
HAL Id: hal-04443150
https://hal.science/hal-04443150v1

Preprint submitted on 7 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Validated integration of semilinear parabolic PDEs
Jan Bouwe van den Berg, Maxime Breden, Ray Sheombarsing

To cite this version:
Jan Bouwe van den Berg, Maxime Breden, Ray Sheombarsing. Validated integration of semilinear
parabolic PDEs. 2023. �hal-04443150�

https://hal.science/hal-04443150v1
https://hal.archives-ouvertes.fr

Validated integration of semilinear parabolic PDEs
Jan Bouwe van den Berg ∗ Maxime Breden † Ray Sheombarsing ‡

Abstract
Integrating evolutionary partial differential equations (PDEs) is an essential ingredient

for studying the dynamics of the solutions. Indeed, simulations are at the core of scientific
computing, but their mathematical reliability is often difficult to quantify, especially when
one is interested in the output of a given simulation, rather than in the asymptotic regime
where the discretization parameter tends to zero. In this paper we present a computer-assisted
proof methodology to perform rigorous time integration for scalar semilinear parabolic PDEs
with periodic boundary conditions. We formulate an equivalent zero-finding problem based
on a variation of constants formula in Fourier space. Using Chebyshev interpolation and
domain decomposition, we then finish the proof with a Newton–Kantorovich type argument.
The final output of this procedure is a proof of existence of an orbit, together with guaranteed
error bounds between this orbit and a numerically computed approximation. We illustrate the
versatility of the approach with results for the Fisher equation, the Swift–Hohenberg equation,
the Ohta–Kawasaki equation and the Kuramoto–Sivashinsky equation. We expect that this
rigorous integrator can form the basis for studying boundary value problems for connecting
orbits in partial differential equations.

Keywords
Parabolic PDEs · Initial value problems · Computer-assisted proofs · A posteriori error estimates

Mathematics Subject Classification (2020)
35K15 · 35K30 · 35K58 · 37L65 · 65G20 · 65M15 · 65M70

1 Introduction
During the last decades, computer-assisted proofs have become an increasingly effective tool in the
study of nonlinear ordinary differential equations (ODEs) and dynamical systems in general. The
rapid progress of the development of computer hardware has made it possible to put numerical
simulations on a rigorous footing through the construction of theorems whose hypotheses can be
verified with the aid of a computer. Today, there exists a large variety of rigorous numerical
methods for studying invariant objects in systems of ODEs, such as equilibria, periodic orbits,
connecting orbits, invariant manifolds, etc. In particular, we mention the prominent software
packages CAPD [24], COSY [1] and Intlab [8, 35]. Detailed knowledge of invariant objects can
provide deep insight into the global structure of a dynamical system, which for nonlinear systems
is typically difficult to obtain solely from pen-and-paper analysis.

While evolutionary partial differential equations (PDEs) and the associated infinite dimensional
dynamical systems are much more challenging, computer-assisted proofs are also gradually being
developed for this setting. In particular, going back to the early works [26, 32], many computer-
assisted proofs techniques have been developed for elliptic problems, corresponding to stationary
solutions of associated parabolic PDEs), see for instance [2, 13, 17, 30, 37, 47, 50, 51]. A complete

∗VU Amsterdam, Department of Mathematics, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands.
janbouwe@few.vu.nl

†CMAP, CNRS, École polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France.
maxime.breden@polytechnique.edu

‡VU Amsterdam, Department of Mathematics, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands.
r.s.s.sheombarsing@outlook.com

1

review of these works is beyond the scope of this paper, but we refer the interested readers to
the recent book [28] and the references therein. In addition to steady states, traveling waves
solutions have been studied with computer-assistance [4, 6, 45], as well as periodic solutions of
PDEs [3, 19, 20, 41, 53], even for some ill-posed problems [9]. More recently, rigorous enclosures
for local stable and unstable manifolds in parabolic PDEs have been developed as well [33, 43].
We also mention the works [7, 10], where other state-of-the-art computer-assisted proofs for PDEs
are described.

In this article, we introduce a rigorous initial value solver for semilinear parabolic PDEs. One
main motivation behind this work is to later use this rigorous solver to validate boundary value
problems for parabolic PDEs, and to combine it with the above mentioned techniques for local
stable and unstable manifolds [33, 43], in order to validate connecting orbits in parabolic PDEs,
potentially between two saddle equilibria. However, since rigorous integration of PDEs is already
a relatively involved task, we focus in this work on IVPs only. More precisely, in this paper we
develop a rigorous computational method for validating solutions of initial value problems for scalar
semilinear parabolic equations, with periodic boundary conditions, of the form

∂u

∂t
= (−1)R+1 ∂

2Ru

∂x2R +
2R−1∑
j=0

∂jg(j)(u)
∂xj

, t ∈ (0, 2τ], x ∈ [0, 2π],

∂ju

∂xj
u(t, 0) = ∂ju

∂xj
u(t, 2π), t ∈ [0, 2τ], j = 0, . . . , 2R− 1,

u(0, x) = f(x), x ∈ [0, 2π],

(1)

where R ∈ N≥1 is a positive integer, τ > 0 determines the integration time, g(j) : R→ R are given
polynomial functions for j = 0, . . . , 2R− 1, and f : R→ R is a smooth 2π-periodic function.

Remark 1.1. The factor 2 in the time interval (0, 2τ] is of course inconsequential, and only
introduced to simplify the expressions we obtain after rescaling time in Section 3.

To sketch the context and be able to compare with the existing literature, we start with a more
conceptional discussion rather than diving into details immediately. Conceptually, one can think
of (1) as being simply an equation of the form

∂u

∂t
= H(u), (2)

and we assume to have an approximate solution ū at our disposal. Our strategy for validating this
approximate solution starts by using a well chosen splitting of the righthand side as

H(u) = Lu+G(u), (3)

where L is a linear operator which may or may not depend on time. When L is time independent,
as it essentially is in the current work (although it is taken piecewise constant in time at a later
stage), we can rewrite (2) as a fixed point problem, using the semigroup associated to L and the
fixed point operator T̃ defined by

T̃ (u)(t) = etLf +
∫ t

0
e(t−s)LG(u(s))ds, t ∈ [0, 2τ]. (4)

Our validation procedure for proving the existence of an orbit near ū will be based on the Banach
fixed-point theorem. Therefore, we would like T̃ to be a contraction on a neighborhood of ū,
preferably for long integration times 2τ .

Remark 1.2. We rely heavily on the structure of equation (1), and more precisely on the fact

that the highest order term (−1)R+1 ∂
2R

∂x2R is dissipative. Indeed, this ensures that the associated
semi-group is contracting on the higher order Fourier modes. Yet, we want our approach to be
applicable for equations showcasing interesting dynamics, hence we must also be able to handle the

2

appearance of some unstable modes, which means we allow the semigroup generated by L to not be
contracting for (finitely many) low order modes.

We note that, of course, using the splitting H(u) = Lu + G(u), one could always artificially
choose L so that the associated semigroup is contracting, but that does not mean that T̃ itself will
be contracting for larger integration times, since this is also influenced by G(u). For instance, the
scalar ODE u′ = u can be split as u′ = −ku+ (k + 1)u, with k > 0, which gives rise to

T̃ (u)(t) = e−tkf + (k + 1)
∫ t

0
e−(t−s)ku(s)ds,

which is not contracting in C0, except for short times.

The pivotal choice of L that we make in this work is meant to help us getting a contracting
operator T̃ , even when the semigroup generated by L is not contracting for low order modes. To
that end, we take for L an approximation ofDH(ū), the Fréchet derivative ofH at the approximate
solution, in order to make DG(ū) = L − DH(ū) small. However, by imposing that L does not
depend on time, in general we cannot hope to get L arbitrarily close to DH(ū). Therefore, we
further reformulate the problem by first turning it into a zero finding problem

F (u)(t) def= etLf +
∫ t

0
e(t−s)LG(u(s))ds− u(t) = 0, for all t ∈ [0, 2τ],

which itself is then turned into another fixed point problem, given by a Newton-like operator

T : u 7→ u−AF (u), (5)

where A is a suitable approximate inverse of DF (ū). Notice that, for A = I, we get T = T̃ . Since,
as mentioned previously, we already expect T̃ to be contracting for sufficiently high order Fourier
modes, we only need A to act nontrivially on finitely many modes. Once a suitable approximate
inverse A is defined, we then want to prove that T is a contraction in a neighborhood of ū, and
this is what most of this paper is devoted to.

Before we proceed, let us again emphasize that the issue of whether T is contracting or not,
and the issue of whether or not we are actually able to prove it (with computer assistance), both
depend greatly on three main (related) ingredients:

• the choice of L,

• the choice of A,

• the choice of the Banach space in which we try to prove the contraction.

In light of the above discussion, we now review some of the existing literature regarding rigor-
ous integrators for parabolic PDEs, and describe how they relate to or differ from our proposed
approach.

One class of rigorous PDE integrators, which use completely different techniques compared to
the ones discussed in this paper, is the one developed in [53, 54, 55]. It is not centered around
a fixed point argument, but rather based on the validated integration of a finite dimensional
system of ODEs using Lohner-type algorithms developed in [52] and on the notion of self-consisted
bounds introduced in [55]. This methodology was further developed in [12] and has been used to
rigorously study, among other things, globally attracting solutions in the one dimensional Burgers
equation [16], heteroclinic connections in the one-dimensional Ohta-Kawasaki model [15] and very
recently to prove chaos in the Kuramoto-Sivashinky equation [49].

A second family of rigorous PDE integrators, to which our approach belongs, is based on a
fixed point reformulation which allows to prove, a posteriori, that a true solution exists in a small
neighborhood of a numerically computed approximation. Within this class, we first mention the
foundational work [3], where numerical solutions are validated using a fixed point operator similar

3

to T̃ in (4), and where L is in some sense chosen to be simple, namely L = DH(0). In the context
of (1), the approach from [3] would amount to taking1

L = (−1)R+1 ∂
2R

∂x2R +
2R−1∑
j=0

αj
∂j

∂xj
, (6)

where αj ∈ R is the derivative of g(j) at 0. This choice for L is enticing for making it easier to control
the associated semigroup, which is needed when trying to prove that T̃ is a contraction. This is
especially true if the domain and the boundary conditions allow for an explicit diagonalization
of such an L, as is the case in [3] and in the current paper. However, while this choice of L
simplifies the analysis of T̃ , it also comes at the cost of making the operator T̃ potentially less
contracting (DG(ū) will not be arbitrarily small), and since [3] does not use a subsequent Newton-
like reformulation, the fixed point operator can generally only be contracting for relatively small
values of the integration time 2τ . A similar approach, at least at the level of choosing the fixed
point reformulation, is used in [14]2, although the main point of the latter paper is different and
revolves around a Fourier-Chebyshev (fully) spectral approach, see also Remark 1.4.

On the other end of the spectrum, at least with regards to L, are the techniques introduced
in [36, 38]. There, in terms of the splitting (3), L is chosen as a very accurate time dependent
approximation of DH(ū). This means that the mild solution reformulation then reads

u(t) = U(t, 0)f +
∫ t

0
U(t, s)G(u(s))ds, t ∈ [0, 2τ],

where U(t, s) is the evolution operator associated to L, i.e. U(t, s)ϕ is the solution at time t of

∂u

∂t
= L(t)u, t ∈ (s, 2τ], x ∈ [0, 2π],

∂ju

∂xj
u(t, 0) = ∂ju

∂xj
u(t, 2π), t ∈ [s, 2τ], j = 0, . . . , 2R− 1,

u(s, x) = ϕ(x), x ∈ [0, 2π].

By allowing L to depend on time, one can in principle makeDG(ū) arbitrarily small, hence ensuring
that the fixed point operator

T̃ (u)(t) = U(t, 0)f +
∫ t

0
U(t, s)G(u(s))ds, t ∈ [0, 2τ], (7)

is contracting in a neighborhood of ū. Nevertheless, when actually having to prove that T̃ is a
contraction in this setting, one then has to explicitly control the evolution operator U(t, s), which
can be much more challenging and resource consuming than only having to control the semigroup
associated to a time independent L.

Yet another approach, which starts with a different viewpoint but for which the fixed point
reformulation ends up being very similar, is the one in [23], see also [28, Chapter 5]. In the context
of (1), assuming R = 1, the approach in [23] can be interpreted as taking L to be exactly equal
to DH(ū), and the validation is then based on applying Schauder’s fixed point theorem to the
operator (7), where now U(t, s) is the evolution operator associated to DH(ū). This choice of L
leads to DG(ū) = 0, hence one should be able to find a small neighborhood of ū being mapped into
itself by T̃ , but doing so now requires controlling the evolution operator associated to L = DH(ū).
In the end, this is accomplished by introducing some approximation of DH(ū), see e.g. [22] for the

1To be more precise, the operator L used in [3] is sometimes slightly modified, the parts that would contribute
to eigenvalues with positive real part being moved to G.

2Formally, in [14] Equation (2) is first rewritten as F̃ (u) = (∂t)−1 (∂tu−H(u)) = 0, and then turned into
the fixed point problem T̃ (u) =

(
DF̃ (0)

)−1 (
DF̃ (0)u− F̃ (u)

)
= u. However, noticing that

(
DF̃ (0)

)−1
=

(∂t −DH(0))−1 ∂t, one finds that T̃ (u) is nothing but (∂t −DH(0))−1 (H(u)−DH(0)u), which corresponds to (4)
with L = DH(0).

4

details. We point out that some of the ideas in this approach but also in the other ones, can be
traced back to the early work [27], in which L was simply taken to be the Laplacian.

All these works share some similarities regarding the fixed point operator used for the valida-
tion, or, at the very least, they can all be reformulated into this common framework. However,
we emphasize that they then differ significantly when it comes to how this fixed point operator is
analyzed, see also Remark 1.4. Regarding the choice of L, our own work can be seen as a compro-
mise between the different approaches just mentioned, as we try to take for L an approximation of
DH(ū) which is as good as we can while remaining time independent, thereby avoiding the problem
of having to deal with a solution operator of a non-autonomous system.
Remark 1.3. In all of the approaches discussed above, as well as in the current work, when trying
to validate solutions for larger and larger time intervals, it proves more efficient (and it is often
mandatory in order to obtain a proof) to split the interval [0, 2τ] into shorter pieces. Of course, one
has to glue these subproblems together, and to do so there are two alternatives, which we call here
time stepping (also sometimes referred to as concatenation scheme) and domain decomposition.

The idea of time stepping is to start with some initial condition and to rigorously integrate the
associated initial value problem on a small time interval. If the proof is successful, we compute a
rigorous enclosure for the endpoint of the orbit and try to integrate the enclosure forward in time.
This process is repeated as long as necessary (and possible). In order for long time integration
to be feasible, the size of the enclosures should be “managed” properly. In particular, they should
not grow too fast. This is where the dissipativity of the system can prove very helpful, if correctly
leveraged.

An alternative to time stepping is domain decomposition. The idea of this approach is to still
split the time domain into smaller subintervals, but then to validated everything at once, via a single
fixed point operator coupling all pieces together. This solution can be computationally more expen-
sive, but has the advantage of being directly adaptable to solving boundary value problems in time,
which is not as straightforward for the time stepping approach. This time domain decomposition
strategy already proved very powerful in the context of validated integration of ODEs [46].

In this work, we mainly focus on the domain decomposition approach, which will be presented
in detail in Section 6, but time stepping is also covered in Appendix A.
Remark 1.4. Up to now, while reviewing the literature concerning rigorous integration of PDEs,
we stayed at a rather general level of exposition, and in particular have not yet mentioned discretiza-
tion choices. We purposely postponed this discussion until now, in order to first better emphasize
the conceptual similarities between these different techniques, but of course the way the approxi-
mate solutions are represented (and the often related choices of function spaces that are made) are
crucial when actually having to derive the precise estimates needed for the validation.

Regarding the spatial variable, Fourier series and associated sequences spaces are used in [3],
whereas results using finite elements and Sobolev spaces can be found in [23, 28]. Regarding the
time variable, most of the existing works make use of approximations based on low order 1D finite
elements, the notable exception being [14], where a setup allowing for a spectral approach in both
space and time is introduced.

In this work, we make use of a Fourier decomposition in space. Roughly speaking, dissipativity
then tells us that the long time behavior of the dynamical system should mostly be governed by
only a finite number of Fourier modes, see Section 3. This is why it makes sense to study (1)
via a Fourier expansion in space in the first place, on both paper and in the computer, and it
influences the way we define L. Specifically, for the high frequency Fourier modes, we take a time
and space average of DH(ū) as a starting point for defining L, which yields a diagonal operator
in Fourier space. We then also incorporate a time independent approximation of DH(ū) projected
onto finitely many (low frequency) Fourier modes. Regarding the time variable, we approximate
the solution using polynomial interpolation at Chebyshev nodes, which allows us to easily obtain
high order approximations when needed, e.g. for accuracy purposes.

To summarize, the key features of this work are:
• A new and deliberate choice of the operator L used for the Duhamel reformulation (4), specif-

ically: time independent but spatially dependent. This greatly improves the applicability of

5

the validation procedure compared to more naive choices like L = (−1)R+1 ∂
2R

∂x2R or L as
in (6), because we allow L to depend on the approximate solution ū.

• The incorporation of the domain decomposition technique, which will facilitate a future
extension to boundary value problems in time, and which comes with an interesting twist
in the way the approximate inverse A used for the Newton-Kantorovich reformulation (5) is
defined (see Section 6.1).

• In the context of domain decomposition, the operator L can be interpreted as being time
dependent in the sense that it is piecewise constant in time. The Newton-Kantorovich con-
traction theorem is then applied to a function space with a (time-dependent) weighted norm,
where the weight are piecewise constant in time, see (19).

• The usage of Chebyshev interpolation in time, whose order can be adapted to the problem
at hand.

• General estimates and associated code (available at [42]) for equations of the form (1). That
is, the user only has to provideR ∈ N≥1, τ > 0, polynomial functions g(j) for j = 0, . . . , 2R−1,
and initial data f ; and the code then automatically generates an approximate solution and
tries to validate it using the estimates developed in this paper. This does involve tweaking
of computational parameters, which is partly automated and partly manual.

Below is an example of the type of results that can be obtained with our approach.
Theorem 1.5. Consider the Swift-Hohenberg equation

∂u

∂t
= −

(
∂2

∂x2 + 1
)2

u+ αu− u3, (t, x) ∈ (0, tend]× [0, L],

∂ju

∂xj
u(t, 0) = ∂ju

∂xj
u(t, L), t ∈ [0, tend], j = 0, 1, 2, 3,

u(0, x) = f(x), x ∈ [0, L]

(8)

with α = 5, L = 6π, tend = 3/2, and f(x) = 0.4 cos
(2πx
L

)
− 0.3 cos

(4πx
L

)
. Let ū = ū(t, x) be

the function represented in Figure 1, and whose precise description in terms of Fourier-Chebyshev
coefficients can be downloaded at [42]. Then, there exists a smooth solution u of (8) such that

sup
t∈[0,tend]

sup
x∈[0,L]

|u(t, x)− ū(t, x)| ≤ 4× 10−8. (9)

Remark 1.6. One of the key ingredients of our proof of Theorem 7.1 is the selection of a proper
function space and associated norm. The norm used in the proof is stronger than the C0-norm
exhibited in the error bound (9), where we aimed for a simple statement rather than a sharp
estimate. In particular, the solution u obtained in the above theorem is in fact analytic in the space
variable x, and the norm introduced later in the paper reflects that. Furthermore, the error bound
obtained from the proof is not uniform in time, but we report the somewhat weaker resulting uniform
bound in (9). We refer to Section 2, Section 3 and Section 6 for details (see also Remark 7.2).

Finally, let us mention a few possible extensions. The theory presented in this paper can be
extended in a straightforward manner to deal with systems of parabolic PDEs, to higher dimen-
sional rectangular spatial domains, to any boundary conditions allowing for smooth Fourier series
representation, and to complex valued solutions. Non-constant coefficients in the lower order terms

(that is, everywhere except in the ∂u

∂t
− (−1)R+1 ∂

2Ru

∂x2R part) could also be handled. Regarding
nonlinearities, we made some choices in (1) which are not fully general, for the sake of unifying
the presentation. For instance, an equation like

∂u

∂t
= −∂

4u

∂x4 −
∂2u

∂x2 −
(
∂u

∂x

)2
, (10)

6

Figure 1: The approximate solution ū of (8), which has been validated in Theorem 1.5, depicted
twice with different views.

which is one version of the Kuramoto-Sivashinsky equation, cannot be written the form (1), at
least not without changing variables (in this case, the equation satisfied by ∂xu can in fact be
written in the form (1)). If one wanted to deal directly with (10), or more generally with equations
of the form

∂u

∂t
= (−1)R+1 ∂

2Ru

∂x2R + g

(
u,
∂u

∂x
, . . . ,

∂2R−1u

∂x2R−1

)
,

where g is a (multivariate) polynomial, some of the estimates derived in this paper would have to
be adapted, but in principle such equations could also be handled. The extension from initial to
boundary value problems is a topic of ongoing research.

The paper is organized as follows. In Section 2, we give some definitions and introduce notation
related to sequences spaces and Chebyshev interpolation which will be useful throughout the paper,
and state the fixed point Theorem 2.12 that is at the heart of our validation procedure. In Section 3,
we give a precise definition of the crucial operator L that we use in this work, and describe the
reformulation of (1) leading to the fixed point problem to which we want to apply Theorem 2.12.
Here we initially restrict attention to a single time domain, postponing the domain decomposition
to Section 6. In Section 4, we collect several technical lemmas, which are then used in Section 5,
where we derive all the estimates required to apply Theorem 2.12 to the reformulation introduced
in Section 3. In Section 6, we describe how to modify the setup and the already obtained bounds in
order to incorporate the domain decomposition approach in time. Finally, in Section 7 we present
several examples for the Fisher-KPP equation, the Swift-Hohenberg equation, the Otha-Kawasaki
equation and the Kuramoto-Sivashinsky equation, which illustrate the advantages provided by
our choice of L and by the domain decomposition. Appendix A contains details about time
stepping, Appendix B describes new sharp interpolation error estimates, Appendix C specifies how
we rigorously enclose some integrals, and Appendix D provides an algorithm to explicitly compute
some constants introduced in Section 4.

All the computations presented in this paper have been implemented in Matlab, using the
phenomenal Intlab package [35] for interval arithmetic. The computer-assisted parts of the proofs
can be reproduced using the code available at [42].

2 Preliminaries
In this section we introduce notation and provide the necessary background for the tools used in
this paper.

7

2.1 Sequence spaces
The functional analytic reformulation of (1) in terms of the Fourier coefficients is posed on a space
of continuous functions from [−1, 1] into a space of geometrically decaying sequences

`1ν
def=
{
a ∈ CZ :

∑
n∈Z
|an| ν|n| <∞

}
,

endowed with the norm ‖a‖`1ν =
∑
n∈Z |an| ν|n|, where ν ≥ 1 is some decay rate to be chosen later.

We define Xν
def= C

(
[−1, 1] , `1ν

)
to be the space of continuous functions from [−1, 1] into `1ν .

Recall that the Fourier coefficients of the product of two Fourier expansions is given by the
discrete convolution: when u and v are 2π-periodic functions given by u(x) =

∑
n∈Z ûne

inx and
v(x) =

∑
n∈Z v̂ne

inx, then

(uv) (x) =
∑
n∈Z

(û ∗ v̂)n e
inx, where (û ∗ v̂)n

def=
∑
m∈Z

ûmv̂n−m, n ∈ Z,

and these formal computations are justified as soon as u and v are smooth enough, say Lipschitz-
continuous, which will be the case in this work.

Remark 2.1. In order to simplify the notation, in the rest of this paper we will use the same
symbol to denote a function and its (discrete) Fourier transform, that is we write

u(x) =
∑
n∈Z

une
inx.

It should be clear from the context whether u denotes the function x 7→ u(x) or the sequence of
Fourier coefficients u = (un)n∈Z.

We also recall that the discrete convolution gives `1ν a Banach algebra structure.

Lemma 2.2. For all u, v ∈ `1ν , u ∗ v ∈ `1ν and ‖u ∗ v‖`1ν ≤ ‖u‖`1ν ‖v‖`1ν .

2.2 Chebyshev interpolation
In this section we recall the basics of Chebyshev interpolation. The reader is referred to [11, 34, 39]
for a comprehensive introduction into the theory of Chebyshev approximation.

Definition 2.3 (Chebyshev points). Let K ∈ N≥1. The K-th order Chebyshev points
(
tKk
)K
k=0

are defined by tKk
def= cos(πkK).

Remark 2.4. We shall omit the superscript K from the notation whenever it can be easily inferred
from the context. We have ordered the Chebyshev points from 1 to −1, i.e., t0 = 1 and tK = −1.
In the literature the points (tk)Kk=0 are often referred to as the Chebyshev points of the second kind.

We will refer to the K-th order polynomial which interpolates a continuous function f :
[−1, 1] → C at the Chebyshev points (tk)Kk=0 as the K-th order Chebyshev interpolant of f .
Furthermore, we shall denote the operator which sends a continuous function f to its K-th order
Chebyshev interpolant by PK : C([−1, 1],C) → C([−1, 1],C). We note that f − PK(f) vanishes
at t = ±1 for any K and any f , because we have chosen a family of Chebyshev nodes containing
the endpoints of the interval [−1, 1]. We denote the space C([−1, 1],C) with the sup-norm by C0

throughout. Our approximate solutions and our analysis makes use of Chebyshev interpolation in
time, and we therefore need to control the associated interpolation errors.

Definition 2.5 (Cl interpolation error). For K ∈ N≥1 and l ∈ {0, 1, . . . ,K} we denote by σK,l a
real constant such that, for all f ∈ Cl+1([−1, 1],C),

‖f − PK(f)‖C0 ≤ σK,l
∥∥∥f (l+1)

∥∥∥
C0
.

8

In practice, we need an explicit value for this constant. One can easily find explicit values in
the literature, at least for real-valued functions, but not necessarily optimal ones. In Appendix B,
we recall some known results about this constant, and provide almost optimal values for σK,0 and
K small, which is a crucial case for this work.

Another case which we will encounter frequently is when the function to be interpolated is
analytic in an open set of the complex plane containing the segment [−1, 1]. In such a situation,
the following error estimate applies.
Definition 2.6. For ρ ≥ 1, we denote by Eρ ⊂ C the open ellipse with foci ±1 such that the length
of the semi-major and of the semi-minor axes sum up to ρ, or equivalently, the set of all complex
numbers z such that |z− 1|+ |z+ 1| < ρ+ ρ−1. The set Eρ is sometimes referred to as a Bernstein
ellipse. Notice that ρ = 1 is a degenerate case: E1 = (−1, 1).
Theorem 2.7. Let ρ > 1. Suppose f : [−1, 1] → C can be analytically extended to Eρ, and is
bounded on Eρ. Then

‖f − PK(f)‖C0 ≤
4ρ−K
ρ− 1 sup

z∈Eρ
|f(z)| ,

for any K ∈ N.
The proof can be found in [39, Theorem 8.2].

In practice, we compute and represent interpolation polynomials using the Chebyshev basis
(Tk)k∈N0

.
Definition 2.8. The Chebyshev polynomials Tk : [−1, 1]→ R are defined by the relation Tk (cos θ) =
cos (kθ), where k ∈ N0 and θ ∈ [0, π].
Remark 2.9. In the literature the polynomials (Tk)k∈N0

are often referred to as the Chebyshev
polynomials of the first kind. The K-th order Chebyshev points

(
tKk
)K
k=0 are the points in [−1, 1]

at which TK attains its extrema. Furthermore, note that Tk
(
tKj
)

= cos(πjkK) for k, j ∈ N0.

The polynomials (Tk)Kk=0 constitute a basis for the space of K-th order polynomials PK . Hence,
any polynomial P of degree at most K, and in particular any interpolation polynomial PK(f), can
be uniquely written as

P = P0 + 2
K∑
k=1

PkTk, (11)

for some Chebyshev coefficients P0, . . . , PK ∈ C.
For any given polynomial written in the Chebyshev basis, we can easily control both its C0

norm and its supremum on a Bernstein ellipse Eρ, in terms of its Chebyshev coefficients.

Lemma 2.10. Let K ∈ N≥0 and P = P0 + 2
∑K
k=1 PkTk, then

‖P‖C0 ≤ |P0|+ 2
K∑
k=1
|Pk| , (12)

and

sup
z∈Eρ
|P (z)| ≤ |P0|+

K∑
k=1
|Pk|

(
ρk + ρ−k

)
. (13)

Proof. Any element z of Eρ can be written z = ω+ω−1

2 for some ω ∈ C such that 1 ≤ |ω| ≤ ρ,
and we have the identity Tk

(
ω+ω−1

2
)

= ωk+ω−k
2 , which holds because both sides are analytic and

coincide for ω on the unit circle. Hence supz∈Eρ |Tk(z)| = ρk+ρ−k
2 , which yields (13).

Remark 2.11. Note that (11) is, up to the coordinate transformation x = cos θ, a Fourier cosine
series. This is the motivation for using the factor 2 in front of the coefficients (Pk)Kk=1. In partic-
ular, with this convention the Chebyshev coefficients of the product of two Chebyshev expansions
can be computed directly (i.e., without a rescaling factor) via the discrete convolution.

9

2.3 A fixed point Theorem
Let (Xm, ‖ · ‖Xm)Mm=1 be Banach spaces, X = ΠM

m=1X
m the product space, and πm : X → Xm

the projections onto the components. Let r∗ = (rm∗)Mm=1 ∈ RM>0 and x̄ ∈ X. For any r ∈ RM>0,
we define Box(x̄, r) = {x ∈ X : ‖πm(x− x̄)‖Xm ≤ rm for 1 ≤ m ≤ M}. We consider a map
T ∈ C1(Box(x̄, r), X). For r, r∗ ∈ RM>0 we say that r ≤ r∗ if rm ≤ rm∗ for all 1 ≤ m ≤M . Finally,
we denote partial Fréchet derivatives by Di.

The following statement, based on the Banach fixed point Theorem, provides explicit conditions
under which T has a unique fixed point in Box(x̄, r) (for some explicit r). Many similar versions
of this theorem have been used in the last decades for computer-assisted proofs, see e.g. [3, 17, 21,
28, 30, 44, 50]. The one we use here, with possibly different radii in each component, originates
from [40].

Theorem 2.12. Assume that Y m ≥ 0, Zmi ≥ 0, Wm
ij ≥ 0 for 1 ≤ i, j,m ≤M satisfy

‖πm(T (x̄)− x̄)‖Xm ≤ Y
m, (14)

‖πmDiT (x̄)‖B(Xi,Xm) ≤ Z
m
i , (15)

‖πm(DiT (x)−DiT (x̄))‖B(Xi,Xm) ≤
M∑
j=1

Wm
ij

∥∥πj(x− x̄)
∥∥
Xj

for all x ∈ Box(x̄, r∗). (16)

If r, η ∈ RM>0 with r ≤ r∗ satisfy

Y m +
M∑
i=1

Zmi r
i + 1

2

M∑
i,j=1

Wm
ij r

irj ≤ rm (17)

M∑
i=1

Zmi η
i +

M∑
i,j=1

Wm
ij η

irj < ηm (18)

for 1 ≤ m ≤M , then T has a unique fixed point in Box(x̄, r).

Proof. Writing

T (x)− x̄ = T (x̄)− x̄+DT (x̄)(x− x̄) +
∫ 1

0
[DT (x̄+ s(x− x̄))−DT (x̄)] (x− x̄) ds,

the inequalities (17) imply that T maps Box(x̄, r) into itself. Then, writing

DT (x) = DT (x̄) + [DT (x)−DT (x̄)] ,

and considering the weighted maximum norm

‖x‖X = max
1≤m≤M

‖πmx‖Xm
ηm

, (19)

we get, for all x in Box(x̄, r∗),

‖DT (x)‖B(X,X) ≤ max
1≤m≤M

1
ηm

M∑
i=1

(
Zmi +

M∑
j=1

Wm
ij r

j

)
ηi,

and (18) yields that T is a contraction on Box(x̄, r) ⊂ X (which is a closed set for ‖·‖X).

Remark 2.13. If M = 1, we recover a more classical form of this statement, since η can be
factored out in (18) and therefore plays no role. In that case, ‖·‖X = ‖·‖X1 , and the set Box(x̄, r)
is simply a ball for this norm.

There are various ways one could get similar but arguably simpler or more natural versions
of Theorem 2.12: by imposing η = r, by dropping the 1

2 factor in (17) so that (18) becomes a

10

consequence of (17) and can be removed, or by trying to apply the contraction mapping on a
proper ball in X instead of on the set Box(x̄, r). However, the downside of these simplifications
is that they lead to conditions on the constants Y m, Zmi and Wm

i,j that are slightly more stringent
than (17)-(18). For instance, for a given set of constants Y m, Zmi and Wm

i,j, it could very well be
that for all r ∈ RM>0 satisfying (17), assumption (18) does not hold with η = r, but that it does hold
with a different choice of η ∈ RM>0.

For many computer-assisted proofs, most of the effort goes into actually getting as sharp as
possible constants Y m, Zmi and Wm

i,j satisfying (14)-(16), and this work is no exception. Once
these constants are obtained, we feel that it is somewhat wasteful to use simpler but more stringent
forms of Theorem 2.12.

In the sequel, we use this theorem with M = 1 in the case where the time interval [0, 2τ] is not
split, and with M > 1 when using domain decomposition. In Section 3, we introduce in full detail
the setup in which we apply this theorem to validate solutions of (1). The remainder of the paper
is then devoted to the derivation of (computable) bounds Y m, Zmi and Wm

ij satisfying (14), (15)
and (16) for this problem.

3 Functional analytic setup
In this section we construct a fixed point map whose fixed points correspond to solutions of (1).
Here we consider a single time domain. The generalization to domain decomposition is presented
in Section 6. First, we recast (1) into an infinite set of coupled ODEs on the sequence space `1ν by
using a Fourier transformation in the spatial variable. We then reformulate the system of ODEs
as an equivalent zero finding problem on Xν by using the variation of constants formula. Next, we
perform a finite dimensional reduction by approximating a finite number of (time varying) Fourier
modes with the aid of Chebyshev interpolation. This reduction is used to set up a Newton-like map
T based at an approximate (numerically computed) zero, which is the one on which Theorem 2.12
will be applied.

3.1 An equivalent zero-finding problem
In this section we set up a zero finding problem for (1) by using the variation of constants formula.
First, rewrite (1) as

∂u

∂t
− Lu = (−1)R+1 ∂

2Ru

∂x2R +
2R−1∑
j=0

∂jg(j)(u)
∂xj

− Lu, (20)

where L is the linear operator which is going to be the generator of the semigroup used in the
Duhamel formula. The choice of L is actually crucial in our approach: we want L to make the
linearization of the right-hand side of (20) around the approximation solution as a small as possible,
but we also want to keep L relatively simple, so that we can easily get explicit estimates on the
associated semigroup. The precise definition of L is given in Section 3.4.

Next, let (un (t))n∈Z and (fn)n∈Z denote the Fourier coefficients of u (t, ·) and f , respectively,
that is

u(t, x) =
∞∑

n=−∞
un(t)einx, f(x) =

∞∑
n=−∞

fne
inx,

for all t ∈ [0, 2τ] and x ∈ [0, 2π]. Slightly abusing the notations, we also use (g(j)
n (u) (t))n∈Z to

denote the Fourier coefficients of g(j)(u) (t, ·), i.e.

g(j)(u)(t, x) =
∞∑

n=−∞
g(j)
n (u)(t)einx,

for all j = 0, . . . , 2R− 1.

11

Since the approximation of the solutions will be made using Chebyshev interpolation in time,
we rescale the time domain [0, 2τ] to [−1, 1], on which the theory of Chebyshev approximations
is developed (see Section 2.2). Substitution of the above Fourier expansions into (20) yields an
infinite dimensional system of ODEs on [−1, 1] for the Fourier coefficients (un)n∈Z:

du

dt
(t)− τLu(t) = τ

(
(−1)R+1D2Ru(t) +

2R−1∑
j=0
Djg(j)(u(t))− Lu(t)

)
, t ∈ [−1, 1],

u (−1) = f,

(21)

where D is the Fourier transform of ∂

∂x
:

(Du)n
def= inun,

and where we abuse notation and denote the Fourier transform of L still by L.
Finally, integration of (21) with the aid of variation of constants yields the following map.

Definition 3.1. The zero finding map F : Xν → Xν for (1) is defined by

F (u) (t) def= eτ(t+1)Lf + τ

∫ t

−1
eτ(t−s)Lγ(u(s))ds− u(t),

where, for any v ∈ `1ν ,

γ(v) def= (−1)R+1D2Rv +
2R−1∑
j=0
Djg(j)(v)− Lv. (22)

Remark 3.2. While we have not defined L precisely yet (this will be done in Section 3.4), we are
assuming that L generates a C0 semi-group, with smoothing properties so that F is well defined,
even if γ does not necessarily map `1ν to itself.

3.2 Finite dimensional reduction
In this section we introduce a finite dimensional reduction of F . To accomplish this we will need
to truncate the phase space Xν and to discretize time.
Definition 3.3 (Truncation of phase space). LetN ∈ N be a truncation parameter. The projection
ΠN : Xν → Xν is defined by

(ΠN (u))n
def=
{
un, 0 ≤ |n| ≤ N,
0, |n| > N.

Furthermore, we set Π∞
def= I−ΠN , where I is the identity on Xν . We also introduce the subspaces

XNν = ΠN (Xν) and X∞ν = Π∞ (Xν), for which we have

Xν = XNν ⊕X∞ν .

Remark 3.4. Henceforth we shall identify ΠN (u) with the vector of functionsu−N...
uN

 ∈ C ([−1, 1] ,C2N+1) .
Definition 3.5 (Time discretization). Let K ∈ N. The Fourier-Chebyshev projection ΠKN :
Xν → C

(
[−1, 1] ,C2N+1) is defined by

ΠKN (u) def=

PK(u−N)
...

PK(uN)

 ,

12

where PK : C ([−1, 1],C)→ C ([−1, 1],C) is the operator which sends a continuous function to its
Chebyshev interpolant (see Section 2.2). We sometimes abuse notation by applying PK to a vector
of functions, meaning we apply PK to each component, e.g. ΠKN (u) = PKΠN (u). Furthermore,
we set Π∞N

def= ΠN −ΠKN . We note that Π∞N (u) vanishes at t = ±1.

The truncation of phase space and discretization of time give rise to the decomposition

Xν = XKNν ⊕X∞Nν ⊕X∞ν , (23)

where

XKNν
def= ΠKN (Xν) , X∞Nν

def= Π∞N (Xν) , X∞ν
def= Π∞ (Xν) .

We equip XKNν with the norm

‖u‖XKNν

def=
∥∥∥∥∥
[
|un0|+ 2

K∑
k=1
|unk|

]N
n=−N

∥∥∥∥∥
`1ν

=
∑
|n|≤N

(
|un0|+ 2

K∑
k=1
|unk|

)
ν|n|. (24)

There are several reasons for choosing this particular norm over the more obvious supremum
norm. First of all, the norm in (24) is numerically easy to compute, whereas the computation of
a supremum norm is relatively complicated. Furthermore, with this norm it is easy to compute
operator norms which amounts to computing weighted `1-norms of finite dimensional matrices.
This is to be contrasted with the use of a supremum norm, where the analysis of linear operators
is much more complicated. Lastly, it follows from (12) that the norm in (24) is stronger than the
supremum norm, i.e.,

sup
t∈[−1,1]

‖u(t)‖`1ν ≤ ‖‖u‖C0‖`1ν ≤ ‖u‖XKNν
, for all u ∈ XKNν ,

thereby allowing one to relate the two norms in a straightforward manner. Here and throughout
the paper, when we apply the C0-norm to an element of Xν , it should be understood as applying
the C0-norm to each Fourier mode.

The subspaces X∞Nν and X∞ν are both endowed with the ‖·‖`1ν(C0) = ‖‖·‖C0‖`1ν norm, i.e.,

‖u‖`1ν(C0)
def=
∑
n∈Z
‖un‖C0 ν

|n|.

Furthermore, the full space Xν is equipped with the norm

‖u‖Xν
def= ‖ΠKNu‖XKNν

+ ε−1
∞N ‖Π∞Nu‖X∞Nν

+ ε−1
∞ ‖Π∞u‖X∞ν (25)

where ε∞N , ε∞ > 0 are weights whose purpose is to provide some control over the truncation errors
in phase space and the interpolation errors in time. The choice of these weights is different for
each example in Section 7 (the specific values can be found in the code). Over the whole space,
the norm ‖·‖Xν still controls the C0 norm:

Lemma 3.6. Let ϑε = max(1, ε∞N , ε∞). Then,

‖u‖`1ν(C0) ≤ ϑε ‖u‖Xν , for all u ∈ Xν .

Finally, we define a finite dimensional reduction of F .

Definition 3.7 (Finite dimensional reduction of F). The finite dimensional reduction FKN :
XKNν → XKNν of F is defined by FKN

def= ΠKN ◦ F |XKNν
.

13

3.3 A posteriori analysis
In this section we construct a Newton-like map for F by using the finite dimensional reduction FKN .
To this end, suppose we have computed the following:

(i) An approximate zero ū in XKNν ' C(2N+1)(K+1) of FKN .

(ii) The derivative DFKN (ū).

(iii) An approximate injective inverse AKN of DFKN (ū).

Remark 3.8. One can check that AKN is injective by verifying that the bound in (34) is strictly
smaller than 1. In fact, our computer-assisted proof can only be successful when this inequality
is satisfied, cf. (18). Therefore, if the computer-assisted proof is successful, we may a posteriori
conclude that AKN is injective without any further ado.

We will use the finite dimensional data to construct an approximate inverse of DF (ū). We
anticipate that

Π∞NDF (ū) ≈ −Π∞N and Π∞DF (ū) ≈ −Π∞

in a small neighborhood of ū provided K and N are sufficiently large. These observations motivate
the following definitions:

Definition 3.9 (Approximation of DF (ū)). The approximate derivative D̂F : Xν → Xν of F at
ū is defined by

D̂F
def= DFKN (ū)⊕ (−Π∞N)⊕ (−Π∞) .

Definition 3.10 (Approximate inverse of DF (ū)). The approximate inverse A : Xν → Xν of
DF (ū) is defined by

A
def= AKN ⊕ (−Π∞N)⊕ (−Π∞) .

Next, we define a Newton-like operator T for F based at ū:

Definition 3.11 (Newton-like operator for F). The Newton-like operator T : Xν → Xν for F
based at ū is defined by

T
def= I −AF.

The idea is to seek fixed points of T in a small neighborhood of ū. To be more precise, let
Br,ε(0) denote the closed ball of radius r > 0 centered at 0 in Xν , i.e.,

Br,ε(0) =
{
h ∈ Xν : ‖ΠKN (h)‖XKNν

+ ε−1
∞N ‖Π∞N (h)‖X∞Nν

+ ε−1
∞ ‖Π∞ (h)‖X∞ν ≤ r

}
. (26)

We shall prove the existence of a fixed point u∗ of T in Br,ε (ū) = ū + Br,ε(0), where r > 0 is an
unknown radius to be determined, by using Theorem 2.12, with M = 1 and X = Xν .

Remark 3.12. This fixed point u∗ of T corresponds to a zero of F , since A is injective. We have
thus found the solution of the initial value problem (1). In view of Lemma 3.6, the error bound on
the distance between the solution u∗ and its approximation ū is controlled by

max
t∈[0,2τ],x∈[0,2π]

|u∗(t, x)− ū(t, x)| ≤ ‖u∗ − ū‖`1ν(C0) ≤ ϑεr.

It is well known that problems of the form (1) have a unique mild solution which is in fact
a classical solution, but whose maximal existence time tmax could in principle be smaller than 2τ
(see e.g. [25, 31]). Our proof additionally shows the maximal existence time tmax is in fact larger
than 2τ , and provides more detailed information on the regularity of the solution (for ν > 1),
namely that is it analytic in the space variable on a strip of width ln ν.

14

3.4 Construction of L
For reasons already outlined in the introduction, and that will be made more concrete later on, we
want L to be a time independent approximation of

h 7→ (−1)(R+1)D2Rh+
2R−1∑
j=0
Dj
((

g(j)
)′

(ū(s)) ∗ h
)
, h ∈ `1ν , (27)

where
(
g(j))′ simply denotes the derivative of the polynomial function g(j). Although we choose

L to be uniform in s, it does approximate the linear operator (27), hence we have that, with γ
defined in (22),

s 7→ Dγ(ū(s)) ≈ 0.

To construct L, we start by introducing vectors v̄(j) ∈ ΠN
(
`1ν
)
, j = 0, . . . , 2R − 1, which in

practice should be (constant in time) approximations of s 7→
(
g(j))′ (ū)(s). Then, we define L̃ on

Xν = ΠNXν ⊕Π∞Xν by
L̃ΠNu

def= (−1)R+1D2RΠNu+
2R−1∑
j=0
DjΠN

(
v̄(j) ∗ΠNu

)
(
L̃Π∞u

)
n

def=
(
−n2R +

2R−1∑
j=0

(in)j v̄(j)
0

)
un for all |n| > N.

Notice that L̃ leaves XNν invariant, and that it does not depend on time, therefore its restriction
to XNν can be represented as a finite dimensional matrix, that we denote by L̃N .

Finally, we consider a diagonal matrix ΛN = diag (λ−N , . . . , λN) and an invertible matrix Q
such that

L̃N ≈ QΛNQ−1,

and define
LN

def= QΛNQ−1,

and L on Xν = ΠNXν ⊕Π∞Xν by
LΠNu

def= LNΠNu

(LΠ∞u)n
def=
(
−n2R +

2R−1∑
j=0

(in)j v̄(j)
0

)
un for all |n| > N.

For further use, we denote, for all |n| > N ,

λn
def= −n2R +

2R−1∑
j=0

(in)j v̄(j)
0 , (28)

and
RN

def= LN − L̃N .

Notice that with this notation we can write

ΠNDγ(ū)u =
2R−1∑
j=0
DjΠN

[((
g(j)
)′

(ū)− v̄(j)
)
∗ΠNu+

(
g(j)
)′

(ū) ∗Π∞u
]
−RNΠNu. (29)

Now that A and L have been explicitly constructed, we are ready to derive the estimates needed
to prove that T has a locally unique fixed point around ū.

15

4 General estimates
We compile here a list of lemmas which will be used extensively in the computation of the Y ,
Z and W bounds needed for Theorem 2.12. These are essentially technical estimates, the reader
more interested in an overview of the proof is encouraged to jump directly to Section 5, and to
only refer to this section when needed.

4.1 An `1
ν dual estimate

Lemma 4.1. For a given (2N+1)×(2N+1) matrix B with complex entries, define Υ(B) ∈ C2N+1

by
Υn(B) = max

|m|≤N

|Bn,m|
ν|m|

, |n| ≤ N.

Then, for any v ∈ ΠN `
1
ν
∼= C2N+1,

|Bv| ≤ Υ(B) ‖v‖`1ν ,

where the absolute values apply component-wise.

4.2 Controlling convolution products
Lemma 4.2. Let u, v ∈ `1ν . Then, for all n ∈ Z

|(u ∗ v)n| ≤ Ψn(u) ‖v‖`1ν ,

where
Ψn(u) def= sup

m∈Z

|um|
ν|n−m|

.

Lemma 4.3. Let a, b, h ∈ Xν . Define, for all n in Z,

Φεn(a, b) def= max
{
ε∞N max

|n−m|≤N

‖am‖C0

ν|n−m|
, ε∞ sup

|n−m|>N

‖bm‖C0

ν|n−m|

}
,

Φ̌εn(a, b) def= max
{

max(1, ε∞N) max
|n−m|≤N

‖am‖C0

ν|n−m|
, ε∞ sup

|n−m|>N

‖bm‖C0

ν|n−m|

}
,

and

Φ̃ε(a, b) def= max
{

max(1, ε∞N) max
|m|≤N

∑
|n|≤N

‖an−m‖C0 ν
|n|−|m|,

ε∞ sup
|m|>N

∑
|n|≤N

‖bn−m‖C0 ν
|n|−|m|

}
.

Then, for all n in Z,

‖(a ∗Π∞Nh+ b ∗Π∞h)n‖C0 ≤ Φεn(a, b) ‖h‖Xν ,

‖(a ∗ΠNh+ b ∗Π∞h)n‖C0 ≤ Φ̌εn(a, b) ‖h‖Xν ,

and

‖ΠN [a ∗ΠNh+ b ∗Π∞h]‖`1ν(C0) ≤ Φ̃ε(a, b) ‖h‖Xν .

16

Proof. Let h∞N = Π∞Nh and h∞ = Π∞h. For all s ∈ [−1, 1], by using (25),∣∣(a ∗ h∞N + b ∗ h∞
)
n

(s)
∣∣ ≤∑

m∈Z

(∣∣am(s)h∞Nn−m(s)
∣∣+
∣∣bm(s)h∞n−m(s)

∣∣)
≤

∑
|n−m|≤N

‖am‖C0

ν|n−m|

∥∥h∞Nn−m
∥∥
C0 ν

|n−m|

+
∑

|n−m|>N

‖bm‖C0

ν|n−m|

∥∥h∞n−m∥∥C0 ν
|n−m|

≤ max
|n−m|≤N

‖am‖C0

ν|n−m|
‖Π∞Nh‖X∞Nν

+ sup
|n−m|>N

‖bm‖C0

ν|n−m|
‖Π∞h‖X∞ν

≤ Φεn(a, b) ‖h‖Xν .

The second estimate is obtained in the same way, using additionally that∑
|m|≤N

‖hm‖C0 ν
|m| ≤ ‖ΠKNh‖XKNν

+ ‖Π∞Nh‖X∞Nν

≤ max(1, ε∞N)
(
‖ΠKNh‖XKNν

+ ε−1
∞N ‖Π∞Nh‖X∞Nν

)
.

For the final estimate, introducing hN = ΠNh, we proceed in a similar fashion:∥∥ΠN

[
a ∗ hN + b ∗ h∞

]∥∥
`1ν(C0) ≤

∑
|n|≤N

∑
m∈Z

(
‖an−m‖C0

∥∥hNm∥∥C0 + ‖bn−m‖C0 ‖h∞m‖C0

)
ν|n|

≤
∑
|m|≤N

‖hm‖C0 ν
|m|

∑
|n|≤N

‖an−m‖C0 ν
|n|−|m|

+
∑
|m|>N

‖hm‖C0 ν
|m|

∑
|n|≤N

‖bn−m‖C0 ν
|n|−|m|

≤
(
‖ΠKNh‖XKNν

+ ε−1
∞N ‖Π∞Nh‖X∞Nν

)
×max(1, ε∞N) max

|m|≤N

∑
|n|≤N

‖an−m‖C0 ν
|n|−|m|

+ ε−1
∞ ‖Π∞h‖X∞ν ε∞ sup

|m|>N

∑
|n|≤N

‖bn−m‖C0 ν
|n|−|m|.

Remark 4.4. As soon as b only has a finite number of non-zero Fourier modes, the suprema in
Φεn(a, b), Φ̌εn(a, b) and Φ̃ε(a, b) become maxima that can be computed.

Lemma 4.5. Let r ≥ 0 and p be a polynomial, written in the canonical basis

p(x) =
Np∑
k=0

pkx
k.

If we denote by |p| the polynomial

|p|(x) def=
Np∑
k=0
|pk|xk,

then for all ‖v‖Xν ≤ 1 and ‖h‖Xν ≤ 1 we have

‖p (ū+ rv) ∗ v ∗ h‖`1ν(C0) ≤ ϑ
2
ε |p|

(
‖ū‖`1ν(C0) + ϑεr

)
.

17

Proof. We use the Banach algebra properties of `1ν and `1ν(C0) to get

‖p (ū+ rv) ∗ v ∗ h‖`1ν(C0) ≤ ‖p (ū+ rv)‖`1ν(C0) ‖v‖`1ν(C0)‖h‖`1ν(C0)

≤ ϑ2
ε

Np∑
k=0
|pk|

∥∥∥(‖ū‖C0 + r ‖v‖C0

)k∥∥∥
`1ν

≤ ϑ2
ε

Np∑
k=0
|pk|

∥∥(‖ū‖C0 + r ‖v‖C0

)∥∥k
`1ν

≤ ϑ2
ε

Np∑
k=0
|pk|
(
‖ū‖`1ν(C0) + ϑεr

)k
.

4.3 Interpolation errors
Lemma 4.6. Let λ ∈ C, τ > 0 and ρ > 1,∥∥∥(I − PK)

(
t 7→ eτ(t+1)λ

)∥∥∥
C0
≤ 4ρ−K
ρ− 1 exp

(
τ
(
<(λ) + 1

2
√
<(λ)2(ρ+ ρ−1)2 + =(λ)2(ρ− ρ−1)2

))
,

where <(λ) and =(λ) denote the real part and the imaginary part of λ, respectively.

Proof. From Theorem 2.7 we get that∥∥∥(I − PK)
(
t 7→ eτ(t+1)λ

)∥∥∥
C0
≤ 4ρ−K
ρ− 1 sup

z∈Eρ
eτ<(λ(z+1)).

Any z ∈ Eρ can be written z = 1
2
(
reiθ + r−1e−iθ

)
, for some (r, θ) ∈ [1, ρ] × [0, 2π], and we then

have

< (λ (z + 1)) = <(λ)
(

1 + 1
2(r + r−1) cos θ

)
−=(λ)1

2(r − r−1) sin θ

= <(λ) + 1
2
√
<(λ)2(r + r−1)2 + =(λ)2(r − r−1)2 cos(θ − θr,λ),

for some θr,λ ∈ [0, 2π], hence

sup
z∈Eρ
< (λ(z + 1)) = <(λ) + 1

2
√
<(λ)2(ρ+ ρ−1)2 + =(λ)2(ρ− ρ−1)2.

Remark 4.7. For a given λ, the quality of the above estimate depends on the choice of ρ, therefore
in practice we approximately optimize over ρ.

Lemma 4.8. Let ϕN ∈ C0 ([−1, 1],C2N+1), seen as an element of ΠNXν , j ∈ N, τ > 0, σK,0 > 0
satisfying Definition 2.5, and consider the (2N + 1)× (2N + 1) diagonal matrix

DN (t) def= <(ΛN)−1
(
eτ(1+t)<(ΛN) − I2N+1

)
= τ

∫ t

−1

∣∣∣eτ(t−s)ΛN
∣∣∣ ds, (30)

where < and | · | applied to matrices must be understood component-wise. Let DN = ΠNDΠN .
Then ∥∥∥∥(I − PK)

(
t 7→ τ

∫ t

−1
eτ(t−s)LNDjϕN (s)ds

)∥∥∥∥
X∞Nν

≤ τσK,0
(∥∥∥|DjN |+ |Q||ΛN |DN (1)|Q−1||DjN |

∥∥∥
B(`1ν ,`1ν)

)
‖ϕN‖`1ν(C0) .

18

Proof. Using Definition 2.5, we get∥∥∥∥(I − PK)
(
t 7→ τ

∫ t

−1
eτ(t−s)LNDjϕN (s)ds

)∥∥∥∥
X∞Nν

=
∥∥∥∥∥∥∥∥(I − PK)

(
t 7→ τ

∫ t

−1
eτ(t−s)LNDjϕN (s)ds

)∥∥∥∥
C0

∥∥∥∥
`1ν

≤ τσK,0
∥∥∥∥∥∥∥∥ ddt

(
t 7→

∫ t

−1
eτ(t−s)LNDjϕN (s)ds

)∥∥∥∥
C0

∥∥∥∥
`1ν

= τσK,0

∥∥∥∥∥∥∥∥DjϕN (t) + τLN
∫ t

−1
eτ(t−s)LNDjϕN (s)ds

∥∥∥∥
C0

∥∥∥∥
`1ν

= τσK,0

∥∥∥∥∥∥∥∥DjϕN (t) + τQΛN
∫ t

−1
eτ(t−s)ΛNQ−1DjϕN (s)ds

∥∥∥∥
C0

∥∥∥∥
`1ν

≤ τσK,0
∥∥∥|DjN | ‖ϕN‖C0 + |Q||ΛN |DN (1)|Q−1||DjN | ‖ϕN‖C0

∥∥∥
`1ν

.

Lemma 4.9. Let ϕ : [−1, 1]→ C be an infinitely differentiable function, λ ∈ C, τ > 0, q ∈ N and

C̃
def= σK,q

(
|τλ|q+1 e

2τ<(λ) − 1
<(λ) ‖ϕ‖C0 + τ

q∑
i=0
|τλ|i

∥∥∥ϕ(q−i)
∥∥∥
C0

)
,

where ϕ(i) is the i-th derivative of ϕ and σK,q satisfies Definition 2.5. Then∥∥∥∥(I − PK)
(
t 7→ τ

∫ t

−1
eτ(t−s)λϕ(s)ds

)∥∥∥∥
C0
≤ C̃.

Assume further that ϕ can be analytically extended onto Eρ for some ρ > 1, and let

ζ(x) def=


ex − 1
x

x 6= 0,

1 x = 0,
and

Č
def= 2τ(ρ+ ρ−1 + 2)

ρK(ρ− 1) ζ

(
τ

(
<(λ) + 1

2
√
<(λ)2(ρ+ ρ−1)2 + =(λ)2(ρ− ρ−1)2

))
sup
z∈Eρ
|ϕ(z)| .

Then ∥∥∥∥(I − PK)
(
t 7→ τ

∫ t

−1
eτ(t−s)λϕ(s)ds

)∥∥∥∥
C0
≤ Č.

Proof. The first estimate is a direct consequence of the interpolation error estimate described in
Definition 2.5, and of the fact that∥∥∥∥ dq+1

dtq+1

(
t 7→ τ

∫ t

−1
eτ(t−s)λϕ(s)ds

)∥∥∥∥
C0

≤

(
|τλ|q+1 e

2τ<(λ) − 1
<(λ) ‖ϕ‖C0 + τ

q∑
i=0
|τλ|i

∥∥∥ϕ(q−i)
∥∥∥
C0

)
.

The second estimate follows from Theorem 2.7. More precisely, for any z ∈ Eρ we consider γ(s̃) =
−1 + s̃(z + 1), s̃ ∈ [0, 1], so that γ parametrizes the segment [−1, z], and we estimate

τ

∣∣∣∣∫
γ

eτ(z−y)λϕ(y)dy
∣∣∣∣ ≤ τ

(
sup
z∈Eρ
|ϕ(z)|

)(
ρ+ ρ−1

2 + 1
)∫ 1

0

∣∣∣eτ(z+1)(1−s)λ
∣∣∣ ds

=
(

sup
z∈Eρ
|ϕ(z)|

)(
ρ+ ρ−1

2 + 1
)(

eτ<((z+1)λ) − 1
<((z + 1)λ)

)
.

19

Since the map ζ is increasing on R,

sup
z∈Eρ

τ

∣∣∣∣∫
γ

eτ(z−y)λϕ(y)dy
∣∣∣∣ ≤

(
sup
z∈Eρ
|ϕ(z)|

)(
ρ+ ρ−1

2 + 1
)
τζ

(
τ sup
z∈Eρ
<((z + 1)λ)

)
,

where, as already established in the proof of Lemma 4.6,

sup
z∈Eρ
<((z + 1)λ) = <(λ) + 1

2
√
<(λ)2(ρ+ ρ−1)2 + =(λ)2(ρ− ρ−1)2.

From Theorem 2.7, we get∥∥∥∥(I − PK)
(
t 7→ τ

∫ t

−1
eτ(t−s)λϕ(s)ds

)∥∥∥∥
C0
≤ 4
ρK(ρ− 1) sup

z∈Eρ
τ

∣∣∣∣∫
γ

eτ(z−y)λϕ(y)dy
∣∣∣∣ ,

which finishes the proof.

Remark 4.10. Assume we need to control an interpolation error of the form (I − PK)g, where
the function g is known, and one of the above lemmas is applicable. Rather than directly using the
appropriate lemma, one may get a sharper estimate by first splitting the error as follows

‖(I − PK)g‖C0 ≤ ‖(PK0 − PK)g‖C0 + ‖(I − PK0)g‖C0 ,

where K0 is larger than K. The rational behind this splitting is that, by taking K0 large enough,
PK0g becomes an extremely accurate approximation of g, and the first term ‖(PK0 − PK)g‖C0 is
essentially the interpolation error one is interested in. The main difference is now that (PK0−PK)g
is merely a polynomial, hence its C0 norm can very easily be estimated via (12), and we only have
to use one of the above lemmas to control the second term ‖(I − PK0)g‖C0 , which is expected to be
much smaller since K0 is larger than K.

4.4 Truncation errors in Fourier space
Lemma 4.11 (Truncation-error). Define the linear operators K(j)

∞ : X∞ν → X∞ν , j = 0, . . . , 2R−1,
by

[
K(j)
∞ (u) (t)

]
n

def=


0, 0 ≤ |n| ≤ N,

τ

∫ t

−1
eτλn(t−s)(in)jun (s) ds, |n| > N.

(31)

Then K(j)
∞ is bounded and∥∥∥K(j)

∞

∥∥∥
B(X∞ν ,X∞ν)

≤ χ(j)
N

def= sup
n>N

nj
1− e2τ<(λn)

−<(λn) .

Proof. Let u ∈ X∞ν . Then, using that <(λn) = <(λ−n) for all |n| > N ,∥∥∥K(j)
∞ (u)

∥∥∥
X∞ν
≤ τ

∞∑
n=N+1

(‖un‖C0 + ‖u−n‖C0)nj
∥∥∥∥t 7→ ∫ t

−1
eτ<(λn)(t−s)ds

∥∥∥∥
C0
νn

=
∞∑

n=N+1
(‖un‖C0 + ‖u−n‖C0)nj 1− e2τ<(λn)

−<(λn) νn

≤ χ(j)
N ‖u‖`1ν(C0) .

Remark 4.12. Note that χ(j)
N ∼ N−2R+j as N → ∞, by (28). An easy way to get an explicit

value for χ(j)
N is given in Appendix D.

20

5 Bounds
In this section, we derive computable bounds Y , Z and W satisfying assumptions (14)-(16) of
Theorem 2.12, for the operator T , the space X = Xν and the approximate solution ū introduced
in Section 3. Since we use here the case M = 1, we drop the indices i, j and the exponent m from
Y , Z and W .

5.1 Y-bound
In this subsection, we deal with the residual bound Y satisfying assumption (14) of Theorem 2.12.
First, observe that

T (ū)− ū = −AF (ū)

= (−AKNFKN (ū))⊕Π∞NF (ū)⊕Π∞F (ū).

We are going to estimate each of the three terms separately, i.e. we derive bounds YKN , Y∞N and
Y∞ such that

‖AKNFKN (ū)‖XKNν
≤ YKN , ‖Π∞NF (ū)‖X∞Nν

≤ Y∞N , ‖Π∞F (ū)‖X∞ν ≤ Y∞,

so that

Y
def= YKN + ε−1

∞NY∞N + ε−1
∞ Y∞,

satisfies (14).

5.1.1 Finite dimensional projection

A bound for the finite dimensional part can be obtained by simply evaluating

YKN
def= ‖AKNFKN (ū)‖XKNν

.

In order to make this bound computable, we need to be able to rigorously enclose each entry of
FKN (ū), that is, to get enclosure for the vectors

ΠNF (ū)(tk) = eτ(tk+1)LΠNf + τΠN

(∫ tk

−1
eτ(tk−s)Lγ(ū(s))ds

)
− ū (tk) ,

for all 0 ≤ k ≤ K.

Remark 5.1. There are at least two convenient ways of representing (each component of) an
element ū ∈ XKNν , namely via its values at the Chebyshev nodes, or via its coefficients in the
Chebyshev basis. The Chebyshev coefficients representation simplifies all the norm computations,
whereas the representation with the values at the nodes is the one we naturally end up with when
computing the projection of ΠNF (ū) onto XKNν . In practice, we therefore chose to implement FKN
as going from Chebyshev coefficients to values at Chebyshev nodes.

Recalling that L leaves both XNν and X∞ν invariant, we have

ΠNF (ū)(tk) = eτ(tk+1)LNΠNf + τ

∫ tk

−1
eτ(tk−s)LNΠNγ(ū(s))ds− ū (tk) .

Therefore, we need to be able to rigorously enclose integrals of the form∫ tk

−1
eτ(tk−s)LNϕ(s)ds,

where ϕ(s) ∈ C2N−1 and each component of ϕ is a polynomial in s. Here we use the fact that

LN = QΛNQ−1,

21

where ΛN = diag (λ−N , . . . , λN), to write∫ tk

−1
eτ(tk−s)LNϕ(s)ds = Q

∫ tk

−1
eτ(tk−s)ΛNQ−1ϕ(s)ds,

where Q−1ϕ is another vector of polynomials, and thus the whole estimate boils down to rigorously
enclosing integrals of the form ∫ tk

−1
eτ(tk−s)λnϕ(s)ds,

where ϕ is a scalar polynomial. We explain in detail in Appendix C how this can be done.

Remark 5.2. We expect to get YKN small provided ū is an accurate approximate solution of the
(truncated) problem. In practice, if the obtained value of YKN is not small enough for (17) to hold,
we should try to increase K (or to split the time interval, see Section 6).

5.1.2 Interpolation error estimates

We now turn our attention to the computation of the Y∞N bound. We need to estimate

‖Π∞N (T (ū)− ū)‖X∞Nν
= ‖Π∞NF (ū)‖X∞Nν

= ‖‖ΠNF (ū)−ΠKNF (ū)‖C0‖`1ν ,

i.e., to control the interpolation error for ΠNF (ū). Since ΠNF (ū) is a quantity that we can compute
explicitly, we apply the idea presented in Remark 4.10, i.e. we consider K0 ≥ K and estimate

‖ΠNF (ū)−ΠKNF (ū)‖`1ν(C0)

≤ ‖ΠNF (ū)−ΠK0NF (ū)‖`1ν(C0) + ‖ΠK0NF (ū)−ΠKNF (ū)‖`1ν(C0) .

We then estimate ‖ΠK0NF (ū)−ΠKNF (ū)‖`1ν(C0) using (12), and ‖ΠNF (ū)−ΠK0NF (ū)‖`1ν(C0)
by combining Lemma 4.6 and Lemma 4.9 to obtain the following statement.

Proposition 5.3. Let K0 ≥ K,

f̃
def= Q−1ΠNf, c̃Y (s) def= Q−1ΠNγ(ū(s)).

For each n ∈ Z such that |n| ≤ N , consider also 0 ≤ qn ≤ K0, ρn, ρ̌n > 1,

Ωn = 4ρ−K0
n

ρn − 1 exp
(
τ

(
<(λn) + 1

2

√
<(λn)2(ρn + ρ−1

n)2 + =(λn)2(ρn − ρ−1
n)2

))
|f̃n|,

C̃n = σK0,qn

(
|τλn|qn+1 e

2τ<(λn) − 1
<(λn)

∥∥c̃Yn ∥∥C0 + τ

qn∑
i=0
|τλn|i

∥∥∥(c̃Yn)(qn−i)∥∥∥
C0

)
,

and

Čn =
2τ(ρ̌n + ρ̌−1

n + 2)
ρ̌K0
n (ρ̌n − 1)

exp
(
τ

(
<(λn) + 1

2

√
<(λn)2(ρ̌n + ρ̌−1

n)2 + =(λn)2(ρ̌n − ρ̌−1
n)2

))
sup
z∈Eρ̌n

∣∣c̃Yn ∣∣ .
Then

‖ΠNF (ū)−ΠK0NF (ū)‖`1ν(C0) ≤
∥∥∥|Q|(Ω + min

(
C̃, Č

))∥∥∥
`1ν

,

where Ω = (Ωn)−N≤n≤N , C̃ =
(
C̃n
)
−N≤n≤N , Č =

(
Čn

)
−N≤n≤N

, and min
(
C̃, Č

)
has to be

understood component-wise.

22

Proof. First note that

ΠNF (ū)−ΠK0NF (ū)

= (I − PK0)
(
t 7→ eτ(t+1)LNΠNf + τ

∫ t

−1
eτ(t−s)LNΠNγ(ū(s))ds

)
= Q (I − PK0)

(
t 7→ eτ(t+1)ΛN

)
f̃ +Q (I − PK0)

(
t 7→ τ

∫ t

−1
eτ(t−s)ΛN c̃Y (s)ds

)
.

Therefore,

|ΠNF (ū)−ΠK0NF (ū)|

≤ |Q|
(∣∣∣(I − PK0)

(
t 7→ eτ(t+1)ΛN

)∣∣∣ ∣∣f̃ ∣∣+
∣∣∣∣(I − PK0)

(
t 7→ τ

∫ t

−1
eτ(t−s)ΛN c̃Y (s)ds

)∣∣∣∣) , (32)

where the absolute values have to be understood component-wise. We then apply, component-wise,
Lemma 4.6 and Lemma 4.9 to the first and the second term respectively.

Remark 5.4. For each component, it is not clear a priori which choice of qn leads to the smallest
C̃n, so in practice we just compute C̃n for all qn between 1 and K0 and then keep the smallest result.
Similarly, we approximately optimize for each ρn and ρ̌n. Finally, in practice we replace the C0

norms and the supremum over Bernstein ellipses by the easy-to-evaluate upper-bounds provided in
Lemma 2.10.

5.1.3 Truncation in phase space

Next, we compute a bound for the residual associated to the truncation in phase space. First note
that

Π∞ (T (ū)− ū) = Π∞F (ū).
Therefore, for each |n| > N we have

Fn(ū)(t) = eτλn(t+1)fn + τ

∫ t

−1
eλnτ(t−s)γn(ū(s))ds,

which we estimate by

‖Fn (ū)‖C0 ≤ e2τ<(λn)+
|fn|+ ‖γn(ū)‖C0

e2τ<(λn) − 1
<(λn) ,

where <(λn)+ def= max(<(λn), 0). We then get the Y∞ bound by taking the `1ν norm of the
right-hand side. Notice that γ(ū) only has finitely many non-zero coefficients, hence this `1ν norm
amounts to a finite computation. Assuming we have a bound on the `1ν norm of the tail of f , this
contributes to the X∞ν bound on the tail of F after estimating e2τ<(λn)+ uniformly for |n| > N .

5.2 Z-bounds
In this subsection, we now focus on the bound Z satisfying assumption (15) of Theorem 2.12. In
order to estimate the norm of DT (ū), we take an arbitrary h in B1,ε (0) (see (26)), and we again
derive three separate estimates, namely ZKN , Z∞N and Z∞ such that

‖ΠKNDT (ū)h‖XKNν
≤ ZKN , ‖Π∞NDT (ū)h‖X∞Nν

≤ Z∞N , ‖Π∞DT (ū)h‖X∞ν ≤ Z∞,

so that

Z
def= ZKN + ε−1

∞NZ∞N + ε−1
∞ Z∞, (33)

satisfies (15). For each of these bounds, it will be helpful, recalling the Definition 3.9 of D̂F , to
rewrite DT (ū) as

DT (ū)h =
(
I −AD̂F

)
−A

(
DF (ū)− D̂F

)
.

23

Remark 5.5. From (17) (with M = 1), we see that we must have Z < 1 in order to apply
Theorem 2.12. When deriving the estimates ZKN , Z∞N and Z∞, we are going to see how the
choices we made when defining L are instrumental in achieving that goal. A careful choice of the
weights ε∞N and ε∞ is also helpful in order to make Z small. However, unlike what (33) might
suggest, we cannot simply take these weights arbitrarily large, as they will also influence the bounds
ZKN , Z∞N and Z∞ themselves (as well as the forthcoming bound W). Since this dependency is
somewhat intricate and difficult to study a priori, in practice we have to experiment with different
values of these weights in order to select suitable ones.

5.2.1 Finite dimensional projection

By definition of A and D̂F ,∥∥∥ΠKN

(
I −AD̂F

)
h
∥∥∥
XKNν

≤ ‖IKN −AKNDFKN (ū)‖B(XKNν ,XKNν) , (34)

which is just a finite computation. In order to obtain the bound ZKN , the main task is therefore
to enclose

ΠKN

(
DF (ū)− D̂F

)
h = ΠKNDF (ū) (Π∞N + Π∞) (h),

for all h ∈ B1,ε(0). We then have to multiply the result by |AKN | in order to get a bound on∥∥∥ΠKNA
(
DF (ū)− D̂F

)
h
∥∥∥
XKNν

.

We compute

ΠN [DF (ū) (Π∞N + Π∞) (h)] (tk) = τ

∫ tk

−1
eτ(tk−s)LNΠNDγ(ū(s)) (Π∞N + Π∞) (h)(s)ds

= τQ

∫ tk

−1
eτ(tk−s)ΛNQ−1ΠNDγ(ū(s)) (Π∞N + Π∞) (h)(s)ds,

where, according to (29),

ΠNDγ(ū(s)) (Π∞N + Π∞) (h)(s) =
2R−1∑
j=0
DjΠN

[((
g(j)
)′

(ū(s))− v̄(j)
)
∗Π∞Nh(s) +

(
g(j)
)′

(ū(s)) ∗Π∞h(s)
]
−RNΠ∞Nh(s).

By Lemma 4.3 we have that∥∥∥∥ΠN

[((
g(j)
)′

(ū(s))− v̄(j)
)
∗Π∞Nh(s) +

(
g(j)
)′

(ū(s)) ∗Π∞h(s)
]∥∥∥∥

C0

≤ ΠNΦε
((

g(j)
)′

(ū)− v̄(j),
(
g(j)
)′

(ū)
)
,

and therefore, recalling that DN (t) is defined in (30), and using Lemma 4.1, we end up with

|ΠN [DF (ū) (Π∞N + Π∞) (h)] (tk)|

≤ τ |Q|
∫ tk

−1
eτ(tk−s)<(ΛN)ds

×

|Q−1|
2R−1∑
j=0
|Dj |ΠNΦε

((
g(j)
)′

(ū)− v̄(j),
(
g(j)
)′

(ū)
)

+
∣∣Q−1RN

∣∣ ‖Π∞Nh‖C0


≤ |Q|DN (tk)

|Q−1|
2R−1∑
j=0
|Dj |ΠNΦε

((
g(j)
)′

(ū)− v̄(j),
(
g(j)
)′

(ū)
)

+ ε∞NΥ
(
Q−1RN

) .

(35)

24

Remark 5.6. A careful inspection of this bound reveals why we can hope it to be small, so that
ZKN < 1. First, the last term ε∞NΥ

(
Q−1RN

)
should be negligible, as RN should be very small:

it simply accounts for the fact that we do not necessarily diagonalize L̃N exactly when defining L,
see Section 3.4. More importantly, the term ΠNΦε

((
g(j))′ (ū)− v̄(j),

(
g(j))′ (ū)

)
is expected to be

small because we take v̄(j) as a constant-in-time approximation of
(
g(j))′ (ū). Notice that, if we

had taken L to be simply (−1)R+1D2R, then there would be no −v̄ terms, and the only way of
making ΠNΦε

((
g(j))′ (ū),

(
g(j))′ (ū)

)
small would have been to take ε∞N small, which would then

be detrimental for the ε−1
∞N factor in Z, see (33). We also point out that this estimate will benefit

from the domain decomposition procedure (presented in details in Section 6): by splitting the time
interval into smaller subintervals, and by choosing the v̄(j) piece-wise constant, we will be able to
get a more accurate approximation of

(
g(j))′ (ū).

5.2.2 Interpolation error estimates

Next, regarding the projection onto X∞Nν we first notice that

Π∞N
(
I −AD̂F

)
= 0.

Therefore, we have to bound, for any h ∈ B1,ε(0),∥∥∥Π∞NA
(
DF (ū)− D̂F

)
h
∥∥∥
X∞Nν

= ‖Π∞N (DF (ū)h+ h)‖X∞Nν

=
∥∥∥∥∥∥∥∥(I − PK)

(
t 7→ τQ

∫ t

−1
eτ(t−s)ΛNQ−1ΠNDγ(ū(s))h(s)ds

)∥∥∥∥
C0

∥∥∥∥
`1ν

,

which we do by using Lemma 4.8, and then Lemma 4.3, namely∥∥∥Π∞NA
(
DF (ū)− D̂F

)
h
∥∥∥
X∞Nν

≤ τσK,0

(2R−1∑
j=0

∥∥∥|DjN |+ |Q||ΛN |DN (1) |Q−1||DjN |
∥∥∥
B(`1ν ,`1ν)

×
∥∥∥∥ΠN

[((
g(j)
)′

(ū)− v̄(j)
)
∗ΠNh+

(
g(j)
)′

(ū) ∗Π∞h
]∥∥∥∥

`1ν(C0)

+
∥∥IN + |Q||ΛN |DN (1) |Q−1|

∥∥
B(`1ν ,`1ν) ‖RNΠNh‖`1ν(C0)

)

≤ τσK,0

(2R−1∑
j=0

∥∥∥|DjN |+ |Q||ΛN |DN (1) |Q−1||DjN |
∥∥∥
B(`1ν ,`1ν)

Φ̃ε
((

g(j)
)′

(ū)− v̄(j),
(
g(j)
)′

(ū)
)

+ max(1, ε∞N)
∥∥IN + |Q||ΛN |DN (1) |Q−1|

∥∥
B(`1ν ,`1ν) ‖RN‖B(`1ν ,`1ν)

)
, (36)

which gives us the Z∞N estimate.
Remark 5.7. As was the case for ZKN , we see here that the definition of L and the corresponding
choice of v̄ helps to make Z∞N smaller. Also, we see here the influence of K: the larger we
take K, the smaller the constant σK,0 becomes. In Section 6, we will introduce another option to
make Z∞N smaller, namely to subdivide the time interval.

5.2.3 Truncation in phase space

Again, we first notice that

Π∞
(
I −AD̂F

)
= 0.

25

Therefore, our last remaining task regarding the Z bound is to estimate, still for any h ∈ B1,ε(0),∥∥∥Π∞A
(
DF (ū)− D̂F

)
h
∥∥∥
X∞ν

= ‖Π∞ (DF (ū)h+ h)‖X∞ν .

Introducing g̃(j) ∈ Xν , j = 0, . . . , 2R− 1, defined by

g̃(j)
n (s) def=


((

g(j)
)′

(ū(s))− v̄(j)
)

0
n = 0((

g(j)
)′

(ū(s))
)
n

n 6= 0,

we have for all |n| > N and t ∈ [−1, 1],

(DF (ū)h+ h)n(t) = τ

∫ t

−1
eτ(t−s)λn

2R−1∑
j=0

(in)j
(
g̃(j)(s) ∗ h(s)

)
n

ds.

By Lemmas 4.11 and 3.6 and the Banach algebra property, we infer that

‖Π∞(DF (ū)h+ h)‖X∞ν ≤
2R−1∑
j=0

χ
(j)
N

∥∥∥g̃(j) ∗ h
∥∥∥
`1ν(C0)

≤ ϑε
2R−1∑
j=0

χ
(j)
N

∥∥∥∥∥∥g̃(j)
∥∥∥
C0

∥∥∥
`1ν

,

which gives us the Z∞ bound.

Remark 5.8. Looking at the constants χ(j)
N (see Lemma 4.11), we see that Z∞ can be made as

small as we want by taking N large enough.

5.3 W-bound
In this subsection, we finally derive a computable bound W satisfying assumption (16) of Theo-
rem 2.12. In order to estimate the norm of DT (u)−DT (ū), for any u in Br∗,ε(ū), we take arbitrary
h and v in B1,ε (0), and we again derive three separate estimates, namely WKN , W∞N and W∞
such that

‖ΠKN (DT (ū+ r∗v)−DT (ū))h‖XKNν
≤WKN r∗ ‖v‖Xν ,

‖Π∞N (DT (ū+ r∗v)−DT (ū))h‖X∞Nν
≤W∞N r∗ ‖v‖Xν ,

‖Π∞ (DT (ū+ r∗v)−DT (ū))h‖X∞ν ≤W∞ r∗ ‖v‖Xν ,

so that

W
def= WKN + ε−1

∞NW∞N + ε−1
∞W∞

satisfies (16).
We start from the fact that DT (ū + r∗v) −DT (ū) = −A (DF (ū+ r∗v)−DF (ū)), which will

essentially be controlled by a bound on the second derivative D2F . We compute

[(DF (ū+ r∗v)−DF (ū))h] (t)

= τ

∫ t

−1
eτ(t−s)L

(
Dγ (ū (s) + r∗v (s))−Dγ (ū (s))

)
h(s) ds

= τr∗

∫ t

−1
eτ(t−s)L

∫ 1

0
D2γ (ū (s) + s̃r∗v (s)) [h (s) , v (s)] ds̃ ds

= τr∗

∫ t

−1
eτ(t−s)L

2R−1∑
j=0
Dj
∫ 1

0

(
g(j)
)′′

(ū (s) + s̃r∗v (s)) ∗ v(s) ∗ h(s) ds̃ ds. (37)

26

5.3.1 Finite dimensional projection

Let us start with estimating the finite dimensional projection of (37):∣∣∣∣∣∣ΠNτr∗

∫ tk

−1
eτ(tk−s)L

2R−1∑
j=0
Dj
∫ 1

0

(
g(j)
)′′

(ū (s) + s̃r∗v (s)) ∗ v(s) ∗ h(s) ds̃ ds

∣∣∣∣∣∣
≤ r∗

2R−1∑
j=0

τ

∣∣∣∣Q∫ tk

−1
eτ(tk−s)ΛNQ−1Dj

∫ 1

0
ΠN

((
g(j)
)′′

(ū (s) + s̃r∗v (s)) ∗ v(s) ∗ h(s)
)

ds̃ ds
∣∣∣∣

≤ r∗
2R−1∑
j=0
|Q|DN (tk) |Q−1| |Dj |ΠN

(∣∣∣∣(g(j)
)′′∣∣∣∣ (‖ū‖C0 + r∗‖v‖C0) ∗ ‖v‖C0 ∗ ‖h‖C0

)
, (38)

where
∣∣∣(g(j))′′∣∣∣ is a polynomial defined as in Lemma 4.5. We then consider the operators Ξ(j) :

C2N+1 → XKNν defined by

Ξ(j) def=

 |Q|DN (t0) |Q−1| |Dj |
...

|Q|DN (tK) |Q−1| |Dj |

 , (39)

and introduce

B(j) =


B

(j)
0
...

B
(j)
K

 = |AKN |Ξ(j)

with B(j)
k : C2N+1 → C2N+1.

Remark 5.9. As discussed in Remark 5.1, FKN goes from Chebyshev coefficients to values at
Chebyshev nodes, and therefore so does DFKN (ū). Since AKN acts as an approximate inverse of
DFKN (ū), we construct it to go from values at Chebyshev nodes back to Chebyshev coefficients,
which is why we get different Chebyshev coefficients B(j)

k in B(j), whereas we had values at Cheby-
shev nodes tk in Ξ(j).

We now use Lemma 3.6 and Lemma 4.5 to obtain

‖ΠKN (A [(DF (ū+ r∗v)−DF (ū))h])‖XKNν

≤ r∗
2R−1∑
j=0

∥∥∥∥B(j)ΠN

(∣∣∣∣(g(j)
)′′∣∣∣∣ (‖ū‖C0 + r∗‖v‖C0) ∗ ‖v‖C0 ∗ ‖h‖C0

)∥∥∥∥
XKNν

≤ r∗
2R−1∑
j=0

(∥∥∥B(j)
0

∥∥∥
B(`1ν ,`1ν)

+ 2
K∑
k=1

∥∥∥B(j)
k

∥∥∥
B(`1ν ,`1ν)

)

×
∥∥∥∥ΠN

(∣∣∣∣(g(j)
)′′∣∣∣∣ (‖ū‖C0 + r∗‖v‖C0) ∗ ‖v‖C0 ∗ ‖h‖C0

)∥∥∥∥
`1ν

≤ r∗ ‖v‖Xν ϑ
2
ε

2R−1∑
j=0

(∥∥∥B(j)
0

∥∥∥
B(`1ν ,`1ν)

+ 2
K∑
k=1

∥∥∥B(j)
k

∥∥∥
B(`1ν ,`1ν)

)∣∣∣∣(g(j)
)′′∣∣∣∣ (‖ū‖`1ν(C0) + ϑεr∗

)
,

which, after removing the r∗‖v‖Xν factor, gives the WKN bound.

5.3.2 Interpolation error estimates

Next, we estimate

‖Π∞NA (DF (ū+ r∗v)−DF (ū))h‖X∞Nν
= ‖Π∞N (DF (ū+ r∗v)−DF (ū))h‖X∞Nν

,

27

by using Lemma 4.8 on (37), and then once again Lemma 3.6 and Lemma 4.5. This yields

‖Π∞NA (DF (ū+ r∗v)−DF (ū))h‖X∞Nν

≤ r∗τσK,0
2R−1∑
j=0

∥∥|Dj |+ |Q||ΛN |DN (1)|Q−1||Dj |
∥∥
B(`1ν ,`1ν)

×
∥∥∥∥∥∥∥∥ΠN

∫ 1

0

(
g(j)
)′′

(ū (t) + s̃rv (t)) ∗ v(t) ∗ h(t) ds̃
∥∥∥∥
C0

∥∥∥∥
`1ν

≤ r∗ ‖v‖Xν ϑ
2
ετσK,0

2R−1∑
j=0

∥∥|Dj |+ |Q||ΛN |DN (1)|Q−1||Dj |
∥∥
B(`1ν ,`1ν)

∣∣∣∣(g(j)
)′′∣∣∣∣ (‖ū‖`1ν(C0) + ϑεr∗

)
,

which, after removing the r∗‖v‖Xν factor, gives the W∞N bound.

5.3.3 Truncation in phase space

Finally, for the tail part, we use once again Lemmas 4.11, 3.6 and 4.5, to get

‖Π∞A (DF (ū+ r∗v)−DF (ū))h‖X∞ν = ‖Π∞ (DF (ū+ r∗v)−DF (ū))h‖X∞ν

≤ r∗ ‖v‖Xν ϑ
2
ε

2R−1∑
j=0

χ
(j)
N

∣∣∣∣(g(j)
)′′∣∣∣∣ (‖ū‖`1ν(C0) + ϑεr∗

)
,

(40)

which, after removing the r∗‖v‖Xν factor, gives the W∞ bound.

6 Domain decomposition
In this section, we introduce a generalization of the setup introduced in Section 3, which is more
efficient for handling longer integration times. Indeed, as one would expect, most of the estimates
derived in Section 5 get worse when the integration time τ increases. This happens in very explicit
ways, as the Y∞N , Z∞N and W∞N estimates all contain a multiplicative factor τ , but also in
slightly more hidden but no less impactful manners, for instance in the ZKN and Z∞N estimates,
which depend on how well the functions

(
g(j))′ (ū) are approximated by the time-independent v̄(j).

A natural option to compensate for these growing factors when τ increases would be to also
increase the degree K of Chebyshev interpolation used. Indeed, several of the above-mentioned
bounds are proportional to the interpolation error constant σK,0, namely Z∞N andW∞N , whereas
Y∞N behaves even more favorably when K increases, as Cl or even analytic interpolation error
estimates can be used there (as opposed to the C1 interpolation error estimate corresponding to
σK,0). However, it should already be noted that increasing K does not improve the factors related
to the difference between

(
g(j))′ (ū) and v̄(j) in the Z estimates.

Another possibility is to split the time domain into multiple smaller subdomains, and to use
several “copies” of the zero finding problem introduced previously, which are only weakly coupled
via “matching conditions” at the boundary between successive subintervals. If we consider M
subintervals, assumed for the moment to have equal length to simplify the discussion, this essen-
tially means replacing τ by τ

M in the estimates mentioned above, and several estimates then scale
like τ

M σK,0. Since σK,0 behaves roughly like ln(K)
K (see Theorem B.2), we already see that increas-

ingM is slightly more efficient than increasing K for these estimates (see [5] for a more throughout
discussion on this specific aspect). Besides, for the critical estimate Z, increasing M instead of
K has another substantial benefit related to our set-up with the time independent L. Indeed, we
are now allowed to consider a different L on each (now smaller) subdomain. In other words, we
can approximate

(
g(j))′ (ū) by v̄(j) that is piece-wise constant in time rather than constant over

the whole time interval, resulting in a much smaller difference
(
g(j))′ (ū)− v̄(j), and therefore in a

28

smaller Z estimate. For the sake of simplifying the discussion, we completely ignored the impact
of the matching conditions on the estimates here, but this will be discussed in detail in Section 6.3.

A key aspect that we wish to emphasize is that, thanks to these matching conditions, we still
validate the entire solution at once. This means the domain decomposition setup can then be used
to solve boundary value problems in time, for instance between local unstable and stable manifolds
of objects of interest. This will be the subject of a future work.

An alternative approach for long time integration is time stepping: we also decompose the
time domain, but then validate the solution on each subdomain successively, while rigorously
propagating the errors/enclosures obtained at each step. While this direction is not the main focus
of our work, the approach we developed can also handle time-stepping, which we describe in more
detail in Appendix A.

In this section, we describe the modifications required for the domain decomposition approach.
One key aspect is that the approximate inverse A should be modified judiciously. Once this is
done, most of the computations presented in Section 5 can be re-used, and we therefore mainly
describe the new estimates that have to be incorporated.

6.1 How to adapt the setup
We start again from (20), for t ∈ [0, 2τ], but instead of dealing with the entire time interval at
once, we consider M ∈ N≥2, and τ1, τ2, . . . , τM > 0 such that

∑M
m=1 τm = τ . Splitting t ∈ [0, 2τ]

into M subintervals (each of length 2τm), and then rescaling to [−1, 1] on each subinterval, the
initial value problem (21) is then equivalent to

du(m)

dt
(t)− τmL(m)u(m)(t) = τm

(−1)R+1D2Ru(m)(t) +
2R−1∑
j=0
Djg(j)(u(m))(t)− L(m)u(m)(t)

 ,

t ∈ [−1, 1],

u(m) (−1) = u(m−1)(1),
(41)

for all m = 1, . . . ,M , where u(0)(1) def= f . A natural space in which to study this domain decom-
position problem is XMν

def= (Xν)M , with the max-norm

‖u‖XMν
def= max

1≤m≤M

∥∥∥u(m)
∥∥∥
Xν
.

Definition 6.1. The zero finding map F : XMν → XMν for (1) is defined by

F (m) (u) (t) def= eτm(t+1)L(m)
u(m−1)(1) + τm

∫ t

−1
eτm(t−s)L(m)

γ(m)(u(m)(s))ds− u(m) (t) ,

for all m = 1, . . . ,M , where

γ(m)(u(m)) = (−1)R+1D2Ru(m) +
2R−1∑
j=0
Djg(j)(u(m))− L(m)u(m).

Each L(m) is defined, on its corresponding subinterval, as L was defined in Section 3.4.
One can now define a finite dimensional reduction of F and a Newton-like operator T in almost

exactly the same way as in Section 3.3. For the sake of completeness, we present the essential
details. To keep the coupling between the successive subdomains more easily tractable, we work
with a single choice of K and N for all subdomains.

Before introducing the approximate inverse, let us also consider the linear operatorG : (Xν)M →
(Xν)M defined by

G(m) (u) (t) def=
{
− u(m) (t) m = 1,

e(t+1)τmL(m)
u(m−1)(1)− u(m) (t) m = 2, . . . ,M.

29

Notice that G is invertible, and that(
G−1(u)

)(m) (t) =
− u(m) (t) m = 1,

− u(m)(t)− e(t+1)τmL(m)
m−1∑
l=1

 m−1∏
j=l+1

e2τjL(j)

u(l)(1) m = 2, . . . ,M.

with the convention
∏m−1
j=l+1 e

2τjL(j) = I when l = m− 1.
We extend the projections ΠKN ,Π∞N and Π∞ from the single domain to the multiple domains

setting in the natural way. This gives rise to the subspaces

(XKNν)M = ΠKN

(
XMν

)
, (X∞Nν)M = Π∞N

(
XMν

)
, (X∞ν)M = Π∞

(
XMν

)
and to the decomposition

XMν = (XKNν)M ⊕ (X∞Nν)M ⊕ (X∞ν)M .

In order to introduce an appropriate approximate inverse, it will be convenient to use a block-
decomposition of linear operators acting on XMν , based on the above decomposition.

Definition 6.2 (Approximation of DF (ū)). Given ū in
(
XKNν

)M , we introduce an approximate
derivative D̂F : XMν → XMν of F at ū defined by

D̂F
def=



DFMKN (ū) 0 0

Π∞NGΠKN −IM∞N 0

0 0 Π∞GΠ∞


.

Remark 6.3. Note that ΠKNGΠ∞N = 0 and Π∞NGΠ∞N = −IM∞N , so that this approximate
derivative D̂F is simply obtained by always keeping the “important” part of DF , namely G, and
by neglecting the others terms except on the finite dimensional subspace

(
XKNν

)M .
It is tempting be somewhat lazy, go one step further and also neglect the Π∞NGΠKN term, so

that D̂F and then its inverse A become block-diagonal, which makes subsequent estimates easier.
However, in practice we want the approximate derivative, and especially the approximate inverse
of the derivative, to become more and more accurate when N and K increase, so that, at least
in principle, we always get a contraction for T by taking the finite dimensional projection large
enough. If the Π∞NGΠKN term is not included, the consequence is that quantities like∥∥∥(I − PK)

(
t 7→ e(t+1)τmλ(m)

n

)∥∥∥
C0

for all |n| ≤ N would have to be estimated in the new Z1
∞N bound, and would have to be small

enough for us to prove that T is a contraction. Because these exponentials get stiffer and stiffer
when N increases, this would introduce a very undesirable dependency between K and N , somewhat
reminiscent of the CFL condition, where K (the time discretization parameter) has to be large
enough with respect to N (the space discretization parameter).

Including the Π∞NGΠKN term in D̂F , and adapting A accordingly, allows us to alleviate this
limitation.

30

Definition 6.4 (Approximate inverse of DF (ū)). Given ū in
(
XKNν

)M , we introduce an approx-
imate inverse A : XMν → XMν of DF (ū), defined by

A
def=



AKN 0 0

Π∞NGΠKNAKN −IM∞N 0

0 0 Π∞G−1Π∞


,

where AKN is a numerically computed approximate inverse of DFMKN (ū).

Up to the fact that AKN is not the exact inverse of DFMKN (ū), A is the inverse of D̂F . We
can now again consider a Newton-like operator T = I −AF , this time mapping the product space
XMν into itself, and try to validate a posteriori a numerically computed approximate solution ū by
using Theorem 2.12.

On each copy of Xν in XMν , we use the norm defined in (25), possibly with different weights ε∞N
and ε∞, which are thus denoted by ε(m)

∞N and ε(m)
∞ . For any u ∈ XMν and r = (r(1), . . . , r(m)) ∈ RM>0,

we define

BMr,ε(u) =
M∏
m=1

Br(m),ε(m)

(
u(m)

)
,

which will play the role of Box(u, r) when applying Theorem 2.12.

6.2 Estimates on G and G−1

We collect here basic estimates on G and G−1 that will be used several times in the next sub-
section, where we describe the extra terms appearing in the bounds Y , Z and W when domain
decomposition is used.

Lemma 6.5. Let w̄ ∈
(
XKNν

)M . Then,∥∥∥Π∞NG(1) (w̄)
∥∥∥
`1ν(C0)

= 0

and, for m = 2, . . . ,M ,∥∥∥Π∞NG(m) (w̄)
∥∥∥
`1ν(C0)

≤
∥∥∥|Q|∥∥∥(I − PK)

(
t 7→ e(t+1)τmΛ(m)

N

)∥∥∥
C0
|Q−1|

∣∣∣w̄(m−1)(1)
∣∣∣∥∥∥
`1ν

.

Proof. By definition of G, we have

Π∞NG(m) (w̄) =

0 m = 1,

Π∞N
(
t 7→ e(t+1)τmL(m)

w̄(m−1)(1)
)

m = 2, . . . ,M.

For all m = 2, . . . ,M , we then estimate∥∥∥∥∥∥(I − PK)
(
t 7→ e(t+1)τmL(m)

N w̄(m−1)(1)
)∥∥∥

C0

∥∥∥
`1ν

≤
∥∥∥∥∥∥(I − PK)

(
t 7→ e(t+1)τmL(m)

N

)∥∥∥
C0

∣∣∣w̄(m−1)(1)
∣∣∣∥∥∥
`1ν

≤
∥∥∥|Q|∥∥∥(I − PK)

(
t 7→ e(t+1)τmΛ(m)

N

)∥∥∥
C0
|Q−1|

∣∣∣w̄(m−1)(1)
∣∣∣∥∥∥
`1ν

.

31

While these interpolation errors for stiff exponentials were exactly the terms we were worried
about when we discussed the definition of D̂F and A in Remark 6.3, they are less worrisome here
because they get multiplied by

∣∣w̄(m−1)(1)
∣∣, which are not specified here but which will always be

small when we apply Lemma 6.5 in Section 6.3 repeatedly.

Remark 6.6. In order to make this estimate computable, we have to get estimates on∥∥∥(I − PK)
(
t 7→ e(t+1)τmλ(m)

n

)∥∥∥
C0

for all |n| ≤ N . This is accomplished using Lemma 4.6 together with Remark 4.10. Similarly to
what we did in Section 5.1.2, we estimate this error by splitting it into an almost exact part, using
an interpolation polynomial of high degree K0, and an interpolation error estimate:∥∥∥(I − PK)

(
t 7→ e(t+1)τmλ(m)

n

)∥∥∥
C0
≤∥∥∥(PK0 − PK)

(
t 7→ e(t+1)τmλ(m)

n

)∥∥∥
C0

+
∥∥∥(I − PK0)

(
t 7→ e(t+1)τmλ(m)

n

)∥∥∥
C0
,

where the first term can be easily estimated via (12), and for the second one we use again Lemma 4.6,
for some well chosen ρ > 1 (in practice a different ρ is taken for each m and n).

Lemma 6.7. Let u ∈ XMν . For m = 1, . . . ,M and |n| > N ,

∥∥∥(G−1(u)
)(m)
n

∥∥∥
C0
≤
∥∥∥u(m)

n

∥∥∥
C0

+
m−1∑
l=1

exp

2τm<
(
λ(m)
n

)+
+ 2

m−1∑
j=l+1

τj<
(
λ(j)
n

)∣∣∣u(l)
n (1)

∣∣∣ ,
where we again use the convention that empty sums are equal to 0. Moreover,

∥∥∥Π∞
(
G−1(u)

)(m)
∥∥∥
`1ν(C0)

≤
∥∥∥Π∞u(m)

∥∥∥
`1ν(C0)

+
m−1∑
l=1

eµm,l
∥∥∥Π∞u(l)

∥∥∥
`1ν(C0)

,

where

µm,l
def= sup

n>N

2τm<
(
λ(m)
n

)+
+ 2

m−1∑
j=l+1

τj<
(
λ(j)
n

) .

Proof. The proof of Lemma 6.7 follows directly from the definition of G−1 and the triangle in-
equality.

6.3 How to adapt the bounds
In this subsection, we derive computable bounds Y , Z and W satisfying assumptions (14)-(16) of
Theorem 2.12, for the operator T , the space X = XMν and an approximate solution ū in

(
XKNν

)M .
The dependencies in F on the various subdomains are mostly uncoupled, except for the matching
conditions at the boundaries, which means many of the estimations derived in Section 5 can be
re-used. Throughout this section we will comment sparsely on the bookkeeping involved to obtain
the “component” bounds Y (m), Z(m)

i and W
(m)
ij , which are needed for using Theorem 2.12 with

M > 1.
As was done in Section 5, each bound Y (m), Z(m)

i and W
(m)
ij will be split into three parts

corresponding to the decomposition (23) of Xν , i.e.

Y (m) := Y
(m)
KN +

(
ε
(m)
∞N

)−1
Y

(m)
∞N +

(
ε(m)
∞

)−1
Y (m)
∞ , for all 1 ≤ m ≤M,

and similarly for Z(m)
i and W (m)

ij .

32

Remark 6.8. Similarly to what we did in Section 5, it will be convenient to consider arbitrary h
and v in BM1,ε(0) in order to derive the bounds Z(m)

i and W (m)
ij . That is we are going to look for

Z
(m)
i such that

∥∥∥π(m)DT (ū)h
∥∥∥
Xν
≤

M∑
i=1

Z
(m)
i

∥∥∥h(i)
∥∥∥
Xν
,

and for W (m)
ij such that, writing an arbitrary u ∈ BMr∗,ε(ū) as ū+ r∗v,

∥∥∥π(m) (DT (ū+ r∗v)−DT (ū))h
∥∥∥
Xν
≤ r∗

M∑
i=1

M∑
j=1

W
(m)
ij

∥∥∥h(i)
∥∥∥
Xν

∥∥∥v(j)
∥∥∥
Xν
.

6.3.1 Modifications for YKN
Each entry of FKN (ū) can still be computed (or more precisely enclosed), and so the generalization
is straightforward: we simply consider

Y
(m)
KN

def=
∥∥∥π(m) (AKNFKN (ū))

∥∥∥
XKNν

, m = 1, . . . ,M,

with the F and AKN of Section 6.1.

6.3.2 Modifications for Y∞N
On each subdomain 1 ≤ m ≤ M , we have to estimate

∥∥Π∞NF (m)(ū)
∥∥
Xν

, for which we can
reproduce verbatim the analysis of Section 5.1.2. However, we also get an additional term

Π∞NGΠKNAKNFKN (ū)

to estimate. We therefore consider w̄ = AKNFKN (ū) ∈
(
XKNν

)M , and use Lemma 6.5 together
with Remark 6.6 to get an upper bound for this quantity.

6.3.3 Modifications for Y∞
We have to bound

π(m)Π∞ (T (ū)− ū) = π(m)G−1 (Π∞F (ū)) ,

and to that aim we use the first part of Lemma 6.7, together with∣∣∣F (m)
n (ū) (1)

∣∣∣ =
∣∣∣∣e2τmλ(m)

n ū(m−1)
n (1) + τm

∫ 1

−1
e(1−s)τmλ(m)

n γ(m)
n (ū(s))ds

∣∣∣∣ , (42)

and ∥∥∥F (m)
n (ū)

∥∥∥
C0
≤ e2τm<(λ(m)

n)+ ∣∣∣ū(m−1)
n (1)

∣∣∣+
∥∥∥γ(m)

n (ū)
∥∥∥
C0

e2τm<(λ(m)
n) − 1

<(λ(m)
n)

, (43)

for each m = 1, . . . ,M and n > N . Notice that, except maybe for m = 1, ū(m−1)
n = 0 because

we only consider |n| > N , and that there are only finitely many n for which γ(m)
n (ū), and hence

F
(m)
n (ū) , are non-zero. Therefore we can compute the associated `1ν norm, which gives us the

bounds Y (m)
∞ for 1 ≤ m ≤M .

33

6.3.4 Modifications for ZKN
Up to using the new definition of A and D̂F from Section 6.1, there is no significant change to the
ΠKN (I−AD̂F) part of that estimate, which remains a finite computation. In view of (15) we just
need to extract the different components (ZKN)(m)

i , which is essentially a bookkeeping task. Let
A

(m,m′)
KN be the block of the matrix AKN linking the m′-th to the m-th domain, and similarly for

DFMKN (ū)(m,m′), then we need to compute ‖IKN −
∑M
m′=1A

(m,m′)
KN DFMKN (ū)(m′,i)‖B(XKNν ,XKNν) as

the first part of the bound (ZKN)(m)
i .

Regarding the ΠKN

(
DF (ū)− D̂F

)
h part, we can reproduce verbatim the analysis of Sec-

tion 5.2.1 on each subdomain separately. There are no new terms coming from the matching
conditions, since Π∞Nh(m)(1) = 0 for 1 ≤ m ≤ M . When determining the contribution of this
term to the bound (ZKN)(m)

i , the only coupling between the domains is through left-multiplication
by AMKN .

6.3.5 Modifications for Z∞N

Regarding the Π∞N
(
I −AD̂F

)
part of that estimate, we again get an extra term of the form

Π∞NG (w̄), this time with

w̄ =
(
IMKN −AMKNDFMKN (ū)

)
hKN ,

for h ∈ BM1,ε(0). We can then easily estimate each |w̄(m)(1)|, and subsequently use Lemma 6.5.
The decomposition into components (Z∞N)(m)

i is a bookkeeping exercise as already outlined in
Section 6.3.4.

Regarding the Π∞NA
(
DF (ū)− D̂F

)
part of that estimate, we also pick up another term of

the form Π∞NG (w̄), this time with

w̄ = AKNΠKN

(
DF (ū)− D̂F

)
h,

for h ∈ BM1,ε(0). The ΠKN

(
DF (ū)− D̂F

)
h part was already estimated in (35), since all the extra

terms related to the coupling appearing in DF (ū) are also included in D̂F and therefore cancel
out. We then simply have to multiply this by |AKN |, evaluate the value at 1, use Lemma 6.5, and
do diligent bookkeeping to decompose the contributions to (Z∞N)(m)

i .

6.3.6 Modifications for Z∞
We have to estimate, for all m = 1, . . . ,M ,∥∥∥π(m)Π∞A

(
DF (ū)− D̂F

)
h
∥∥∥
X∞ν

=
∥∥∥π(m)G−1 (Π∞w)

∥∥∥
X∞ν

where

w = DF (ū)(h)−G(h),

for h ∈ BM1,ε(0). For all |n| > N , and 1 ≤ m ≤ M , with the notation g̃(m,j) inherited from
Section 5.2.3,

w(m)
n (t) = τm

∫ t

−1
eτm(t−s)λ(m)

n

2R−1∑
j=0

(in)j
(
g̃(m,j)(s) ∗ h(m)(s)

)
n

 ds,

hence ∥∥∥Π∞w(m)
∥∥∥
`1ν(C0)

≤ ϑε
∥∥∥h(m)

∥∥∥
Xν

2R−1∑
j=0

χ
(m,j)
N

∥∥∥g̃(m,j)
∥∥∥
`1ν(C0)

, for m = 1, . . . ,M,

which can be combined with the second part of Lemma 6.7 to obtain the (Z∞)(m)
i estimates.

34

6.3.7 Modifications for WKN

As was the case for the Y and the Z bounds, there is nothing to change in the finite part of the
W bound, we can just re-use, component-wise, the bounds from Section 5.3.1.

6.3.8 Modifications for W∞N
We get a final extra term of the form Π∞NG (w̄), this time with

w̄ = AKNΠKN (DF (ū+ r∗v)−DF (ū))h,

for h, v ∈ BM1,ε(0). The ΠKN (DF (ū+ r∗v)−DF (ū))h part was already estimated in (38). Start-
ing back from there, and also generalizing the notation Ξ(j) from (39) to multiple domains:

Ξ(m,j) def=


|Q(m)|D(m)

N (t0) |(Q(m))−1| |Dj |
...

|Q(m)|D(m)
N (tK) |(Q(m))−1| |Dj |

 ,

we get, for all m = 1, . . . ,M ,∣∣∣ΠKN

(
DF (m)(ū+ r∗v)−DF (m)(ū)

)
h
∣∣∣ ≤

r∗

2R−1∑
j=0

Ξ(m,j) ΠN

(∣∣∣∣(g(j)
)′′∣∣∣∣ (‖ū(m)‖C0 + r∗‖v(m)‖C0

)
∗ ‖v(m)‖C0 ∗ ‖h(m)‖C0

)
.

We then define the “evaluation at t = 1” operator E1 : XKNν → C2N+1 by (E1u)n = un0 +
2
∑K
k=1 unk, and use Lemmas 3.6, 4.1 and 4.5 to obtain the (W∞N)(m)

ij estimates.

|w̄(m)(1)| ≤

r∗ϑ
2
ε

M∑
m′=1

‖v(m′)‖Xν‖h(m′)‖Xν
2R−1∑
j=0

Υ
(
|E1A

(m,m′)
KN |Ξ(m′,j)

) ∣∣∣∣(g(j)
)′′∣∣∣∣ (∥∥∥ū(m′)

∥∥∥
`1ν(C0)

+ ϑεr
∗
)
,

(44)

where A(m,m′)
KN is the block of the matrix AKN linking the m′-th to the m-th domain. Finally, we

apply Lemma 6.5 to obtain the (W∞N)(m)
ij estimates.

6.3.9 Modifications for W∞
We have to estimate, for all m = 1, . . . ,M ,∥∥∥π(m)Π∞A (DF (ū+ r∗v)−DF (ū))h

∥∥∥
X∞ν

=
∥∥∥π(m)G−1 (Π∞z)

∥∥∥
X∞ν

,

where
z = (DF (ū+ r∗v)−DF (ū))h.

Such a term was already estimated in (40), and we obtain

∥∥∥Π∞z(m)
∥∥∥
`1ν(C0

≤ ϑ2
εr∗

∥∥∥v(m)
∥∥∥
Xν

∥∥∥h(m)
∥∥∥
Xν

2R−1∑
j=0

χ
(m,j)
N

∣∣∣∣(g(j)
)′′∣∣∣∣ (∥∥∥ū(m)

∥∥∥
`1ν(C0)

+ ϑεr
∗
)
,

for all 1 ≤ m ≤ M , which can be combined with the second part of Lemma 6.7 to obtain the
(W∞)(m)

ij estimates.

35

7 Applications
In this section, we present some applications of the validation procedure introduced in this paper,
and discuss the obtained results. First, using the domain decomposition approach, we showcase the
broad applicability of our method in Section 7.1, by using it to rigorously integrate several PDEs
of the form (1) having different properties and different dynamics. In Section 7.2, we highlight the
influence of one of the most significant aspects of this work, namely the solution-adapted choice of
the operator L made in Section 3.4, by reproducing some of the proofs from Section 7.1 but now
with a trivial choice of L, and by comparing the results. In Section 7.3, we discuss the merits of
time stepping as an alternative to domain decomposition.

7.1 Different examples of equations
We start with what is arguably the simplest nonlinear parabolic equation.
Theorem 7.1. Consider the Fisher-KPP equation

∂u

∂t
= ∂2u

∂x2 + u(1− u), (t, x) ∈ (0, tend]× [0, L],

∂ju

∂xj
u(t, 0) = ∂ju

∂xj
u(t, L), t ∈ [0, tend], j = 0, 1,

u(0, x) = f(x), x ∈ [0, L],

(45)

with L = 4π, tend = 4, and f(x) = 0.5−0.5 sin
(2πx
L

)
− cos

(4πx
L

)
+ 0.2 sin

(8πx
L

)
. Let ū = ū(t, x) be

the function represented in Figure 2, and whose precise description in terms of Fourier-Chebyshev
coefficients can be downloaded at [42]. Then, there exists a smooth solution u of (45) such that

sup
t∈[0,tend]

sup
x∈[0,L]

|u(t, x)− ū(t, x)| ≤ 5× 10−2. (46)

Figure 2: The approximate solution ū of (45), which has been validated in Theorem 7.1.

This result is obtained by applying Theorem 2.12 to the map F of Definition 6.1 corresponding
to (45), with K = 2, N = 14 and M = 25. The lengths τm of the subdomains (which are not all
the same), and the value of all the other parameters used in the proof can be found in the Matlab
file ivpdataFisher1.m. The computational part of the proof, i.e., the evaluation of the bounds
Y , Z and W derived in Section 5 and Section 6 for this specific approximate solution ū and the
selected parameters, can be reproduced by running runproofs.m.

36

Remark 7.2. The output of this procedure is actually slightly stronger than is stated in The-
orem 7.1. Indeed, the successful application of Theorem 2.12 implies the existence of a unique
solution u of (45) in XMν such that ‖u− ū‖XMν ≤ 5 × 10−2. Lemma 3.6 then implies (46). The
error bound that we obtain could be improved significantly. Indeed, in the proof of Theorem 7.1
we tried to use a minimal amount of subdomains, namely M = 25, but using M = 35 instead we
already get the error bound down to 1 × 10−3, and we could still get a much smaller error bound
by further increasing M as well as K.

Our method is also applicable to equations with higher order spatial derivatives, such as the
Swift-Hohenberg equation, as was already highlighted in the introduction.

Theorem 7.3. Consider the Swift-Hohenberg equation (8), with the same parameters and initial
data as in Theorem 1.5. Let ū = ū(t, x) be the function represented in Figure 3, and whose precise
description in terms of Fourier-Chebyshev coefficients can be downloaded at [42]. Then, there exists
a smooth solution u of (8) such that

sup
t∈[0,tend]

sup
x∈[0,L]

|u(t, x)− ū(t, x)| ≤ 5× 10−2.

Figure 3: The approximate solution ū of (8), which has been validated in Theorem 7.3.

The computational part of the proofs of Theorem 1.5 and Theorem 7.3 can be reproduced by
running runproofs.m. The value of all the parameters used in these proofs can be found in the
Matlab files ivpdataSwiftHohenberg1.m and ivpdataSwiftHohenberg2.m.

Remark 7.4. The only difference between Theorem 1.5 and Theorem 7.3 is the size of the finite
dimensional subspace

(
XKNν

)M , that is used in each proof. For Theorem 7.3, we tried to minimize
the dimension of

(
XKNν

)M for which we could get a successful proof, and ended up taking K = 2,
N = 19 and M = 108. With these parameters, the proof can be run on a standard laptop in about
15 minutes. For Theorem 1.5, we used a larger approximation subspace

(
XKNν

)M , with K = 5,
N = 30 and M = 100, and therefore got a sharper error bound, at the cost of more computation
time and memory requirements.

The two approximate solutions ū used in Theorem 1.5 and Theorem 7.3, and depicted in Figure 1
and Figure 3 respectively, are not exactly the same, but they are close enough to be indistinguishable
to the naked eye. Yet, by using a higher dimensional subspace

(
XKNν

)M for the proof, we manage
to obtain significantly sharper error bounds.

37

We can also deal with nonlinear terms involving spatial derivatives.
Theorem 7.5. Consider the Kuramoto–Sivashinsky equation

∂u

∂t
= −∂

4u

∂x4 −
∂2u

∂x2 −
1
2
∂

∂x
u2, (t, x) ∈ (0, tend]× [0, L],

∂ju

∂xj
u(t, 0) = ∂ju

∂xj
u(t, L), t ∈ [0, tend], j = 0, 1, 2, 3,

u(0, x) = f(x), x ∈ [0, L],

(47)

with L = 5π, tend = 12, and f(x) = − sin
(2πx
L

)
. Let ū = ū(t, x) be the function represented in Fig-

ure 4, and whose precise description in terms of Fourier-Chebyshev coefficients can be downloaded
at [42]. Then, there exists a smooth solution u of (47) such that

sup
t∈[0,tend]

sup
x∈[0,L]

|u(t, x)− ū(t, x)| ≤ 4× 10−7.

The computational part of the proof of Theorem 7.5 can be reproduced by running runproofs.m.
This proof uses K = 5, N = 30 and M = 100, while the value of all the other parameters used in
the proof can be found in the Matlab file ivpdataKuramoto1.m.

Figure 4: The approximate solution ū of (47), which has been validated in Theorem 7.5.

Our final example is the Ohta-Kawasaki equation, which models the evolution of diblock copoly-
mer melts [29].
Theorem 7.6. Consider the Ohta-Kawasaki equation

∂u

∂t
= − 1

γ2
∂4u

∂x4 −
∂2

∂x2 (u− u3)− σ(u−m), (t, x) ∈ (0, tend]× [0, L],

∂ju

∂xj
u(t, 0) = ∂ju

∂xj
u(t, L), t ∈ [0, tend], j = 0, 1, 2, 3,

u(0, x) = f(x), x ∈ [0, L],

(48)

with γ =
√

8, σ = 1/5, m = 1/10, L = 2π, tend = 5, and f(x) = m+ 1
10 cos

(2πx
L

)
. Let ū = ū(t, x) be

the function represented in Figure 5, and whose precise description in terms of Fourier-Chebyshev
coefficients can be downloaded at [42]. Then, there exists a smooth solution u of (48) such that

sup
t∈[0,tend]

sup
x∈[0,L]

|u(t, x)− ū(t, x)| ≤ 3× 10−3.

38

The computational part of the proof of Theorem 7.6 can be reproduced by running runproofs.m.
This proof uses K = 2, N = 21 and M = 395, while the value of all the other parameters used in
the proof can be found in the Matlab file ivpdataOhtaKawasaki.m.

Figure 5: The approximate solution ū of (48), which has been validated in Theorem 7.6.

Remark 7.7. Whether computer-assisted proofs such as the ones presented in this section are
successful or not (that is, whether the obtained values for the Y , Z and W bounds allow us to sat-
isfy (17)-(18)), depends strongly on the judicious choice of numerous computational parameters.
The most obvious ones, which were already mentioned, are K, N and M , which prescribe the finite
dimensional subspace being used for the construction of L and of the approximate inverse A. How-
ever, there are other important parameters, such as the length τm of each subdomain, the weights
ε
(m)
∞N , ε

(m)
∞ and ν, and (to a lesser extent) truncation parameters used to control interpolation errors,

see Remark 4.10, or quadrature errors, see Appendix C.
At the moment, these parameters are mostly chosen by trial and error. A more automated way

of selecting close to optimal parameters for a given problem would be very useful, but we did not
investigate this question in this work.

7.2 The crucial influence of the operator L
In this work, we claimed that the sensible choice of the operator L described in Section 3.4,
which then impacts the definition of the zero finding map F and of the subsequent fixed point
reformulation T , is instrumental in getting more efficient computer-assisted proofs. We back up
this claim by studying again equation (45), with the same parameters, initial data and final time,
but now using a more naive choice

L = (−1)R+1 ∂
2R

∂x2R .

We also keep the same values for K and N as in the proof of Theorem 7.1 (namely K = 2 and
N = 14), and then investigate the minimal number M of subdomains that have to be used for the
proof to be successful with this naive L. We find that we then have to take at least M = 165,
whereas the proof of Theorem 7.1 which used the more involved choice of L described in Section 3.4,
was already successful with M = 25.

This example indeed showcases that our new choice of L allows us to use a finite dimensional
subspace

(
XKNν

)M of much lower dimension, which then results in a proof that is significantly

39

less expensive (for instance, we note that the definition of A involves the numerical inversion of
DFMKN (ū), which is a matrix of size (K + 1)(2N + 1)M × (K + 1)(2N + 1)M).

The situation is similar for the other examples, but successful proofs with the naive choice of L
become even more costly so we did not even try to obtain one.

7.3 Using time stepping
For a given equation of the form (1), when we try to use the approach presented in this paper with
domain decomposition, in order to validate a solution for a larger and larger integration time τ ,
we have to keep increasing the number M of subdomains used, or alternatively to keep increasing
the number K of Chebyshev nodes used in each subdomain.

Remark 7.8. In practice, as soon as the Y bound is no longer a limiting factor in getting a
successful proof, it is usually more efficient to increase M than to increase K. This was already
noticed in the context of ODEs [5], and is even more apparent in the current work, because increas-
ing M (i.e. taking more and thus smaller subdomains) means our operator L better approximates
DH(ū) (with the notation of the introduction).

However, M cannot be taken arbitrarily large, because at some point the dimension of the
subspace

(
XKNν

)M becomes too large for a computer to handle, memory-wise. This limitation is
inherent to the domain-decomposition approach, where one has to deal with the entire orbit at
once.

On the other hand, with time stepping one can validate smaller portions of an the orbit one
after the other, at the price of having to propagate the error bounds from one portion to the next.
We can adapt our methodology to such a time stepping strategy. The details of controlling the
propagating error bounds are given in Appendix A. One setting in which these errors are relatively
easy to manage is when the solution converges to an isolated equilibrium. Indeed, in that case we
expect the semiflow to be contracting, and the errors to shrink between the beginning and the end
of one step. Therefore, in principle one should be able to rigorously integrate the solution for as
long as desired (see Remark A.1). Of course there is still a limitation related to computing power,
but it is now predominantly related to speed (i.e., to the time taken by the computer to validate
each step), rather than memory.

Below is an example of a validated solution of Fisher’s equation (45), for which we used time
stepping in order to go much further in time than in Section 7.1.

Theorem 7.9. Consider the Fisher-KPP equation (45), with the same parameters and initial data
as in Theorem 7.1, except we now take tend = 20, and let ū = ū(t, x) be the function represented
in Figure 6. Then, there exists a smooth solution u of (45) such that

sup
t∈[0,tend]

sup
x∈[0,L]

|u(t, x)− ū(t, x)| ≤ 9× 10−4.

The computational part of the proof of Theorem 7.9 can be reproduced by running runproofs.m.
The value of all the parameters used in this proof can be found in the Matlab file ivpdataFisher4.m.
As opposed to the theorems presented in Section 7.1, this one is proved using time stepping rather
than domain decomposition. The final time was chosen to be 20 so that the initial dynamics
remains visible in the picture, but with time-stepping we can very easily obtain proofs for much
larger finite times (especially because, once we are close to the equilibrium, much larger time steps
can be used). Again, the precise error bounds we obtain in the proof are far from being uniform in
time, and become much smaller once the solution is close to the equilibrium (for instance, in the
last time step the error bound is of the order of 10−11).

40

Figure 6: The approximate solution ū of (45), which has been validated in Theorem 7.9.

Acknowledgments
MB gratefully acknowledges the hospitality provided by the Department of Mathematics of the
VU Amsterdam, which he visited several times during the preparation of this work.

Appendix

A Time stepping
When performing long time integration, an alternative for domain decomposition is to perform
time stepping, i.e., to use the data at the final time of a step as the initial data for the next
step. This may lead to a build-up of errors, hence we need sharp enclosures for the endpoint of
the orbit at each time step. We already have the one given by the validation radius, which is
valid for all t ∈ [−1, 1], but we can also use the fact that we only need a bound for t = 1 to get
possibly better estimates. Indeed, suppose we have successfully proved the existence of a fixed
point u∗ ∈ ū+Br,ε(0) of T for some r > 0, then in the case of a single domain (M = 1) we have

u∗(1) = e2τLf + τ

∫ 1

−1
eτL(1−s)γ (u∗(s)) ds (49)

= e2τLf + τ

∫ 1

−1
eτL(1−s)γ (ū(s)) ds

+ τr

∫ 1

−1
eτL(1−s)Dγ (ū (s))h(s)ds

+ τr2
∫ 1

−1
eτL(1−s)

∫ 1

0
(1− s̃)D2γ (ū (s) + s̃rh (s)) [h(s), h(s)] ds̃ ds,

for some h ∈ B1,ε(0). We now see how we can derive an explicit enclosure of u∗(1), based on this
formula, studying separately the finite dimensional projection given by ΠN , and the higher order
modes.

Remark A.1. In some situations the error bound at t = 1 may be tighter than the one at t = −1
(the initial data f). Observe that in the above expression, the only term which depends on the

41

initial data is e2τLf . Suppose we started with an enclosure for f , for instance because f is in
fact the output of a previous time step, and assume that the eigenvalues of L are all negative, for
example because the dynamics is close to a stable stationary state. We then get an enclosure for
e2τLf which is narrower than the one of f . Provided the error bounds we get for the remaining
terms in (49) are small enough, it is thus possible that the total error bound we get for u∗(1) is
smaller than the one we started with for f , meaning that in such a situation errors do not grow
from one time-step to the next. For the solution depicted in Figure 6, we are seemingly getting very
close to the homogeneous equilibrium, which is attractive, hence in that situation the eigenvalues
of L should all be negative, and we can in principle integrate forever.

If we were to deal with an orbit which converges to a nonhomogeneous equilibrium, as is seem-
ingly the case in Figure 1 for instance, there is one additional difficulty in rigorously integrating
“forever” using time stepping, namely that the equilibrium is no longer isolated due to the spatial
translation invariance of the problem. This then means that there will be a zero eigenvalue in the
linearized operator at the equilibrium, and that we cannot hope to shrink the errors in all direc-
tions. This issue is somewhat specific to our choice of periodic boundary conditions, and would for
instance disappear with Dirichlet or Neumann boundary conditions.

A.1 Finite dimensional projection
We can rewrite ΠNu

∗(1) as

ΠNu
∗(1) = QeLΛNQ−1ΠNf + τQ

∫ 1

−1
eτΛN (1−s)Q−1ΠNγ (ū(s)) ds

+ τrQ

∫ 1

−1
eτΛN (1−s)Q−1ΠNDγ (ū (s))h(s)ds

+ τr2Q

∫ 1

−1
eτΛN (1−s)Q−1

∫ 1

0
(1− s̃) ΠND

2γ (ū (s) + s̃rh (s)) [h(s), h(s)] ds̃ ds,

where the first two terms can be evaluated explicitly (quadrature + error bounds), and we need
to estimate the last two. A computation very similar to the one we made to get the ZKN bound
yields, using Lemma 4.3,∣∣∣∣τQ ∫ 1

−1
eτΛN (1−s)Q−1ΠNDγ (ū (s))h(s)ds

∣∣∣∣ ≤
|Q|DN (1)

|Q−1|
2R−1∑
j=0
|Dj |ΠN Φ̌

((
g(j)
)′

(ū)− v̄(j),
(
g(j)
)′

(ū)
)

+ max(1, ε∞N)Υ
(
Q−1RN

) .

We now turn our attention to the second order terms. Going back to the computation made
for the WKN bound in (38), and applying Lemma 3.6, 4.1 and 4.5 yields∣∣∣∣τQ ∫ 1

−1
eτΛN (1−s)Q−1

∫ 1

0
(1− s̃) ΠND

2γ (ū (s) + s̃rh (s)) [h(s), h(s)] ds̃ ds
∣∣∣∣

≤ 1
2

2R−1∑
j=0

Υ
(
|Q|DN (1) |Q−1| |Dj |

) ∣∣∣∣(g(j)
)′′∣∣∣∣ (‖ū‖`1ν(C0) + ϑεr

∗
)
.

42

A.2 Tail part (modes for |n| > N)
For all |n| > N ,

u∗n(1) = e2τλnfn + τ

∫ 1

−1
eτλn(1−s)γn (ū(s)) ds

+ τr

∫ 1

−1
eτλn(1−s)Dγn (ū (s))h(s)ds

+ τr2
∫ 1

−1
eτλn(1−s)

∫ 1

0
(1− s̃)D2γn (ū (s) + s̃rh (s)) [h(s), h(s)] ds̃ ds.

Therefore, this time looking at the computations made for Z∞ and W∞, we get

‖Π∞u∗(1)‖`1ν ≤ exp
(

2τ sup
n>N
<(λn)

)
‖Π∞f‖`1ν +

∑
|n|>N

∣∣∣∣τ ∫ 1

−1
eτλn(1−s)γn (ū(s)) ds

∣∣∣∣ ν|n|
+ rϑε

2R−1∑
j=0

χ
(j)
N

∥∥∥g̃(j)
∥∥∥
`1ν(C0)

+ r2

2 ϑ
2
ε

2R−1∑
j=0

χ
(j)
N

∣∣∣∣(g(j)
)′′∣∣∣∣ (‖ū‖`1ν(C0) + ϑεr

∗
)
,

where the sum over |n| > N is in fact finite and made of terms that can each be evaluated
(quadrature + error bounds).

Combining this with the estimates obtained in the above sub-section, we can get an explicit
enclosure of u∗(1).

Remark A.2. Here we assumed M = 1, but time stepping can also be combined with the domain
decomposition technique from Section 6, where we subdivide each time step into M subdomains.
Then, we can simply use the above estimates on each subinterval successively: we get an enclosure
for (u∗)(1)(1), use (49) with (u∗)(1)(1) instead of f to get an enclosure on (u∗)(2)(1), and so on,
until we get an enclosure of (u∗)(M)(1) which is the solution at the end of one step using domain
decomposition.

B Interpolation error estimates
In this section, we provide explicit formulas for the constants σK,l satisfying Definition 2.5. Let us
first show that, although most of the interpolation error estimates of this kind that can be found in
the literature are stated for real-valued functions, they do also hold for complex valued-functions.

Lemma B.1. Let K ∈ N≥1, l ∈ {0, 1, . . . ,K} and σR
K,l a real constant such that, for all f ∈

Cl+1([−1, 1],R),

‖f − PK(f)‖C0 ≤ σR
K,l

∥∥∥f (l+1)
∥∥∥
C0
. (50)

Then (50) also holds for any f ∈ Cl+1([−1, 1],C), i.e., one can take σK,l = σR
K,l in Definition 2.5.

Proof. Let f ∈ Cl+1([−1, 1],C) and fix any x ∈ [−1, 1]. Denoting by θ ∈ [0, 2π) the argument of
the complex number f(x)− PK(f)(x), we get

|f(x)− PK(f)(x)| = e−iθ (f(x)− PK(f)(x))
= <

(
e−iθ(f(x)− PK(f)(x))

)
= <

(
e−iθf

)
(x)− PK(<

(
e−iθf

)
)(x)

≤ σR
K,l

∥∥∥< (e−iθf)(l+1)
∥∥∥
C0

≤ σR
K,l

∥∥∥f (l+1)
∥∥∥
C0
,

43

where the imaginary terms that should appear in the second line must vanish since we are com-
puting a real quantity.

Theorem B.2. Let K ∈ N≥1, l ∈ {0, 1, . . .K}, and ΛK be the Lebesgue constant associated to
interpolation at the K + 1 Chebyshev nodes (see, e.g., [39], and [18] for explicit values and tight
bounds of ΛK). Then,

σK,l
def=


min

{
(1 + ΛK)

(
π
2
)l+1 (K−l)!

(K+1)! ,
1
l+1
∑[l2]
q=0

1
4q (l−2q)! (q!)2

}
, 0 ≤ l ≤ K − 1,

1
2K−1(K + 1)! l = K.

(51)

satisfies Definition 2.5.

For real-valued functions, the case l = K is classical, as is the first part of the estimate for
l ≤ K − 1, which follows from Jackson’s theorem (see e.g. [11]). Lemma B.1 ensures these results
carry over to complex-valued functions. However, the obtained estimates are far from sharp for
small values of K. An alternative estimate, namely the second part of the minimum for l ≤ K− 1,
was derived in [5]. In the important case l = 0, this estimate gives 1 and is thus smaller than
(1 + ΛK) π2

K!
(K+1)! for K ≤ 3, but still relatively far from being sharp.

In the sequel, we introduce an optimization problem which is equivalent to finding the optimal
value of σK,0 satisfying Definition 2.5. According to Lemma B.1, we can restrict our attention to
real-valued functions. Using interval arithmetic, we are then able to find a rigorous (and relatively
tight) enclosure of the solution of the minimization problem, thereby providing an almost optimal
value for σK,0.

Definition B.3. Let K ∈ N≥1 and y ∈ RK+1. Let PK(y) denotes the polynomial of degree at
most K interpolating y at the Chebyshev nodes, i.e. such that PK(y)(tk) = yk for k = 0 . . .K.
Whenever y is such that

|yk| ≤ |tk| for k = 0 . . .K, and |yk+1 − yk| ≤ |tk+1 − tk| for k = 0 . . .K − 1, (52)

we also introduce, for all t ∈ [−1, 1],

ϕK(y)(t) = min
{
yk∗ + t− tk∗ , yk∗+1 − t+ tk∗+1, |t|

}
,

and

ϕ
K

(y)(t) = max
{
yk∗ − t+ tk∗ , yk∗+1 + t− tk∗+1, −|t|

}
,

where k∗ ∈ {0, 1, . . . ,K − 1} is such that t ∈ [tk∗ , tk∗+1].

Notice that (52) ensures that ϕK(y) and ϕ
K

(y) are well defined: for t = tk we get ϕK(y)(t) =
ϕ
K

(y)(t) = yk regardless of whether we consider k∗ = k or k∗ = k − 1. Notice also that ϕK(y)
(resp. ϕ

K
(y)) is the largest (resp. the smallest) piece-wise linear function ϕ such that ϕ(tk) = yk

for all k ∈ {0, 1, . . . ,K}, ϕ(0) = 0, and |ϕ′(t)| ≤ 1 for all t ∈ [−1, 1] \ {0, t0, . . . , tK}.

Proposition B.4. Let K ∈ N≥1, and

ΩK =
{
y ∈ RK+1, |yk| ≤ |tk| for k = 0 . . .K, |yk+1 − yk| ≤ |tk+1 − tk| for k = 0 . . .K − 1

}
.

Then,

sup
f∈C1([−1,1],R)

f ′ 6=0

‖f − PK(f)‖C0

‖f ′‖C0
= max
t∈[−1,1]
y∈ΩK

max
(
ϕK(y)(t)− PK(y)(t), PK(y)(t)− ϕ

K
(y)(t)

)
. (53)

44

Proof. Without loss of generality, we can assume ‖f ′‖C0 = 1 and f(0) = 0, so that

sup
f∈C1([−1,1],R)

f ′ 6=0

‖f − PK(f)‖C0

‖f ′‖C0
= sup

f∈C1([−1,1],R)
f(0)=0, ‖f ′‖

C0=1

‖f − PK(f)‖C0 .

For any f ∈ C1([−1, 1],R) such that f(0) = 0 and ‖f ′‖C0 = 1, consider the vector y ∈ RK+1

defined by yk = f(tk) for k = 0 . . .K, which belongs to ΩK . Since ‖f ′‖C0 = 1, we get

ϕ
K

(y) ≤ f ≤ ϕK(y),

and PK(f) = PK(y). Therefore,

‖f − PK(f)‖C0 ≤ max
t∈[−1,1]

max
(
ϕK(y)(t)− PK(y)(t), PK(y)(t)− ϕ

K
(y)(t)

)
,

and hence

sup
f∈C1([−1,1],R)

f ′ 6=0

‖f − PK(f)‖C0

‖f ′‖C0
≤ max
t∈[−1,1]
y∈ΩK

max
(
ϕK(y)(t)− PK(y)(t), PK(y)(t)− ϕ

K
(y)(t)

)
.

Conversely, for any y ∈ ΩK , the function f = ϕK(y) satisfies f(0) = 0 and |f ′(t)| ≤ 1 for each t
where f ′ is defined. Considering a sequence of C1 functions fn such that fn(0) = 0, ‖f ′n‖C0 = 1,
and ‖fn − f‖C0 →

n→∞
0, we get that

sup
f∈C1([−1,1],R)

f(0)=0, ‖f ′‖
C0=1

‖f − PK(f)‖C0 ≥ max
t∈[−1,1]

ϕK(y)(t)− PK(y)(t).

Similarly,

sup
f∈C1([−1,1],R)

f(0)=0, ‖f ′‖
C0=1

‖f − PK(f)‖C0 ≥ max
t∈[−1,1]

PK(y)(t)− ϕ
K

(y)(t),

and therefore

sup
f∈C1([−1,1],R)

f(0)=0, ‖f ′‖
C0=1

‖f − PK(f)‖C0 ≥ max
t∈[−1,1]
y∈ΩK

max
(
ϕK(y)(t)− PK(y)(t), PK(y)(t)− ϕ

K
(y)(t)

)
,

which concludes the proof.

Proposition B.4 gives us a tractable way of obtaining the optimal constant σK,0, the r.h.s.
of (53) being an optimization problem over a compact set of RK+2. For K = 2, this optimization
problem can be solved by hand, and we get

Theorem B.5.

max
t∈[−1,1]
y∈Ω2

max
(
ϕ2(y)(t)− P2(y)(t), P2(y)(t)− ϕ2(y)(t)

)
= 14

√
7− 20
27 (≈ 0.6311),

which is the optimal value of σ2,0.

For K = 3, solving the optimization problem by hand may also be within reach, but for larger
values of K it seems a formidable task. However, we can use interval arithmetic and adaptively
subdivide the compact set [−1, 1]×ΩK in order to get tight rigorous enclosure of the optimal value
of σK,0.

45

K optimal σK,0 (computed via Prop. B.4) σK,0 computed via Th. B.2
2 [0.6311,0.6312] 1
3 [0.6666,0.6667] 1
4 [0.5253,0.5254] 0.8793
5 [0.4944,0.4945] 0.7825
6 [0.4261,0.4265] 0.6966

Table 1: Enclosures for the optimal value of σK,0, in the second column. For the sake of comparison,
we give in the third column the value of σK,0 provided by Theorem B.2.

Theorem B.6. For K ∈ {2, . . . , 6}, the optimal value of σK,0 is contained in the enclosure given
in the second column of Table 1 below.

Proof. The proof can be reproduced by running script_InterpConstant.m available at [42], to-
gether with Intlab [35].

Remark B.7. We only provide enclosures up to K = 6 because larger values of K did not prove
useful in this work: in order to get a smaller contraction rate (i.e. Z bound), increasing the number
of subdomains is more efficient than increasing K. This was already observed in [5] when using
interpolation in time for ODEs, and becomes even more important in this work, as increasing the
number of subdomains also improves our piece-wise constant in time approximation L of DH(ū)
(with the notations of the introduction), which in turns improves the Z bound. The only reason to
increase K is to get a smaller defect (the Y bound).

However, it should also be noted that the computational cost of the algorithm we used to obtain
rigorous enclosures of σK,0 increases dramatically with K, and that this approach does not seem
suitable without algorithmic improvements for much larger values of K.

Remark B.8. Since the constant σK,0 plays a crucial role in our validation estimates, as it appears
in the Z∞N bound, see (36), a possible way to improve upon the setup presented in this paper would
be, in the interpolation in time, to replace the Chebyshev nodes by interpolation nodes chosen to
minimize σK,0, but we did not explore this option in this work.

C Quadrature for the exponential integrals
In this section we explain how to compute rigorous enclosures for∫ t

−1
eλ(t−s)ψ(s) ds = t+ 1

2

∫ 1

−1
exp

(
λ

2 (t+ 1) (1− s)
)
ψ

(
t+ 1

2 (s+ 1)− 1
)
ds, (54)

where λ ∈ C, t ∈ (−1, 1] and ψ : [−1, 1] → C is a polynomial function, written in the Chebyshev
basis

ψ = ψ0 + 2
K∑
k=1

ψkTk, (55)

for some K ∈ N0. These enclosures are needed to rigorously evaluate the map FKN on the
computer. The idea is to approximate (54) by using a quadrature rule based at the Chebyshev
points and to compute a bound for the associated error.

Clenshaw-Curtis quadrature. Let (tK1
k)K1

k=0 denote the Chebyshev points of order K1 ∈ N≥2
(see Definition 2.3). The parameter K1 is the order of the quadrature rule and need not be equal
to K. If f : [−1, 1]→ C is sufficiently smooth and K1 is sufficiently large, then∫ 1

−1
f(s) ds ≈

∫ 1

−1
fK1(s) ds,

46

where fK1 is the Chebyshev interpolant of f of order K1. In particular, note that

fK1 =
K1∑
k=0

f
(
tK1
k

)
φk,

where (φk)K1
k=0 are the Lagrange polynomials associated to (tK1

k)K1
k=0, i.e., φk(tK1

l) = δkl for 0 ≤
k, l ≤ K1. Hence∫ 1

−1
fK1(s) ds =

K1∑
k=0

f(tK1
k)wk, wk

def=
∫ 1

−1
φk(s) ds, 0 ≤ k ≤ K1. (56)

Remark C.1. The weights (wk)K1
k=0 are independent of the objective function f and are commonly

referred to as the Chebyshev quadrature weights. These weights can be efficiently computed by using
the Discrete Fourier Transform as explained in [48].

In conclusion, the integral of f can be approximated by∫ 1

−1
f(s) ds ≈

K1∑
k=0

wkf(tK1
k).

This particular quadrature rule is referred to as Clenshaw-Curtis quadrature. Furthermore, the
latter approximation is exact whenever f is a polynomial of at most order K1. The reader is
referred to [39, 48] for a more detailed treatment of Clenshaw-Curtis quadrature.

The next theorem, presented in [39], provides a bound for the error associated to Clenshaw-
Curtis quadrature:

Theorem C.2. Suppose f : [−1, 1] → C can be analytically extended to the open ellipse Eρ, for
some ρ > 1. If f is bounded on Eρ, and K1 is even then∣∣∣∣∣

∫ 1

−1
f(s) ds−

K1∑
k=0

wkf(tK1
k)
∣∣∣∣∣ ≤ 64

15
ρ−K1

ρ2 − 1 sup
z∈Eρ
|f(z)| .

Proof. See [39, Theorem 19.3]. The statement there is only made for real valued functions, but
the proof readily extends to complex valued functions.

As mentioned before, the strategy is to use Clenshaw-Curtis quadrature to approximate (54)
and to bound the associated error with the aid of the Theorem C.2. To use this theorem, however,
we need one final estimate to bound the integrand in (54) on Eρ, and this is where it proves
convenient to have ψ written in the Chebyshev basis:

Lemma C.3. Let ρ ≥ 1, t ∈ [−1, 1], ψ as in (55), and write λ = α+ iβ, α, β ∈ R. Then

sup
z∈Eρ

∣∣∣∣ t+ 1
2 exp

(
λ

2 (t+ 1) (1− z)
)
ψ

(
t+ 1

2 (z + 1)− 1
)∣∣∣∣

≤ t+ 1
2 exp

(
α+ 1

2
√
α2(ρ+ ρ−1)2 + β2(ρ− ρ−1)2

)(
|ψ0|+

K∑
k=1
|ψk|

(
ρk + ρ−k

))
.

Proof. Since t+1
2 (Eρ + 1)− 1 ⊂ Eρ, it follows from Lemma 2.10 that

sup
z∈Eρ

∣∣∣∣ψ(t+ 1
2 (z + 1)− 1

)∣∣∣∣ ≤ |ψ0|+
K∑
k=1
|ψk|

(
ρk + ρ−k

)
.

Besides, we have

sup
z∈Eρ

∣∣∣∣ t+ 1
2 exp

(
λ

2 (t+ 1) (1− z)
)∣∣∣∣ = t+ 1

2 exp
(
t+ 1

2 sup
z∈Eρ
< (λ (1− z))

)
.

47

It only remains to be proven that

sup
z∈Eρ
< ((α+ iβ) (1− z)) = α+ 1

2
√
α2(ρ+ ρ−1)2 + β2(ρ− ρ−1)2. (57)

Any z ∈ Eρ can be written z = 1
2
(
reiθ + r−1e−iθ

)
, for some (r, θ) ∈ [1, ρ]× [0, 2π]. We then have

< ((α+ iβ) (1− z)) = α

(
1− 1

2(r + r−1) cos θ
)

+ β
1
2(r − r−1) sin θ

= α+ 1
2
√
α2(r + r−1)2 + β2(r − r−1)2 cos(θ − θr),

for some θr ∈ [0, 2π], which yields (57).

D Computing the χN bounds
We provide here an explicit procedure for computing the bounds χ(j)

N , j = 0, . . . , 2R−1, introduced
in Lemma 4.11 and used in the Z∞ and W∞ bounds.

It will be useful to consider

αl = (−1)l
(
v̄(2l)

)
0
, l = 0, . . . , R− 1,

and the polynomial

P (X) = −XR +
R−1∑
l=0

αlX
l,

so that
<(λn) = P (n2).

1. Define

N (j) def= max


√√√√R−1∑

l=0

|2l − j|
2R− j |αl|, N + 1

 ,

for which (since N ≥ 0)

(
N (j)

)2
≥ max

(
R−1∑
l=0

|2l − j|
2R− j |αl|, 1

)
.

We have

−jP (X) + 2XP ′(X) = (j − 2R)XR +
R−1∑
l=0

(2l − j)αjX l,

hence, for n ≥ N (j),

−jP (n2) + 2n2P ′(n2) ≤ 0,

and therefore the map n 7→ nj

−<(λn) is decreasing. Since this map goes to 0 when n goes
to infinity, it means it is also positive for n ≥ N (j), in which case <(λn) must be negative,
therefore

sup
n≥N(j)

nj
1− e2τ<(λn)

−<(λn) ≤ sup
n≥N(j)

nj

−<(λn) ≤
(
N (j))j

−< (λN(j))
.

48

2. Compute

χ̃
(j)
N

def= max
N<n≤N(j)

nj
1− e2τ<(λn)

−<(λn) .

• If (
N (j))j

−< (λN(j))
≤ χ̃(j)

N ,

then χ(j)
N = χ̃

(j)
N and we are done.

• Otherwise, compute Ñ (j) > N (j) so that(
Ñ (j))j

−< (λÑ(j))
≤ χ̃(j)

N ,

and then we get

χ
(j)
N = max

N<n≤Ñ(j)
nj

1− e2τ<(λn)

−<(λn) .

References
[1] COSY. http://bt.pa.msu.edu/index.htm.

[2] G. Arioli and H. Koch. Computer-assisted methods for the study of stationary solutions in
dissipative systems, applied to the Kuramoto-Sivashinski equation. Arch. Ration. Mech. Anal.,
197(3):1033–1051, 2010.

[3] G. Arioli and H. Koch. Integration of dissipative partial differential equations: a case study.
SIAM J. Appl. Dyn. Syst., 9(3):1119–1133, 2010.

[4] G. Arioli and H. Koch. Existence and stability of traveling pulse solutions of the FitzHugh-
Nagumo equation. Nonlinear Anal., 113:51–70, 2015.

[5] M. Breden and J.-P. Lessard. Polynomial interpolation and a priori bootstrap for computer-
assisted proofs in nonlinear ODEs. Discrete & Continuous Dynamical Systems-B, 23(7):2825–
2858, 2018.

[6] B. Breuer, J. Horák, P. J. McKenna, and M. Plum. A computer-assisted existence and multi-
plicity proof for travelling waves in a nonlinearly supported beam. J. Differential Equations,
224(1):60–97, 2006.

[7] T. Buckmaster, G. Cao-Labora, and J. Gómez-Serrano. Smooth imploding solutions for 3D
compressible fluids. arXiv preprint arXiv:2208.09445, 2022.

[8] F. Bünger. A Taylor model toolbox for solving ODEs implemented in MATLAB/INTLAB.
Journal of Computational and Applied Mathematics, 368:112511, 2020.

[9] R. Castelli, M. Gameiro, and J.-P. Lessard. Rigorous numerics for ill-posed PDEs: periodic
orbits in the Boussinesq equation. Arch. Ration. Mech. An., 228(1):129–157, 2018.

[10] J. Chen and T. Y. Hou. Stable nearly self-similar blowup of the 2D Boussinesq and 3D Euler
equations with smooth data. arXiv preprint arXiv:2210.07191v2, 2022.

[11] E. Cheney. Introduction to Approximation Theory. AMS Chelsea Publishing, 1982.

[12] J. Cyranka. Efficient and generic algorithm for rigorous integration forward in time of dPDEs:
Part I. J. Sci. Comput., 59(1):28–52, 2014.

49

http://bt.pa.msu.edu/index.htm

[13] J. Cyranka. Existence of globally attracting fixed points of viscous Burgers equation with
constant forcing. A computer assisted proof. Topol. Methods Nonlinear Anal., 45(2):655–697,
2015.

[14] J. Cyranka and J.-P. Lessard. Validated forward integration scheme for parabolic PDEs
via Chebyshev series. Communications in Nonlinear Science and Numerical Simulation,
109:106304, 2022.

[15] J. Cyranka and T. Wanner. Computer-assisted proof of heteroclinic connections in the one-
dimensional Ohta–Kawasaki model. SIAM Journal on Applied Dynamical Systems, 17(1):694–
731, 2018.

[16] J. Cyranka and P. Zgliczyński. Existence of globally attracting solutions for one-dimensional
viscous Burgers equation with nonautonomous forcing—a computer assisted proof. SIAM J.
Appl. Dyn. Syst., 14(2):787–821, 2015.

[17] S. Day, J.-P. Lessard, and K. Mischaikow. Validated continuation for equilibria of PDEs.
SIAM J. Numer. Anal., 45(4):1398–1424, 2007.

[18] H. Ehlich and K. Zeller. Auswertung der normen von interpolationsoperatoren. Mathematische
Annalen, 164(2):105–112, 1966.

[19] J.-L. Figueras and R. de la Llave. Numerical computations and computer assisted proofs of
periodic orbits of the Kuramoto-Sivashinsky equation. SIAM J. Appl. Dyn. Syst., 16(2):834–
852, 2017.

[20] M. Gameiro and J.-P. Lessard. A Posteriori Verification of Invariant Objects of Evolution
Equations: Periodic Orbits in the Kuramoto–Sivashinsky PDE. SIAM J. Appl. Dyn. Syst.,
16(1):687–728, 2017.

[21] J. Gómez-Serrano. Computer-assisted proofs in PDE: a survey. SeMA Journal, 76(3):459–484,
2019.

[22] K. Hashimoto, T. Kimura, T. Minamoto, and M. T. Nakao. Constructive error analysis of
a full-discrete finite element method for the heat equation. Japan Journal of Industrial and
Applied Mathematics, 36(3):777–790, 2019.

[23] K. Hashimoto, T. Kinoshita, and M. T. Nakao. Numerical verification of solutions for nonlinear
parabolic problems. Numerical Functional Analysis and Optimization, 41(12):1495–1514, 2020.

[24] T. Kapela, M. Mrozek, D. Wilczak, and P. Zgliczyński. Capd:: Dynsys: a flexible C++
toolbox for rigorous numerical analysis of dynamical systems. Communications in nonlinear
science and numerical simulation, 101:105578, 2021.

[25] A. Lunardi. Analytic semigroups and optimal regularity in parabolic problems. Springer Science
& Business Media, 2012.

[26] M. T. Nakao. A numerical approach to the proof of existence of solutions for elliptic problems.
Japan Journal of Applied Mathematics, 5(2):313, 1988.

[27] M. T. Nakao. Solving nonlinear parabolic problems with result verification. Part I: one-space
dimensional case. Journal of Computational and Applied Mathematics, 38(1-3):323–334, 1991.

[28] M. T. Nakao, M. Plum, and Y. Watanabe. Numerical Verification Methods and Computer-
Assisted Proofs for Partial Differential Equations, volume 53 of Springer Series in Computa-
tional Mathematics. Springer Singapore, 2019.

[29] T. Ohta and K. Kawasaki. Equilibrium morphology of block copolymer melts. Macromolecules,
19(10):2621–2632, 1986.

50

[30] S. Oishi. Numerical verification of existence and inclusion of solutions for nonlinear operator
equations. Journal of Computational and Applied Mathematics, 60(1-2):171–185, 1995.

[31] A. Pazy. Semigroups of linear operators and applications to partial differential equations,
volume 44. Springer Science & Business Media, 2012.

[32] M. Plum. Explicit H2-estimates and pointwise bounds for solutions of second-order elliptic
boundary value problems. Journal of Mathematical Analysis and Applications, 165(1):36–61,
1992.

[33] C. Reinhardt and J. M. James. Fourier–Taylor parameterization of unstable manifolds for
parabolic partial differential equations: formalism, implementation and rigorous validation.
Indagationes Mathematicae, 30(1):39–80, 2019.

[34] T. Rivlin. Chebyshev Polynomials: From Approximation Theory to Algebra and Number
Theory. Wiley-Interscience, 1990.

[35] L. Rump. INTLAB - INTerval LABoratory. In T. Csendes, editor, Developments in Reliable
Computing, pages 77–104. Kluwer Academic Publishers, Dordrecht, 1999. http://www.ti3.
tuhh.de/rump/.

[36] A. Takayasu, J.-P. Lessard, J. Jaquette, and H. Okamoto. Rigorous numerics for nonlinear
heat equations in the complex plane of time. Numerische Mathematik, pages 1–58, 2022.

[37] A. Takayasu, X. Liu, and S. Oishi. Verified computations to semilinear elliptic boundary value
problems on arbitrary polygonal domains. Nonlinear Theory and Its Applications, IEICE,
4(1):34–61, 2013.

[38] A. Takayasu, M. Mizuguchi, T. Kubo, and S. Oishi. Accurate method of verified computing
for solutions of semilinear heat equations. Reliable Computing, 25:75, 2017.

[39] L. Trefethen. Approximation Theory and Approximation Practice. SIAM, 2013.

[40] J. B. van den Berg. Introduction to rigorous numerics in dynamics: general functional analytic
setup and an example that forces chaos. Rigorous Numerics in Dynamics, Proc. Sympos. Appl.
Math., Amer. Math. Soc, 74:1–25, 2017.

[41] J. B. van den Berg, M. Breden, J.-P. Lessard, and L. van Veen. Spontaneous periodic orbits
in the Navier–Stokes flow. Journal of Nonlinear Science, 31(2):1–64, 2021.

[42] J. B. van den Berg, M. Breden, and R. Sheombarsing. Matlab code associated to the paper
“Validated integration of semilinear parabolic PDEs”. https://github.com/MaximeBreden/
validated-PDE-integrator, 2023.

[43] J. B. van den Berg, J. Jaquette, and J. M. James. Validated numerical approximation of stable
manifolds for parabolic partial differential equations. Journal of Dynamics and Differential
Equations, pages 1–61, 2022.

[44] J. B. van den Berg and J.-P. Lessard. Rigorous numerics in dynamics. Notices Amer. Math.
Soc., 62(9), 2015.

[45] J. B. van den Berg and R. Sheombarsing. Validated computations for connecting orbits in
polynomial vector fields. Indagationes Mathematicae, 31(2):310–373, 2020.

[46] J. B. van den Berg and R. Sheombarsing. Rigorous numerics for odes using chebyshev series
and domain decomposition. Journal of Computational Dynamics, 8(3):353, 2021.

[47] J. B. van den Berg and J. F. Williams. Rigorously computing symmetric stationary states of
the Ohta–Kawasaki problem in three dimensions. SIAM Journal on Mathematical Analysis,
51(1):131–158, 2019.

51

http://www.ti3.tuhh.de/rump/
http://www.ti3.tuhh.de/rump/
https://github.com/MaximeBreden/validated-PDE-integrator
https://github.com/MaximeBreden/validated-PDE-integrator

[48] J. Waldvogel. Fast construction of the Fejér and Clenshaw-Curtis quadratue rules. J. Bit
Numer Math, 46:195–202, 2006.

[49] D. Wilczak and P. Zgliczyński. A geometric method for infinite-dimensional chaos: Symbolic
dynamics for the Kuramoto-Sivashinsky PDE on the line. Journal of Differential Equations,
269(10):8509–8548, 2020.

[50] N. Yamamoto. A numerical verification method for solutions of boundary value problems
with local uniqueness by Banach’s fixed-point theorem. SIAM Journal on Numerical Analysis,
35(5):2004–2013, 1998.

[51] P. Zgliczyński. Attracting fixed points for the Kuramoto-Sivashinsky equation: a computer
assisted proof. SIAM J. Appl. Dyn. Syst., 1(2):215–235, 2002.

[52] P. Zgliczyński. C1 Lohner algorithm. Found. Comput. Math., 2(4):429–465, 2002.

[53] P. Zgliczyński. Rigorous numerics for dissipative partial differential equations. II. Periodic
orbit for the Kuramoto-Sivashinsky PDE—a computer-assisted proof. Found. Comput. Math.,
4(2):157–185, 2004.

[54] P. Zgliczyński. Rigorous numerics for dissipative PDEs III. An effective algorithm for rigorous
integration of dissipative PDEs. Topol. Methods Nonlinear Anal., 36(2):197–262, 2010.

[55] P. Zgliczyński and K. Mischaikow. Rigorous numerics for partial differential equations: the
Kuramoto-Sivashinsky equation. Found. Comput. Math., 1(3):255–288, 2001.

52

	Introduction
	Preliminaries
	Sequence spaces
	Chebyshev interpolation
	A fixed point Theorem

	Functional analytic setup
	An equivalent zero-finding problem
	Finite dimensional reduction
	A posteriori analysis
	Construction of L

	General estimates
	An 1 dual estimate
	Controlling convolution products
	Interpolation errors
	Truncation errors in Fourier space

	Bounds
	Y-bound
	Finite dimensional projection
	Interpolation error estimates
	Truncation in phase space

	Z-bounds
	Finite dimensional projection
	Interpolation error estimates
	Truncation in phase space

	W-bound
	Finite dimensional projection
	Interpolation error estimates
	Truncation in phase space

	Domain decomposition
	How to adapt the setup
	Estimates on G and G-1
	How to adapt the bounds
	Modifications for YKN
	Modifications for YN
	Modifications for Y
	Modifications for ZKN
	Modifications for ZN
	Modifications for Z
	Modifications for WKN
	Modifications for WN
	Modifications for W

	Applications
	Different examples of equations
	The crucial influence of the operator L
	Using time stepping

	Time stepping
	Finite dimensional projection
	Tail part (modes for n> N)

	Interpolation error estimates
	Quadrature for the exponential integrals
	Computing the N bounds

