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Abstract

We present a benchmark for 3D human whole-body pose
estimation, which involves identifying accurate 3D key-
points on the entire human body, including face, hands,
body, and feet. Currently, the lack of a fully annotated and
accurate 3D whole-body dataset results in deep networks
being trained separately on specific body parts, which
are combined during inference. Or they rely on pseudo-
groundtruth provided by parametric body models which are
not as accurate as detection based methods. To overcome
these issues, we introduce the Human3.6M 3D WholeBody
(H3WB) dataset, which provides whole-body annotations
for the Human3.6M dataset using the COCO Wholebody
layout. H3WB comprises 133 whole-body keypoint anno-
tations on 100K images, made possible by our new multi-
view pipeline. We also propose three tasks: i) 3D whole-
body pose lifting from 2D complete whole-body pose, ii)
3D whole-body pose lifting from 2D incomplete whole-body
pose, and iii) 3D whole-body pose estimation from a single
RGB image. Additionally, we report several baselines from
popular methods for these tasks. Furthermore, we also pro-
vide automated 3D whole-body annotations of TotalCap-
ture and experimentally show that when used with H3WB
it helps to improve the performance.

1. Introduction
3D Human pose estimation is the task of localizing hu-

man body keypoints in images which is critical to ana-
lyze human behavior, expressions, emotions, intentions,
and how people communicate and interact with the phys-
ical world. As a result, 3D human pose estimation has
an important role in several vision tasks and applications
such as robotics [28, 25, 29] or augmented/virtual real-
ity [55, 3, 73, 81]. However, to make more accurate pre-
dictions about human behaviors, we need more than a few
body keypoints. To that end, 3D whole-body pose estima-
tion aims to detect face, hand and foot keypoints in addition
to the standard human body keypoints of classical 3D hu-

man pose estimation.
The lack of accurate 3D datasets has made 3D whole-

body pose estimation a challenging task, leading previ-
ous works to focus on separate body parts and train sep-
arate models on different datasets for 3D body pose [1,
30, 55, 56, 63, 3, 44, 45, 46, 65, 74, 77, 80, 26], 3D
hand pose [8, 58, 84, 7, 27, 37, 82, 31], or 3D face land-
marks [68, 9, 13]. However, directly ensembling separate
body part models during inference suffers from issues aris-
ing from datasets’ biases, pose and scales, and complex in-
ference pipelines. Distillation from pretrained models has
been used to overcome these issues, with FrankMocap [66]
using three specialized pretrained models to estimate 65
whole-body keypoints (22 on the body, 40 on the hands,
and 3 on the face), and DOPE [75] also using three special-
ized models to output 139 whole-body keypoints (13 on the
body, 42 on the hands, and 84 on the face).

Alternatively, parametric body models can be fitted to
obtain whole-body pose, as has been proposed in Ex-
Pose [18], SMPLify-X [60] or Monocular Total Capture
(MTC) [77]. While parametric models enable sampling
an almost infinite number of keypoints from the mesh [24,
22, 23], their accuracy is usually less than that of detection
based methods on fine body parts like hands and feet (see
supplementary material for examples from the literature).
Indeed, parametric models are tailored for visual applica-
tions such as realistic motion generation [62] or avatar cap-
ture [67], where a realistic capture of the body shape and
pose is more important than fine grain accuracy. Relying on
a small set of data-driven pose parameters ensures realism
but also limits their flexibility in representing complex un-
usual poses. For applications where the body shape is not
needed but the accuracy of the keypoints is essential, like
high performance sport analysis or ergonomics, detection
based methods are thus the preferred solution.

Furthermore, 3D whole-body pose estimation has not
been fully explored in the literature due to the absence of
a representative and accurate benchmark. As previously
mentioned, existing 3D whole-body methods either rely on
specific datasets and models for different body parts, lead-
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Figure 1. The H3WB dataset has 133 whole-body keypoint annotations in 3D as well as their respective projections in 2D.

ing to complex training pipelines and heterogeneous eval-
uations, or utilize parametric models that prioritize shape
capture over highly precise keypoints. In addition, unified
methods vary significantly in terms of keypoint layout def-
inition, number of keypoints and distribution of keypoints
across body parts (see Table 1). These significant dataset
disparities and the absence of a standard benchmark make
it challenging to compare methods fairly.

To address the above issues, we propose a new large-
scale dataset for accurate 3D whole-body pose estimation
called Human3.6M 3D WholeBody, or H3WB for short (see
Figure 1). Our dataset extends Human3.6M [36, 12] with
3D whole-body keypoint annotations. It consists of 133
paired 2D and 3D whole-body keypoint annotations for a
set of 100k images from Human3.6M, following the same
layout used in COCO WholeBody [40]. More specifically,
in addition to the standard 17 body keypoints, the dataset
has 42 hand keypoints, 6 foot keypoints and 68 facial land-
marks. H3WB was automatically created in a 3 step pro-
cess: We obtain an initial set of 3D annotations using multi-
view geometry. Then, we trained a masked auto-encoder
to complete the initial annotations. Finally, we refine the
whole-body keypoints via a diffusion model. A manual
annotation of 80K keypoints from 600 images shows our
labels have an average error of 17mm which suggest the
H3WB keypoints are very accurate for such a complex task.
We propose 3 tasks and benchmarks on the H3WB dataset
for which we provide baselines: i) 3D whole-body pose lift-
ing from a complete 2D whole-body keypoints, ii) 3D whole-
body pose lifting from incomplete 2D whole-body keypoints
(i.e. 2D whole-body with missing keypoints, which is more
realistic), and iii) 3D whole-body pose estimation from a
single RGB image.

Our contributions can be summarized as follows. 1) We
propose a method to create detailed 3D human pose key-
points from multi-view images. 2) We propose H3WB, the
first accurate public benchmark dataset for 3D whole-body
pose estimation, using the aforementioned method. Our
benchmark can easily leverage existing results in 2D and
enables the community to build upon existing high-quality
2D detectors on COCO. Unifying the 3D whole-body pose
estimation with the COCO 2D benchmark will greatly ben-
efit the research community. 3) We provide baselines for

the 3 tasks of H3WB, which we believe will encourage
the community to explore 3D whole-body pose estimation
more and accelerate progress in the field. 4) Additionally,
we provide 3D whole-body annotations for the TotalCap-
ture [43] dataset, and show that when combined with the
H3WB dataset it improves the performance of pose lifting
tasks.

2. Related work
3D Body, hand and face pose estimation. There are two
main groups of prominent approaches in 3D human pose
estimation. The first group directly estimates 3D body
pose from a single RGB image [61, 54, 55, 56, 61, 63].
The second group follows two stage approach where they
first localize 2D keypoints and then lift 2D human pose
to 3D space [53, 72, 38, 6, 49, 53]. Several optimiza-
tion based methods [6, 49], utilize 2D keypoints to ini-
tialize a parametric model of the human body such as
SMPL [51]. Several works attempt to eliminate the require-
ment of 3D annotations using 2D multi-view supervision to
estimate 3D human pose [72, 78] or temporal supervision
with video [17, 50]. 3D hand pose estimation methods share
similar approaches as the body counterparts. First group
of works, estimates hand pose from a single RGB image
by directly regressing 3D hand keypoints [79], mesh ver-
tices [27, 48], and parameters of parametric 3D hand mod-
els such as MANO [7, 64, 2, 14, 15, 82]. Second groups
of works rely on intermediate 2D representations such as
2D keypoints and feature maps [8, 58, 82, 84, 34]. Simi-

Dataset Size Keypoints Body Hand Face

Human3.6M[36] 3.6M 17 17
3DPW[71] 51k 24 24
LSP[41] 10k 14 14

3DHP[71] >1.3M 17 17
Panoptic[42] 1.5M 15 15

MTC[77] 834K 20 20

InterHand2.6M[57] 2.6M 21 21
FreiHAND[85] 37k 21 21

RHD[84] 44K 21 21
MTC[77] 111K 21 21

TotalCapture[43] 1.9M 127 21 16+16 74
ExPose[18] 33K 144 25 15+15 89

H3WB 100k 133 23 21+21 68

Table 1. Overview of datasets for 3D human pose estimation.
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larly, predominant 3D face pose estimation methods regress
the dense 3D face landmarks [19, 21, 39] and face model
parameters [13, 68, 69, 20, 76] based on 3DMM [5].
3D Whole-body pose estimation. There are a several
methods [60, 77, 83, 18, 75, 66] jointly estimating 3D
whole-body pose. The first group of works is based on
parametric human body models such as Adam [43] and
SMPL-X [60]. MTC [77] is based on the Adam model [43],
and first gets 2.5D predictions, then optimizes the param-
eters of Adam. SMPLify-X optimizes the parameter of
the SMPL-X model [60] to fit it to 2D keypoints. As a
major drawback, optimization-based methods are relatively
slow and highly sensitive to parameter initializations. Non-
parametric methods [75, 18, 66] follow different approaches
to avoid heavy optimization procedure. DOPE [75] and
FrankMocap [66] first train separate body, hand, and face
models. Next, they combine those models within a learn-
ing framework. DOPE [75] curates pseudo-ground truths
from separate body models and uses those ground-truths
to supervise the distillation model. Similar to DOPE, Ex-
Pose [18] first obtains a pseudo-ground truth dataset by fit-
ting SMPL-X model on in-the-wild images, and trains a
joint model to output whole-body poses. All these meth-
ods utilize many part-based datasets. Moreover, all output
different whole-body layouts with a different numbers of
whole-body keypoint. FrankMocap, DOPE, and SMPLify-
X estimate whole-body pose with 65, 139 and 144 key-
points, respectively.
Pose completion completes a partially estimated pose by
localizing missing keypoints. Carissimi et al. [10] propose
a denoising variational autoencoder network to fill the miss-
ing keypoints in 2D pose completion. Bautembach et al. [4]
selects a small subset of poses from a database based on
their distance to an incomplete 3D pose, and replaces the
missing keypoints with the corresponding averaged key-
points in the subset. Despite being critical for real-world
scenarios, pose completion has not been sufficiently ex-
plored due to the lack of annotated keypoint datasets. Our
3D whole-body dataset can facilitate more exploration of
3D pose estimation from 2D incomplete human poses.

3. The H3WB dataset

In this section, we describe the making of the H3WB
dataset1. Our objective is to build a keypoint based 3D
whole-body dataset including keypoints on the body, the
face and the hands, and propose a benchmark. We use the
same keypoint layout as COCO WholeBody dataset [40]
with 133 keypoints. To that end, we build on the widely
used Human3.6M dataset [36] for which we provide 3D
whole-body keypoints. The H3WB building process is as
follows: First, we use an off-the-shelf 2D whole-body de-

1We consider the feet keypoints as a part of the body.

Figure 2. OpenPifPaf detects most of the non-occluded keypoints
inside the image (orange keypoints). The occluded or undetected
keypoints (cyan keypoints) are reprojections after 3D multi-view
reconstruction. Notice that these reprojections do not always align
with the images, like the right hand in the last view, which is prob-
ably due to OpenPifPaf not being perfectly accurate.

tector combined with multi-view reconstruction to obtain an
initial set of incomplete 3D whole-body keypoints. Next,
we implement a completion network to fill in the keypoints
missed by the multi-view geometric approach. Then, we
develop a refinement method for the hands and the face to
obtain more accurate keypoints. Finally, we perform qual-
ity assessment to select 25k 3D whole-body poses with high
confidence and the 100k associated images from 4-view.

3.1. Initial 3D whole-body dataset with OpenPifPaf

We run the 2D whole-body detector from OpenPif-
Paf [47] on all the 4 views from the training set of Hu-
man3.6M (S1, S5, S6, S7 and S8, 1 image per 5 frames).
Since the cameras of Human3.6M are well calibrated, we
can reconstruct keypoints in 3D using standard multi-view
geometry.

The OpenPifPaf 2D whole-body detector can miss key-
points due to self-occlusions (hands, feet) or unfavorable
camera viewpoints (facial landmarks). However, the four-
view setup allows us to recover missing keypoints and ob-
tain a complete 3D whole-body pose, provided each key-
point appears in at least two non-opposing views. An exam-
ple of this process is shown in Figure 2. Using this method,
we obtained 11,426 fully complete 3D whole-body poses
with all 133 keypoints and 26,333 incomplete 3D whole-
body poses where all keypoints appear in at least one view,
resulting in a total of 37,759 3D whole-body poses with
each keypoint appearing in at least one view.

We did not rely of the video information because the re-
construction problem becomes significantly more difficult
when there is a motion between two frames. In the absence
of motion, an additional frame does not help solve the oc-
clusion problem. The results of our study demonstrate that
multi-view labeling is sufficiently effective for our task (see
Table 2, “Geometry” line).
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Figure 3. The completion network consists of one linear input
layer, 4 transformer encoder blocks (each of them containing 2
transformer encoder layer with d model = 64 and n head = 1),
and a linear output layer. At the end of each encoder block, the
features are decoded by the output layer into a predicted position
in a curriculum way where later blocks decode more keypoints.

Figure 4. Example outputs of the completion network. The orange
color denotes the keypoints that were detected by OpenPifPaf. The
cyan color shows the missed keypoints by OpenPifPaf but com-
pleted by our completion network. The left hand is detected in
only 1 view by OpenPifPaf and thus fully predicted by the com-
pletion network.

3.2. Completion network

In order to complete the 26,333 incomplete 3D whole-
body poses, we develop a completion network as shown in
Figure 3. We designed our completion network using Trans-
former architecture [70] as they can easily handle the condi-
tional dependencies introduced by the skeleton’s topology
through masking. Since each skeleton always has exactly
133 keypoints, which can be considered as 133 tokens of 3
coordinate values. Token values are expanded from 3 co-
ordinates to 3 × 16 = 48 features using Fourier encoding.
We use learnable positional encoding since each keypoint is
uniquely identified.

We train the completion network on the 11,426 complete
skeletons using a masked auto-encoder strategy [32] where
the missing keypoints are masked at the input and will be
predicted using the unmasked keypoints. The masking strat-
egy is as follows:

• With a 50% chance, we perform a keypoint wise mask

where each keypoint has 15% chance of being masked,

• with the remaining 50% chance, we perform a block
wise mask in which either the body, the left hand, the
right hand, the left or the right part of the face are
masked (uniform probability).

To ease the learning process and take into account the
causal link between some keypoints (e.g., the tip of a finger
depends on the position of its parent phalanges), we intro-
duce a curriculum approach. We compute the loss at differ-
ent levels following a hierarchy where early levels consider
only keypoints closer to the root, while later levels consider
more deformable keypoints which highly depend on their
parents. We illustrate the completion network and learning
process in Figure 3. The loss function is

L(X,Xgt3D, Xgt2D) =L3D(X,Xgt3D)

+αL2D(X,Xgt2D)

+βLsym(X), (1)

where L3D is an ℓ1 loss of 3D coordinates, L2D is an ℓ1
loss of 2D projection of the 3D coordinates if we have the
2D annotation from OpenPifPaf, and Lsym is a symmetric
loss which is applied to make sure the left part and right part
of the human have the same length on corresponding body
parts.

We show an example output from our completion net-
work in Figure 4. The completion network results on miss-
ing body parts are visually realistic and appealing. How-
ever, since the completion network does not rely on the im-
age content, its output does not always align with the image

Figure 5. Refinement network architecture and training process.
Gaussian noise is added to the groundtruth coordinates with in-
creasing variance, and the network is iteratively trained to recover
the less noisy coordinates.

Figure 6. Example outputs from the face (top row) and hand (bot-
tom row) refinement networks during inference time. We observe
that the predictions almost converge to the correct locations in 5-
iteration.
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Figure 7. Examples of the 3D whole body skeleton. They are visually realistic humans. The strange looking faces (fatter or thinner) in
different views are due to viewing artifacts of the default perspective projection.

and may only reflect the most common poses of the training
set. This can quantitatively be seen in the line “+ Comple-
tion” of Table 2.

3.3. Hands and face 2D refinements

In order to correct the alignment problem, we propose
another neural network that refines the 2D position of key-
points on the face and the hands. Previous studies have
explored and demonstrated the effectiveness of 2D human
pose refinement using an iterative error feedback frame-
work [11]. Motivated by this, we build upon recent condi-
tional diffusion models [35] and we consider the prediction
from the completion network as noisy such that the refine-
ment network denoises it to conditionally fit the image.

We train separate refinement models for the face and the
hands, while keeping the same network architecture and the
same training strategy. We used a simple MLP and found
it to be effective, preventing the need to explore more com-
plex architectures. We illustrate the refinement process in
Figure 5. During training, we add Gaussian noise to the
groundtruth poses with an increasing variance from 5 to 25
pixels, and annotate them as step t = 1...5 (step t = 0 is
the groundtruth). The network learns to predict the pose at
step t given the image and the noisier step t + 1 with a 2D
supervision loss.

We build two small datasets, each consisting of 22,000
non-occluded faces and hands respectively, with their cor-
responding OpenPifPaf predictions. Each image is resized
to 384×384 pixels. We use a random crop of size 224×224
pixels to have the face and hands located in diverse regions
of the images. We split the datasets into training and valida-
tion sets with 20,000 images and 2,000 images, respectively.

Quantitatively, the face predictions achieve an average

error less than 3 pixels and the hand predictions achieve an
average error less than 7 pixels on the validation sets. We
show example qualitative results in Figure 6.

Finally, we run the refinement networks on the 2D-
projections of the 3D poses predicted by our completion
network. For each 3D skeleton, we project it into the 4 dif-
ferent 2D views. We then crop the regions around the hands
and face and denoise the corresponding predictions using
the refinement network with 10 iterations to obtain refined
2D poses in each of the 4 views.

Although the refinement network is not always correct
due to its training on non-occluded faces or hands, we
only need 2 non-opposing views to perform geometric re-
construction. Since bad refinements tend to collapse all
keypoints into the same location, we select the two non-
opposing views with the highest variance in keypoint posi-
tions to avoid disruptions caused by occlusions. Using this
method, we obtain 151,036 triplets of 3D whole-body key-
points, corresponding image, and 2D projected keypoints
from the original set. Examples of resulting 3D whole-
body skeletons and their image-aligned 2D counterparts are
shown in Figure 7 and Figure 8, respectively.

3.4. Quality assessment

To select the most accurate triplets from our dataset,
we reuse the refinement networks and employ a multi-crop
strategy that accounts for the variance of the prediction.
We project each 3D whole-body skeleton onto all 4 views,
and produce four cropped images for each region of inter-
est around the face and hands. The refinement network
is run on these 4 crops, and the resulting predictions are
aligned with the original prediction to compute the 2D er-
ror compared to the original 2D projection. We score the
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Figure 8. Examples of the 3D whole-body skeleton projected in 2D onto their corresponding images. They are visually accurate, though
still there are small errors in detail which we do not expect to overcome due to the initial resolution and ambiguity of the images.

3D skeletons by averaging the errors of all 4 projected
views, and select the 5k lowest error skeletons from each
subject of Human3.6M (S1, S5, S6, S7, S8) to form the
5k × 4(view) × 5(subject) = 100k triplets of {image, 2D
coordinates, 3D coordinates in camera space} of our 3D
whole-body dataset.

Figure 9. 3D error distributions calculated from 80k manually cor-
rected keypoint annotations. 3D error distributions are presented
for whole-body, body, hand and face in mm. We observe that 3D
errors are mostly concentrated between 10mm and 20mm.

To assess the quality of the H3WB dataset, we conducted
a cross-check study on 600 randomly selected images from
the dataset. In this study, annotators were presented an
image with the 2D projection of the 3D skeleton on top
and were asked to manually correct mis-aligned keypoints
by drag and drop. Using multi-view geometry, we recon-
structed these corrected skeletons in 3D and compared them
to our original skeletons. To validate our process, we show

Figure 10. Per keypoints error statistics. Please zoom in.

the influence of each step in Table 2. The geometric ap-
proach produced good results but unfortunately cannot pro-
vide a large enough dataset. The completion step allows to
obtain all labels but at the cost of degraded accuracy due
to lack of alignment as explained in section 3.2. The dif-
fusion recovers the original accuracy of the geometric ap-
proach. 2mm difference is irrelevant given the initial res-
olution of the images. We obtain a final average error of
17mm which is very accurate for such a difficult task, and
leads to a benchmark which we believe will not be saturated
until methods reach around 35mm.

Steps # keypoints available 3D error (mm)
All Body Face Hand

Geometry 48127 14.87 17.72 13.29 15.87
+ Completion 79800 29.31 25.57 26.02 36.67
+ Diffusion 79800 16.98 18.63 15.08 19.16

Table 2. Quantitative analysis of each intermediate step in our
pipeline.

3D error distributions: In Figure 9, we illustrate 3D
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error distributions in mm for all whole-body keypoints and
each whole-body part keypoints (i.e. body, hand and face)
separately. The distributions of errors are well concentrated
around low values.

Per keypoint errors: All per keypoint error statistics
are shown Figure 10. 98.3% of the images are below 5cm
error (97.4% for body joints, 99.7% hands, and 96.4% face).
Similarly, 82.6% of the images are below 2cm error (75.5%
for body joints, 89.2% hands, and 75.8% face).

3.5. TotalCapture 3D WholeBody Dataset

In addition to H3WB dataset, we also prepare whole-
body annotations for training sequence of poses from-
TotalCapture [43] dataset using our proposed multi-view
pipeline. We call this dataset TotalCapture 3D WholeBody,
or T3WB for short. To create TotalCapture 3D WholeBody,
we first obtain 2D whole-body keypoints from OpenPif-
Paf [47]. At this stage we discard the frames without any
human. Next, we finetune the completion network initial-
ized by H3WB weights using 7000 samples of TotalCap-
ture with complete 8-views. At the end we obtain 125,960
triplets of 3D whole-body keypoint, corresponding image
and 2D projected keypoints. This shows our pipeline can be
used with any multiview dataset.

We do not conduct a quality assessment study for T3WB
and therefore we cannot guarantee the precision of the an-
notations. Instead, we use T3WB together with H3WB for
training models. To alleviate the effect of the noisy annota-
tions in T3WB, we sample more from H3WB than T3WB
in each batch. More specifically, we follow 4:1 ratio for
each batch during H3WB + T3WB trainings.

4. The H3WB benchmark
We use the H3WB dataset to propose a benchmark and

the associated leaderboard. We split the dataset into train-
ing and test sets. The training set contains all samples from
S1, S5, S6 and S7, including 80k {image,2D,3D} triplets.
The test set contains all samples from S8, including 20k
triplets. The test set labels are retained to prevent involun-
tary overfitting on the test set. Evaluation is accessible only
by submitting results to the maintainers. We do not pro-
vide a validation set. We encourage researchers to report
5-fold cross-validation average and standard deviation (see
supplementary).

The corresponding benchmark has 3 different tasks:

1. 3D whole-body lifting from complete 2D whole-body
skeletons, or 2D→3D for short.

2. 3D whole-body lifting from incomplete 2D whole-
body skeletons, or I2D→3D for short.

3. 3D whole-body skeleton prediction from image, or
RGB→3D for short.

For each task, we report the following MPJPE (Mean Per
Joint Position Error) metrics:

• MPJPE for the whole-body, the body (keypoint 1-23),
the face (keypoint 24-91) and the hands (keypoint 92-
133) when whole-body is centered on the root joint,
i.e. aligned with the pelvis, which in our case is the
middle of two hip joints2,

• MPJPE for the face when it is centered on the nose, i.e.
aligned with keypoint 1,

• MPJPE for the hands when hands are centered on the
wrist, i.e left hand aligned with keypoint 92 and right
hand aligned with keypoint 113.

To create baselines on each task, we adapt popular meth-
ods from the literature by changing the number of keypoints
to that of our whole-body dataset. Notice that we keep the
training recipes of the original papers to avoid over-fitting to
this new benchmark. In practice, we recommend to perform
model selection and hyper-parameters tuning using 5-fold
cross-validation.

4.1. 3D whole-body lifting from complete 2D whole-
body keypoints (2D→3D)

This task is similar to the standard 3D human pose esti-
mation from 2D keypoints but using whole-body keypoints.
The training set contains 80k 2D-3D pairs. The test set con-
tains only a half of all the test samples, i.e. 10k 2D poses3.

We evaluate 6 methods on this task. SimpleBaseline [53]
is a well-established model, consisting of a 6-layer MLP.
We propose a modification, replacing the network archi-
tecture with an 8-layer MLP, which we call Large Simple-
Baseline inspired by CanonPose [72]. Jointformer [52] is
a recent transformer-based method. CanonPose is trained
only with 2D supervision [72]. We also adapt CanonPose to
work with additional 3D supervision by manually creating
3 fixed camera views and rotating the 3D skeletons into the
corresponding view before projecting them into 2D, train-
ing it with multi-view weak-supervision. Finally, we report
results for the parametric model SMPLify-X [60] by run-
ning optimizations on each input sample.

We train SimpleBaseline models using their official
training setting as described in [53]. The inputs and tar-
gets are normalized by subtracting the mean and dividing by
the standard deviation. Similarly, we train CanonPose [72]
models following their official training setup where the in-
puts and targets are centered on the pelvis and scaled by the
Forbenius norm. We train the Jointformer model in the two
stages as described in [52].

2We provide the whole-body keypoint ids in supplementary material.
3The other half is reserved for the task I2D→3D to prevent access to

the missing keypoints.
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Method All Body Face / aligned† Hand / aligned‡

H3WB
SMPL-X[60] 188.9 166.0 208.3 / 23.7 170.2 / 44.4
CanonPose[72]∗ 186.7 193.7 188.4 / 24.6 180.2 / 48.9
SimpleBaseline [53]∗ 125.4 125.7 115.9 / 24.6 140.7 / 42.5
CanonPose[72] w 3D sv.∗ 117.7 117.5 112.0 / 17.9 126.9 / 38.3
Large SimpleBaseline[53]∗ 112.3 112.6 110.6 / 14.6 114.8 / 31.7
Jointformer[52] 88.3 84.9 66.5 / 17.8 125.3 / 43.7

H3WB + T3WB
CanonPose[72]∗ 164.7 161.1 174.5 / 21.5 150.8 / 43.6
SimpleBaseline [53]∗ 115.3 114.8 109.4 / 15.8 125.1 / 33.5
Jointformer[52] 81.5 78.0 60.4 / 16.2 117.6 / 38.8

Table 3. Comparing different methods for 2D→3D on H3WB test
set. Results are shown for the MPJPE metric in mm. Methods
with ∗ output normalized predictions. Results of normalized meth-
ods are re-scaled using our scaling formula. All results are pelvis
aligned, except † and ‡ show nose and wrist aligned results for face
and hands, respectively. Sv. is supervision.

SimpleBaseline and CanonPose models output normal-
ized whole-body keypoints which requires re-scaling at in-
ference. We use statistics from the training set to adjust
the test predictions. We calculate a scaling factor using
the ratio of 3D to 2D bounding boxes. The formula is:
Xfinal = Xunit × σ3d × σ2d

σ2d
, where Xunit is the normalized

prediction, σ3d is the average size of the 3D training boxes,
σ2d is the size of the current 2D box, and σ2d is the average
size of the 2D training boxes.

Since SMPLify-X has 144 keypoints with a different lay-
out, we use interpolation to transform between the Whole-
Body skeleton and SMPL-X and run SMPL-X’s optimiza-
tion for 2,000 iterations (4 minutes/sample).

We present the results in Table 3. SMPLify-X performs
the worst, showing that parametric models struggle more
than discriminative approaches. SimpleBaseline[53] is a
solid method, and Large SimpleBaseline improves its per-
formance further. CanonPose[72] can be improved with ad-
ditional 3D supervision, but still performs worse than Large
SimpleBaseline. CanonPose also predicts the camera view,
and the uncertainty in this prediction can lead to more error.
Jointformer[52] achieves the best results among all meth-
ods, but still has room for improvement. All methods per-
form worse on our benchmark than on Human3.6M because
of pelvis centering, which creates higher numerical error on
extremities like hands and face, the parts that contain most
of the whole-body keypoints.

Additionally, we conducted experiments with Simple-
Baseline, CanonPose, and Jointformer, leveraging the
merged dataset H3WB + T3WB, which combines both
H3WB and T3WB. The results in Table 3 show that when
T3WB is integrated with H3WB, the performances are im-
proved significantly. For instance, on all whole-body key-
points, it yields 22 pt, 10.1 pt and 6.8 pt improvement for
SimpleBaseline, CanonPose and Jointformer, respectively.

4.2. 3D whole-body lifting from incomplete 2D
whole-body keypoints (I2D→3D)

We propose a second task where we want to obtain 3D
complete whole-body poses from 2D incomplete pose. This
task aims to simulate the more realistic case when there are
occlusions and the 2D whole-body detector outputs an in-
complete skeleton. We do not provide masks for the training
skeletons to allow for online data-augmentation. Instead,
we propose a masking strategy as follows:

• With 40% probability, each keypoint has a 25% chance
of being masked,

• with 20% probability, the face is entirely masked,

• with 20% probability, the left hand is entirely masked,

• with 20% probability, the right hand is entirely
masked.

The second half of the test set (10k 2D) is devoted to this
task. The masking strategy is applied only once on the 2D
poses of the test set, which are directly provided as incom-
plete 2D skeletons for fair comparison between methods.

The results for the I2D→3D task are shown in Ta-
ble 4. All methods perform worse than in the 2D→3D
task. SimpleBaseline[53] has low capacity and uses batch
normalization that struggles with missing data, resulting in
poor performance. The Large SimpleBaseline model, with-
out batch normalization layers, achieves good results for
the task’s complexity. CanonPose[72] performs poorly due
to errors in camera rotation prediction, which are magni-
fied since most of the 133 keypoints are on the face and
hands. The addition of 3D supervision partly solves this
problem. The transformer-based Jointformer[52] method
outperforms others. Sample outputs obtained by Large Sim-
pleBaseline are shown in Figure 11, where predicted skele-
tons, although not accurate, are realistic.

Similar to 2D→3D task, we experimented with Simple-
Baseline, CanonPose and Jointformer on H3WB + T3WB
dataset and obtained significant improvements. For all

Method All Body Face / aligned† Hand / aligned‡

CanonPose[72]∗ 285.0 264.4 319.7 / 31.9 240.0 / 56.2
SimpleBaseline[53]∗ 268.8 252.0 227.9 / 34.0 344.3 / 83.4
CanonPose[72] + 3D sv.∗ 163.6 155.9 161.3 / 22.2 171.4 / 47.4
Large SimpleBaseline[53]∗ 131.4 131.6 120.6 / 19.8 148.8 / 44.8
Jointformer[52] 109.2 103.0 82.4 / 19.8 155.9 / 53.5

H3WB + T3WB
CanonPose[72]∗ 261.5 243.3 291.3 / 31.3 223.1 / 53.7
SimpleBaseline[53]∗ 260.5 238.0 221.1 / 32.2 336.5 / 80.4
Jointformer[52] 84.2 80.1 59.4 / 16.3 126.5/ 44.5

Table 4. Comparing different methods for I2D→3D on H3WB test
set. Results are shown for the MPJPE metric in mm. Methods
with ∗ output normalized predictions. Results of normalized meth-
ods are re-scaled using our scaling formula. All results are pelvis
aligned, except † and ‡ show nose and wrist aligned results for face
and hands, respectively. Sv. is supervision.
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Figure 11. Example predictions from Large SimpleBaseline model
for task I2D→3D. Colored skeletons correspond to predictions
and gray skeletons correspond to groundtruths.

whole-body keypoints, the combined dataset yields 23.5 pt,
8.3 pt and 25 pt improvement for SimpleBaseline, Canon-
Pose and Jointformer, respectively. Those results further
validate the effectiveness of our multi-view pipeline for cre-
ating whole-body keypoint annotations for any multi-view
dataset.

4.3. 3D whole-body pose estimation from a single
image (RGB→3D)

This task is the standard monocular 3D human pose esti-
mation task extended to whole-body pose estimation. We
provide a script to split the original Human3.6M videos
into images with our indexing in order to establish image-
3D correspondences. The training set contains 80k {image
paths,3D} pairs, as well as the 2D bounding box of the hu-
man in the image. The test set contains all the test samples,
including 20k image paths and their 2D bounding boxes.
2D coordinates are not given in order to avoid collisions
with 2D→3D and I2D→3D.

For this task, we train 2 two-stage models and 1 single-
stage model. For our first two-stage model, we first train
a Stacked Hourglass Network (SHN)[59] to predict 2D
whole-body keypoints. Then, SimpleBaseline[53] takes 2D
keypoint predictions as input and lifts them to 3D space.
Similarly, the second two-stage model utilizes CPN[16] to
output 2D keypoints and then Jointformer[52] lifts the 2D
predictions to obtain 3D whole-body poses. For our single-
stage model, we modify the last layer of Resnet50[33] to
directly output the 3D whole-body keypoints. We regress
the 3D whole-body keypoint coordinates using L1 loss.

Results in Table 5 show the two-stage CPN + Joint-
former model obtains the best results. Our simple single-
stage method performs better than the two-stage SHN +
SimpleBaseline model. Learning 2D whole-body keypoints
is challenging for SHN as very close keypoints on face

Method All Body Face / aligned † Hand / aligned‡

RGB→2D+2D→3D:
SHN[59]+SimpleBaseline∗ 182.5 189.6 138.7 / 32.5 249.4 / 64.3
CPN[16]+Jointformer[52] 132.6 142.8 91.9 / 20.7 192.7 / 56.9

RGB→3D:
Resnet50[33] 166.7 151.6 123.6 / 26.3 244.9 / 63.1

DOPE[75] 191.3 199.7 187.3 / 66.0 193.3 / 78.2

Table 5. Comparing different methods for RGB→3D on H3WB
test set. Results are shown for the MPJPE metric in mm. Meth-
ods with ∗ output normalized predictions. Results of normalized
methods are re-scaled using our scaling formula. All results are
pelvis aligned, except † and ‡ show nose and wrist aligned results
for face and hands, respectively.

and hands may introduce noise to the predicted keypoint
heatmaps. The error in the 2D keypoints then makes the lift-
ing task much more challenging. Surprisingly, RGB→3D
seems to be harder that the I2D→3D task. Although there
are also missing body parts due to self occlusion, RGB→3D
contains more contextual information that should allow to
better disambiguate the pose. Compared to 2D→3D and
I2D→3D, direct prediction of 3D whole-body pose from
images remains thus as a challenging task which we hope
this benchmark can help improve over time.

In order to show the importance of training body parts
jointly, we evaluate DOPE [75] on our benchmark. Unfor-
tunately, it fails to address occluded body parts only predicts
the whole-body keypoints for 35% of the test set. For each
missing keypoint, we use the (topological) nearest predicted
joint as a proxy. Even so, a disjointed model like DOPE fails
to achieve significant accuracy.

5. Conclusion
In this paper, we introduce the H3WB dataset, which

extends the Human3.6M dataset with 2D and 3D keypoint
annotations for body, face, and hands, containing 100k im-
ages with 133 keypoints with an average accuracy of 17mm.
We propose three tasks based on this dataset: 3D whole-
body lifting from complete 2D keypoints, 3D whole-body
lifting from incomplete 2D keypoints, and 3D whole-body
prediction from monocular images. We evaluate several
baselines on these tasks and demonstrate promising accu-
racy, but with room for improvement. Lifting from incom-
plete 2D skeletons and direct estimation from monocular
images remain challenging, and we hope that our dataset
and benchmark will spur future research in these areas.
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