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HIGHER NEARBY CYCLES AND CENTRAL SHEAVES ON

AFFINE FLAG VARIETIES

PRAMOD N. ACHAR AND SIMON RICHE

Abstract. In this paper we generalize and study a notion of (unipotent)

nearby cycles over a higher dimensional base based on Bĕılinson’s description
of unipotent nearby cycles, following an idea of Gaitsgory. This generaliza-

tion, in the setting of affine Grassmannians, is required in recent work of
Bezrukavnikov–Braverman–Finkelberg–Kazhdan [7].

1. Introduction

1.1. Nearby cycles form a crucial ingredient in the local geometric Langlands pro-
gram, in particular in Gaitsgory’s construction of central (perverse) sheaves on
the affine flag variety of a reductive algebraic group [8]. In order to prove a certain
technical property of this construction required in work of Bezrukavnikov [6], Gaits-
gory has introduced in [9] a somewhat ad-hoc construction of “nearby cycles along a
2-dimensional base.” In this paper we elaborate on this idea and explain how to de-
fine much more general “nearby cycles” functors over any finite-dimensional affine
space. This generalization is used in recent work of Bezrukavnikov–Braverman–
Finkelberg–Kazhdan on local L-factors, see [7].

1.2. Bĕılinson’s unipotent nearby cycles functor. The starting point of this
construction is Bĕılinson’s description of the unipotent nearby cycles functor using
local systems on A1 ∖ t0u associated with unipotent Jordan blocks. More specifi-
cally, fix a base field F, and consider a scheme X of finite type over A1 “ A1

F, with
structure morphism f : X Ñ A1. Fix also a field k of coefficients (of characteristic
invertible in F), and let F be a perverse sheaf on f´1pA1 ∖ t0uq. Then Bĕılinson’s
construction provides, for any integer a ě 1, a complex Ψf,apF q on f´1p0q concen-
trated in perverse degrees ´1 and 0, and morphisms Ψf,apF q Ñ Ψf,bpF q if a ď b.
The main observation is that these complexes “stabilize” to the unipotent nearby
cycles Ψun

f pF q in the sense that:

‚ if a " 0, for any b ě a the morphism pH ´1pΨf,apF qq Ñ pH ´1pΨf,bpF qq

is an isomorphism, and both objects identify with Ψun
f pF q;

‚ for any a, if b " a the morphism pH 0pΨf,apF qq Ñ pH 0pΨf,bpF qq vanishes.

1.3. Higher dimensional version. Gaitsgory’s construction in [9] is based on the
same idea, but now for a scheme X (of finite type) over A2, and produces complexes
indexed by a pair of nonnegative integers. In this generality, one cannot expect the
same stabilization phenomenon as above for all perverse sheaves; but Gaitsgory
simply defines his 2-dimensional nearby cycles functor using a homotopy colimit of
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2 PRAMOD N. ACHAR AND SIMON RICHE

these complexes. In general, this construction forces one to leave the constructible
derived category; to avoid this problem, in our account of Gaitsgory’s construction
in [2] we proposed instead to restrict to complexes such that a stabilization property
as above occurs. So, for us the 2-dimensional nearby cycles functor is only “partially
defined.” The starting point of this paper is the observation that this definition can
be phrased so that it makes sense for a scheme X (of finite type) over any affine
space Ad.

1.4. Composition of higher nearby cycles functors. The application of nearby
cycles over a 2-dimensional base in [9] uses a comparison with two related opera-
tions: (a) compute the nearby cycles of the given perverse sheaf successively along
the 2 factors in A2; (b) restrict the perverse sheaf to the preimage of the diago-
nal copy of A1, and then compute the nearby cycles of (a shift of) this complex.
Gaitsgory shows that his 2-dimensional nearby cycles complex maps to each of the
complexes obtained in (a) or (b), and that these maps are isomorphisms in the
specific setting required in [6]. In [7] the authors consider (in a related setting) a
variant of (a) where one considers a complex over Ad and computes nearby cycles
along each A1-factor successively, and they assert that the result does not depend
on the choice of order on the coordinates. To justify this assertion, here we intro-
duce the (partially defined) d-dimensional nearby cycles functor, and show that, in
the setting of [7], each of the complexes identifies canonically with the image of the
inital complex under our functor.

To justify this fact, we interpret nearby cycles along each factor as the case d “ 1
of our construction, and show roughly that a composition of d- and e-dimensional
nearby cycles functors receives a canonical map from a pd` eq-dimensional nearby
cycles functor, which in the setting of [7] is an isomorphism. In fact, in the body
of the paper we consider a more general construction of higher nearby cycles and
their compositions, which also covers the construction in (b) above, and thereby (in
our opinion) clarifies the general picture. See Definition 3.1 for the main definition,
and (3.9) for the construction involving the composition of such functors.

1.5. Compatibilities. In full generality, it is not reasonable to expect that the
morphism in (3.9) is always an isomorphism. As in [9], what we show here is that
the constructions of higher nearby cycles and of the morphisms considered above
are compatible with smooth pullback and proper pushforward in an appropriate
sense (see Lemmas 3.13, 3.14, 3.17 and 3.18 for precise statements), and then
study a product-type situation (see §3.9). This is sufficient to show that the d-
dimensional nearby cycles are well defined in the setting of [7], and that their
formation is compatible with composition, which amounts to the statement these
authors require. See Theorem 4.2 and §4.7 for precise statements.

1.6. Further comments. There exists a general theory of nearby and vanishing
cycles over general bases, which is much more elaborate than the version we consider
here; see [11] for a brief account. In the companion paper [16], A. Salmon explains
the relationship between the latter theory and ours.

As explained above, the construction considered here is an extension of our
study in [2, §9.4]. There is one important difference in our treatment though:
in [2] we introduced a general condition of “iterated cleanness” implying that the
2-dimensional nearby cycles complex is well defined, and showed that this condi-
tion is satisfied in the setting at hand. It is not obvious (to us) how to extend this
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condition over a higher-dimensional base; here we bypass this question by prov-
ing a compatibility statement with proper pushforward which is stronger than its
counterpart in [2] (compare Lemma 3.14 and [2, Proposition 9.4.2]) and allows us
to reduce the question to the product-type setting.

In this paper we work in the setting of étale sheaves on schemes over fields, in
order to meet the setting of [7]. However all our statements have obvious variants for
“usual” sheaves on complex algebraic varieties endowed with their analytic topology
(and coefficients in a field), and all our proofs apply in both settings.

After we completed a preliminary version of this paper, it was pointed out to us
that a special case of our construction had already been introduced by A. Salmon,
with applications to the cohomology of shtukas; see [15] and Example 3.11.

1.7. Acknowledgements. We thank Roman Bezrukavnikov and Michael Finkel-
berg for suggesting that our study of Gaitsgory’s construction could be used to
prove the statement they use in [7], which was the starting point of this work, and
for useful comments on a preliminary version. We thank the anonymous referee
for detailed comments that helped improving the exposition of the paper. Finally,
we thank Andrew Salmon for helpful discussions, and for agreeing to expand his
comments into the paper [16].

2. Preliminaries

2.1. Pointed maps and associated linear morphisms. We fix a base field F.
Below, by a “scheme” we will mean an F-scheme of finite type. If P is a finite set,
we may consider the affine space

AP “ SpecpFrXp : p P P sq

with coordinates indexed by P . The generic part of this affine space, denoted by
APη , is the open subscheme where no coordinates vanish:

APη “ tpxpqpPP | xp ‰ 0 for all pu.

(In case P “ ∅, we interpret these definitions as A∅ “ A∅
η “ SpecpFq.)

For any finite set P we let P˚ denote the disjoint union P > t˚u, where ˚ denotes
a new element. For finite sets P and Q, a pointed map α : P˚ Ñ Q˚ is a function
that satisfies αp˚q “ ˚. If α : P˚ Ñ Q˚ is a pointed map, there is an induced linear
map of affine spaces ᾱ : AQ Ñ AP given by

ᾱppxqqqPQq “ pypqpPP where yp “

#

xαppq if αppq P Q,

0 if αppq “ ˚.

We also set APη,α “ tpxpqpPP P AP | xp ‰ 0 if αppq ‰ ˚u; then the restriction of ᾱ

to AQη factors through a morphism ᾱη : AQη Ñ APη,α.

Remark 2.1. From the definition we see that ᾱ is injective if α is surjective, and
surjective if α is injective. For arbitrary α, one can decompose the situation into a
combination of these two settings as follows: set R “ αpP qXQ. Then α decomposes
in the obvious way as a composition of pointed maps

P˚
α1

ÝÑ R˚
α2

ÝÑ Q˚,

and we have ᾱ “ ᾱ1 ˝ ᾱ2 where ᾱ1 is injective and ᾱ2 is surjective.
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2.2. Scheme morphisms associated with pointed maps. Now suppose we
have a scheme X equipped with a map f : X Ñ AP . The generic part of X is
defined by Xη “ X ˆAP APη ; the natural morphism Xη Ñ APη will be denoted fη,
and the embedding Xη Ñ X will be denoted jX (or j when no confusion is likely).

If α : P˚ Ñ Q˚ is a pointed map, then one can consider the schemes

Xα :“ X ˆAP AQ and Xα
η :“ X ˆAP AQη

where the fiber products are taken with respect to ᾱ : AQ Ñ AP and its restriction
to AQη . The natural morphism Xα Ñ X will be denoted i1X,α (or i1α), its restriction

to Xα
η will be denoted iX,α (or iα) and we will denote by

fα : Xα Ñ AQ

the natural projection morphism. By Remark 2.1, i1α is a closed immersion if
α is surjective, and is smooth and surjective if α is injective; moreover we have
iα “ i1α ˝ jXα . Note also that if α´1p˚q “ t˚u then iα factors through a morphism

i2α : Xα
η Ñ Xη.

2.3. Jordan block local systems. Let ℓ be a prime different from the character-
istic of F, and let k be a topological field of one of the following two forms:

‚ an algebraic extension of Qℓ, equipped with the ℓ-adic topology;
‚ an algebraic extension of Fℓ, equipped with the discrete topology.

Our goal in the rest of this section is to describe the construction of a family of
indecomposable k-local systems on A1 ∖ t0u on which a generator of the geometric
fundamental group acts by a unipotent Jordan block.

This construction is certainly well known when k has characteristic 0 (see, for
instance, [4, 13]), and it is relatively easy when F is separably closed (so that there
is no Galois action to consider). It is probably known in the generality we consider
here, but as we could not find a suitable reference, we include the details. The
construction uses identities involving some polynomials with rational coefficients,
which are discussed in the next subsection.

2.4. Z-closed polynomials and binomial identities. Let us say that a polyno-
mial fpxq P Qrxs is Z-closed if it has the property that for all nonnegative integers
n ě 0, we have fpnq P Z. Of course, any polynomial f P Qrxs determines a contin-
uous (for the ℓ-adic topology) function Qℓ Ñ Qℓ. Because the nonnegative integers
Zě0 are dense in Zℓ, if f is Z-closed, then it restricts to a function Zℓ Ñ Zℓ.
Furthermore, with k as above, any Z-closed polynomial f P Qrxs determines a
continuous function f : Zℓ Ñ k.

Any polynomial with coefficients in Z is obviously Z-closed, but there are others:
for instance, the polynomials δ0, δ1, . . . given by

δrpxq “

ˆ

x

r

˙

“
xpx´ 1q ¨ ¨ ¨ px´ r ` 1q

r!
.

(When r “ 0, this expression is interpreted as 1.) For integers r, s ě 0, these
polynomials satisfy

(2.1) δrpxqδspxq “

mintr,su
ÿ

i“0

pr ` s´ iq!

pr ´ iq!ps´ iq!i!
δr`s´ipxq.
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To prove this, observe that if we replace x by a nonnegative integer n, the left-hand
side is the coefficient of urvs in p1 ` uqnp1 ` vqn, which can also be written as

p1 ` u` v ` uvqn “

n
ÿ

k“0

ˆ

n

k

˙

pu` v ` uvqk “

n
ÿ

k“0

ˆ

n

k

˙

ÿ

g,h,iě0
g`h`i“k

k!

g!h!i!
ug`ivh`i.

The coefficient of urvs is found by taking those terms where g “ r ´ i, h “ s ´ i,
and k “ r ` s´ i. This yields the right-hand side of (2.1).

Next, consider the two-variable polynomial δrptxq “
`

tx
r

˘

P Qrx, ts. Since
δ0, δ1, . . . form a Q-basis for Qrxs, there is a unique expression of the form

(2.2) δrptxq “

r
ÿ

j“0

cjrptqδjpxq,

for some polynomials cjrptq P Qrts. Comparing the coefficients of xr and evaluating
at x “ 0, we see that

(2.3) crrptq “ tr P Zrts and c0rptq “

#

1 if r “ 0,

0 if r ą 0.

In particular, these polynomials are Z-closed.
We claim that the cjr are in fact Z-closed for all j, i.e., that cjrpmq P Z for integers

m ě 0. We prove this by induction on m: if r ą 0 we obviously have cjrp0q “ 0,
and for m ą 0, by Vandermonde’s identity, we have

ˆ

mx

r

˙

“

r
ÿ

g“0

ˆ

pm´ 1qx

g

˙ˆ

x

r ´ g

˙

“

r
ÿ

g“0

g
ÿ

h“0

chg pm´ 1qδhpxqδr´gpxq.

Expanding the right-hand side using (2.1) and comparing coefficients of δj , we find
that

cjrpmq “
ÿ

0ďhďgďr
0ďr´g`h´jďminth,r´gu

chg pm´ 1q
j!

pj ` g ´ rq!pj ´ hq!pr ´ g ` h´ jq!
P Z.

2.5. Functions on the Tate module. Let F be a separable closure of F, and let
Zℓp1q be the Tate module of Fˆ, i.e., the inverse limit of the groups of ℓn-th roots
of unity in F. This is naturally a free Zℓ-module of rank 1. Let

CpZℓp1q,kq “ set of continuous functions Zℓp1q Ñ k.

Here, “continuous” should be understood with respect to the profinite topology on
Zℓp1q and the topology on k indicated in §2.3. This set is a ring under pointwise
multiplication.

The group GalpF|Fq acts on Zℓp1q by the cyclotomic character χℓ : GalpF|Fq Ñ

Zˆ
ℓ . There is an induced action of the semidirect product GalpF|Fq ˙ Zℓp1q on

CpZℓp1q,kq, given by

ppγ, gq ¨ fqphq “ fpχℓpγq´1ph´ gqq

for γ P GalpF|Fq and g, h P Zℓp1q. This is an action by ring automorphisms.
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To write down some explicit elements in CpZℓp1q,kq, let us choose a generator g
for Zℓp1q as a Zℓ-module. Thus every element in Zℓp1q can be written uniquely as
ng for some n P Zℓ. Then for r ě 0 there is a continuous function

φgr : Zℓp1q Ñ k given by φgrpngq “ p´1qrδrpnq.

Lemma 2.2. Let g P Zℓp1q be an element that generates Zℓp1q as a Zℓ-module, and
for a ě 0 let

La “ spanktφg0, φ
g
1, . . . , φ

g
a´1u Ă CpZℓp1q,kq.

(1) The subspace La Ă CpZℓp1q,kq is independent of the choice of g.
(2) The subspace La is stable under the action of GalpF|Fq ˙ Zℓp1q.
(3) We have dimLa “ a.
(4) Any generator of Zℓp1q acts on La by a unipotent Jordan block.
(5) For any integer a ě 1, there is a canonical short exact of GalpF|Fq ˙Zℓp1q-

modules

0 Ñ La´1 Ñ La Ñ kp´a` 1q Ñ 0.

(6) For any two integers a, b ě 1, there is a canonical map of GalpF|Fq˙Zℓp1q-
modules La bk Lb Ñ La`b´1 whose image contains Lmaxta,bu.

Proof. (1) If g1 is another generator for Zℓp1q as a Zℓ-module, then we have g1 “ ug
for some u P Zˆ

ℓ . It follows from (2.2) that

φg
1

r “

r
ÿ

j“0

p´1qj`rcjrpuqφgj .

This shows that the span of φg
1

0 , . . . , φ
g1

a´1 is contained in the span of φg0, . . . , φ
g
a´1.

By symmetry the opposite containment also holds, so La is independent of the
choice of g.

(2) We have

pp´gq ¨ φgrqpngq “ φgrppn` 1qgq “ p´1qr
ˆ

n` 1

r

˙

“ p´1qr
ˆ

n

r ´ 1

˙

` p´1qr
ˆ

n

r

˙

or, in other words,

(2.4) p´gq ¨ φgr “

#

φg0 if r “ 0,

φgr ´ φgr´1 if r ą 0.

This formula shows that p´gq preserves La and acts by a unipotent operator. It
follows that the cyclic subgroup Zg Ă Zℓp1q preserves La as well. Since Zg is dense
in Zℓp1q, continuity considerations show that La is preserved by all of Zℓp1q.

Similarly, for γ P GalpF|Fq, we have

(2.5) γ ¨ φgr “ φχℓpγq
´1g

r “

r
ÿ

j“0

p´1qj`rcjrpχℓpγq´1qφgj .

Thus, La is stable under GalpF|Fq, and hence under GalpF|Fq ˙ Zℓp1q.
(3) We wish to show that the functions φg0, φ

g
1, . . . are linearly independent. If

not, find some nontrivial linear dependence relation

b0φ
g
0 ` ¨ ¨ ¨ ` bmφ

g
m “ 0
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with b0, . . . , bm P k. We may assume that this relation is chosen so that m as small
as possible; then bm ‰ 0 and m ą 0. Apply the operator f ÞÑ f ´ p´gq ¨ f to this
equation. By (2.4), we obtain

b1φ
g
0 ` b2φ

g
1 ` ¨ ¨ ¨ ` bmφ

g
m´1 “ 0,

contradicting the minimality of m. We conclude that dimLa “ a.
(4) This follows from (2.4) and the independence on g (see (1)).
(5) By construction we have an embedding of representations La´1 Ă La. If g

is a generator of Zℓp1q as a Zℓ-module, then it is clear from (2.4) that p´gq acts
trivially on the quotient La{La´1. Therefore, the group Zg Ă Zℓp1q acts trivially,
and by continuity, all of Zℓp1q acts trivially.

On the other hand, by (2.5), an element γ P GalpF|Fq acts on La{La´1 by
the scalar ca´1

a´1pχℓpγq´1q “ χℓpγq´a`1 (see (2.3)). We conclude that La{La´1 –

kp´a` 1q.
(6) Consider the multiplication map CpZℓp1q,kq bk CpZℓp1q,kq Ñ CpZℓp1q,kq.

This map is compatible with the action of GalpF|Fq ˙ Zℓp1q. It follows from (2.1)
that the multiplication map restricts to the desired map

La bk Lb Ñ La`b´1.

The image of this map contains φa “ φaφ0 and φb “ φ0φb. By (2.4), it contains
all of La and Lb, and thus it contains Lmaxta,bu. □

In the next lemma (which will not be used below) we discuss the case when k has
characteristic 0; in particular, these results show that in this case our construction
recovers the local systems considered in [4, 13].

Lemma 2.3. Assume that k has characteristic 0.

(1) For r ě 0, there is an isomorphism of GalpF|Fq-modules

La – k ‘ kp´1q ‘ ¨ ¨ ¨ ‘ kp´a` 1q.

In terms of the right-hand side, the action of g P Zℓp1q is given by

(2.6) g ÞÑ exp

»

—

—

–

0 x´g,´y

0 x´g,´y

...
...
0 x´g,´y

0

fi

ffi

ffi

fl

where x´,´y : Zℓp1q bZℓ
kp´rq Ñ kp´r ` 1q is the natural pairing map.

(2) For a ď b, there is a short exact sequence of GalpF|Fq ˙ Zℓp1q-modules

0 Ñ La Ñ Lb Ñ Lb´ap´aq Ñ 0.

Proof. By definition we have

kp´rq “ k bZℓ
HomZℓ

pZℓprq,Zℓq “ k bZℓ
HomZℓ

pZℓp1q b ¨ ¨ ¨ b Zℓp1q
looooooooooomooooooooooon

r copies

,Zℓq.

Define a k-linear map θr : kp´rq Ñ CpZℓp1q,kq as follows: for u P HomZℓ
pZℓprq,Zℓq,

we let θrp1 b uq : Zℓp1q Ñ k be the function given by

θrp1 b uqpgq “ 1
r!upg b ¨ ¨ ¨ b gq.
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Then θr is GalpF|Fq-equivariant and nonzero. We claim that θr induces an isomor-
phism

(2.7) kp´rq –

"

f P CpZℓp1q,kq

ˇ

ˇ

ˇ

fpngq “ nrfpgq for all
n P Zℓ and all g P Zℓp1q

*

.

Indeed, it is clear that the image of θr is contained in the right-hand side of (2.7).
Moreover, the latter set is 1-dimensional, because any element satisfying this con-
dition is determined by its value on some generator of Zℓp1q as a Zℓ-module.

Let us describe the pairing x´,´y : Zℓp1q bZℓ
kp´rq Ñ kp´r ` 1q in terms of θr

and θr´1. For g P Zℓp1q and f belonging to the right-hand side of (2.7), we have

(2.8) xg, fypgq “ rfpgq.

For the remainder of this proof, we assume that g is a generator of Zℓp1q as a
Zℓ-module. Consider the continuous function

νgr : Zℓp1q Ñ k given by νgr pngq “ nr{r!.

It is clear that νgr spans the right-hand side of (2.7). On the other hand, νg0 , . . . , ν
g
a´1

is a basis for La, so La – k ‘ ¨ ¨ ¨ ‘ kp´a ` 1q as a GalpF|Fq-module. By (2.8),
xg, νgr ypgq “ 1{pr ´ 1q!, so

xg, νgr y “ νgr´1.

In the usual Zℓp1q-action on La, the action of g on νgr is given by

pg ¨ νgr qpngq “
pn´ 1qr

r!
“

r
ÿ

j“0

p´1qj

j!
νgr´jpngq “

r
ÿ

j“0

1

j!
x´g, x¨ ¨ ¨ x´g,
looooooomooooooon

j times

νgr y ¨ ¨ ¨ ypngq.

This shows that (2.6) holds when g is a generator of Zℓp1q as a Zℓ-module. It then
holds in general by continuity.

(2) We continue to let g be a fixed generator of Zℓp1q as a Zℓ-module. Let
Ba : Lb Ñ Lb´a be the map given by

Bapνgr q “

#

νgr´a if a ď r ď b´ 1,

0 otherwise.

If we identify Lb with the space of polynomial functions Zℓ Ñ k of degree ď b´ 1,
then Ba is the a-fold differentiation operator. It is easy to check that Ba is Zℓp1q-
equivariant, but not GalpF|Fq-equivariant. Specifically, for γ P GalpF|Fq and f P Lb,
we have

Bapγ ¨ fq “ χℓpγq´aγ ¨ Bapfq.

We conclude that Ba induces an isomorphism Lb{La – Lb´ap´aq. □

Remark 2.4. When k has characteristic ℓ, the isomorphism in Lemma 2.3(1) may
be false. A direct calculation shows that

δ2ptxq “
txptx´ 1q

2
“ t2δ2pxq `

t2 ´ t

2
δ1pxq,

so that c12ptq “ 1
2 pt2 ´ tq. Let g be a generator of Zℓp1q as a Zℓ-module. By (2.5),

in the basis tφg0, φ
g
1, φ

g
2u for L3, an element γ P GalpF|Fq acts by
»

–

1
χℓpγq´1 1

2 pχℓpγq´1 ´ χℓpγq´2q

χℓpγq´2

fi

fl .
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Suppose now that ℓ “ 2, and that F “ Fp for some prime p ” 3 pmod 4q. Take

γ P GalpF|Fq to be the Frobenius map, so that χℓpγq “ p. Then γ acts on L3 by
»

–

1
p´1 p´3

`

p
2

˘

p´2

fi

fl “

»

–

1
1 1

1

fi

fl .

In particular, the action of GalpF|Fq on L3 is not semisimple!

2.6. Definition of the local systems. Consider the affine line A1 over F. Recall
that there is a canonical exact sequence

πgeom
1 pA1 ∖ t0u, 1q ãÑ π1pA1 ∖ t0u, 1q ↠ GalpF|Fq.

This sequence is split by the choice of the unit F-point in A1 ∖ t0u, and we identify
π1pA1 ∖ t0u, 1q “ GalpF|Fq ˙πgeom

1 pA1 ∖ t0u, 1q. We also have a canonical quotient

map πgeom
1 pA1 ∖ t0u, 1q ↠ Zℓp1q, which is compatible with the action of GalpF|Fq

on both groups. Combining these observations, we obtain a canonical surjective
map

π1pA1 ∖ t0u, 1q ↠ GalpF|Fq ˙ Zℓp1q.

Thus, any continuous k-representation of GalpF|Fq ˙ Zℓp1q gives rise to an étale
k-local system on A1. For a ě 0, we let La be the local system on A1 ∖ t0u

corresponding to the representation La as in Lemma 2.2.
The pullback of La to A1

F ∖ t0u is the local system corresponding to the con-

tinuous representation of πgeom
1 pA1 ∖ t0u, 1q given by the restriction of La to this

subgroup. By construction this action factors through an action of the commuta-
tive group Zℓp1q. It therefore admits a canonical action of Zℓp1q by automorphisms
of local systems.

By Lemma 2.2, for a ě 1 there exists a canonical exact sequence

(2.9) La´1 ãÑ La ↠ L1p´a` 1q

where L1 is the trivial local system. Iterating these embeddings we obtain, for any
a ď b, a canonical embedding

(2.10) La ãÑ Lb.

For any a, b ě 1, there is a canonical morphism

La b Lb Ñ La`b´1

whose image contains Lmaxpa,bq, and such that the following diagram commutes,
where the vertical maps are the surjections appearing in (2.9):

La b Lb La`b´1

L1p´a´ b` 2q L1p´a´ b` 2q.id

Moreover, these morphisms are compatible with the embeddings (2.10) in the ob-
vious way. Iterating this construction one obtains, for any k ě 1 and any integers
a1, . . . , ak, a morphism of local systems on A1 ∖ t0u

(2.11) La1 b ¨ ¨ ¨ b Lak Ñ La1`¨¨¨`ak´k`1.
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3. Higher nearby cycles

3.1. Setting. Let X, f , α be as in §2.2. The goal of this section is to explain the
construction, for F a perverse sheaf on Xη, of a perverse sheaf

Υαf pF q P PervpXα
η ,kq,

together with a collection parametrized by α´1p˚q X P of pairwise commuting ac-
tions of Zℓp1q on its pullback to F. We warn the reader that this construction is
“partial”: it will be defined only for certain perverse sheaves F . We do not have
any general criterion which guarantees that this construction works, but we do have
tools (see Lemmas 3.13, 3.14 and 3.20) that can be used to show that this is the
case in certain settings, where it gives rise to very important objects (see Section 4).

In the case where |P | “ 1 and Q “ ∅, our construction will reduce to Bĕılinson’s
description of the unipotent nearby cycles functor, and when |P | “ 2 and Q “ ∅ it
corresponds to the theory of “nearby cycles along a 2-dimensional base” developed
in [9] and studied in [2, §9.4]; see Example 3.11.

3.2. Definition. Let a : P Ñ Zě1 be a function. Define a local system La on APη
by

La “
ò

pPP

Lappq.

For any p P P , we have an action of Zℓp1q on the pullback of La to F induced by
the action on the factor labelled by p. If a,b : P Ñ Zě1 are two functions, we
say that a ď b if appq ď bppq for all p P P . If a ď b, then (2.10) gives rise to an
embedding of local systems

(3.1) La ãÑ Lb

on APη . In the special case where appq “ bppq for all but one element p0 of P , and
moreover bpp0q “ app0q ` 1, by (2.9) the cokernel is a Tate twist of a local system
of the same form: specifically, we have a short exact sequence

(3.2) La ãÑ Lb ↠ Lcpapp0qq where

#

cppq “ appq “ bppq for all p ‰ p0,

cpp0q “ 1.

Let us say that a : P Ñ Zě1 is α-special (with respect to a given pointed map
α : P˚ Ñ Q˚) if for each p P α´1pQq we have appq “ 1.

Definition 3.1. Let f : X Ñ AP be a morphism of schemes. Let F P PervpXη,kq,
and let α : P˚ Ñ Q˚ be a pointed map. If a,b : P Ñ Zě1 satisfy a ď b, then for
any i P Z there is a natural map

(3.3) pH ipi˚αj˚pF b f˚
η Laqq Ñ pH ipi˚αj˚pF b f˚

η Lbqq

induced by (3.1). We say that the α-nearby cycles of F are well defined if

‚ for i “ |Q| ´ |P |, there exists N P Zě0 such that if a is α-special and
satisfies appq ě N for any p P α´1p˚q XP , then for any b ě a α-special the
map (3.3) is an isomorphism;

‚ for i ‰ |Q| ´ |P |, for any a α-special there exists b ě a α-special such that
the map (3.3) vanishes.
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If these conditions are satisfied, we set

Υαf pF q “ lim
ÝÑ

a:PÑZě1

α-special

pH |Q|´|P |pi˚αj˚pF b f˚
η Laqq.

In this case, for any p P α´1p˚q XP , after pullback to F we have an action of Zℓp1q

on Υαf pF q induced by the corresponding action on La, called the monodomy action
associated with p. These actions pairwise commute.

Remark 3.2. (1) It should be clear that, although we omit the adjective “unipo-
tent” from our terminology for simplicity, what we consider in Definition 3.1
is an extension of the construction of the unipotent part of the nearby cycles
functor.

(2) In the definition above one can allow more generally X to be an ind-scheme
over F which is of ind-finite type. By definition a complex on such an
ind-scheme is supported on a closed subscheme, and the functor of Defini-
tion 3.1 can be calculated on a complex by restriction to a closed subscheme
supporting the given complex. All the statements of this section hold in
this generality, replacing the condition “proper” by “ind-proper,” and the
property “smooth” by “representable by a smooth morphism.”

We will sometimes write ΥαXpF q instead of Υαf pF q. This construction is obvi-

ously functorial in the sense that if F ,G P PervpXη,kq are such that the α-nearby
cycles of F and G are well defined and if u : F Ñ G is a morphism, then we have
a natural morphism Υαf puq : Υαf pF q Ñ Υαf pG q which intertwines the monodromy

actions (after pullback to F).

Lemma 3.3. The partially defined functor Υαf is exact in the sense that if

F1 ãÑ F2 ↠ F3

is a short exact sequence in PervpXη,kq such that the α-nearby cycles of F1, F2

and F3 are well defined, then the induced morphisms

Υαf pF1q Ñ Υαf pF2q Ñ Υαf pF3q

form a short exact sequence in PervpXα
η ,kq.

Proof. For any a : P Ñ Zě1 we have an exact sequence

pH |Q|´|P |´1pi˚αj˚pF3 b f˚
η Laqq Ñ pH |Q|´|P |pi˚αj˚pF1 b f˚

η Laqq

Ñ pH |Q|´|P |pi˚αj˚pF2 b f˚
η Laqq Ñ pH |Q|´|P |pi˚αj˚pF3 b f˚

η Laqq

Ñ pH |Q|´|P |`1pi˚αj˚pF1 b f˚
η Laqq.

Fix N such that the map (3.3) is an isomorphism for i “ |Q| ´ |P |, for any a which
is α-special with appq ě N for p P α´1p˚q X P and any b which is α-special and
satisfies b ě a, for the three complexes F1, F2 and F3. Fix a which is α-special
and satisfies appq ě N for p P α´1p˚q X P . Fix b ě a which is α-special and such
that the morphism

pH |Q|´|P |`1pi˚αj˚pF1 b f˚
η Laqq Ñ pH |Q|´|P |`1pi˚αj˚pF1 b f˚

η Lbqq

vanishes, and then fix c ě b which is α-special and such that the morphism

pH |Q|´|P |´1pi˚αj˚pF3 b f˚
η Lbqq Ñ pH |Q|´|P |´1pi˚αj˚pF3 b f˚

η Lcqq
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vanishes. Considering the commutative diagram

pH |Q|´|P |´1pi˚αj˚pF3 b f˚
η Lbqq pH |Q|´|P |pi˚αj˚pF1 b f˚

η Lbqq

pH |Q|´|P |´1pi˚αj˚pF3 b f˚
η Lcqq pH |Q|´|P |pi˚αj˚pF1 b f˚

η Lcqq

in which all maps are the natural ones, using the fact that the right vertical map
is an isomorphism and the left one vanishes, we obtain that the upper horizontal
map vanishes. Similarly, considering the commutative diagram

pH |Q|´|P |pi˚αj˚pF3 b f˚
η Laqq pH |Q|´|P |`1pi˚αj˚pF1 b f˚

η Laqq

pH |Q|´|P |pi˚αj˚pF3 b f˚
η Lbqq pH |Q|´|P |`1pi˚αj˚pF1 b f˚

η Lbqq

where the left vertical map is an isomorphism and the right one vanishes, we obtain
that the lower horizontal map vanishes. This means that in the exact sequence
considered at the beginning of the proof (for the map b) the first and last morphisms
vanish. Since the second, third and fourth terms in this sequence identify with
Υαf pF1q, Υαf pF2q and Υαf pF3q respectively, this finishes the proof. □

Remark 3.4. Recall the notation of §2.1, and set Xη,α “ X ˆAP APη,α. Then the
immersion jX factors as a composition

Xη
jX,α,1

ÝÝÝÝÑ Xη,α
jX,α,2

ÝÝÝÝÑ X,

and iX,α factors through a morphism hX,α : Xα
η Ñ Xη,α. Hence for any function a

we have an identification

(3.4) i˚αj˚pF b f˚
η Laq “ h˚

X,αpjX,α,1q˚pF b f˚
η Laq.

Remark 3.5. Consider the decomposition α “ α2 ˝ α1 from Remark 2.1. Then a
map a : P Ñ Zě1 is α-special iff it is α1-special, and we have i1X,α “ i1X,α1

˝ i1Xα1 ,α2
,

so for any α-special a we have

i˚X,αpjXq˚pF b f˚
η Laq – piXα1 ,α2

q˚pi1X,α1
q˚pjXq˚pF b f˚

η Laq.

Since pα2q´1p˚q “ t˚u we have a morphism i2Xα1 ,α2
, which is easily seen to be

smooth and surjective, and an identification

i˚X,αpjXq˚pF b f˚
η Laq – pi2Xα1 ,α2

q˚piX,α1
q˚pjXq˚pF b f˚

η Laq.

Since i2Xα1 ,α2
is smooth of relative dimension |Q| ´ |R| the functor pi2Xα1 ,α2

q˚r|Q| ´

|R|s is exact with respect to the perverse t-structure (see [5, §4.2.4] or [1, Proposi-
tion 3.6.1]), so for any i P Z we have

(3.5) pH ipi˚X,αpjXq˚pF b f˚
η Laqq –

pi2Xα1 ,α2
q˚r|Q| ´ |R|s

´

pH i´|Q|`|R|pi˚X,α1
pjXq˚pF b f˚

η Laqq

¯

.

Since i2Xα1 ,α2
is also surjective, pi2Xα1 ,α2

q˚r|Q| ´ |R|s is also faithful on perverse

sheaves (see [1, Theorem 3.6.6]),1 hence it detects isomorphisms. We deduce that

1In fact i2Xα1 ,α2
has geometrically connected fibers, so that pi2Xα1 ,α2

q˚r|Q| ´ |R|s is even fully

faithful on perverse sheaves, see [5, Proposition 4.2.5] or [1, Theorem 3.6.6].
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the α-nearby cycles of F are well defined iff so are the α1-nearby cycles of F , and
that in this case we have

Υαf pF q “ pi2Xα1 ,α2
q˚Υα1

f pF qr|Q| ´ |R|s.

3.3. First properties. The following lemma makes more precise the perverse de-
grees one has to consider in Definition 3.1.

Lemma 3.6. Let F P PervpXη,kq, and let α : P˚ Ñ Q˚ be a pointed map. For
any map a : P Ñ Zě1, we have pH ipi˚αj˚pF b f˚

η Laqq “ 0 unless |Q| ´ |P | ď i ď

|Q| ´ |impαq XQ|.

Proof. Remark 3.5 reduces the proof to the case α is surjective, which we assume
from now on. Set r :“ |P | ´ |Q|. Then i1α is a closed immersion; more specifically,
it can be written as a composition ir ˝ ¨ ¨ ¨ ˝ i1 where each ij is a closed immersion
whose complementary open immersion is affine. (In fact it suffices to remark this
for ᾱ, where the decomposition is obtained by writing this map as a composition
of embeddings of codimension-1 linear subspaces.) Then the claim follows from the
fact that if i : X Ñ Y is a closed immersion with affine complement, the functor i˚

sends any complex concentrated in perverse degrees between a and b to a complex
concentrated in perverse degrees between a´ 1 and b, see [5, Corollaire 4.1.10]. □

We deduce the following property.

Lemma 3.7. Let F P PervpXη,kq, and let α : P˚ Ñ Q˚ be a pointed map. For
any two functions a,b : P Ñ Zě1 with a ď b, the natural map

pH |Q|´|P |pi˚αj˚pF b f˚
η Laqq Ñ pH |Q|´|P |pi˚αj˚pF b f˚

η Lbqq

is injective.

Proof. By induction, we can reduce to the case where appq “ bppq for all but one
element of P , say p0, and moreover bpp0q “ app0q ` 1. In this case, define c as
in (3.2). That short exact sequence gives rise to a distinguished triangle

i˚αj˚pF b f˚
η Laq Ñ i˚αj˚pF b f˚

η Lbq Ñ i˚αj˚pF b f˚
η Lcqpapp0qq

r1s
ÝÝÑ .

Lemma 3.6 applies to all three terms, and then the present lemma follows by ex-
amining the long exact sequence in perverse cohomology. □

3.4. Reformulation. In the following lemma we show that Definition 3.1 can be
formulated in a slightly different way.

Lemma 3.8. Let F P PervpXη,kq, and let α : P˚ Ñ Q˚ be a pointed map. The
α-nearby cycles of F are well defined if and only if the following conditions hold.

‚ There exists N P Zě0 such that if a is α-special and satisfies appq ě N for
any p P α´1p˚q X P , then for any b ě a α-special the natural map

pH |Q|´|P |pi˚αj˚pF b f˚
η Laqq Ñ pH |Q|´|P |pi˚αj˚pF b f˚

η Lbqq

is an isomorphism.
‚ For any a α-special there exists b ě a α-special such that the natural map

pτą|Q|´|P |pi˚αj˚pF b f˚
η Laqq Ñ pτą|Q|´|P |pi˚αj˚pF b f˚

η Lbqq

vanishes.
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Proof. By Lemma 3.6, the map (3.3) automatically vanishes for i ă |Q| ´ |P |. In
view of this, it is clear that the conditions in the present lemma imply those in
Definition 3.1.

Conversely, assume that the conditions in Definition 3.1 hold. Let a : P Ñ Zě1

be an α-special function, and define a sequence of functions a1,a2, . . . inductively
as follows: set a1 “ a, and if a1, . . . ,an´1 are already defined, choose an ě an´1

such that
pH ipi˚αj˚pF b f˚

η Lan´1
qq Ñ pH ipi˚αj˚pF b f˚

η Lan
qq

vanishes for i ą |Q| ´ |P |. (By Lemma 3.6 again, there are only finitely many
degrees i ą |Q| ´ |P | in which the objects above are nonzero, so finding such a an
requires only finitely many invocations of Definition 3.1.) Set

Mj “ pτą|Q|´|P |pi˚αj˚pF b f˚
η Laj

qq, j “ 1, 2, . . . .

By Lemma 3.9 below, there is an integer N ě 1 such that M1 Ñ MN is the zero
map. The second condition of the lemma is then satisfied by b “ aN . □

Lemma 3.9. Let T be a triangulated category equipped with a non-degenerate
t-structure, and suppose we have a sequence of objects and maps

M1
ϕ1

ÝÑ M2
ϕ2

ÝÑ M3 Ñ ¨ ¨ ¨

such that the following conditions hold:

(1) there exist integers a ď b such that for all j, the t-cohomology tH ipMjq

vanishes unless a ď i ď b;
(2) for any j ě 1 and i P Z, the map tH ipϕjq vanishes.

Then the composition ϕb´a`1 ˝ ϕb´a ˝ ¨ ¨ ¨ ˝ ϕ1 :M1 Ñ Mb´a`2 vanishes.

Proof. We proceed by induction on b ´ a. If b ´ a “ 0, then Mj “ tH apMjqr´as

for all j, and the maps ϕj are already all zero by assumption, so the claim is clear.
Otherwise, for any j we set M 1

j “ tτěa`1Mj , and let ϕ1
j : M 1

j Ñ M 1
j`1 be the

induced map. By induction, the map ϕ1
b´a ˝ ¨ ¨ ¨ ˝ ϕ1

1 :M 1
1 Ñ M 1

b´a`1 vanishes. Let
ψ “ ϕb´a ˝ ¨ ¨ ¨ ˝ ϕ1 :M1 Ñ Mb´a`1, and consider the commutative diagram

tH apM1qr´as M1 M 1
1

tH apMb´a`1qr´as Mb´a`1 M 1
b´a`1

tH apMb´a`2qr´as Mb´a`2 M 1
b´a`2

0 ψ 0

`1

0 ϕb´a`1 ϕ1
b´a`1

`1

`1

where all rows are distinguished triangles. An examination of the long exact se-
quence of Hom-groups shows that ψ must be induced by a map

θ :M1 Ñ tH apMb´a`1qr´as.

The composition ϕb´a`1 ˝ ψ is equal to the composition

M1
θ

ÝÑ tH apMb´a`1qr´as Ñ Mb´a`1
ϕb´a`1

ÝÝÝÝÝÑ Mb´a`2.

But the composition of the last two arrows is 0, so ϕb´a`1 ˝ψ “ 0, which concludes
the proof. □
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3.5. Examples. To illustrate Definition 3.1 we next consider some special cases.

Example 3.10. Assume that α´1p˚q “ t˚u. Then there exists only one α-special
map, namely the constant map with value 1, and the corresponding local system is
constant (of rank 1). In this case, we interpret the conditions in Definition 3.1 as
requiring that pH ipi˚αj˚pF qq “ 0 if i ‰ |Q| ´ |P |. Note that we have iα “ j ˝ i2α,
hence i˚αj˚pF q “ pi2αq˚F . It follows that the α-nearby cycles of F are well defined
if and only if pi2αq˚F r|Q| ´ |P |s is perverse, and that if this is the case we have

Υαf pF q – pi2αq˚F r|Q| ´ |P |s.

Example 3.11. Assume now that Q “ ∅. In this case, there exists a unique map
α : P˚ Ñ Q˚ “ t˚u (which will therefore be omitted from the notation), and any
map a : P Ñ Zě1 is special. If n “ |P |, we will speak of n-dimensional nearby
cycles instead of α-nearby cycles in this case. More specifically:

(1) In case n “ 1, the constructions above amount to those of Bĕılinson [4] in
his description of the unipotent nearby cycles functor and its monodromy
action, see [13] (see also [14] or [2, §9.2] for the analogous construction
in the complex analytic setting); in particular, the 1-dimensional nearby
cycles of F are well defined for any F , and compute the unipotent part of
the nearby cycles Ψf pF q. The monodromy action on the pullback to F is
the inverse of the standard monodromy action.

(2) In case n “ 2, the considerations above specialize to the setting studied
in [2, §9.4] (following an idea of Gaitsgory in [9]); in particular, [2, Proposi-
tion 9.4.7] gives a sufficient condition under which the 2-dimensional nearby
cycles of F are well defined and can be computed in terms of iterated unipo-
tent nearby cycles.

This case is also considered (for general n) in [15], where appropriate versions of
Lemmas 3.13 and 3.14 below are also obtained.

3.6. Compatibilities.

Lemma 3.12. If α : P˚ Ñ Q˚ is surjective, |Q| “ |P | ´ 1, and |α´1p˚q| “ 2, then
the α-nearby cycles of F are well defined.

Proof. Our assumptions imply that there is exactly one element p P P with αppq “

˚. It is clear that the datum of an α-special map a : P Ñ Zě1 is equivalent to the
datum of a nonnegative integer (corresponding to appq). If πp : AP Ñ A1 is the
projection onto the pth coordinate, then the construction of the α-nearby cycles
of F with respect to f amounts to the construction of the 1-dimensional nearby
cycles of F with respect to πp ˝ f , which are well defined by Example 3.11. □

For the next statements we fix a pointed map α : P˚ Ñ Q˚. Given a morphism
g : Y Ñ X, we will denote by gη : Yη Ñ Xη and gαη : Y αη Ñ Xα

η the morphisms
obtained by base change.

Lemma 3.13. Let g : Y Ñ X be a smooth morphism of relative dimension d, and
let F P PervpXη,kq.

(1) If the α-nearby cycles of F are well defined, then so are the α-nearby cycles
of g˚

ηF rds.
(2) If g is surjective, and if the α-nearby cycles of g˚

ηF rds are well defined,
then so are the α-nearby cycles of F .
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In either case, there is a natural isomorphism

Υαfgpg˚
ηF rdsq – pgαη q˚Υαf pF qrds.

Proof. The first claim follows from the smooth base change theorem and t-exactness
of shifted smooth pullbacks. The second claim follows from the fact that pullback
under a smooth surjective morphism is faithful on perverse sheaves and detects
isomorphisms, as in Remark 3.5. Details are left to the reader. □

Lemma 3.14. Let g : Y Ñ X be a proper morphism, and let F P PervpYη,kq.
Assume that the following conditions hold:

(1) the α-nearby cycles of F are well defined;
(2) both pgηq˚F and pgαη q˚Υ

α
fgpF q are perverse.

Then the α-nearby cycles of pgηq˚F are well defined, and there is a natural iso-
morphism

Υαf ppgηq˚F q – pgαη q˚Υ
α
fgpF q.

Proof. To simplify notation we set r “ |Q| ´ |P | and h “ fg. For any α-special
functions a,b : P Ñ Zě1 with a ď b, we can form the following commutative
diagram, in which the columns are truncation distinguished triangles (in the top
row, we use Lemma 3.6 to identify pτďrp´q with pH rp´qr´rs):

(3.6)

pH r
pi˚Y,αjY ˚pF b h˚

ηLaqqr´rs
pH r

pi˚Y,αjY ˚F b h˚
ηLbqr´rs

i˚Y,αjY ˚pF b h˚
ηLaq i˚Y,αjY ˚pF b h˚

ηLbq

pτąri˚Y,αjY ˚pF b h˚
ηLaq

pτąri˚Y,αjY ˚pF b h˚
ηLbq

`1 `1

Since the α-nearby cycles of F are well defined, by Lemma 3.8, we may choose a
such that the top horizontal map is an isomorphism for any b ě a (so that these
objects identify with ΥαhpF q), and then choose b such that the bottom horizontal
map is 0.

By base change and the projection formula, we have

gαη˚i
˚
Y,αjY ˚pF b h˚

ηLaq – i˚X,αjX˚gη˚pF b g˚
η f

˚
η Laq – i˚X,αjX˚ppgη˚F q b f˚

η Laq.

Thus, applying gαη˚ to (3.6), we obtain a diagram

(3.7)

gαη˚
pH r

pi˚Y,αjY ˚pF b h˚
ηLaqqr´rs gαη˚

pH r
pi˚Y,αjY ˚pF b h˚

ηLbqqr´rs

i˚X,αjX˚pgη˚F b f˚
η Laq i˚X,αjX˚pgη˚F b f˚

η Lbq

gαη˚p
pτąri˚Y,αjY ˚pF b h˚

ηLaqq gαη˚p
pτąri˚Y,αjY ˚pF b h˚

ηLbqq

„

0

`1 `1

whose columns are distinguished triangles. The objects in the top row are iden-
tified with gαη˚Υ

α
hpF qr´rs; in particular, by assumption, they are concentrated in

perverse degree r. Since gη˚F is assumed to be perverse, Lemma 3.6 tells us that
the objects in the middle row live in perverse degrees ě r. It follows that

pH ipgαη˚ppτąri˚Y,αjY ˚pF b h˚
ηLaqqq “ 0 for i ď r ´ 2,
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and likewise for Lb. Taking perverse cohomology, we obtain the following commu-
tative diagram with exact columns:

pH r´1
pgαη˚p

pτąri˚Y,αjY ˚pF b h˚
ηLaqqq

pH r´1
pgαη˚p

pτąri˚Y,αjY ˚pF b h˚
ηLbqqq

gαη˚
pH r

pi˚Y,αjY ˚pF b h˚
ηLaqq gαη˚

pH r
pi˚Y,αjY ˚pF b h˚

ηLbqq

pH r
pi˚X,αjX˚pgη˚F b f˚

η Laqq
pH r

pi˚X,αjX˚pgη˚F b f˚
η Lbqq

pH r
pgαη˚p

pτąri˚Y,αjY ˚pF b h˚
ηLaqqq

pH r
pgαη˚p

pτąri˚Y,αjY ˚pF b h˚
ηLbqqq.

0

„

0

Here, the third horizontal arrow is injective by Lemma 3.7. Since the composition
of the topmost horizontal arrow with the topmost right vertical arrow is injective,
the latter morphism must be injective, which implies that the topmost term in the
left-hand column vanishes. By one of the four-lemmas, the 0 morphism on the
fourth line is injective, so that the bottommost term in this column also vanishes.
We deduce that we actually have

pH ipgαη˚ppτąri˚Y,αjY ˚pF b h˚
ηLaqqq “ 0 for i ď r.

The same reasoning also applies to b, which implies that the columns of (3.7) can
be identified with truncation distinguished triangles: that whole diagram can be
rewritten as as

(3.8)

pH r
pi˚X,αjX˚pgη˚F b f˚

η Laqqr´rs
pH r

pi˚X,αjX˚pgη˚F b f˚
η Lbqqr´rs

i˚X,αjX˚pgη˚F b f˚
η Laq i˚X,αjX˚pgη˚F b f˚

η Lbq

pτąri˚X,αjX˚pgη˚F b f˚
η Laq

pτąri˚X,αjX˚pgη˚F b f˚
η Lbq

„

0

`1 `1

Our argument shows that the top (resp. bottom) row of (3.8) is an isomorphism
(resp. zero) whenever the corresponding row of (3.6) has the same property. By
Lemma 3.8, we conclude that the α-nearby cycles of gη˚F are well defined. The
identification of (3.7) with (3.8) shows that Υαf pgη˚F q – gαη˚Υ

α
fgpF q. □

3.7. Compositions of higher nearby cycles: construction. Let α : P˚ Ñ Q˚

and β : Q˚ Ñ R˚ be pointed maps, and let F P PervpXη,kq be an object which
satisfies the following properties:

‚ the α-nearby cycles and the βα-nearby cycles of F are well defined;
‚ the β-nearby cycles of Υαf pF q are well defined.

In the rest of this subsection we explain how, in this setting, one can define a
canonical morphism

(3.9) Υβαf pF q Ñ ΥβfαpΥαf pF qq.

Let c : P Ñ Zě1 be a βα-special function. Recall that this means that cppq ‰ 1
implies βpαppqq “ ˚. Define two new functions a,b : P Ñ Zě1 by

appq “

#

cppq if αppq “ ˚,

1 otherwise,
bppq “

#

cppq if βpαppqq “ ˚ but αppq ‰ ˚,

1 otherwise.
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We clearly have that a is α-special, and that Lc – La bLb. Next, define b1 : Q Ñ

Zě1 by

b1pqq “ ´|α´1pqq| ` 1 `
ÿ

pPα´1pqq

bppq.

We claim that b1 is β-special. Indeed, if βpqq ‰ ˚, then the summation involves
only elements p satisfying βpαppqq ‰ ˚, and the claim follows from the fact that c
is βα-special. Note also that if βpqq “ ˚ we have

(3.10) b1pqq “ ´|α´1pqq| ` 1 `
ÿ

pPα´1pqq

cppq.

Recall the open subscheme APη,α from §2.1 and the morphism ᾱη : AQη Ñ APη,α.
Note that the local system Lb on APη extends (uniquely) to a local system Lb,α

on APη,α. We claim that there exists a natural morphism

(3.11) ᾱ˚
ηLb,α Ñ Lb1

of local systems on AQη . Indeed, for q P Q, the qth copy of A1 in AQ is mapped

under ᾱ to the diagonal copy of A1 inside Aα´1
pqq. It follows that

ᾱ˚
ηLb,α –

ò

qPQ

´

â

pPα´1pqq

Lbppq

¯

.

The morphisms (2.11) provide a map
â

pPα´1pqq

Lbppq Ñ Lb1pqq

for each q; taking the external tensor product over q, we obtain (3.11).

Note now that the restriction of ᾱ to AQη,β factors through APη,βα, which allows
to define the morphism iX,α,β : Xα

η,β Ñ Xη,βα by base change. We consider the
commutative diagram as follows, where the unlabelled arrow is the obvious open
immersion:

Xβα
η Xα

η Xη

Xα
η,β Xη,α

Xη,βα

Xβα Xα X.

j
Xβα

hXα,β

jXα

hX,αjXα,β,1

jX

jX,α,1

jX,βα,1

iX,α,β

jXα,β,2 jX,α,2

jX,βα,2

i1
Xα,β i1

X,α

We have a sequence of natural maps or isomorphisms as follows:

i˚X,βαpjXq˚pF b f˚
η Lcq – h˚

Xα,βi
˚
X,α,βpjX,βα,1q˚pF b f˚

η Lcq

adjunction
ÝÝÝÝÝÝÝÑ h˚

Xα,βpjXα,β,1q˚pjXα,β,1q˚i˚X,α,βpjX,βα,1q˚pF b f˚
η Lcq

– h˚
Xα,βpjXα,β,1q˚h

˚
X,αpjX,α,1q˚pF b f˚

η La b f˚
η Lbq.

Now, recall the local system Lb,α, and denote by fη,α : Xη,α Ñ APη,α the morphism
induced by f . By adjunction and compatibility of pullback with tensor product,
there exists a canonical morphism

pjX,α,1q˚pF b f˚
η Laq b f˚

η,αLb,α Ñ pjX,α,1q˚pF b f˚
η La b f˚

η Lbq.
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This morphism becomes an isomorphism if Lb,α is replaced by the constant local

system; since after pullback to F the local system Lb,α is an extension of copies of
this constant sheaf, we deduce that it is an isomorphism too. We deduce identifi-
cations

h˚
Xα,βpjXα,β,1q˚h

˚
X,αpjX,α,1q˚pF b f˚

η La b f˚
η Lbq

– h˚
Xα,βpjXα,β,1q˚h

˚
X,α

`

pjX,α,1q˚pF b f˚
η Laq b f˚

η,αLb,α

˘

– h˚
Xα,βpjXα,β,1q˚

``

h˚
X,αpjX,α,1q˚pF b f˚

η Laq
˘

b
`

h˚
Xα,βf

˚
η,αLb,α

˘˘

– h˚
Xα,βpjXα,β,1q˚

``

h˚
X,αpjX,α,1q˚pF b f˚

η Laq
˘

b
`

pfαη q˚ᾱ˚
ηLb,α

˘˘

.

Using (3.11) we deduce a canonical morphism

h˚
Xα,βpjXα,β,1q˚h

˚
X,αpjX,α,1q˚pF b f˚

η La b f˚
η Lbq

Ñ h˚
Xα,βpjXα,β,1q˚

``

h˚
X,αpjX,α,1q˚pF b f˚

η Laq
˘

b pfαη q˚Lb1

˘

.

Using (3.4), Lemma 3.6, and the fact that tensoring with pfαη q˚Lb1 is exact for
the perverse t-structure, applying perverse cohomology in degree |R| ´ |P | to the
composition of the maps above we deduce a canonical morphism

(3.12) pH |R|´|P |pi˚X,βαpjXq˚pF b f˚
η Lcqq Ñ

pH |Q|´|R|ph˚
Xα,βpjXα,β,1q˚ppH |P |´|Q|pph˚

X,αpjX,α,1q˚pF bf˚
η Laqqbpfαη q˚Lb1 qqq.

When c is large (among βα-special maps) then a is large (among α-special maps)
and b1 is large (among β-special maps) in view of (3.10). Hence in this case (3.12)
provides the morphism we were looking for.

Remark 3.15. Suppose that |P | “ 2, |Q| “ 1, R “ ∅, and α is nonconstant.
Then the morphism (3.9) is that appearing in [2, Lemma 9.4.3 or Lemma 9.4.11],
depending on the size of α´1p˚q.

3.8. Compositions of higher nearby cycles: properties. The following three
statements give compatibility properties of the morphisms (3.9). Each of them can
be checked on definitions.

Lemma 3.16. Suppose we have three pointed maps α : P˚ Ñ Q˚, β : Q˚ Ñ R˚,
and γ : R˚ Ñ S˚. If all the objects in the diagram below are defined, then the
diagram commutes, where each arrow is an instance of (3.9):

Υγβαf pF q Υγ
fβαpΥβαf pF qq

ΥγβfαpΥαf pF qq Υγ
fβαpΥβfαpΥαf pF qqq.

Lemma 3.17. Let g : Y Ñ X be a smooth morphism of relative dimension d, let
α : P˚ Ñ Q˚, β : Q˚ Ñ R˚ be pointed maps, let F P PervpXη,kq. Assume that:

‚ the α-nearby cycles and the βα-nearby cycles of F are well defined;
‚ the β-nearby cycles of Υαf pF q are well defined.

Then the α-nearby cycles and the βα-nearby cycles of g˚
ηF rds, and the β-nearby

cycles of Υαfgpg˚
ηF rdsq, are all well defined, and the morphism

Υβαfg pg˚
ηF rdsq Ñ Υβ

pfgqα
pΥαfgpg˚

ηF rdsqq
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given by (3.9) is, taking into account the identifications of Lemma 3.13, the image

under pgαη q˚rds of the corresponding morphism Υβαf pF q Ñ ΥβfαpΥαf pF qq. □

Lemma 3.18. Let g : Y Ñ X be a proper morphism, let α : P˚ Ñ Q˚, β : Q˚ Ñ

R˚ be pointed maps, and let F P PervpYη,kq. Assume that:

‚ the α-nearby cycles and the βα-nearby cycles of F are well defined;
‚ the β-nearby cycles of ΥαfgpF q are well defined;
‚ the complexes

pgηq˚F , pgαη q˚Υ
α
fgpF q, pgβαη q˚Υ

β
pfgqα

pΥαfgpF qq and pgβαη q˚Υ
βα
fg pF q

are perverse.

Then the α-nearby cycles and the βα-nearby cycles of pgηq˚F , and the β-nearby
cycles of Υαf ppgηq˚F q, are all well defined, and the morphism

Υβαf ppgηq˚F q Ñ ΥβfαpΥαf ppgηq˚F qq

given by (3.9) is, taking into account the identifications of Lemma 3.14, the image

under pgβαη q˚ of the corresponding morphism Υβαfg pF q Ñ Υβ
pfgqα

pΥαfgpF qq. □

3.9. Product-type situations. Let P be a finite set, and suppose we have a
collection of maps pfp : Xp Ñ A1qpPP . For each p, let

Xp,η “ f´1
p pA1 ∖ t0uq and Xp,0 “ f´1

p pt0uq.

Denote the inclusion maps by jp : Xp,η Ñ Xp and ip : Xp,0 Ñ Xp. Set

X “
ź

pPP

Xp and f “
ź

pPP

fp : X Ñ AP .

We obviously have Xη “
ś

pPP Xp,η. More generally, for any pointed map α : P˚ Ñ

Q˚, we can describe Xα
η as follows:

(3.13) Xα
η –

ź

qPQ

Xα
q,η ˆ

ź

pPα´1p˚qXP

Xp,0 where Xα
q,η “

ź

A1

pPα´1pqq

Xp,η.

Here, the right-hand side is a fiber product over A1. If α´1pqq “ ∅, the right-hand
side should be understood to be A1.

The following lemma is immediate from the definitions.

Lemma 3.19. Let pfp : Xp Ñ A1qpPP be as above. Suppose we have a collection
of objects Fp P Db

c pXp,η,kq, and set

F “
ò

pPP

Fp P Db
c pX,kq.

Then the object i˚αj˚F P Db
c pXα

η ,kq is given by

i˚αj˚F –
ò

qPQ

¨

˝

ò

A1
η

pPα´1pqq

Fp

˛

‚b
ò

pPα´1p˚qXP

i˚p jp˚Fp.

Here, the notation “bA1
η
” is a relative external tensor product: it is the pullback

of the usual external tensor product
Ò

pPα´1pqq

Fp along the map

ź

A1

pPα´1pqq

Xp,η ãÑ
ź

pPα´1pqq

Xp,η.
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(When α´1pqq “ ∅, this is the map A1 Ñ SpecpFq, and
Ò

pPα´1pqq

Fp should be

understood to be the constant sheaf k on SpecpFq.)

Lemma 3.20. Let pfp : Xp Ñ A1qpPP and α : P˚ Ñ Q˚ be as above. Suppose we
have a collection of perverse sheaves Fp P PervpXp,η,kq that satisfy the following
condition: for each q P Q, the object

¨

˝

ò

A1
η

pPα´1pqq

Fp

˛

‚r1 ´ |α´1pqq|s P Db
c pXα

q,η,kq

is perverse. Then the α-nearby cycles of F are well defined, and we have

Υαf pF q –
ò

qPQ

¨

˝

ò

A1
η

pPα´1pqq

Fp

˛

‚r1 ´ |α´1pqq|s b
ò

pPα´1p˚qXP

Ψun
fp pFpq.

Proof. Consider two α-special functions a ď b. By Lemma 3.19, the map

i˚αj˚pF b f˚
η Laq Ñ i˚αj˚pF b f˚

η Lbq

is the external tensor product of the following two kinds of maps:

for q P Q :
ò

A1
η

pPα´1pqq

pFp b f˚
p,ηLappq Ñ Fp b f˚

p,ηLbppqq;(3.14)

for p P α´1p˚q X P : i˚p jp˚pFp b f˚
p,ηLappq Ñ Fp b f˚

p,ηLbppqq.(3.15)

In (3.14), because a and b are α-special, we have appq “ bppq “ 1 for each p that
appears. That is, (3.14) is just the identity map of the object

Ò

A1
η

pPα´1pqq

Fp, which is

a shifted perverse sheaf by assumption.
The perverse cohomology of (3.15) is precisely Bĕılinson’s description of the

unipotent nearby cycles of Fp. More precisely, for a and b large enough, the i-th
perverse cohomology of the map in (3.15) is an isomorphism if i “ ´1, and is 0
otherwise.

We conclude that, for a and b large enough, the perverse cohomology pH i of the
external tensor product of all the maps (3.14) and (3.15) is an isomorphism when

i “
ÿ

qPQ

p1 ´ |α´1pqq|q `
ÿ

pPα´1p˚qXP

p´1q “ |Q| ´ |P |,

and zero otherwise. □

Lemma 3.21. Let pfp : Xp Ñ A1qpPP be as above, and let α : P˚ Ñ Q˚ and
β : Q˚ Ñ R˚ be pointed maps. Suppose we have a collection of perverse sheaves
Fp P PervpXp,η,kq satisfying the following three conditions:

(1) for each q P Q, the following object is perverse:
¨

˝

ò

A1
η

pPα´1pqq

Fp

˛

‚r1 ´ |α´1pqq|s P Db
c pXα

q,η,kq;
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(2) for each r P R, the following object is perverse:

¨

˝

ò

A1
η

pPα´1pβ´1prqq

Fp

˛

‚r1 ´ |α´1pβ´1prqq|s P Db
c pXβα

r,η ,kq;

(3) for any p P P such that αppq ‰ ˚ and pβαqppq “ ˚ we have Ψun
fp

pFpq “

ΨfppFpq.

Then the α-nearby cycles and the βα-nearby cycles of F are well defined, as well

as the β-nearby cycles of Υαf pF q, and the map Υβαf pF q Ñ ΥβfαpΥαf pF qq from (3.9)
is an isomorphism.

Proof. Our assumptions together with Lemma 3.20 imply that the α-nearby cycles
and the βα-nearby cycles of F are well defined. To study the β-nearby cycles
of Υαf pF q, let us introduce the notation Z “

ś

pPα´1p˚qXP Xp,0, so that Xα
η “

ś

qPQX
α
q,η ˆ Z. We also let

Gq “

¨

˝

ò

A1
η

pPα´1pqq

Fp

˛

‚r1 ´ |α´1pqq|s and GZ “
ò

pPα´1p˚qXP

Ψun
fp pFpq,

so that if we set G “ Υαf pF q, then by Lemma 3.20 we have

G –

˜

ò

qPQ

Gq

¸

b GZ .

The diagram

Xα
η

jXα
ÝÝÑ Xα iXα,β

ÐÝÝÝÝ Xβα
η

can be redrawn as

ź

qPQ

Xα
q,η ˆ Z

jXα
ÝÝÑ

ź

qPQ

Xα
q ˆ Z

iXα,β
ÐÝÝÝÝ

ź

rPR

¨

˝

ź

A1

rPβ´1pqq

Xα
q,η

˛

‚ˆ
ź

qPβ´1p˚qXQ

Xα
q,0 ˆ Z.

This almost matches the general set-up at the beginning of this subsection, except
for the extra factor of Z. A minor variant of Lemma 3.20 says that a sufficient
condition for the β-nearby cycles of G to be well defined is that for each r P R the
object

(3.16)

¨

˝

ò

A1
η

qPβ´1prq

Gq

˛

‚r1 ´ |β´1prq|s

be perverse. If this holds, then we have

(3.17) ΥβfαpG q –
ò

rPR

¨

˝

ò

A1
η

qPβ´1prq

Gq

˛

‚r1 ´ |β´1prq|s b
ò

qPβ´1p˚qXQ

Ψun
fα
q

pGqq b GZ .
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Using the definition of Gq, we rewrite the object in (3.16) as

¨

˚

˚

˚

˚

˝

ò

A1
η

qPβ´1
prq

pPα´1
pqq

Fp

˛

‹

‹

‹

‹

‚

»

–1 ´ |β´1prq| `
ÿ

qPβ´1prq

p1 ´ |α´1pqq|q

fi

fl

–

¨

˝

ò

A1
η

pPα´1pβ´1prqq

Fp

˛

‚r1 ´ |α´1pβ´1prqq|s.

This object is perverse by the second assumption in the lemma. We conclude that
the β-nearby cycles of G are well defined. Moreover, using the definition of Gq, we
can rewrite (3.17) as

ò

rPR

¨

˚

˚

˚

˚

˝

ò

A1
η

qPβ´1
prq

pPα´1
pqq

Fp

˛

‹

‹

‹

‹

‚

r1 ´ |α´1pβ´1prqq|s b
ò

qPβ´1p˚qXQ

Ψun
fα
q

pGqq b
ò

pPα´1p˚qXP

Ψun
fp pFpq.

To finish the comparison with Υβαf pF q, we must show that if βpqq “ ˚, then

Ψun
fα
q

pGqq –
ò

pPα´1pqq

Ψun
fp pFpq.

This claim follows from the definition of Gq, our third assumption, and the compat-
ibility of nearby cycles with external tensor products, see [10, Théorème 4.7]. □

4. Application to central sheaves

In this section we assume (for simplicity) that F is algebraically closed, and
denote by AlgF the category of F-algebras.

4.1. Graphs of points. We consider the curve C “ A1
F and the closed point 0 P

CpFq. Given R P AlgF and y P CpRq, we denote by Γy Ă CR :“ C ˆSpecpFq SpecpRq

the graph of y. The constant R-point defined by 0 P CpFq will also be denoted 0.
If P is a finite set, for R P AlgF and pypqpPP P CP pRq we set

Γtyp:pPP u “
ď

pPP

Γyp Ă CR.

Of course, for any subset Q Ă P we have a closed immersion Γtyp:pPQu Ñ Γtyp:pPP u.

We will also denote by pΓtyp:pPP u the completion of CR along Γtyp:pPP u (i.e. the
spectrum of the completion of OpCRq with respect to the ideal of definition of the

closed subscheme Γtyp:pPP u). We have a natural morphism pΓtyp:pPP u Ñ CR, and the
closed immersion Γtyp:pPP u Ñ CR factors through a closed immersion Γtyp:pPP u Ñ

pΓtyp:pPP u. We set

pΓ˝
typ:pPP u :“ pΓtyp:pPP u ∖ Γtyp:pPP u.
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4.2. Satake category and central sheaves. Let G be a connected reductive
algebraic group over F. To G and a choice of Borel subgroup B Ă G we can
associate in the usual way the loop group LG, the positive loop group L`G, the
Iwahori subgroup I Ă L`G, the affine Grassmannian GrG “ LG{L`G and the
affine flag variety FlG “ LG{I. Here the quotients are the fppf quotients, and
they are represented by ind-projective ind-schemes over F; for all of this, see [2]
for details. Recall that the L`G-equivariant derived category Db

L`GpGrG,kq of k-
sheaves on GrG, resp. the I-equivariant derived category Db

I pFlG,kq of k-sheaves on
FlG, is endowed with a canonical unital and associative convolution product ‹L

`G,
resp. ‹I .

The Satake category is the category PervL`GpGrG,kq of L`G-equivariant k-
perverse sheaves on GrG. It is a fundamental standard fact (see [12, 3]) that the

product ‹L
`G is t-exact on both sides, hence restricts to a bifunctor on the Satake

category, and moreover that this restriction admits a canonical commutativity con-
straint. For a finite collection pApqpPP of objects in PervL`GpGrG,kq, it therefore

makes sense to consider the convolution product ‹L`G
pPP Ap.

We will denote by G the smooth affine group scheme over C constructed (fol-
lowing X. Zhu) in [2, §2.2.3.1]: its restriction to C ∖ t0u, resp. to the formal neigh-
borhood of 0, identifies with G ˆ pC ∖ t0uq, resp. with the Iwahori group scheme
of LG attached to B. For any scheme X over C, we will denote by E0

X “ X ˆC G
the trivial principal G-bundle over X. Recall the ind-scheme GrCen

G over C defined
in [2, §2.2.3.2]; it represents the functor sending R P AlgF to the set of equivalence
classes of triples py, E , βq where:

‚ y P CpRq;

‚ E is a principal G-bundle over pΓy;

‚ β : E
|pΓ˝

y

„
ÝÑ E0

pΓ˝
y

is an isomorphism.

We have canonical identifications

(4.1) GrCen
G |t0u – FlG, GrCen

G |C∖t0u – GrG ˆ pC ∖ t0uq.

Following Gaitsgory [8], we consider the functor

Z : PervL`GpGrG,kq Ñ PervIpFlG,kq

defined by ZpA q “ ΥGrCen
G

pA b kC∖t0ur1sq. In fact, in this setting it is known

that the nearby cycles of A b kC∖t0ur1s are unipotent (see [2, §2.4.5]), so that

ZpA q coincides with the full nearby cycles, see Example 3.11. It is known that
this functor is monoidal when seen as a functor with values in Db

I pFlG,kq (see [2,
Theorem 3.4.1]), that for any F in PervIpFlG,kq and A in PervL`GpGrG,kq the
convolution F ‹I ZpA q is perverse (see [2, Corollary 3.2.5]), and that Z is a central
functor; in particular, for F , A as above there exists a canonical isomorphism
F ‹I ZpA q – ZpA q ‹I F , see [2, Theorem 3.2.3 and §3.5.1]. In particular, for a
finite collection pApqpPP of objects in PervL`GpGrG,kq, it makes sense to consider
the convolution product ‹I

pPPZpApq.

4.3. Iterated affine Grassmannians. Let P be a finite set. Define a functor
GrP on AlgF as follows: for R P AlgF, GrP pRq is the set of equivalence classes of
the following data:

‚ a point pypqpPP in CP pRq;
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‚ a principal G-bundle E over pΓt0uYtyp:pPP u;

‚ an isomorphism β : E
|pΓ˝

t0uYtyp:pPPu

„
ÝÑ E0

pΓ˝
t0uYtyp:pPPu

.

This functor is represented by an ind-proper ind-scheme over CP . It is also easily
seen that if Q is another finite set and α : P˚ Ñ Q˚ is a surjective pointed map,
there is a canonical identification AQ ˆAP GrP “ GrQ.

Example 4.1. For n P Zě1 and P “ t1, . . . , nu, the ind-scheme Grt1,...,nu coincides
with the ind-scheme Grn of [7, §5.1]. If P “ ∅ we have Gr∅ “ FlG.

Denote by

CP,: Ă CP

the open subscheme consisting of the points pypqpPP such that yp ‰ 0 for any p and
yp ‰ yp1 for any p ‰ p1. By standard arguments we have a canonical identification

(4.2) pGrP q|CP,: – FlG ˆ pGrGqP ˆ CP,:.

Denote by ȷP the open embedding

pGrP q|CP,: Ñ pGrP q|pC∖t0uqP “ pGrP qη.

Below we will consider collections of perverse sheaves A˚ P PervIpFlG,kq and
Ap P PervL`GpGrG,kq for each p P P . For brevity, we denote this collection by
pAiqiPP˚

. We consider the functor

CP : PervIpFlG,kq ˆ
ź

pPP

PervL`GpGrG,kq Ñ PervppGrP qηq

defined by

CP ppAiqiPP˚
q “ pȷP q!˚

˜

A˚ b

˜

ò

pPP

Ap

¸

b kCP,: r|P |s

¸

,

where we use the identification (4.2).
The main result of this section is the following statement, proved in §4.6. The

statement involves the extension of the constructions of Section 3 to ind-schemes
of ind-finite type, see Remark 3.2(2).

Theorem 4.2. Let α : P˚ Ñ Q˚ be a surjective pointed map. For any A˚ in
PervIpFlG,kq and pApqpPP in PervL`GpGrG,kq, the α-nearby cycles of CP ppAiqiPP˚

q

are well defined, and moreover we have a canonical identification

ΥαGrP

`

CP ppAiqiPP˚
q
˘

– CQ
`

pBjqjPQ˚

˘

where

B˚ “ A˚ ‹I
´

‹I
pPα´1p˚qXPZpApq

¯

and Bq “ ‹L`G
pPα´1pqqAp for q P Q.

If β : Q˚ Ñ R˚ is another surjective pointed map, then the natural map

ΥβαGrP

`

CP ppAiqiPP˚
q
˘

Ñ ΥβGrQ
ΥαGrP

`

CP ppAiqiPP˚
q
˘

given by (3.9) is an isomorphism.

Remark 4.3. As was explained to us by A. Salmon, Theorem 4.2 can be restated
as the construction of a category cofibered over the category of finite pointed sets
(and pointed maps).
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Remark 4.4. In this remark we assume that P “ t1, . . . , nu for some n P Zě1 and
Q “ ∅. In this case there is a unique choice for α, we have GrQ “ FlG, and
Theorem 4.2 says that

(4.3) ΥαGrP pA˚,A1, . . . ,Anq – A˚ ‹I ZpA1q ‹I ¨ ¨ ¨ ‹I ZpAnq.

(1) If n “ 1, by Example 3.11 the fact that the nearby cycles are well defined
is automatic; the isomorphism (4.3) is the content of [2, Proposition 3.2.1].
In case n “ 2, this statement is closely related to the results of [2, §3.5].

(2) There exists a natural action of the symmetric group Sn on GrP by per-
mutation of the points yi. This action preserves the preimage of CP,: and,
under the identification (4.2), its restriction to this open subset identifies
with the diagonal action by permutation of the factors in pGrGqn and CP,:.
It also preserves the preimage of p0, . . . , 0q and restricts to the identity on
this preimage. For any σ P Sn we deduce a canonical isomorphism between
ΥGrP pCP pA˚,A1, . . . ,Anqq and the similar object obtained by permutation
of the Ai’s. Using the same techniques as in [2, §3.5.8] one can check that,
under (4.3), this isomorphism is induced by the “centrality” isomorphism
for the functor Z (see [2, Theorem 3.2.3]) or, equivalently (by [9], see [2,
Theorem 3.5.1]), by the commutativity constraint on the Satake category.

4.4. Convolution–torsor affine Grassmannians. We now introduce some aux-
iliary ind-schemes needed for the proof of Theorem 4.2. In this section, we assume
that P˚ and Q˚ are equipped with total orders such that ˚ is the smallest element,
and that α : P˚ Ñ Q˚ is a surjective, order-preserving pointed map. We set

minpα´1q :“ ti P P | i “ minpα´1pαpiqqqu, mınpα´1q :“ P˚ ∖minpα´1q.

For i in P or Q, we will denote by i´ 1 the predecessor of i.
Let c and t be two subsets of P such that c X t “ ∅. We will call c the

“convolution locus,” and t the “torsor locus.” (These terms will be justified below.).

Define a functor xGrc,tα as follows: for R P AlgF, xGrc,tα pRq is the set of equivalence
classes of the following data:

‚ a point pyqqqPQ in CQpRq;

‚ for i P P˚, a principal G-bundle E i over pΓt0uYtyq :qPQu;
‚ for i P P˚ ∖ c, an isomorphism

βi : E i
|pΓt0uYtyq :qPQu∖Γyαpiq

„
ÝÑ E0

pΓt0uYtyq :qPQu∖Γyαpiq

.

‚ for i P c, an isomorphism βi : E i
|pΓt0uYtyq :qPQu∖Γyαpiq

„
ÝÑ E i´1

|pΓt0uYtyq :qPQu∖Γyαpiq

;

‚ for i P t, an isomorphism γi : E i´1 „
ÝÑ E0

pΓt0uYtyq :qPQu

.

In this definition, if αpiq “ ˚, then “yαpiq” should be taken to mean the point

0 P CpRq. In the special case where α is the identity map, we may write xGrc,tP
instead of xGrc,tα . Using standard arguments (see e.g. [2, Proposition 2.3.11]) one

can show that xGrc,tα is represented by an ind-scheme over CQ, which is moreover
ind-proper if t “ ∅.

Example 4.5. For n P Zě1 and P “ t1, . . . , nu, the ind-scheme xGr
t1,...,nu,∅
t1,...,nu

coincides

with the ind-scheme ĂGrn of [7, §5.1].
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If t1 Ă t, there is an obvious map

(4.4) q : xGrc,tα Ñ xGrc,t∖t1

α

given by forgetting the γi’s with i P t1. There is also a “twisting map”

(4.5) p : xGrc,tα Ñ xGrcYt1,t∖t1

α

that is defined on R-points as follows: for each j P t1, replace βj by the composition

Ej
|pΓt0uYtyq :qPQu∖Γyαpjq

βj

ÝÑ E0
pΓt0uYtyq :qPQu∖Γyαpjq

pγj
q

´1

ÝÝÝÝÑ Ej´1

|pΓt0uYtyq :qPQu∖Γyαpjq

,

and then forget γj .
Let us describe this ind-scheme (or its generic part) in some special cases. First,

when c “ t “ ∅, we have

(4.6) xGr∅,∅α – FlG ˆ ¨ ¨ ¨ ˆ FlG
loooooooomoooooooon

|α´1
p˚q| copies

ˆ
ź

jPQ

pGrCen
G ˆC ¨ ¨ ¨ ˆC GrCen

G q
looooooooooooooomooooooooooooooon

|α´1
pjq| copies

.

In particular, its generic part is

(4.7) p xGr∅,∅α qη – FlG ˆ ¨ ¨ ¨ ˆ FlG
loooooooomoooooooon

|α´1
p˚q| copies

ˆGrG ˆ ¨ ¨ ¨ ˆ GrG
looooooooomooooooooon

|α´1
pQq| copies

ˆpC ∖ t0uqQ.

Next, suppose c “ mınpα´1q. We have

(4.8) p xGrmınpα´1
q,∅

α qη – LGˆI LGˆI ¨ ¨ ¨ ˆI FlG
looooooooooooooomooooooooooooooon

|α´1
p˚q| factors

ˆ

ź

jPQ

LGˆL`G LGˆL`G ¨ ¨ ¨ ˆL`G GrG
loooooooooooooooooooooomoooooooooooooooooooooon

|α´1
pjq| factors

ˆpC ∖ t0uqQ.

More generally, the previous description remains valid over CQ,: for any c contain-
ing mınpα´1q:

(4.9) p xGrc,∅α q|CQ,: – p xGrmınpα´1
q,∅

α q|CQ,: if c Ą mınpα´1q.

However, over a point pyqqqPQ R CQ,:, the fiber of xGrc,∅α may differ from (4.8) in

the following way: some instances of “GrG ˆ p´q” are replaced by “LGˆL`G p´q,”
depending on c and on the coincidences among the yj ’s.

We now explain why t is called the “torsor locus.” Define the pro-smooth group
scheme L`

QG over CQ which represents the functor on AlgF such that pL`
QGqpRq

consists of the tuples ppyqqqPQ, gq with pyqqqPQ P CQpRq and g P GppΓt0uYtyq :qPQuq.
(The representability of this group scheme can be proved as in [2, §3.5.2].) The
following lemma follows from standard arguments (see e.g. [2, Lemma 2.3.9]).

Lemma 4.6. The maps (4.4) and (4.5) are both principal bundles (with respect to
different actions) for the group scheme

ź

CQ

iPt1

L`
QG.

Suppose we have a collection of perverse sheaves pAiqiPP˚
, where

(4.10) Ai P PervIpFlG,kq if αpiq “ ˚, Ai P PervL`GpGrG,kq if αpiq P Q.
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Via (4.7), regard p
Ò

i Aiq b kpCˆt0uqQr|Q|s as a perverse sheaf on p xGr∅,∅α qη. Next,
fix some subset c Ă P , and consider the maps

(4.11) xGr∅,∅α
q

ÐÝ xGr∅,cα
p

ÝÑ xGrc,∅α .

By equivariant descent, there is a unique object

rCc
αppAiqiPP˚

q P Pervpp xGrc,∅α qη,kq

such that we have an isomorphism

p˚
η

rCc
αppAiqiPP˚

q – q˚
η

˜˜

ò

iPP˚

Ai

¸

b kpCˆt0uqQr|Q|s

¸

.

As an example, in the special case where c “ mınpα´1q, using the identification
from (4.8), we have

(4.12) rCmınpα´1
q

α ppAiqiPP˚
q – pA˚

rb ¨ ¨ ¨ rb Amaxpα´1p˚qqqb
˜

ò

jPQ

pAminpα´1pjqq
rb ¨ ¨ ¨ rb Amaxpα´1pjqqq

¸

b kpC∖t0uqQr|Q|s.

(Here, rb denotes the usual twisted external product.) More generally, thanks
to (4.9), the previous description remains valid over CQ,: for any c containing
mınpα´1q:

(4.13) rCc
αppAiqiPP˚

q|CQ,: – rCmınpα´1
q

α ppAiqiPP˚
q|CQ,: .

4.5. Two kinds of convolution. We continue with the setting of §4.4, and assume
that c Ą mınpα´1q. This implies that t Ă minpα´1q. We define a map

m “ mc,t
α : xGrc,tα Ñ xGr

αpcXminpα´1
qq,αptq

Q

by sending an R-point ppyjq, pE iq, pβiq, pγiqq to ppyjq, pF jq, pβ̃jq, pγ̃jqq where

F j :“ Emaxpα´1
pjqq, β̃j :“ βminpα´1

pjqq ˝ ¨ ¨ ¨ ˝ βmaxpα´1
pjqq, γ̃j “ γminpα´1

pjqq.

To check that these definitions make sense, let us record the domains and codomains
of the various maps above. Because c Ą mınpα´1q, we have

βi : E i
|pΓt0uYtyq :qPQu∖Γyj

„
ÝÑ E i´1

|pΓt0uYtyq :qPQu∖Γyj

if minpα´1pjqq ă i ď maxpα´1pjqq,

βminpα´1
pjqq : E i

|pΓt0uYtyq :qPQu∖Γyj

„
ÝÑ F j´1

|pΓt0uYtyq :qPQu∖Γyj

if minpα´1pjqq P c,

βminpα´1
pjqq : E i

|pΓt0uYtyq :qPQu∖Γyj

„
ÝÑ E0

pΓt0uYtyq :qPQu∖Γyj

if minpα´1pjqq R c,

γminpα´1
pjqq : F j´1 „

ÝÑ E0
pΓt0uYtyq :qPQu

if minpα´1pjqq P t.

In the special case where c “ mınpα´1q and t “ ∅, this map can be combined
with (4.11) to obtain the following “convolution diagram”:

(4.14) xGr∅,∅α
q

ÐÝ xGr∅,mınpα´1
q

α
p

ÝÑ xGrmınpα´1
q,∅

α
m

ÝÑ xGr∅,∅Q .

The following lemma is immediate from (4.12).
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Lemma 4.7. Let pAiqiPP˚
be as in (4.10). There is a canonical isomorphism

pmηq˚
rCmınpα´1

q
α ppAiqiPP˚

q – pA˚ ‹I ¨ ¨ ¨ ‹I Amaxpα´1p˚qqqb
˜

ò

jPQ

pAminpα´1pjqq ‹L
`G ¨ ¨ ¨ ‹L

`G Amaxpα´1pjqqq

¸

b kpC∖t0uqQr|Q|s.

Next, we define a map

µ “ µα : xGrP,∅α Ñ GrQ

that sends an R-point ppyjq, pE iq, pβiqq to ppyjq, EmaxpP q, β̂q where

β̂ “ β˚

|pΓ˝
t0uYtyq :qPQu

˝ ¨ ¨ ¨ ˝ β
maxpP q´1

|pΓ˝
t0uYtyq :qPQu

˝ β
maxpP q

|pΓ˝
t0uYtyq :qPQu

.

We combine this with (4.11) to obtain a second convolution diagram

(4.15) xGr∅,∅α
q

ÐÝ xGr∅,Pα
p

ÝÑ xGrP,∅α
µα

ÝÝÑ GrQ.

Lemma 4.8. Let pAiqiPP˚
be as in (4.10). There is a canonical isomorphism

pµα,ηq˚
rCPα

`

pAiqiPP˚

˘

– CQ
`

pBjqjPQ˚

˘

where the Bj’s are as in Theorem 4.2.

Proof. Let us first treat the special case where P “ Q and α is the identity map.
In this case, the statement of the lemma simplifies to

(4.16) pµidP ,ηq˚
rCPidP

ppAiqiPP˚
q – CP ppAiqiPP˚

q.

The proof in this case is similar to that of [3, Lemma 1.7.10] (the crucial step in
the comparison of fusion and convolution in the Satake category). As a first step,
we deduce from (4.13) that

´

pµidP ,ηq˚
rCPidP

ppAiqiPP˚
q

¯

|CP,:
– A˚ b

˜

ò

pPP

Ap

¸

b kCP,: r|P |s.

We wish to prove that pµidP ,ηq˚
rCPidP

ppAiqiPP˚
q is the intermediate extension of the

object above. To do this, we use the standard characterization of the intermediate
extension from [5, Proposition 2.1.9] or [1, Lemma 3.3.4]: namely, it suffices to

prove that the restriction, resp. corestriction, of pµidP ,ηq˚
rCPidP

ppAiqiPP˚
q to the

complement of CP,: in pC ∖ t0uqP lies in perverse degrees ď ´1, resp. ě 1. One
can stratify pC∖t0uqP in terms of coincidences between points, with strata indexed
by partitions of P . Given a partition τ into m subsets, the preimage of the stratum
Xτ attached to τ (of dimension m) in GrP identifies with FlG ˆ pGrGqm ˆXτ , and

the restriction of pµidP ,ηq˚
rCPidP

ppAiqiPP˚
q identifies with the external product of A˚

with some convolution products of the Ai’s and with kXτ
r|P |s. Using the fact that

convolution of L`G-equivariant perverse sheaves on GrG is t-exact (see §4.2) we see
that if m ă |P | this restriction is in negative perverse degrees, proving the desired
claim about restriction. The claim about corestrictions can be checked similarly,
or deduced using Verdier duality. This completes the proof of (4.16).

To prove the lemma in general, we use the commutative diagram in Figure 1.
Our problem lies along the diagonal of this diagram. Across the top of the diagram
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xGr∅,∅α
xGr

∅,mınpα´1
q

α
xGr

mınpα´1
q,∅

α
xGr∅,∅Q

xGr∅,Pα
xGr

mınpα´1
q,minpα´1

q
α

xGr∅,QQ

xGrP,∅α
xGrQ,∅Q

GrQ

q p m

q
q

p

p

q

m

p

q

p

m

µ
µ

Figure 1. Diagram for the proof of Lemma 4.8

is an instance of (4.14), and down the right-hand side of the diagram is an instance
of (4.15). The squares involving maps labeled “m” are all cartesian. We have

pµα,ηq˚
rCPα ppAiqiPP˚

q – pµidQ,ηq˚ppmP,∅
α qηq˚

rCPα ppAiqiPP˚
q.

By proper base change, we have

p˚
η ppmP,∅

α qηq˚
rCPα ppAiqiPP˚

q – q˚
η ppmmınpα´1

q,∅
α qηq˚

rCmınpα´1
q

α ppAiqiPP˚
q,

and then by Lemma 4.7 we have

ppmP,∅
α qηq˚

rCPα ppAiqiPP˚
q – rCQidQ

ppBjqjPQ˚
q.

Now apply pµidQ,ηq˚ to this equation. The result follows by the special case (4.16)
considered above. □

4.6. Proof of Theorem 4.2. We will first establish the existence of and formula
for ΥαGrP

pCP ppAiqiPP˚
qq. Choose total orders on P˚ and Q˚ as §4.4, so that ˚ is

the smallest element in both sets, and such that α : P˚ Ñ Q˚ is order-preserving.
Consider the diagram

xGr∅,∅P

q
ÐÝ xGr∅,PP

p
ÝÑ xGrP,∅P

µidP
ÝÝÝÑ GrP .

Its base change along ᾱ : AQ Ñ AP is

xGr∅,∅α
q

ÐÝ xGr∅,Pα
p

ÝÑ xGrP,∅α
µα

ÝÝÑ GrQ.

To start, in view of (4.6), Lemma 3.20, and Remark 4.4(1),

Υα
yGr∅,∅

P

˜

ò

iPP˚

Ai b kpC∖t0uqP r|P |s

¸

is well defined, and isomorphic to
˜

ò

iPP˚

A 1
i

¸

b kpC∖t0uqQr|Q|s where A 1
i “

#

ZpAiq if i P P X α´1p˚q,

Ai otherwise.

Next, by two applications of Lemma 3.13, we obtain that

Υα
yGrP,∅

P

prCPidP
ppAiqiPP˚

qq
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is well defined, and isomorphic to

(4.17) rCPα ppA 1
i qiPP˚

q.

Applying Lemma 4.8 twice, we have

pµidP ,ηq˚
rCPidP

ppAiqiPP˚
q “ CP ppAiqiPP˚

q, pµα,ηq˚
rCPα ppA 1

i qiPP˚
q “ CQppBiqiPQ˚

q,

where the Bj ’s are as in Theorem 4.2. By Lemma 3.14, we conclude that the
α-nearby cycles of CP ppAiqiPP˚

q are well defined, and that

ΥαGrP pCP ppAiqiPP˚
qq – CQppBiqiPQ˚

q,

as desired. This completes the proof of the first part of Theorem 4.2.
Next, by Lemma 3.21, the natural map

Υβα
yGr∅,∅

P

˜

ò

iPP˚

Ai b kpC∖t0uqP r|P |s

¸

Ñ Υβ
yGr∅,∅

α

Υα
yGr∅,∅

P

˜

ò

iPP˚

Ai b kpC∖t0uqP r|P |s

¸

is an isomorphism. By two applications of Lemma 3.17, we find that the map

Υβα
yGrP,∅

P

prCPP ppAiqiPP˚
qq Ñ Υβ

yGrP,∅
α

Υα
yGrP,∅

P

prCPP ppAiqiPP˚
qq

is an isomorphism, and then Lemma 3.18 implies that so is the map

ΥβαGrP
pCP ppAiqiPP˚

q Ñ ΥβGrQ
pΥαGrP pCP ppAiqiPP˚

qq

This completes the proof of Theorem 4.2.

4.7. Groupoid perspective. Let P be a finite set. Let K “ KP be the set whose
elements are sequences of surjective pointed maps

(4.18) γ “ pP˚
α1

ÝÑ P1˚
α2

ÝÑ ¨ ¨ ¨
αk´1

ÝÝÝÑ Pk´1,˚
αk

ÝÝÑ ∅˚q.

Given such a sequence γ, an elementary refinement of γ is a new sequence γ1

obtained by decomposing some αi into a composition of two surjective maps: say

γ1 “ pP˚
α1

ÝÑ ¨ ¨ ¨
αi´1

ÝÝÝÑ Pi´1,˚
α1

i
ÝÑ Q˚

α2
i

ÝÝÑ Pi,˚
αi`1

ÝÝÝÑ ¨ ¨ ¨
αk

ÝÝÑ ∅˚q

where αi “ α2
i ˝ α1

i. Make K into a poset by declaring that γ ĺ γ1 if γ1 can
be obtained from γ by a (possibly empty) sequence of elementary refinements.
Of course, this poset can be regarded as a category in the usual way: there is a
morphism γ Ñ γ1 if γ ĺ γ1. This poset (resp. category) has a unique minimal
element (resp. initial object): namely, the unique pointed map P˚ Ñ ∅˚.

Lemma 4.9. Let K– be the groupoid obtained from K by formally inverting all
morphisms. Then K– is a contractible groupoid.

Recall that a groupoid is said to be contractible if for any two objects x and y,
there is a unique morphism x Ñ y. (This is equivalent to requiring that the nerve
of the groupoid be a contractible Kan complex.) The following standard argument
applies to any poset with a unique minimal (or maximal) element.

Proof. The initial object e of K remains an initial object in K–, so there is a unique
morphism from e to every other object. This implies that every object of K– is
initial, and then that K– is contractible. □
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Let γ be as in (4.18). For brevity, we introduce the notation

ΥγpCP ppAiqiPP˚
qq :“ Υαk

GrPk´1
˝ ¨ ¨ ¨ ˝ Υα2

GrP1
˝ Υα1

GrP
pCP ppAiqiPP˚

qq.

(Here, all the functors are well defined thanks to Theorem 4.2.)

Proposition 4.10. For any object A˚ in PervIpFlG,kq, and any collection of ob-
jects pApqpPP in PervL`GpGrG,kq, there is a contractible groupoid whose objects are
of the form ΥγpCP ppAiqiPP˚

qq.

Proof. Define a functor F : K Ñ PervIpFlG,kq as follows: on objects, we set

F pγq “ ΥγpCP ppAiqiPP˚
qq.

If γ Ñ γ1 is an elementary refinement, then Theorem 4.2 gives us an isomorphism

F pγ Ñ γ1q : F pγq
„

ÝÑ F pγ1q.

By Lemma 3.16, this rule extends to arbitrary morphisms in K, so F is a well-
defined functor. Since F sends every morphism in K to an isomorphism, it extends
uniquely to a faithful functor F– : K– Ñ PervIpFlG,kq. Its image is a (non-full)
subcategory of PervIpFlG,kq that is a contractible groupoid by Lemma 4.9. □

Remark 4.11. Here are some examples of objects in the groupoid from Proposi-
tion 4.10 in the case where P “ t1, . . . , nu (cf. Remark 4.4). Choose an enumeration
tχ1, . . . , χnu of t1, . . . , nu, and let γχ be the sequence

P˚ “ tχ1, . . . , χnu˚
α1

ÝÑ tχ2, . . . , χnu˚ Ñ ¨ ¨ ¨ Ñ tχn´1, χnu˚

αn´1
ÝÝÝÑ tχnu˚

αn
ÝÝÑ ∅˚,

where αipχiq “ ˚ and αipχjq “ χj for j ą i. Let fχi
denote the composition

Grt1,...,nu ˆAt1,...,nu Atχi,χi`1,...,χnu Ñ Atχi,χi`1,...,χnu Ñ Atχiu.

By Example 3.11 and Lemma 3.12, we have

ΥγχppAiqiPP˚
q – Ψfχn

¨ ¨ ¨Ψfχ1
pCP ppAiqiPP˚

qq.

On the other hand, if we let γmin denote the unique map P˚ Ñ ∅˚, then Theo-
rem 4.2 says that

ΥγminppAiqiPP˚
q – A˚ ‹I

`

‹I
pPPZpApq

˘

.

Our considerations therefore fully justify [7, Proposition 5.2.1].
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[10] L. Illusie, Autour du théorème de monodromie locale, in Périodes p-adiques (Bures-sur-
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[12] I. Mirković and K. Vilonen, Geometric Langlands duality and representations of algebraic
groups over commutative rings, Ann. of Math. (2) 166 (2007), no. 1, 95–143.

[13] S. Morel, Beilinson’s construction of nearby cycles and gluing, notes available at http://

perso.ens-lyon.fr/sophie.morel/gluing.pdf, 2018.

[14] R. Reich, Notes on Beilinson’s “How to glue perverse sheaves”, J. Singul. 1 (2010), 94–115.

[15] A. Salmon, Unipotent nearby cycles and the cohomology of shtukas, Compos. Math. 159
(2023), no. 3, 590–615.

[16] A. Salmon, Unipotent nearby cycles and nearby cycles over general bases, J. Singul. (2024),

to appear.

Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803,
U.S.A

Email address: pramod.achar@math.lsu.edu
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