castagliola, and S. Chakraborti. 2014b. Optimal design of the double 

sampling �� chart with estimated parameters based on median run length. Computers & Industrial 

Engineering 67:104-115.  

Teoh, W.L., M.B.C. Khoo, P. Castagliola, and S. Chakraborti. 2015. A median run length-based double-

sampling �� chart with estimated parameters for minimizing the average sample size. 

International Journal of Advanced Manufacturing Technology 80:411-426. 

Teoh, W.L., M.S. Fun, S.Y. Teh, M.B.C. Khoo, and W.C. Yeong. 2016a. Exact run length distribution of 

the double sampling �� chart with estimated process parameters. South African Journal of 

Industrial Engineering 27(1):20-31. 

Teoh, W.L., W.C. Yeong, M.B.C. Khoo, and S.Y. Teh. 2016b. The performance of the double sampling �� chart with estimated parameters for skewed distributions. Academic Journal of Science 

5(1):237-252. 

Tomohiro, R., I. Arizono, and Y. Takemoto. 2020. Economic design of double sampling ��� control 

chart for monitoring process capability. International Journal of Production Economics 

221:107468. 

Torng, C.-C., and P.-H. Lee. 2009. The performance of double sampling �� control charts under non-

normality. Communications in Statistics – Simulation and Computation 38(3):541-557. 

Torng, C.-C., P.-H. Lee, H.-S. Liao, and N.-Y. Liao. 2009a. An economic design of double sampling �� 

charts for correlated data using genetic algorithms. Expert Systems with Applications 36:12621-

12626. 

Torng, C.-C., P.-H. Lee, and N.-Y. Liao. 2009b. An economic-statistical design of double sampling �� 

control chart. International Journal of Production Economics 102:495-500. 

Torng, C.-C., C.-C. Tseng, and P.-H. Lee. 2010. Non-normality and combined double sampling and 

variable sampling interval control charts. Journal of Applied Statistics 37(6):955-967. 

Tuh, M.H., M.H. Lee, E.M.F. Lau, and P.H.H. Then. 2020. Performance of the double sampling np chart 

based on the median run length. Advances in Mathematics: Scientific Journal 9(9):7429-7438. 

Umar, A.A., M.B.C. Khoo, S. Saha, and A. Haq. 2020a. A combined variable sampling interval and double 

sampling control chart with auxiliary information for the process mean. Transactions of the 

Institute of Measurement and Control 42(6):1151-1165. 

Umar, A.A., S.S. Abubakar, H.G. Dikko, A. Yahaya, G.M. Oyeyemi, J.Y. Falgore, and T.G. Ieren. 2020b. 

An empirical study on the run length properties of the side sensitive modified group runs double 



33 

 

sampling (SSMGRDS) control chart for monitoring the process mean shifts. International Journal 

of Computing and Mathematics 4(2):9-16. 

Woodall, W.H. 1997. Control charts based on attribute data: Bibliography and review. Journal of Quality 

Technology 29(2):172-183. 

Wu, Z., M.B.C. Khoo, L. Shu, and W. Jiang. 2009. An np control chart for monitoring the mean of a 

variable based on an attribute inspection. International Journal of Production Economics 

121(1):141–147. 

Yang, K., and W.M. Hancock. 1990. Statistical quality control for correlated samples. International 

Journal of Production Research 28(3):595-608. 

Yang, S.-F., and S.-H Wu. 2017a. A double sampling scheme for process mean monitoring. IEEE Access 

5:6668-6677. 

Yang, S.-F., and S.-H. Wu. 2017b. A double sampling scheme for process variability monitoring. 

Quality and Reliability Engineering International 33(8):2193-2204. 

You, H.W., M.B.C. Khoo, M.H. Lee, and P. Castagliola. 2015. Synthetic double sampling �� chart with 

estimated process parameters. Quality Technology and Quantitative Management 12(4):579-

604. 

You, H.W. 2017. Run length distribution of synthetic double sampling chart. International Journal of 

Applied Engineering Research 12(24):14268-14272.  

You, H.W. 2018. Performance of synthetic double sampling chart with estimated parameters based on 

expected average run length. Journal of Probability and Statistics 2018:7583610.  

Zhou, W., Z. Wang, W. Xie. 2020. Weighted signal-to-noise ratio robust design for a new double 

sampling 	
� chart. Computers & Industrial Engineering 139:106124. 

 

 


