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Robust Initial Orbit Determination for Surveillance Doppler-Only Radars

An initial orbit determination algorithm for surveillance Doppleronly radars with embedded quantification capabilities is presented. The method is based on a combination of Gauss' and Lambert's solvers formulated in the differential algebra (DA) framework, which provides the Taylor expansion of the state estimate with respect to the measurement uncertainties. This feature makes the approach particularly suitable for handling data association problems. The first part of the article describes the mathematical formulation of the method, while an extensive analysis of its performance and a comparison with a reference algorithm are carried out in the second part, using both simulated and real data. The proposed approach is shown to be accurate and robust and particularly suited to short-arc observations.

I. INTRODUCTION

The accurate estimation of the state of objects orbiting around the Earth is of great importance whenever operations such as observation scheduling, data association, and collision risk assessment are required. The quality of these estimates is mostly affected by the accuracy of the sensors used for the observation and the frequency of these observations. As a result, several networks of ground-based optical [START_REF] Schildknecht | Optical surveys for space debris[END_REF], radar [START_REF] Muntoni | Crowded space: A review on radar measurements for space debris monitoring and tracking[END_REF], and laser [START_REF] Cordelli | Analysis of laser ranges and angular measurements data fusion for space debris orbit determination[END_REF] sensors operate all over the world to continuously monitor the near-Earth environment [START_REF] Faucher | Operational space surveillance and tracking in Europe[END_REF]. Nevertheless, the available catalogs of resident space objects (RSO) cover just a small portion of the existing population. The increasingly growing launch activity and in-orbit object generation events, such as collisions, fragmentations, and explosions, represent a continuous source of new objects [START_REF]ESA's annual space environment report[END_REF]. Though the size and properties of most of these objects prevent existing operational sensors from detecting or observing them with enough accuracy, observation campaigns often offer the possibility of identifying and potentially characterizing uncataloged objects.

The process of state estimation of an uncataloged object starting from a set of measurements is known in the literature as initial orbit determination (IOD). Such measurements are typically referred to as tracks, tracklets, or short arcs. Conversely, passages that are too limited in time to perform IOD are generally labeled as too-short arcs, and shall be processed by relying on different approaches, such as the admissible region theory [START_REF] Milani | Orbit determination with very short arcs. I.-Admissible regions[END_REF]. This article focuses on the first scenario, thus investigates the use of IOD methods for tracklets and short arcs.

Classical IOD algorithms can be divided according to the type of measurements and sensors. Two main families of methods exist, i.e., angle-only methods for optical sensors and angle-range methods for range radars. The first solutions for the angle-only IOD problem were developed in the 18th century, aiming at determining the orbit of celestial bodies such as planets or asteroids. Over more than 200 years, several techniques have been proposed. Among these, Laplace's method [START_REF] Laplace | Memoires De L'académie Royale Des Sciences De Paris[END_REF], Gauss' method [START_REF] Gauss | Theory of the Motion of the Heavenly Bodies Moving About the Sun in Conic Sections[END_REF], the double R iteration method [START_REF]Methods of Orbit Determination[END_REF], Baker-Jacobi's method [START_REF] Baker | Preliminary orbitdetermination method having no co-planar singularity[END_REF], Gooding's method [START_REF] Gooding | A new procedure for the solution of the classical problem of minimal orbit determination from three lines of sight[END_REF], and Karimi and Mortari's methods [START_REF] Karimi | Initial orbit determination using multiple observations[END_REF] represent the most common ones. The second family of IOD methods processes range radars observables, i.e., angular and range measurements. Examples of these so-called angle-range IOD methods are Lambert's method [START_REF] Lambert | Insigniores Orbitae Cometarum Proprietates[END_REF], Gibbs' method [START_REF] Gibbs | On the Determination of Elliptic Orbits From Three Complete Observations[END_REF], and Herrick-Gibbs' method [START_REF] Herrick | Astrodynamics: Orbit Determination, Space Navigation, Celestial Mechanics[END_REF], along with recent approaches tailored for short-arc observations [START_REF] Zhang | An initial orbit determination method using single-site very short arc radar observations[END_REF].

While a vast literature on range radars IOD exists, few algorithms are available for Doppler-only radars. These sensors are often used in a military context and measure the angular position of the object and its range rate, i.e., the time derivative of the slant range d [START_REF] Barlow | Doppler radar[END_REF], defined as the sum of the distances from the radar receiver and transmitter, both in case they coincide (monostatic radar) or not (bistatic configuration). Examples of this kind of sensor in the European framework are the French GRAVES [START_REF] Muller | GRAVES space surveillance system: Life extension and upgrade program[END_REF] or the Italian "Multi-Frequency Doppler Radar" [START_REF] Hermoso | System approach to analyze the performance of the EU space surveillance and tracking system[END_REF]. Algorithms such as the Doppler integration method (DIM) [START_REF] Yanez | A novel initial orbit determination algorithm from Doppler and angular observations[END_REF] and the hodograph method [START_REF] Christian | Initial orbit determination from bearing and range-rate measurements using the orbital hodograph[END_REF] have been recently proposed, proving to provide accurate IOD estimates when processing Doppler-only radar observables. Nevertheless, none of these methods were explicitly tested against the challenging case of short-arc observations, which can be common when targeting the low Earth orbit (LEO) regime.

Another limitation of classical IOD methods is the lack of information on the estimated uncertainty, unless performing least squares (LS) refinement or making model simplifications [START_REF] Zhang | An initial orbit determination method using single-site very short arc radar observations[END_REF]. The estimation of the IOD solution uncertainty is however essential to establish robust data association schemes enabling catalog initialization. To overcome these limitations, new methods based on the use of differential algebra (DA) have been recently presented. Armellin and Di Lizia [START_REF] Armellin | Probabilistic optical and radar initial orbit determination[END_REF] reformulated Lambert's problem in DA sense, providing a mathematical description of the solution uncertainty of the angle-range IOD problem as a function of measurement noise. This result, combined with the use of automatic domain splitting (ADS) [START_REF] Wittig | Propagation of large uncertainty sets in orbital dynamics by automatic domain splitting[END_REF], was then exploited in [START_REF] Pirovano | Probabilistic data association: The orbit set[END_REF] to solve the angle-only IOD problem.

Starting from these considerations, this article presents a robust IOD algorithm for Doppler-only radars with built-in uncertainty quantification capabilities. Given a set of angular and range rate measurements, the method provides an accurate solution to the IOD problem even for shortarc observations. The solution uncertainty quantification is achieved by combining DA and ADS, which provide the Taylor expansion of the state with respect to the observations. The algorithm, referred to as DAIOD algorithm, represents an extension of its optical [START_REF] Pirovano | Probabilistic data association: The orbit set[END_REF] and range radar [START_REF] Armellin | Probabilistic optical and radar initial orbit determination[END_REF] counterparts, and completes the DAIOD estimation framework for the three possible available scenarios: angle-only, angle-range, and angle-Doppler. More general cases, including both range and range rate data, can then be solved by relying on one of these methods or setting up a leastsquares problem. The proposed approach starts from [START_REF] Pirovano | Probabilistic data association: The orbit set[END_REF] and reformulates it for Doppler-only radars, which provide slant range derivatives, but less accurate angular data. In addition, the method improves the convergence rates of the IOD solution by properly exploring the available uncertainty set. Overall, the key contributions of this work are as follows:

1) Present an IOD method for Doppler-only radars with uncertainty quantification capabilities. 2) Investigate its performance.

3) Compare it with other algorithms.

The rest of this article is organized as follows. Section II describes DA and ADS. A formulation of the method is given in Section III. Section IV illustrates the algorithm's performance and compares it with the DIM. Finally, Section V concludes this article.

II. DIFFERENTIAL ALGEBRA

Differential algebra is a mathematical approach that allows one to compute the derivatives of functions in a computer environment [START_REF] Ritt | Differential Equations From the Algebraic Standpoint[END_REF]. More specifically, by substituting the algebra of real numbers with an algebra of Taylor polynomials, any sufficiently regular function f of v variables can be expanded into its Taylor expansion up to an arbitrary order k. The resulting algebra can be endowed with both basic algebraic operations and differentiation and integration [START_REF] Berz | Modern Map Methods in Particle Beam Physics (Advances in Imaging and Electron Physics Series)[END_REF]. As an example, consider a generic multivariate function y = f (x), x ∈ R v . Starting from a nominal x and the associated uncertainty β, here assumed equal for all components, the DA representation of x can be expressed as

[x] = x + βδx (1)
with δx ∈ R v representing the deviation from x. If f is evaluated in the DA framework, one obtains

[y] = f ([x]) = T y (δx). ( 2 
)
The term T y (δx) of ( 2) indicates the Taylor expansion of y with respect to δx. As a result, by considering a generic initial deviation δx * , the corresponding y * solution can be directly obtained by mapping δx * with T y (δx), that is

y * = T y (δx * ). (3) 
The combined use of DA and polynomial bounding techniques offers a powerful tool to estimate the bound associated with [y]. Consider a generic component j of y, and define an interval for δx, e.g., δx ∈ [-1, 1] v . The use of polynomial bounders allows us to write

y j ∈ -b y j , b y j . ( 4 
)
This functionality will be exploited in the article to estimate the uncertainty of the computed IOD solution.

A. ADS Algorithm

The accuracy of the DA expansion tends to decrease for an increase in the size of the uncertainty set δx and for higher nonlinearity levels of f . A possible approach would consist in properly increasing the selected expansion order k. This, however, does not always improve the accuracy, while typically implies an increase in the computational burden, which may make the DA formulation unfeasible in case of highly nonlinear functions. On the other hand, the order is not the only available parameter to play with for increasing the accuracy. Suppose to maintain the order unaltered and to split the whole uncertainty set into smaller subsets. By dividing the initial uncertainty domain and computing the Taylor expansion around the center points of the new sets, the same overall coverage is granted but with a reduced set size (and thus a larger accuracy) per expansion. Starting from these considerations, ADS employs an automatic algorithm to determine whether the current polynomial representation is accurate enough or not [START_REF] Wittig | Propagation of large uncertainty sets in orbital dynamics by automatic domain splitting[END_REF]. If the accuracy requirements are not met, the domain of the original expansion is divided along one of the expansion variables into two domains of half their original size. By reexpanding the polynomials around the new center points, two separate expansions are obtained, each covering half of the original set. At this point, the procedure is repeated on the generated sets, and it terminates as soon as the desired accuracy is obtained or a threshold on the number of splits is reached. At the end of the process, a so-called manifold of Taylor expansions is obtained. If we recall the previous example, the solution provided by the ADS can be written as

[y] = N s i=1 T i y (δx) (5) 
where N s is the number of generated sets. Two parameters govern the accuracy of the ADS result, namely the tolerance for the splitting decision and the maximum number of splits per direction. A detailed description of the method can be found in [START_REF] Wittig | Propagation of large uncertainty sets in orbital dynamics by automatic domain splitting[END_REF].

III. DAIOD METHOD

Consider a set of angular and range rate measurements provided by a Doppler-only radar Sensor measurements are typically treated as independent Gaussian random variables. As a result, each measurement is characterized by its mean value and standard deviation. Therefore, (6) can be reexpressed as

t i ; A i ; σ A i , E i ; σ E i , ḋi ; σ ḋi (6) with i ∈ [1, N], while A i , E i ,
t i ; Y A i , Y E i , Y ḋi (7) 
where

Y β i ∼ N (β i , σ β i )
indicates a normal random distribution for the generic measurement β i . The DAIOD algorithm requires as input two angles and a value of range rate per time instant. In the adopted formulation, the two angles are the topocentric right ascension α and declination δ. Two different options are available. One may choose to directly use the available raw data to perform the IOD estimation process. In this case, the angular measurements of ( 7) are converted into α and δ by using an uncertainty mapping method. For the case under study, a Monte Carlo (MC) simulation is used. More specifically, given a time epoch t i and the associated Y A i and Y E i , N MC samples from each Gaussian distribution are drawn, thus obtaining two sets of samples, {A j i } and {E j i }. Given a generic sample j, the couple (A j i ; E j i ) is then converted into the corresponding (α j i ; δ j i ) by means of well-known reference frames transformations [START_REF] Vallado | Fundamentals of Astrodynamics and Applications (Space Technology Library Series)[END_REF]. If the procedure is repeated for all the N MC samples, two lists of samples are obtained, namely {α j i } and {δ j i }. At this point, the estimated ( ŝuperscript) mean values αi and δi can be easily computed. In addition, given a desired confidence level ι L ∈ [0, 1], the corresponding confidence interval amplitude can be derived as

CI βi (ι L ) = d β j * i , βi : p d β j i , βi < d β j * i , βi ≥ ι L (8) with i ∈ [1, N], j ∈ [1, N MC ],
whereas d(a, b) refers to the difference between angles a and b and p is the probability. As a result, for each time instant we can write

CI αi = αi ± CI αi (ι L ) CI δi = δi ± CI δi (ι L ) . ( 9 
)
The uncertainty mapping would allow us to estimate also the cross-correlation between angular measurements. In the current formulation of the method, we assume we can initialize each DA angular measurement independently, thus we ignore this information.

The confidence interval for range rate measurements is instead directly derived from the sensor accuracy, i.e.,

CI di = di ± k(ι L )σ di (10) 
where di = ḋi , σ di = σ ḋi while k(ι L ) is a scaling of the noise standard deviation.

The second available option is to perform regression on the measurements to reduce the effect of the noise. In this case, the choice of the reference frame in which the regression is performed is crucial to limit the dependence of the regression order on passage duration and shape. A detailed analysis for range and Doppler-only radars is illustrated in [START_REF] Reihs | Application of attributables to the correlation of surveillance radar measurements[END_REF]. The reference frame adopted in this work is the so-called topocentric Attributable Optimized Coordinate System (tAOS). The center of this frame coincides with the origin of the topocentric frame of the radar receiver, and the angular position of the space object is computed with respect to the plane defined by the first and last line-of-sight (LOS) of the passage. By defining an arbitrary reference axis on this plane, a generic LOS can be expressed in terms of an in-plane angle λ and an out-of-plane angle γ . The first step of the regression process consists in converting all the (A i ; E i ) couples into their (λ i ; γ i ) counterpart. The procedure is the same as the one for raw data (the ˆsuperscript is here dropped for convenience). Range rate measurements are instead unaltered since the topocentric and the tAOS frames share the same origin and they are obtained with a time-independent rotation. Once defined the new set of measurements, the regression problem can be setup. We assume here that measurements can be treated independently. This is certainly an approximation, as the mapping from the measurement space to the tAOS frame may lead to nonnegligible correlation between the measurements. However, according to [START_REF] Reihs | Application of attributables to the correlation of surveillance radar measurements[END_REF], the results are sufficiently accurate. By defining with β the generic observable, β = {λ, γ , ḋ}, the following system can be written:

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ β 1 β 2 . . . β N ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ = A β z β . ( 11 
)
The explicit expressions for the coefficient matrix A β and the vector of unknowns z β depend on the selected regression order. For a generic order n, we can write

A β = ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 1 t 1 -t 0 • • • (t 1 -t 0 ) n 1 t 2 -t 0 • • • (t 2 -t 0 ) n . . . . . . • • • . . . 1 t N -t 0 • • • (t N -t 0 ) n ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ (12) 
while

z β = [β 0 β0 • • • n β0 ] T .
In [START_REF] Karimi | Initial orbit determination using multiple observations[END_REF], t 0 indicates the regression epoch, which is selected equal to the mid-observation time. Once the regression order is selected, the problem becomes

y β = A β z β . ( 13 
)
The solution of the problem follows the classical LS theory.

The normal matrix N β can be written as

N β = A T β Q -1 β A β = A T β A β ( 14 
)
where the cofactor matrix Q β = I assuming zero mean, single variance, and independent errors. As a result, an estimate of the vector of unknown parameters can be obtained

ẑβ = N -1 β A T β y β . ( 15 
)
The availability of ẑβ allows us to compute an estimate of the observations and the associated residuals

ŷβ = A β ẑβ ĉβ = y β -ŷβ . ( 16 
)
As a result, an estimate for the standard deviation of the observations can be obtained

σ 2 β = ĉT β Q -1 β ĉβ N -p = ĉT β ĉβ N -p ( 17 
)
where p = n + 1. This estimate is finally used to compute the covariance matrix of the unknown parameters C ẑβ ẑβ and the covariance of the estimated observations C ŷβ ŷβ

C ẑβ ẑβ = σ 2 β N -1 β C ŷβ ŷβ = A β C ẑβ ẑβ A T β . ( 18 
)
Let us now assume that the measurements are distributed as independent normal variables. This is valid for ḋ, but it is just an approximation for the tAOS angles λ and γ , as the uncertainty mapping from A and E does not guarantee the Gaussianity conservation. If this holds, it can be shown that βi -

β i C ŷβ ŷβ ,ii ∼ t N-p ( 19 
)
where t N-p is the Student's t-distribution with Np degrees of freedom, whereas C ŷβ ŷβ ,ii is the ith diagonal element of matrix

C ŷβ ŷβ , i ∈ [1, N].
As a result, given the desired confidence level ι L and the associated t N-p quantile q ι L , the confidence intervals can be written as

CI βi = ŷβ,i ± q ι L C ŷβ ŷβ ,ii . (20) 
Equation ( 20) provides a statistical representation for ( λi ; γi ; di ) at all time epochs. At this point, the angular measurements λi and γi are converted into αi and δi through a procedure similar to the one described for raw data, thus obtaining the formulation of [START_REF]Methods of Orbit Determination[END_REF]. At the end of phase 1, regardless of the selected measurement processing, the following set is available:

t i ; αi ; CI αi , δi ; CI δi , di ; CI di . ( 21 
)

B. Phase 2: IOD Solution Computation

The second phase of the DAIOD method combines a Gauss and an iterative Lambert's solver to estimate the object range ρ from the radar receiver at the epochs of the first and last measurements. To limit the impact of Gauss' solver failures, which are likely to occur with short-arc observations [START_REF] Zhang | An initial orbit determination method using single-site very short arc radar observations[END_REF], [START_REF] Pirovano | Probabilistic data association: The orbit set[END_REF], we adopt here a strategy that leverages the intrinsically large uncertainty of radar angular measurements to grant high success rates regardless of the arc length. The algorithm exploits DA and map inversion techniques [START_REF] Berz | Modern Map Methods in Particle Beam Physics (Advances in Imaging and Electron Physics Series)[END_REF] to solve the resulting system of implicit equations, thus avoiding additional computations typically required by standard nonlinear solvers, e.g., Newton-Raphson method.

Let us start from [START_REF] Christian | Initial orbit determination from bearing and range-rate measurements using the orbital hodograph[END_REF] and restrict the analysis to the angular measurements α and δ at the first (1), middle (m), and last (N) observation epochs. Each measurement is characterized by a confidence interval defined by [START_REF] Christian | Initial orbit determination from bearing and range-rate measurements using the orbital hodograph[END_REF]. If one considers the two extremes of each confidence interval, and then builds all the possible combinations between them, 64 sets of angles are obtained. By adding the center point, the resulting sets can be expressed as

α j 1 , δ j 1 , α j m , δ j m , α j N , δ j N j ∈ [1, 65] (22) 
For each set of ( 22), this procedure is followed:

1) Solve the Gauss problem G, thus obtaining an estimate for the range at t 1 , t m , and

t N G t 1 , α j 1 , δ j 1 , t m , α j m , δ j m , t N , α j N , δ j N → ρ j 1,G , ρ j m,G , ρ j N,G . ( 23 
)
2) Set ρk, j 1 = ρ j 1,G and ρk, j N = ρ j N,G , with k = 1, and initialize the ranges as DA variables ρk,

j 1 = ρk, j 1 + δρ 1 ρk, j N = ρk, j N + δρ N . ( 24 
) LOSACCO ET AL.: ROBUST INITIAL ORBIT DETERMINATION FOR SURVEILLANCE DOPPLER-ONLY RADARS
The term ρ j m,G is instead a by-product of the process and is ignored.

3) Solve the DA Lambert's problem [START_REF] Armellin | Probabilistic optical and radar initial orbit determination[END_REF] L t 1 , α1 , δ1 , ρk, j

1 , t N , αN , δN , ρk, j N → ⎧ ⎨ ⎩ vk, j 1,L = T vk, j 1,L (δρ) vk, j N,L = T vk, j N,L (δρ) ⎫ ⎬ ⎭ (25) 
where δρ = {δρ 1 , δρ N }, while v is the velocity. 4) Compute the expansion of the range rate at t 1 and

t N dk, j 1,L = T dk, j 1,L (δρ) dk, j N,L = T dk, j N,L (δρ). ( 26 
)
5) Compute the deviations with respect to d1 and dN

dk, j = ⎧ ⎨ ⎩ dk, j 1,L -d1 dk, j N,L -dN ⎫ ⎬ ⎭ . ( 27 
)
6) Consider the origin preserving map

δ ḋ = dk, j -dk, j = T δ ḋ δρ . ( 28 
)
7) Invert the map

δρ = T δρ δ ḋ . (29) 8) Evaluate (29) in -dk, j ρk, j = T δρ -dk, j = ρk, j 1 ρk, j N . ( 30 
)
9) Update the ranges ρk+1,

j 1 = ρk, j 1 + ρk, j 1 ρk+1, j N = ρk, j N + ρk, j N . ( 31 
)
10) Check || ρk+1, jρk, j ||: if it is lower than an imposed threshold stop, otherwise set k = k + 1 and return to step 3.

The described process allows us to obtain multiple estimates for the range values at t 1 and t N , one for each sample j, and terminates as soon as two solutions ( ρk 1 ; ρk N ) and ( ρh 1 ; ρh N ) whose difference is below a given threshold are found, or all the 65 sets of angles are investigated. Then, the most likely solution is identified by considering the residual with respect to the whole set of available measurements. That is, knowing

α1 , δ1 , ρ j 1 , v j 1,L → r j 1 , v j 1,L (32) 
where r is the object position vector, an estimate for α, δ, and ḋ at all t i can be obtained, i.e.,

α j i,L , δ j i,L , d j i,L i ∈ [1, N]. ( 33 
)
The residual between the measurements given by ( 21) and those given by (33) can be expressed as

R j = N i=1 ⎛ ⎝ αi -α j i,L CI αi 2 + δi -δ j i,L CI δi 2 + di -d j i,L CI di 2 ⎞ ⎠ . ( 34 
)
The selected ( ρ j * 1 ; ρ j * N ) is the one with the lowest R j .

C. Phase 3: IOD Uncertainty Quantification

At the end of phase 2, an estimate for the RSO state at the epoch of the first measurement is obtained. The third phase of the DAIOD algorithm exploits the DA Lambert's solver to expand the IOD solution in Taylor series with respect to the observables. The steps are the following:

1) Initialize the angles and range rate measurements at epochs 1 and N as DA variables

[ α1 ] = α1 + CI α1 δα 1 δ1 = δ1 + CI δ1 δδ 1 d1 = d1 + CI d1 δ ḋ1 [ αN ] = αN + CI αN δα N δN = δN + CI δN δδ N dN = dN + CI dN δ ḋN . ( 35 
)
2) Initialize the ranges as DA variables 

[ ρ1 ] = ρ j * 1 + δρ 1 [ ρN ] = ρ j * N + δρ N . (36) 3) Solve the associated DA Lambert's problem L t 1 , [ α1 ] , δ1 , [ ρ1 ] , t N , [ αN ] , δN , [ ρN ] → v1,L = T v1
δ ḋ = ⎧ ⎨ ⎩ d1,L -d1 dN,L -dN ⎫ ⎬ ⎭ = T δ ḋ (δα, δδ, δρ). (38) 6) Add the identities ⎧ ⎨ ⎩ δα δδ δ ḋ⎫ ⎬ ⎭ = ⎧ ⎨ ⎩ δα δδ T δ ḋ (δα, δδ, δρ) ⎫ ⎬ ⎭ . ( 39 
)
7) Invert the map, and compose it with the available range rate measurements map The described procedure provides an estimate for the object state x1,L at t 1 . The state can be then converted to any desired representation p1,L . In the adopted work, a reduced set of Keplerian parameters, namely semimajor axis a, eccentricity e, inclination i, right ascension of the ascending node , and argument of latitude u is considered. Steps 3-8 of phase 3 are embedded into an ADS solver that automatically controls the accuracy of the resulting polynomial expansions and splits the uncertainty set, if required. The splitting decision is governed by tolerances set on the components of p1,L [START_REF] Wittig | Propagation of large uncertainty sets in orbital dynamics by automatic domain splitting[END_REF]. As a result, the final estimated state can be expressed as a manifold of Taylor expansions, i.e.,

δρ = T δρ (δα, δδ, δ ḋ ) • ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ δα δδ d1 -d1 dN -dN ⎫ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎭ . ( 40 
[ p1,L ] = N s i=1 T i p1,L δα 1 , δδ 1 , δ ḋ1 , δα N , δδ N , δ ḋN . ( 42 
)
The state manifold given in ( 42) is an analytical mapping between the Doppler-only radar measurements space to the orbital state. This mapping is extremely useful for cataloging purposes. For example, the solution corresponding to a generic set of deviations (δα * 1 , δδ * 1 , δ ḋ * 1 , δα * N , δδ * N , δ ḋ * N ) can be immediately obtained by the evaluation of (42), i.e., by

p * 1,L = N s i=1 T i p1,L δα * 1 , δδ * 1 , δ ḋ * 1 , δα * N , δδ * N , δ ḋ * N . ( 43 
)
The advantages granted by the polynomial description provided by (42) are not limited to polynomial evaluations. By applying the polynomial bounding techniques described in Section II one can easily estimate the bound b p1, j of the j component of the state vector p1,L . As a result, given a generic component p1,L j , we can say that

p1,L j ∈ -b p1, j , b p1, j . ( 44 
)
Thus, an estimate of the envelope of the orbit set [START_REF] Pirovano | Probabilistic data association: The orbit set[END_REF] compatible with the considered measurement uncertainties is readily available.

IV. PERFORMANCE ASSESSMENT

The performance of the DAIOD method is now investigated. The results of numerical simulations are illustrated in Section IV-A, whereas Section IV-B is dedicated to the analysis of real data. For all DAIOD simulations, an expansion order of 4 and a maximum of 5 splits per direction were used. The tolerances for a, e, i, , and u were set to {0.01 km, 0.01, 1e-5°, 1e-5°, 1e-5°}, respectively. All the simulations were run on an Intel i7-8565 U CPU @ 1.80 GHz and 16 GB of RAM. The DA used in this work is CNES' PACE library.

A. Numerical Simulations

The DAIOD method is first tested on numerical simulations targeting a subset of the NORAD low Earth orbit (LEO) population. The simulations were carried out by downloading the latest Two-Line Elements (TLE) from the Space-Track 1 website, propagating them for one day with a high-fidelity dynamics (including the zonal/tesseral effects of the Earth's gravitational field up to order and degree 8, the gravitational pull of Sun and Moon, the solar radiation pressure, and the drag perturbation), and considering as observer in surveillance mode the French bistatic radar sensor GRAVES [START_REF] Muller | GRAVES space surveillance system: Life extension and upgrade program[END_REF]. An overall number of 2000 passages was generated, and for each passage, ten different measurement noise levels were considered, ranging from k σ 1 = (10 mdeg; 10 mdeg; 0.1 m/s) to k σ 10 = (100 mdeg; 100 mdeg; 1.0 m/s), with a step of (10 mdeg; 10 mdeg; 0.1 m/s), where each triple indicates the noise standard deviations in azimuth, elevation, and range rate, respectively. The DAIOD method was then run on all the resulting 20 000 scenarios, and a comparison between estimated and real orbital elements performed. The analysis is done by studying the impact of noise levels and observed arc lengths on the accuracy and reliability of the resulting estimates. No error in the definition of the measurement epochs is considered. This choice is made because the processed measurements are assumed to derive from a calibrated sensor. In such a scenario, the effect of possible inaccuracies in the time epoch is definitely negligible when compared to the one of measurement noise.

We first analyze the accuracy of the polynomial maps. This accuracy can be quantified by checking how well the observables estimated from the DAIOD solution match the real ones. More specifically, starting from the DAIOD result

[x 1,L ] = N s i=1 T i x1,L δα, δδ, δ ḋ (45)
an estimate for the right ascension, declination, and range rate measurements at t 1 and t N can be obtained, i.e., 

[ α1,L ] = N 1 i=1 T i α1,L δα, δδ, δ ḋ [ δ1,L ] = N 1 i=1 T i α1,L
= 5 s) [ d1,L ] = N 1 i=1 T i d1,L δα, δδ, δ ḋ [ αN,L ] = N N i=1 T i αN,L δα, δδ, δ ḋ [ δN,L ] = N N i=1 T i δN,L δα, δδ, δ ḋ [ dN,L ] = N N i=1 T i dN,L δα, δδ, δ ḋ . ( 46 
)
Now let us consider the initial observables with their uncertainties as expressed by ( 35). If we plug an arbitrary deviation (δα * , δδ * , δ ḋ * ) into both ( 35) and ( 46), we obtain two sets of measurements, namely

Ô * = ( α * 1 , δ * 1 , d * 1 , α * N , δ * N , d * N ) and Ô * L = ( α * 1,L , δ * 1,L , d * 1,L , α * N,L , δ * N,L , d * N,L ), respectively. If the DA mapping is ex- act, then Ô * = Ô * L .
Exact matching is unrealistic due to unavoidable rounding errors. We can perform an accuracy assessment by sampling the initial uncertainty set and then comparing measured and estimated observables. The analysis is done by considering the 64 corners of the uncertainty region. The results are shown in Table I. The table shows the mean errors in the six observables for all the considered passages. As can be seen, the difference between estimated and measured observables is negligible.

We now assess the reliability of the estimated IOD bounds. The analysis is done by sampling the initial uncertainty set, and checking whether pointwise IOD solutions lie in the estimated bounds. More specifically, starting from a given set Ô * , a Doppler-only IOD problem is set up and solved by following the phase 2 algorithm, where now steps 3-10 are run on the Ô * measurements rather than on the nominal ones. The solution of the problem provides an estimate for the state x * 1 . This estimate can be converted into Keplerian parameters, thus obtaining p * 1 and the associated components p * 1, j . The estimated bounds are accurate if p * 1, j ∈ [-b p1, j , b p1, j ] for all the possible Ô * within our uncertainty set. The analysis on the accuracy of the estimated bounds is done once again by considering the 64 corners of the uncertainty region. For each processed passage, and for each Keplerian parameter component p 1, j , the ratio between the number of samples falling within the estimated bound and the overall number of samples gives a success rate equal to f p 1, j . The procedure is then repeated for all the passages. If then passages are divided according to the noise level and observed arc length, and the average success rate fp 1, j is computed, the results shown in Table II can be obtained. As can be seen, the percentage tends to increase for increasing arc lengths and decreasing noise levels, ranging from 98% to 100%. A success rate lower than one can be explained considering that sometimes polynomial bounding techniques can underestimate the bounds. As a result, the extremes of the uncertainty set may fall out of the estimated bound. Overall, however, the accuracy of these estimates is really good.

We can now analyze the performance of the method as a function of noise levels and observed arc lengths. Fig. 1 shows the results of the DAIOD method in terms of mean errors [see Fig. 1(a)] and bounds [see Fig. 1(b)] of the semimajor axis estimate when processing raw data with a sampling time t s of 5 s. The analysis is performed against noise levels and observation length by assigning each single passage to the corresponding cell and then computing the average of the resulting errors and bounds per cell. Let us first analyze Fig. 1(a). The plot shows the average semimajor axis error εa on the noise-arc length plane. Two major trends can be identified. If one considers a specific noise level, the accuracy of the obtained estimate increases for increasing portions of observed arc. This is expected, as a better estimation of the orbit curvature can be obtained when processing a longer arc. On the other hand, an increase in the estimate error for increasing noise levels is noticed. Overall, three main regions can be identified. The first region covers the bottom-right portion of the plot and collects longer passages with relatively low noise levels. Here, εa is in average around few kilometers. The second region is located in the top-left corner, characterized by short passages with increasingly higher noise levels. The combination of very short-arc observations with large noise values is the most critical condition for the DAIOD method, with semimajor axis errors ranging from 80 km to about 400 km. The third region, instead, covers the remaining portion of the map, with εa ∈ [START_REF] Baker | Preliminary orbitdetermination method having no co-planar singularity[END_REF]80] km.

Fig. 1(b) shows the trend of the estimated semimajor axis bounds ba . The trend closely resembles the one of Fig. 1(a). Furthermore, the comparison between values of εa and ba for a generic noise-arc length couple clearly shows that the estimated bound ba is systematically larger than the resulting error εa . That is, an estimate may be inaccurate, but the uncertainty associated with it accurately reproduces this inaccuracy. This is an important result, as it proves that the DAIOD method provides reliable estimates regardless of the observation conditions.

Table III offers a complete picture of the DAIOD performance when processing raw data with a sampling time of 5 s. The table shows the Q 3 quartiles (75th percentiles) of the errors and bounds in a, e, i, , and u as a function of the noise level k σ and the observation interval t obs , as expressed in terms of fraction of the orbital period T . As expected, the DAIOD estimate accuracy increases for increasing arc lengths and decreasing noise levels, while the estimated bounds b are always larger than the errors ε.

Overall, a reduction of one order of magnitude in both ε and b can be noticed while passing from the top-left to the bottom-right corner of the noise-arc length plane. While the performance of the DAIOD method is strongly dependent on the duration of the passage and the noise level, its success rate, instead, is always very high and barely affected by the observation conditions. This result is illustrated by the second row of Table IV. The table shows the trend of the DAIOD success rate as a function of the arc length for the highest considered noise level (k σ 10 ). The success rate remains almost unaltered while moving from the top-left to the top-right of the noise-arc length plane, passing from 0.9677 to 0.9927. This robustness is enabled by the scanning of the angular uncertainty set performed at the beginning of phase 2, as confirmed by the data in the first row. The line reports the success rate when only the nominal angular measurements (center only) are used to solve Gauss' problem. The improvement granted by the adopted approach is remarkable, especially when the passage is very short.

The DAIOD algorithm exploits the ADS technique to describe the solution uncertainty region accurately. Fig. 2(a) shows the cardinality of the resulting ADS manifold as a function of the arc length and noise level k σ . The number of sets is affected by both factors. More specifically, the value decreases for increasing arc lengths and decreasing noise levels and can reach the ideal single-set description in case of low-noise measurements covering a relatively large portion of the object trajectory (k σ 2 , t obs ≥ 0.03 T ). This aspect has a direct consequence on the required computational time t CPU [see Fig. 2(b)], for which a nonmonotonic trend is identified. More specifically, for all the considered noise levels, t CPU first decreases and then increases for increasing values of t obs . This behavior is determined by two factors: the measurement processing of phase 1 and the ADS. When the arc is short, the impact of phase 1 is negligible, so the overall computational time is mainly governed by phase 3, which generates ADS sets whose number decreases for increasing arc lengths. When the processed arc is longer, the number of sets is lower; thus, the time required by the ADS becomes comparable with the one dedicated to phase 1, which increases for longer arc lengths. Overall, fractions of seconds per passage are generally required. All the analyses presented so far were done considering the DAIOD performance when processing raw data with a sampling time of 5 s. Table V shows the results obtained when performing measurement regression with different values of t s . More specifically, the table shows the 75th percentile of the errors ε a and bounds b a in semimajor axis as a function of noise level k σ and observed arc length t obs for regressed measurements obtained for three different values of t s : 3 s, 5 s, and 7.5 s. Let us first analyze the effect of measurement regression, thus comparing the t s = 5 s block with its counterpart in Table III. The introduction of measurement regression grants a general reduction of both errors and bounds, which is evident for all the noise levels and the observed arc lengths. This is an expected outcome, as the regression allows the solver to mitigate the effect of measurement noise. Similarly, a decrease in the sampling time (i.e., an increase in the number of processed measurements) produces more accurate results and smaller bounds. As an example, if we consider the (k σ 10 ; t obs < 0.01 T ) critical case and compare the results with t s = 5 s and t s = 3 s, a drop in the semimajor axis error can be noticed, passing from 224 to 172 km. The reduction in the estimated bound is even more significant, passing from 2201 to 1564 km. Overall, the introduction of regression plays a significant role in the estimate uncertainty reduction.

Once described the DAIOD algorithm performance, it is now interesting to compare it against other existing methods. Table VI shows the performance of the DIM in terms of errors in a, i, e, , and u as a function of t obs when processing regressed data with t s = 5 s and k σ 2 . The trend of the errors with the observed arc length recalls the one identified for the DAIOD, but the absolute values are larger. The DIM provides relatively good results for longer time windows, but its accuracy drops while approaching the short arcs region. Here the DAIOD method performs significantly better, granting a reduction in the estimate error of at least one order of magnitude. On the other hand, the DIM is generally a factor 2 faster than the DAIOD.

B. Real Test Cases

This section illustrates the performance of the DAIOD algorithm when processing real data collected by the French GRAVES radar. Three different test cases are presented, ordered for increasing values of observed arc length. The of the DAIOD method in terms of Keplerian parameters. In addition, the errors of the Doppler integration method ε DIM are provided. The errors are computed with respect to precise orbits whose ephemerides can be retrieved from. 2 As can be seen, the DAIOD estimate is systematically more accurate than the DIM one. Yet, the short duration of the passage unavoidably inflates the estimate bounds, which are two orders of magnitude larger than the actual errors for a, e, and u. This conservative behavior of the DAIOD method improves when the observed arc length increases. Table VIII shows the result of a second test case. The same object was observed by GRAVES on 2021-09-08 from 02:56:18 to 02:58:57 UTC, for an overall number of 61 observation instants covering 2.6% of the orbital period. The DAIOD estimate is now less accurate in semimajor axis and more accurate in the angular quantities. On the other hand, all the estimated bounds are smaller than the previous case and enclose well the actual error. The DIM estimate is still less accurate in all components but u. A final test case is shown in Table IX. Radar measurements were collected while observing satellite Sentinel 3A on 2021-09-01 from 21:40:45 to 21:45:01 UTC. Overall, 67 observation instants were collected, covering 4.2% of the orbital period. This passage is longer than the previous one, but with a higher sampling time. As a result, no significant reduction in the obtained DAIOD errors and bounds is expected. The results shown in Table IX confirm this guess with errors and bounds 2 ftp://doris.ign.fr/pub/doris/products/orbits/ssa resembling those of Table VIII. A similar trend can be noticed for the DIM too, showing a general lower accuracy than the DAIOD method.

V. CONCLUSION

This article introduced a novel initial orbit determination (IOD) algorithm, called DAIOD method, for processing Doppler-only radar short-arc observations. The method combines differential algebra (DA) and automatic domain splitting (ADS) to obtain an estimate of the state of the space object at the first observation epoch. This estimate is expressed as a set of Taylor polynomials mapping the measurements into the state estimate. As a result, a full description of the orbit set associated with the observations is provided. A detailed analysis of the performance of the method was carried out, and the impact of measurement noise, observed arc length, measurement regression, and sampling time was studied. Overall, the DAIOD is more robust than its competitors with both simulated and real observations. More specifically, the analyses show that the method has extremely good convergence properties, regardless of the noise levels and arc lengths. This result is made possible by a proper investigation of the measurements uncertainty set for the first guess computation, which allows the solver to reach success rates above 96%, even for very short-arc observations with high noise levels. The IOD solution is then characterized by an accuracy strongly dependent on the observation conditions but coupled with a reliable estimate of its bounds. This is granted by the combined use of DA and ADS, allowing the DAIOD method to provide a complete Taylor series expansion of the IOD solution. This aspect is of crucial importance whenever uncertainty-based data association operations shall be performed. Thus, the proposed DAIOD algorithm is a valuable tool whenever radar-based catalog generation operations are performed.

Future work will include testing of the developed approach on a wider set of real test cases and a DA-based reformulation of the measurement processing phase removing all the introduced simplifications.
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 1 Fig. 1. DAIOD performance in terms of mean error εa (a) and bound ba (b) in semimajor axis a as a function of the fraction of observed orbital period and noise level k σ (raw data, t s = 5 s).

  and ḋi are the azimuth, elevation, and range rate measurements obtained at epoch t i , respectively, whereas σ A i , σ E i , and σ ḋi are the associated standard deviations of the sensor noise.

	The DAIOD algo-
	rithm estimates the state of the orbiting object at the epoch of
	the first available set of measurements by processing angular
	and range rate data. The method works in three phases:
	measurements processing, IOD solution computation, and
	IOD solution expansion.

A. Phase 1: Measurements Processing

TABLE I Mean

 I Differences εα 1 , εδ 1 , ε ḋ1 , εα N , εδ N , ε ḋN Between Measured and Estimated Observables (Raw Data, t s

TABLE II DAIOD

 II Results in Terms of Mean Percentages of Bounds Accuracy in Semimajor Axis a, Eccentricity e, Inclination i, Right Ascension of the Ascending Node and Argument of Latitude u as a Function of Noise Level k σ and Fraction of Observed Orbital Period t obs (Raw Data, t s = 5 s)

TABLE III DAIOD

 III Performance Expressed in Terms of 75th Percentiles of the Errors ε and Bounds b in Semimajor Axis a, Eccentricity e, Inclination i, Right Ascension of the Ascending Node and Argument of Latitude u as a Function of the Noise Level k σ and the Fraction of Observed Orbital Period t obs (Raw Data, t s = 5 s)

TABLE IV DAIOD

 IV Success Rate as Function of the Fraction of Observed Orbital Period t obs When Computing Gauss' Guess With the Center of the Angular Uncertainty Sets Only (Line 1), or by Adding the 64 Corners (Line 2) (raw Data, t s = 5 s, k σ 10 ) Fig. 2. DAIOD performance in terms of 75th percentiles of the required number of sets (a) and computational time (b) as a function of the fraction of observed orbital period and noise level k σ (raw data, t s = 5 s).

TABLE V DAIOD

 V Performance Expressed in Terms of 75th Percentiles of the Errors ε and Bounds b in Semimajor Axis a as a Function of the Noise Level k σ and the Fraction of Observed Orbital Period t obs When Performing Measurement Regression With Three Sampling Times: 3 s, 5 s, 7.5 s TABLE VI DIM Performance Expressed in Terms of 75th Percentiles of the Errors ε in Keplerian Parameters as a Function of the Fraction of Observed Orbital Period t obs (Regressed Measurements, t s = 5 s, k σ 2 )

TABLE IX DAIOD

 IX and DIM Performance Comparison for Test Case 3 first observed object is satellite Cryosat-2. The satellite was observed on 2021-05-02 from 09:08:22 to 09:09:54 UTC, with an overall number of 21 observation instants covering around 1.5% of the orbital period. The results of the IOD process are listed in Table VII. The table shows the error ε DAIOD and bound b DAIOD
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