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Abstract This paper deals with high order Whitney forms. We define a canonical
isomorphism between two sets of degrees of freedom. This allows to geometrically
localize the classical degrees of freedom, the moments, over the elements of a
simplicial mesh. With such a localisation, it is thus possible to associate, even
with moments, a graph structure relating a field with its potential.
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1 Introduction

The finite element (FE) method is a well-established technique to numerically solve
partial differential equations [12]. One key aspect of FE methods is the construc-
tion of finite dimensional spaces able to provide an approximated and physically
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Department of Mathematics
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Departamento de Matemática y F́ısica Aplicadas
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meaningful solution to the considered PDE. Suitable examples of FE spaces have
been proposed to deal with differential operators such as the gradient, the curl and
the divergence. As an example, Raviart-Thomas and Brezzi-Douglas-Marini div-
conforming FEs [24,9] became popular for problems in fluid dynamics and Nédélec
curl-conforming ones [19,20] were widely adopted in electromagnetism (for further
examples, see [18,10,14]). All these successful FEs can be unified in the finite el-
ement exterior calculus framework where physical fields are treated as instances
of differential forms [6,13,5,4]. In addition to the shape functions of a FE space,
we must specify the degrees of freedom (DoFs) we adopt to reconstruct fields in
that space. These are a unisolvent set of functionals on the shape functions. The
construction of DoFs for higher order Whitney space of k-forms P−

r+1Λ
k is clas-

sically based on moments [13] associated with a face of some dimension q with
q ≥ k. DoFs determine inter element continuity and provide interpolation oper-
ators, projections, which are defined at least for smooth fields. Moments pop up
naturally from integration-by-part formulas, which thus gives a way to reconstruct
differential operators and potentials.

By adopting a geometrical point of view similar to the one of Whitney in [26],
new DoFs have been proposed in [22] for the interpolation of fields in the FE spaces
of trimmed polynomial forms of arbitrary degree r ≥ 1 on simplices. These new
DoFs, called weights, are integrals of the field, intended as a differential k-form,
on some small faces of dimension only q = k, being k the degree of the form. They
have a clear physical interpretation, such as circulations along curves, fluxes across
surfaces, densities in volumes, depending on the value of k. Their combinatorial
and accuracy properties have been largely analysed, see for example [11,3,1]. They
have been defined also for spaces of complete polynomials (see [27] for an example
in 2D) and on tensor product ones, as presented in [17].

Fig. 1 Correspondence between two sets of DoFs for P−
3 Λ1(T ) in a tetrahedron T . Center,

the visualization of symbols referring to the distribution of edge-type (in a circle), of face-type
(in a square) and of volume-type (in a diamond) moments as given in the periodic table of
FEs for N1e3 (courtesy of D. Arnold). Right and left, coded with the same symbol, the small
edges supporting the corresponding weights.

For k = 0, that is, we deal with a scalar field, when r ≥ 1, weights are evalu-
ations of 0-forms at some points in the FEs. We can say that weights, generalise
to k > 0 the idea of r-version of Lagrangian finite elements to other (e.g., Nédélec
and Raviart-Thomas) finite elements. For r = 1, that is, we deal with low order
polynomial approximations, weights and moments coincide, whatever is the degree
k of the form. Thus, a natural question arises. What happens when the polyno-
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mial degree r of the k-form is greater than 1? In other words, is there a connection
between these two sets of DoFs when r > 1, for any k? The answer is yes, and in
this contribution, we develop this connection (see Figure 1, where k = 1 and the
polynomial degree is 3).

In particular, we present an isomorphism between these two sets of DoFs,
the weights and the moments, for the FE spaces of trimmed polynomial k-forms
of arbitrary degree r ≥ 1 on simplices. By means of this isomorphism, we can
underline the physical, geometrical and analytical aspects hidden in the definition
of moments and weights. Moreover, with an appropriate selection of the discrete
space bases for k = 0, 1, the matrix which represents the gradient operator is the
same with both sets of DoFs to reconstruct a field from its potential.

The paper is structured as follows. After the introduction of classical notations
for the spaces of differential polynomial k-forms on a simplex T in Section 2,
we explore the definition of weights and moments in Section 3. The isomorphism
is detailed in Section 4. The matrix representing the exterior derivative operator
working between 0- and 1-forms, in both cases of weights and moments, is analysed
in Section 5. Some concluding remarks end this contribution.

2 Notation and basic tools

The notation and theoretical results are illustrated by several examples. For the
sake of clarity, we use the symbol ⊓⊔ (resp. ⋄) to close a proof (resp., an example).

2.1 Increasing sequences and multi-index

Let j, l, m, n be integers such that 0 ≤ l− j ≤ n−m. By Σ(j : l,m : n) we denote
the set of increasing maps from {j, . . . , l} to {m, . . . , n}, that is

Σ(j : l,m : n) = {σ : {j, . . . , l} −→ {m, . . . , n} : σ(j) < σ(j + 1) < · · · < σ(l)}.

For a map σ ∈ Σ(j : l,m : n), [[σ]] will indicate its range, i.e.,

[[σ]] = {σ(i) : i ∈ {j, . . . , l}} ⊂ {m, . . . , n}.

We use multi-index notation and consider the sets

I(d+ 1, r) := {α = (α0, . . . , αd) ∈ Nd+1 : |α| = r},

being |α| =
∑d

i=0 αi. For a multi-index α ∈ I(d + 1, r), [[α]] will stand for the
support of α defined as the set

[[α]] = {i : αi > 0} ⊂ {0, . . . , d},

and we denote ⌊α⌋ the minimal element of [[α]].
Let S be a subset of {0, . . . , d} and #S its cardinality. By eS we denote the

(unique) multi-index in I(d + 1,#S) such that [[eS ]] = S. The sum of multi-
indexes of the same length is defined in the natural way: if α ∈ I(d + 1, r) and
β ∈ I(d+1, r′), then α+β ∈ I(d+1, r+r′) and (α+β)i = αi+βi for i = 0, . . . , d.
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Example 1 If σ ∈ Σ(0 : d, 0 : n), with d ≤ n, then [[σ]] is a subset of {0, 1, . . . , n}
with #[[σ]] = d+ 1. Then, e[[σ]] ∈ I(n+ 1, d+ 1) is the multi-index with entries

(e[[σ]])i =

{
1 if i ∈ [[σ]]
0 otherwise.

For any α ∈ I(n+1, r), the multi-index α̃ ∈ I(n+1, r+d+1) given by α̃ = α+e[[σ]]

has entries

α̃i =

{
αi + 1 if i ∈ [[σ]]
αi otherwise,

respectively. ⋄

Given σ ∈ Σ(0 : d, 0 : n), the matrix Eσ ∈ Z(d+1)×(n+1), with entries

(Eσ)i,j =

{
1 if j − 1 = σ(i− 1)
0 otherwise,

(1)

allows to extend a multi-index β ∈ I(d + 1, r) to a multi-index α ∈ I(n + 1, r)
by setting α = βEσ. It is worth noting that [[βEσ]] ⊂ [[σ]], hence in particular
(βEσ)i = 0 if 0 ≤ i < σ(0).

Furthermore, the matrix E⊤
σ ∈ Z(n+1)×(d+1) allows to restrict a multi-index

α ∈ I(n + 1, r) to a multi-index β ∈ I(d + 1, r̃), with r̃ ≤ r, by identifying any
multi-index with a row vector, and setting β = αE⊤

σ . We notice that

Eσ E⊤
σ = I ∈ Z(d+1)×(d+1)

whereas, for α ∈ I(n+ 1, r), we have

αE⊤
σ Eσ = α if and only if [[α]] ⊂ [[σ]]. (2)

Example 2 If σ ∈ Σ(0 : 1, 0 : 3) has [[σ]] = {1, 3}, the associated matrix Eσ ∈ Z2×4

is Eσ =

[
0 1 0 0
0 0 0 1

]
. If (β0, β1) ∈ I(2, r), then we get

(α0, α1, α2, α3) = (β0, β1) Eσ = (0, β0, 0, β1) ∈ I(4, r).

It holds that ασ(j) = βj , whereas αi = 0 if i ̸∈ [[σ]]. Reciprocally, if (α0, α1, α2, α3) ∈
I(4, r), then

(β0, β1) = (α0, α1, α2, α3) E
⊤
σ = (α1, α3) ∈ I(2, r̃).

In this case r̃ ≤ r. ⋄
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2.2 Simplices and barycentric coordinates

Let T ⊂ Rn be an n-simplex with vertices x0, x1, . . . , xn in general position. We
let ∆k(T ) be the set of subsimplices of T of dimension k, for any selected value of
k between 0 and n, and ∆(T ) = ∪k∆k(T ).

For each σ ∈ Σ(j : l, 0 : n), we let fσ be the (oriented) closed convex hull of
the vertices xσ(j), . . . , xσ(l) which we henceforth denote by fσ = [xσ(j), . . . , xσ(l)].
There is a one-to-one correspondence between ∆k(T ) and Σ(0 : k, 0 : n).

Let Pr(T ) denote the space of polynomials in n variables of degree at most
r. In the following, λT,0, λT,1, . . . , λT,n are the barycentric coordinate functions
with respect to T . Each function λT,i ∈ P1(T ) is determined by the equations
λT,i(xj) = δi,j , 0 ≤ i, j ≤ n, being δ.,. the Kronecker’s symbol. All together,
the functions λT,i form a basis of P1(T ), are non-negative on T , and sum to 1
identically on T .

To make for the higher order r ≥ 1, we introduce the Bernstein basis of the
space Pr(T ): it consists of all monomials of degree r in the variables λT,i. We have

Pr(T ) = span{λα
T : α ∈ I(n+ 1, r)}, λα

T := λα0

T,0λ
α1

T,1 . . . λ
αn

T,n .

Whenever a fixed simplex T is understood, we may simplify the notation by writing

λi ≡ λT,i, λα ≡ λα
T .

2.3 Polynomial Differential Forms

We denote by Λk(T ) the space of differential k-forms over T with smooth bounded
coefficients. For k = 0, the set Λ0(T ) = C∞(T ) is the space of smooth functions
over T with uniformly bounded derivatives of all orders. Furthermore, Λk(T ) ̸= {0}
for 0 ≤ k ≤ n. We recall the exterior product ω ∧ η ∈ Λk+l(T ) for ω ∈ Λk(T ) and
η ∈ Λl(T ). Let d : Λk(T ) → Λk+1(T ) denote the exterior derivative operator.

We write dλ0,dλ1, . . . , dλn ∈ Λ1(T ) for the exterior derivatives of the barycen-
tric coordinate functions. Clearly

dλ0 + dλ1 + · · ·+ dλn = 0,

on T since
∑n

i=0 λi = 1. If σ ∈ Σ(j : l,m : n), we set dλσ := dλσ(j) ∧ · · · ∧ dλσ(l)

the volume (l − j + 1)-form.
For k > 0, any element ω of Λk(T ) can be written as

ω =
∑

σ∈Σ(0:k−1,1:n)

aσdλσ,

where aσ ∈ C∞(T ). Taking aσ ∈ Pr(T ) we obtain the space PrΛ
k(T ) of poly-

nomial differential k-forms of polynomial degree at most r. Moreover PrΛ
0(T )

coincides with Pr(T ).
For k > 0,

P0Λ
k(T ) = span{dλσ : σ ∈ Σ(0 : k − 1, 1 : n)}.
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Example 3 For n = 3 one has,

P0Λ
1(T ) = span{dλ1, dλ2,dλ3},

P0Λ
2(T ) = span{dλ1 ∧ dλ2,dλ1 ∧ dλ3,dλ2 ∧ dλ3},

P0Λ
3(T ) = span{dλ1 ∧ dλ2 ∧ dλ3},

respectively. ⋄

Furthermore, if 0 < k < n, we can write

PrΛ
k(T ) = span{λαdλσ : σ ∈ Σ(0 : k − 1, 1 : n) and α ∈ I(n+ 1, r)}.

The set

BPrΛ
k(T ) := {λα dλσ : σ ∈ Σ(0 : k − 1, 1 : n) and α ∈ I(n+ 1, r)} (3)

is a basis of PrΛ
k(T ).

For k = 0,
BPrΛ

0(T ) := {λα : α ∈ I(n+ 1, r)}

is a basis of PrΛ
0(T ) while for k = n,

BPrΛ
n(T ) := {λαdλ1 ∧ · · · ∧ dλn : α ∈ I(n+ 1, r)}

is a basis of PrΛ
n(T ).

A particular set of polynomial differential k-forms of polynomial degree 1 are
the Whitney’s differential forms. They are associated with the k-simplices f of T .
If k = n, then f = T and the Whitney’s differential form wT is the volume form,
of polynomial degree 0.

Definition 1 Let k ≥ 0 and f ∈ ∆k(T ). The Whitney’s differential form wf

associated with the subsimplex f is defined, recursively in k, as follows:

– if k = 0,, then f is a vertex of T , namely, f = [xi] for i = 0, . . . , n, and
wf = w[xi] = λi;

– if k > 0,, then f = fσ for a σ ∈ Σ(0 : k, 0 : n) and

wfσ
=

k∑
i=0

(−1)iλσ(i)dwfσ\[xσ(i)],

being fσ \ [xσ(i)] ∈ ∆k−1(T ) the oriented (k− 1)-face of T with the vertices of
fσ except xσ(i).

We can write fσ \ [xσ(i)] = [xσ(0), . . . , x̂σ(i), . . . , xσ(k)], where the wide-hat
means that the underlying term is omitted from the list.
For each σ ∈ Σ(0 : k, 0 : n), it holds that

dwfσ
= (k + 1)! dλσ = (k + 1)! dλσ(0) ∧ · · · ∧ dλσ(k).

Then

wfσ
=

k∑
i=0

(−1)iλσ(i)dwfσ\[xσ(i)] = k!
k∑

i=0

(−1)iλσ(i) dλσ(0)∧· · ·∧d̂λσ(i)∧· · ·∧dλσ(k).
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Example 4 The Whitney’s 1-form associated with the edge e = [xσ(0), xσ(1)] is

we = λσ(0)dλσ(1) − λσ(1)dλσ(0).

The Whitney’s 2-form associated with the face f = [xσ(0), xσ(1), xσ(2)] reads

wf = 2(λσ(0)dλσ(1) ∧ dλσ(2) − λσ(1)dλσ(0) ∧ dλσ(2) + λσ(2)dλσ(0) ∧ dλσ(1)).

In R3, the Whitney’s 3-form associated with T = [xσ(0), xσ(1), xσ(2), xσ(3)] is

wT = 6dλσ(1) ∧ dλσ(2) ∧ dλσ(3),

where we have used the fact that λ0 + λ1 + λ2 + λ3 = 1. ⋄

In finite element exterior calculus, the space of Whitney’s differential k-forms
on T is denoted by

P−
1 Λk(T ) := span{wf : f ∈ ∆k(T )}.

Since there is a one-to-one correspondence between ∆k(T ) and Σ(0 : k, 0 : n) we
can also write

P−
1 Λk(T ) := span{wfσ

: σ ∈ Σ(0 : k, 0 : n)}.

Definition 2 Whitney’s differential k-forms of polynomial degree r + 1 are the
elements of the space

P−
r+1Λ

k(T ) := span{λαwfσ
: σ ∈ Σ(0 : k, 0 : n) and α ∈ I(n+ 1, r)}.

For k > 0, the space P−
r+1Λ

k(T ) ⊊ Pr+1Λ
k(T ).

For k = 0,

P−
r+1Λ

0(T ) = span{λαλi : i ∈ {0, . . . , n} and α ∈ I(n+ 1, r)}

= span{λα̃ : α̃ ∈ I(n+ 1, r + 1)} = Pr+1Λ
0(T ).

For k = n,

P−
r+1Λ

n(T ) = span{λαdλ1 ∧ · · · ∧ dλn : α ∈ I(n+ 1, r)} = PrΛ
n(T ).

Remark 1 It is worth noting that, in the n-simplex T with vertices x0, x1, . . . , xn,
the elements belonging to the set

{λαwfσ
: σ ∈ Σ(0 : k, 0 : n), α ∈ I(n+ 1, r)}

are not linearly independent. As an example, for n = 2, if k = 1, and r = 1, it can
be verified that

λ0w[x1,x2] − λ1w[x0,x2] + λ2w[x0,x1] = 0. (4)

Given σ ∈ Σ(0 : k, 0 : n), we set

Iσ(n+ 1, r) := {α ∈ I(n+ 1, r) : αi = 0 ∀ i < σ(0)}.

When k = 0, then fσ is a vertex of T , namely, fσ = [xj ] being σ(0) = j. In
this case, to be clearer, we will sometimes use the notation I[xj ](n+ 1, r) instead
of Iσ(n+ 1, r).
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A basis of P−
r+1Λ

k(T ) is

BP−
r+1Λ

k(T ) = {λαwfσ
: σ ∈ Σ(0 : k, 0 : n) and α ∈ Iσ(n+ 1, r)}

(see, e.g., [16]). For n = 2, k = 1 and r = 1, the 8 elements of BP−
2 Λ1(T ), with

T = [x0, x1, x2], are

λi w[x0,x1] = λi (λ0dλ1 − λ1dλ0 ), i = 0, 1, 2,
λi w[x0,x2] = λi (λ0dλ2 − λ2dλ0 ), i = 0, 1, 2,
λi w[x1,x2] = λi (λ1dλ2 − λ2dλ1 ), i = 1, 2 .

The condition α ∈ Iσ(3, 1) prevents λ0w[x1,x2] in (4) from being in the set

BP−
2 Λ1(T ).

3 Weights and moments

3.1 Small simplices and weights

The concepts of small simplices and weights for polynomial differential forms in
P−

r+1Λ
k(T ) were born in [21,22], for any order k and any polynomial degree r ≥ 0,

to solve the difficulty raised in [7]: “The main problem with such forms is the
interpretation of DoFs” in geometrical terms. We recall these concepts here below
with a notation adapted to the isomorphism we want to state between these new
DoFs, the weights, and the classical ones, moments, introduced in [19,5].

In the n-simplex T with vertices x0, x1, . . . , xn, the principal lattice of order
r + 1 (r ≥ 0) is the set of points defined by their barycentric coordinates with
respect to the vertices of T as follows

Lr+1(T ) :=

{
x ∈ T : λi(x) ∈

{
0,

1

r + 1
, . . . ,

r

r + 1
, 1

}
for each i ∈ {0, . . . , n}

}
.

To each multi-index α ∈ I(n+ 1, r) we associate an affine function, τα : T −→ T ,

such that λi(τα(x)) =
λi(x)+αi

r+1 . If fσ is a face of T , then

τα(fσ) := {τα(x) : x ∈ fσ}.

Definition 3 The small k-simplexes of order r in T are the elements of the set

Sk
r (T ) := {τα(fσ) : fσ ∈ ∆k(T ) and α ∈ I(n+ 1, r)}

= {τα(fσ) : σ ∈ Σ(0 : k, 0 : n) and α ∈ I(n+ 1, r)}.

For k > 0, they are 1/(r+1)-homothetic to k-faces of T , with vertices in Lr+1(T ).
For k = 0, we have S0

r (T ) = Lr+1(T ).

Example 5 For k = 0, let us set n = 2 and r = 1. If α = (1, 0, 0), we have that,

τα(x0) = (1 , 0 , 0), τα(x1) =

(
1

2
,
1

2
, 0

)
, τα(x2) =

(
1

2
, 0 ,

1

2

)
,
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whereas for α = (0, 1, 0), we obtain

τα(x0) =

(
1

2
,
1

2
, 0

)
, τα(x1) = (0 , 1 , 0), τα(x2) =

(
0 ,

1

2
,
1

2

)
that are points all in L2(T ). ⋄

We recall that there is a one-to-one correspondence between the elements of
∆k(T ) and Σ(0 : k, 0 : n). Moreover, for k > 0, there is a one-to-one correspon-
dence between the elements of Sk

r (T ) and the couples (σ,α) with σ ∈ Σ(0 : k, 0 : n)
and α ∈ I(n+1, r). In fact, if α, α′ ∈ I(n+1, r) and α ̸= α′, then τα(T )∩τα′(T )
is either empty or an element of S0

r (T ). For k = 0, there is not such a one-to-one
correspondence. The points of the principal lattice of T that are not the vertices
of T have more than one representation as small node (see Figure 2 and Example
6).

x0 x1

x2

Fig. 2 Points of the principal lattice for P−
4 Λ0(T ), where T is a 2-simplex. The node with

barycentric coordinates ( 1
4
, 1
4
, 2
4
) in T is shared by the three gray small triangles.

Example 6 Let us suppose n = 2, r = 3. The point with barycentric coordinates
(14 ,

1
4 ,

2
4 ) in T , has different representations, as small node. Indeed, by referring to

Figure 2, this point can be τα(fσ) with,

α = (1, 0, 2), fσ = x1, in the top-left gray small triangle,
α = (0, 1, 2), fσ = x0, in the top-right gray small triangle,

α = (1, 1, 1), fσ = x2, in the bottom-center gray small triangle,

respectively. ⋄

The weight of ω ∈ Λk(T ) on a k-simplex s contained in T is denoted by
∫
s
ω.

If k = 0, for ω ∈ C∞(T ) and s ∈ T , we have
∫
s
ω = ω(s).

In particular we are interested in the following set of weights.

Definition 4 Let ω ∈ Λk(T ), σ ∈ Σ(0 : k, 0 : n) and α ∈ I(n+ 1, r).

Wσ,α(ω) :=

∫
τα(fσ)

ω. (5)

The weights of Definition 4 are determinant in P−
r+1Λ

k(T ), namely, if ω ∈
P−

r+1Λ
k(T ) and

∫
s
ω = 0 for all s ∈ Sk

r (T ), then ω = 0 (see [11] for a proof).
However, for 0 < k < n, the cardinality of the set of weights {Wσ,α(ω) : σ ∈
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Σ(0 : k, 0 : n), α ∈ I(n + 1, r)} is greater than the dimension of P−
r+1Λ

k(T ).
Hence in the sequel we often consider the following set of weights:

W k := {Wσ,α(ω) : σ ∈ Σ(0 : k, 0 : n), α ∈ Iσ(n+ 1, r)}. (6)

It is worth noting that W k is determinant (see [1]) and its cardinality coincides
with the dimension of P−

r+1Λ
k(T ).

Remark 2 Only the second one of the three representations in Example 6 verifies
the condition α ∈ Iσ(n + 1, r) required to support a weight of the set defined
in (6). In the first representation σ(0) = 1, hence Iσ(3, 3) is the set of multi-
indices α ∈ I(3, 3) with α0 = 0 and α = (1, 0, 2) ̸∈ Iσ(3, 3). In the second
representation σ(0) = 0, hence Iσ(3, 3) = I(3, 3) and α = (0, 1, 2) ∈ I(3, 3).
In the third representation σ(0) = 2, hence Iσ(3, 3) is the set of multi-indices
α ∈ I(3, 3) with α0 = α1 = 0, and α = (1, 1, 1) ̸∈ Iσ(3, 3).

3.2 Moments associated with a particular basis of polynomial differential forms

Let ω be a smooth differential k-form defined on T ⊂ Rn. For each d-face fζ of T ,
with ζ ∈ Σ(0 : d, 0 : n) and k ≤ d ≤ n, the moments of ω in fζ of degree r−(d−k)
are

Mζ,η(ω) :=

∫
fζ

Trfζ
ω ∧ η, ∀ η ∈ Pr−(d−k)Λ

d−k(fζ) , (7)

where Trfζ
is the trace operator on fζ .

It is well known that these moments are determinant in P−
r+1Λ

k(T ). Taking

η in a basis of each space Pr−(d−k)Λ
d−k(fζ), one obtains a determinant set of

moments with cardinality equal to the dimension of P−
r+1Λ

k(T ) (see [5] and [11],
for two different proofs).

The goal of the present work is to point out an isomorphism between moments
and weights which, in a sense specified in the next sections, is consistent with the
exterior derivative operator. To do that, we will consider a particular basis of the
space Pr−(d−k)Λ

d−k(fζ) in (7).

– If d = k, we adopt the Bernstein’s basis of the space Pr(fζ), namely

BPrΛ
0(fζ) = {λβ

fζ
: β ∈ I(d+ 1, r)},

where λβ
fζ

= λβ0

fζ,0
. . . λβd

fζ,d
= λβ0

T,ζ(0) . . . λ
βd

T,ζ(d).

– If d > k, we rely on the basis indicated in (3), namely,

BPr−(d−k)Λ
d−k(fζ) = {λβ

fζ
(dλfζ

)ρ : ρ ∈ Σ(0 : d− (k + 1), 1 : d),

β ∈ I(d+ 1, r − (d− k))}.

Here
(dλfζ

)ρ = dλfζ,ρ(0) ∧ · · · ∧ dλfζ,ρ(d−(k+1))

= dλT,ζ(ρ(0)) ∧ · · · ∧ dλT,ζ(ρ(d−(k+1))).

Example 7 For k = 1,
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– if fζ = [x0, x2, x3] ∈ ∆2(T ), then d = 2, d− k = 1, and

BPr−1Λ
1(fζ) = {λβ

fζ
dλ2 : β ∈ I(3, r − 1)} ∪ {λβ

fζ
dλ3 : β ∈ I(3, r − 1)};

– if fζ = [x0, x1, x2, x3] ∈ ∆3(T ) (for n = 3 it means fζ = T ), then d − k = 2
and

BPr−2Λ
2(fζ) = {λβ

fζ
dλ1 ∧ dλ2 : β ∈ I(4, r − 2)}

∪{λβ
fζ

dλ1 ∧ dλ3 : β ∈ I(4, r − 2)} ∪ {λβ
fζ

dλ2 ∧ dλ3 : β ∈ I(4, r − 2)},

respectively. ⋄

With these choices of basis we obtain the following moments for ω ∈ Λk(T ):
for each ζ ∈ Σ(0 : k, 0 : n), and β ∈ I(k + 1, r)

Mζ,∅,β(ω) :=

∫
fζ

Trfζ
ω ∧ λβ

fζ
; (8)

for each d > k, ζ ∈ Σ(0 : d, 0 : n), ρ ∈ Σ(0 : d − (k + 1), 1 : d) and β ∈
I(d+ 1, r − (d− k))

Mζ,ρ,β(ω) :=

∫
fζ

Trfζ
ω ∧ λβ

fζ
(dλfζ

)ρ. (9)

We use the notation “ρ = ∅” when d = k since Σ(0 : d − (k + 1), 1 : d)
has not been defined for d = k. We thus have the following set of moments for
ω ∈ P−

r+1Λ
k(T ):

Mk := {Mζ,ρ,β(ω) : ζ ∈ Σ(0 : d, 0 : n), ρ ∈ Σ(0 : d− (k + 1), 1 : d),

and β ∈ I(d+ 1, r − (d− k)) with k ≤ d ≤ n}.
(10)

Remark 3 If ω ∈ Λ0(T ),

– when d = k = 0, then ζ ∈ Σ(0 : 0, 0 : n) and β ∈ I(1, r), so fζ = [xζ(0)] and
β = (r) (the “multi-index” β has only one component that takes the value r).
We have

Mζ,∅,β(ω) = (λr
ζ(0)ω)(xζ(0)) = ω(xζ(0))=: M̂ζ,β(ω)

– when d > 0, then ζ ∈ Σ(0 : d, 0 : n), ρ ∈ Σ(0 : d − 1, 1 : d) and β ∈
I(d+ 1, r − d). It is worth noting that Σ(0 : d− 1, 1 : d) has a unique element
and (dλfζ

)ρ = dλζ(1) ∧ · · · ∧ dλζ(d), namely

Mζ,ρ,β(ω) =

∫
fζ

Trfζ
ω ∧ λβ

fζ
(dλζ(1) ∧ · · · ∧ dλζ(d))=: M̂ζ,β(ω).

This means that in Λ0(T ) moments depend on two parameters, ζ ∈ Σ(0 : d, 0 : n)
and β ∈ I(d+1, r−d). Hence, in Λ0(T ) to denote the moments we will often prefer

the notation M̂ζ,β with ζ ∈ Σ(0 : d, 0 : n), β ∈ I(d+1, r− d), and d ∈ {0, . . . , n}.



12 A. Alonso Rodŕıguez, J. Camaño, E. De Los Santos, F. Rapetti

4 Isomorphism

We establish an isomorphism, one for each value of k ∈ {0, . . . , n}, between the
set of moments Mk defined in (10), and the set of weights W kdefined in (6).

We distinguish two cases, when the support fζ of the moment has dimension
d either equal to the order k of the differential form or higher.

The moment Mζ,∅,β(ω), with ζ ∈ Σ(0 : k, 0 : n) and β ∈ I(k + 1, r) is linked
to the weight Wσ,α(ω), with σ = ζ and α = βEζ , the extension of β to a multi-
index in I(n+1, r) by the matrix Eζ defined in (1). In this case the small simplex
s = τα(fσ) is not only parallel to fσ = fζ but it is in fact contained in fζ .

In order to associate a weight with the moment Mζ,ρ,β(ω) when d > k, we first
prove the following lemma.

Lemma 1 If ζ ∈ Σ(0 : d, 0 : n) and ρ ∈ Σ(0 : d − (k + 1), 1 : d) for some d with
k < d ≤ n, then ζ ◦ ρ ∈ Σ(0 : d − (k + 1), 1 : n) and the face of T = [x0, . . . , xn]
with vertices {xj : j ∈ [[ζ]] \ [[ζ ◦ ρ]]} is a k-face of fζ that contains xζ(0), the first
vertex of fζ .

Proof If ζ ∈ Σ(0 : d, 0 : n) and ρ ∈ Σ(0 : d − (k + 1), 1 : d), then ρ(0) > 0 and
ζ(ρ(0)) > ζ(0) ≥ 0, hence ζ ◦ ρ ∈ Σ(0 : d− (k + 1), 1 : n).

We notice that #[[ζ]] = d + 1, #[[ζ ◦ ρ]] = d − k, and [[ζ ◦ ρ]] ⊂ [[ζ]], hence
#([[ζ]] \ [[ζ ◦ ρ]]) = k + 1 and the face of T = [x0, . . . , xn] with vertices {xj : j ∈
[[ζ]] \ [[ζ ◦ ρ]]} is a k-face of fζ = [xζ(0), . . . , xζ(d)].

Using again that ρ ∈ Σ(0 : d− (k+ 1), 1 : d) one has ζ(0) < ζ(1) ≤ ζ(ρ(j)) for
all j ∈ {0, . . . , d − (k + 1)}. Hence ζ(0) ̸∈ [[ζ ◦ ρ]] and the vertex xζ(0) belongs to
the set {xj : j ∈ [[ζ]] \ [[ζ ◦ ρ]]}. ⊓⊔

We identify moments Mζ,ρ,β(ω) with weights Wσ,α(ω) in small simplices that
are parallel to the k-face of fζ with vertices {xj : j ∈ [[ζ]] \ [[ζ ◦ ρ]]} and that are
not completely contained in the boundary of fζ .

The map σ ∈ Σ(0 : k, 0 : n) is such that fσ is the element of ∆k(T ) with
vertices [[ζ]] \ [[ζ ◦ ρ]].1

The multi-index α is constructed in the following way. Since [[ρ]] is a subset
of {0, . . . , d} with d − k elements and β ∈ I(d + 1, r − (d − k)), the multi-index

β̃ = β + e[[ρ]] belongs to I(d + 1, r). We set α = β̃Eζ , the extension of β̃ to a
multi-index in I(n+ 1, r) by the matrix Eζ .

Example 8 For n = 3 and k = 1, we explain which weights are associated with
some selected elements of the set of moments unisolvent in P−

5 Λ1(T ) (r = 4).

– Let us consider the moment
∫
[x2,x3]

ω λ2λ
3
3 , thus d = 1 = k and ρ = ∅.

Here we have σ = ζ and the multi-index α is the extension of β (in this case,

β̃ = β). More precisely α = (1, 3)

[
0 0 1 0
0 0 0 1

]
= (0, 0, 1, 3).

The associated weight is
∫
s
ω with s = τ(0,0,1,3)([x2, x3])= τα(fσ).

1 If ρ∗ ∈ Σ(0 : k, 0 : d) is the complementary map of ρ, namely, [[ρ]] ∪ [[ρ∗]] = {0, 1, . . . , d},
then σ = ζ ◦ ρ∗.
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– Let us consider the moment
∫
[x0,x2,x3]

ω ∧ λ2
0λ3(dλ2) , thus d = 2 > 1 = k.

Here we have [[ζ]] = {0, 2, 3}, [[ρ]] = {1}, and [[ζ ◦ ρ]] = {2}.
Then σ ∈ Σ(0 : 1, 0 : 3) with [[σ]] = {0, 2, 3}\{2} = {0, 3} so σ(0) = 0, σ(1) = 3.

Concerning the multi-index, first we compute β̃ = (2, 0, 1)+(0, 1, 0) = (2, 1, 1).

Then, we extend it as α = (2, 1, 1)

 1 0 0 0
0 0 1 0
0 0 0 1

 = (2, 0, 1, 1).

The associated weight is
∫
s
ω with s = τ(2,0,1,1)([x0, x3])= τα(fσ).

– Let us consider the moment
∫
[x0,x1,x2,x3]

ω ∧ λ0λ2 (dλ1 ∧ dλ2) ,

thus d = 3 > 1 = k.

Here we have [[ζ]] = {0, 1, 2, 3}, [[ρ]] = {1, 2} = [[ζ ◦ ρ]].
Then σ ∈ Σ(0 : 1, 0 : 3) with [[σ]] = {0, 1, 2, 3} \ {1, 2} = {0, 3}, so σ(0) =
0, σ(1) = 3.
Concerning the multi-index β = (1, 0, 1, 0) ∈ I(4, 4− (3− 1)) = I(4, 2).
Finally, α = β̃ = β + e{1,2} = (1, 0, 1, 0) + (0, 1, 1, 0) = (1, 1, 2, 0). Note that,

in this case, it is not necessary to extend β̃.
The associated weight is

∫
s
ω with s = τ(1,1,2,0)([x0, x3])= τα(fσ). ⋄

Example 9 We consider the three types of moments for P−
3 Λ1(T ) indicated by

different symbols in Figure 1, center. They can be geometrically localized in T by
resorting to the small edges s (shown in Figure 1, right and left) supporting the
corresponding weights. Indeed, we have as follows:∫

[1,2]
ω λ2

2 (⇐⇒
∫
s
ω with s = τ(0,0,2,0)([1, 2]) ) ⇐⇒ s = ⃝∫

[0,1,2]
ω ∧ λ1(dλ1) (⇐⇒

∫
s
ω with s = τ(0,2,0,0)([0, 2]) ) ⇐⇒ s = □1∫

[0,1,2]
ω ∧ λ1(dλ2) (⇐⇒

∫
s
ω with s = τ(0,1,1,0)([0, 1]) ) ⇐⇒ s = □2∫

[0,1,2,3]
ω ∧ (dλ1 ∧ dλ2) (⇐⇒

∫
s
ω with s = τ(0,1,1,0)([0, 3]) ) ⇐⇒ s = 31∫

[0,1,2,3]
ω ∧ (dλ1 ∧ dλ3) (⇐⇒

∫
s
ω with s = τ(0,1,0,1)([0, 2]) ) ⇐⇒ s = 32∫

[0,1,2,3]
ω ∧ (dλ2 ∧ dλ3) (⇐⇒

∫
s
ω with s = τ(0,0,1,1)([0, 1]) ) ⇐⇒ s = 33.

The moments (on the left) are in correspondence (⇐⇒) with the weights (in the
center) as it is established by the isomorphism described in the present section.
Weights have a precise geometrical localization in T , namely, they are supported
on precise small edges s (indicated in the center). As a result, moments can be
geometrically localized in T by associating with each of them the small simplex s
(on the right) supporting the weight they correspond with. ⋄

The set of moments defined in (10) and the set of weights defined in (6) are
subsets of (P−

r+1Λ
k(T ))∗, the dual space of P−

r+1Λ
k(T ). We are interested in the

maps Wk defined from this set of moments to the set of weights in the following
way:

Definition 5 For each k, d, n ∈ N, 0 ≤ k ≤ d ≤ n, ζ ∈ Σ(0 : d, 0 : n), ρ ∈ Σ(0 :
d− (k + 1), 1 : d) (ρ = ∅ if d = k) and β ∈ I(d+ 1, r − (d− k)), we set
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– if d = k
Wk(Mζ,∅,β) = Wζ,β Eζ

;

– if d > k
Wk(Mζ,ρ,β) = Wζ◦ρ∗,(β+e[[ρ]]) Eζ

,

where ζ ◦ ρ∗ ∈ Σ(0 : k, 0 : n) is such that [[ζ ◦ ρ∗]] = [[ζ]] \ [[ζ ◦ ρ]].

The following proposition shows that the image of this map is, in fact, the set
of weights considered in (6).

Proposition 1 If Wσ,α = Wk(Mζ,∅,β), with ζ ∈ Σ(0 : d, 0 : n) and β ∈ I(d +

1, r), or Wσ,α = Wk(Mζ,ρ,β) for a triplet

(ζ, ρ,β) ∈ Σ(0 : d, 0 : n)×Σ(0 : d− (k + 1), 1 : d)× I(d+ 1, r − (d− k))

with k < d ≤ n, then (σ,α) ∈ Σ(0 : k, 0 : n)× Iσ(n+ 1, r).

Proof Note that (σ,α) ∈ Σ(0 : k, 0 : n) × I(n + 1, r) by construction. We have
thus to prove that α ∈ Iσ(n+ 1, r), namely, that αi = 0 for all i < σ(0).

We recall that if ζ ∈ Σ(0 : d, 0 : n) and β̃ ∈ I(d + 1, r̃), then (β̃Eζ)i = 0 if

0 ≤ i < ζ(0), hence β̃Eζ ∈ Iζ(n+ 1, r̃).
If Wσ,α = Wk(Mζ,∅,β), then σ = ζ and α = βEζ ∈ Iζ(n+1, r) = Iσ(n+1, r).

If d > k and Wσ,α = Wk(Mζ,ρ,β), then α = (β + e[[ρ]]) Eζ ∈ Iζ(n + 1, r). We
notice that σ(0) = ζ(0) because [[σ]] = [[ζ]] \ [[ζ ◦ ρ]] and ζ(0) ̸∈ [[ζ ◦ ρ]] ⊂ {1, . . . , n}.
Hence Iζ(n+ 1, r) = Iσ(n+ 1, r). ⊓⊔

Similarly we can define a map Mk from the set of weights in (6) to the set of
moments in (10).

Definition 6 Given a couple (σ,α) ∈ Σ(0 : k, 0 : n)× Iσ(n+ 1, r) we denote

d = #([[α]] ∪ [[σ]])− 1.

– If [[α]] ⊂ [[σ]], then [[α]] ∪ [[σ]] = [[σ]] and d = k. We set ζ = σ, ρ = ∅ and
β = αE⊤

ζ (= αE⊤
σ ).

– If [[α]] ̸⊂ [[σ]], then [[α]] ∪ [[σ]] ⊋ [[σ]] and d > k. We set ζ ∈ Σ(0 : d, 0 : n) such
that [[ζ]] = [[α]] ∪ [[σ]], ρ ∈ Σ(0 : d− (k + 1), 1 : d) such that [[ζ ◦ ρ]] = [[α]] \ [[σ]],
and β = αE⊤

ζ − e[[ρ]].

Then, we set Mk(Wσ,α) := Mζ,ρ,β.

Proposition 2 For each (σ,α) ∈ Σ(0 : k, 0 : n) × Iσ(n + 1, r), the element
Mk(Wσ,α) belongs to the set of moments defined in (10).

Proof In fact, k ≤ d ≤ n, ζ ∈ Σ(0 : d, 0 : n) and ρ = ∅ if d = k or ρ ∈ Σ(0 :
d−(k+1), 1 : d), if d > k by construction. Furthermore, β is a multi-index with d+1
components. Since [[α]] ⊂ [[ζ]], then |αE⊤

ζ | = |α| and |β| = |α|−(d−k) = r−(d−k).
Hence β ∈ I(d+ 1, r − (d− k)). ⊓⊔

Remark 4 From a geometric point of view, we associate with the multi-index α ∈
Iσ(n + 1, r) a subsimplex fa(α) of T with vertices those in [[α]], namely, xi is a
vertex of fa(α) if and only if αi ̸= 0. Given fσ and fσ̃ two subsimplices of T ,
we denote by fσ ∨ fσ̃ the subsimplex of T with vertices those of fσ and fσ̃. The
moment associated with the weight Wσ,α is an integral on the face fζ = fσ∨fa(α).
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– If [[α]] ⊂ [[σ]], then fσ ∨ fa(α) = fσ and ρ = ∅.
– If [[α]] ̸⊂ [[σ]], then fσ ∨ fa(α) ̸= fσ and ρ involves all the vertices of fσ ∨ fa(α)

that are not in fσ.

Example 10 Let us consider T ⊂ R3, ω ∈ P−
4 Λ1(T ) (r = 3, k = 1) and fσ =

[x1, x3] (namely, σ ∈ Σ(0 : 1, 0 : 3), σ(0) = 1 and σ(1) = 3), we have

M1Wσ,(0,3,0,0)(ω) =
∫
[x1,x3]

ω λ3
1 (fa(α) = [x1])

M1Wσ,(0,2,0,1)(ω) =
∫
[x1,x3]

ω λ2
1λ3 (fa(α) = [x1, x3])

M1Wσ,(0,2,1,0)(ω) =
∫
[x1,x2,x3]

ω ∧ λ2
1(dλ2) (fa(α) = [x1, x2]).

For fσ = [x0, x3] (namely, σ ∈ Σ(0 : 1, 0 : 3), σ(0) = 0 and σ(1) = 3), we have

M1Wσ,(0,2,1,0)(ω) =
∫
[x0,x1,x2,x3]

ω ∧ λ1(dλ1 ∧ dλ2) (fa(α) = [x1, x2]).

For ω ∈ P−
4 Λ2(T ) (r = 3, k = 2) and fσ = [x0, x1, x3] (namely, σ ∈ Σ(0 : 2, 0 :

3), σ(0) = 0, σ(1) = 1, σ(2) = 3), we have

M2Wσ,(0,3,0,0)(ω) =
∫
[x0,x1,x3]

ω λ3
1 (fa(α) = [x1])

M2Wσ,(1,1,0,1)(ω) =
∫
[x0,x1,x3]

ω λ0λ1λ3 (fa(α) = [x0, x1, x3])

M2Wσ,(1,1,1,0)(ω) =
∫
[x0,x1,x2,x3]

ω ∧ λ0λ1(dλ2) (fa(α) = [x0, x1, x2])

M2Wσ,(0,0,3,0)(ω) =
∫
[x0,x1,x2,x3]

ω ∧ λ2
2(dλ2) (fa(α) = [x2]).

It is worth noting that, with this geometric rule we associate to a couple (σ,α) ∈
Σ(0 : k, 0 : n)× I(n+ 1, r), with α ̸∈ Iσ(n+ 1, r), a weight that is not in (6) and
a moment that is not in (10). For instance, if fσ = [x1, x3] and α = (1, 1, 0, 1),
we have fa(α) = [x0, x1, x3] and then the moment

∫
[x0,x1,x3]

ω ∧ λ1λ3(dλ0). If

α = (1, 1, 1, 0), then fa(α) = [x0, x1, x2] and the corresponding moment should be∫
[x0,x1,x2,x3]

ω ∧ λ1(dλ0 ∧ dλ2). ⋄

Proposition 3 For any (σ,α) ∈ Σ(0 : k, 0 : n)× Iσ(n+ 1, r) it holds that

WkMk(Wσ,α) = Wσ,α.

Proof If [[α]] ⊂ [[σ]], then d = k and, using (2), we have

WkMk(Wσ,α) = Wk(Mσ,∅,αE⊤
σ
) = Wσ,αE⊤

σ Eσ
= Wσ,α ,

where the last equality holds because [[α]] ⊂ [[σ]].
If [[α]] ̸⊂ [[σ]], then d > k and

WkMk(Wσ,α) = Wk(Mζ,ρ,β) ,

with ζ ∈ Σ(0 : d, 0 : n) such that [[ζ]] = [[α]]∪ [[σ]], ρ ∈ Σ(0 : d− (k+1), 1 : d) such
that [[ζ ◦ ρ]] = [[α]] \ [[σ]], and β = αE⊤

ζ − e[[ρ]]. Then Wk(Mζ,ρ,β) = Wσ̃,α̃, with

σ̃ ∈ Σ(0 : k, 0 : n) such that [[σ̃]] = [[ζ]] \ [[ζ ◦ ρ]] = ([[α]] ∪ [[σ]]) \ ([[α]] \ [[σ]]) = [[σ]]

and, using again (2), we obtain

α̃ = (β + e[[ρ]])Eζ = αE⊤
ζ Eζ = α.

Also in this case the last equality holds because [[α]] ⊂ [[ζ]] = [[α]] ∪ [[σ]]. ⊓⊔
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Remark 5 Since the cardinality of both sets Mk and W k defined in (10) and (6),
respectively, is equal to the dimension of P−

r+1Λ
k(T ), from Proposition 3, it follows

that MkWk is also equal to the identity.

5 The matrix of the gradient operator

Let us fix a set R0 of unisolvent degrees of freedom for P−
r+1Λ

0(T ), and a set R1

of unisolvent degrees of freedom for P−
r+1Λ

1(T ). We denote by r0(φ) the vector

collecting the degrees of freedom of the set R0 evaluated on the 0-form φ, and by
r1(ω) the vector collecting the degrees of freedom of the set R1 evaluated on the
1-form ω. Then, there exists a unique matrix GR (that depends on the sets R0

and R1) such that

r1(dφ) = GR r0(φ), ∀φ ∈ P−
r+1Λ

0(T ) .

When the two sets, R0, R1, of degrees of freedom contain the weights defined in
Definition 4 (namely whenRk = W k, for k = 0, 1), the matrixGR, denoted byGW ,
has a clear geometrical meaning. By Stokes’ theorem, GW is the transposed of the
all-nodes incidence matrix of the graph MG with nodes the points of the principal
lattice of T and arcs the oriented small edges corresponding to couples (σ,α) with
σ ∈ Σ(0 : 1, 0 : n) and α ∈ Iσ(n+1, r). This geometrical characterisation is at the
basis of the tree-cotree techniques used in electromagnetism, that are well known
in the low order case r = 0 and that have been recently extended to the high
order case r > 0 using weights (see [25]; see also [15] for an analogous result in the
framework of the isogeometric analysis).

Fig. 3 Schematic graph which gives an insight, for k = 0, 1, on the toolkit of mathematical
concepts sharpened by Alain Bossavit and that takes part in the foundation of computational
methods in applied mathematics. In the scheme, G is the gradient matrix of size Er+1×Nr+1,

with Er+1 = dimP−
r+1Λ

1(T ) and Nr+1 = dimP−
r+1Λ

0(T ), Rq is the set of arrays with q real

components, w0 (resp. m0) is the array of weights (resp. moments) for the 0-form φ, pk and
p̃k are FE reconstruction operators, and the cycling symbol stands for commutativity. If we
adopt the isomorphism Mk linking weights to moments, then GM = GW = G.
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We claim that the isomorphism defined in the previous section preserves the
matrix GR. This means that, if mk is the vector (rk) collecting the moments in
Mk for φ (k = 0) and dφ (k = 1), associated, through this isomorphism Mk, with
wk, the vector (rk) collecting the weights in W k for φ and dφ, i.e.,

M0W 0
j : φ 7−→ (M0W 0

j )(φ) = M0
j (φ) := (m0)j ∀ j = 1, ..., dimP−

r+1Λ
0(T ),

M1W 1
ℓ : dφ 7−→ (M1W 1

ℓ )(dφ) = M1
ℓ (dφ) := (m1)ℓ ∀ ℓ = 1, ..., dimP−

r+1Λ
1(T ),

and
W 0

j : φ 7−→ W 0
j (φ) := (w0)j ∀ j = 1, ..., dimP−

r+1Λ
0(T ),

W 1
ℓ : dφ 7−→ W 1

ℓ (dφ) := (w1)ℓ ∀ ℓ = 1, ..., dimP−
r+1Λ

1(T ),

then we have

m1 = GMm0, w1 = GWw0, with GM = GW .

The matrix GR does not change, namely GM = GW (see Figure 3 for a visualiza-
tion of this property), this means that the matrix (GR = GM ) which represents
the gradient operator for moments is the same as the one (GR = GW ) which rep-
resents the same operator for weights. This gives a geometrical meaning to the set
of moments Mk, at least for k = 0, 1, and allows to extend in a very natural way
the tree-cotree techniques to the high order case when the two sets of degrees of
freedom are the moments in Mk. To illustrate this fact we complete the analysis
previously done in [2], by involving the isomorphism, and other results that we
recall here below.

– The integration by parts (IBP) formula (see, e.g., [5]) reads∫
f

Trf du ∧ η =

∫
∂f

Tr∂f (Trfu ∧ η) + (−1)k−1

∫
f

Trfu ∧ dη , u ∈ Λk(T ).

The boundary term results from the use of Stokes’ theorem, stating that∫
C
du =

∫
∂C

u , where u is a k-form and C a (k + 1)-chain. In [2] we ex-
plained, for any k ∈ {0, . . . , n}, the information an IBP formula can provide.
We have shown that an IBP formula allows to identify the unknowns for fields
in polynomial spaces. Moreover, it gives the way to reconstruct differential op-
erators and potentials, once the unknowns (for fields and potentials) have been
fixed. Hence, for k = 0, 1, the IBP formula reconstructs the gradient operator.

– The affine function τα associated with each multi-index α, as described in
Section 3.1, is indeed a chain map (see details in [8]), namely, it commutes
with the boundary operator, that is τα(∂fσ) = ∂(τα(fσ)), with fσ ∈ ∆k(T ),
for any k > 0.

– The trace operator commutes with the exterior derivative operator (see an
application of this property in [5] to prove Lemma 4.24).

– Recalling that for each ζ ∈ Σ(0 : d, 0 : n) and β ∈ I(d + 1, s) we denote

λβ
fζ

=
∏d

i=0 λ
βi

T,ζ(i) ∈ Λ0(T ), one has

dλβ
fζ

=
d∑

j=0

βj

(
d∏

i=0

λ
βi−δi,j
T,ζ(i)

)
dλj =

d∑
j=0

βjλ
β−ej

fζ
dλj ∈ Λ1(T ).



18 A. Alonso Rodŕıguez, J. Camaño, E. De Los Santos, F. Rapetti

5.1 Weights: the matrix GW

If φ ∈ Λ0(T ), then dφ ∈ Λ1(T ). Its weights in P−
r+1Λ

1(T ) are

Wσ,α(dφ) =
∫
τα(fσ)

dφ

=
∫
∂(τα(fσ))

φ

=
∫
τα(∂fσ)

φ

=
∫
τα(xσ(1))

φ−
∫
τα(xσ(0))

φ,

for all σ ∈ Σ(0 : 1, 0 : n) and α ∈ Iσ(n+ 1, r). Note that the weights of a 0-form
in P−

r+1Λ
0(T ) are the values at the points of the principal lattice, so

Wσ,α(dφ) = φ(τα(xσ(1)))− φ(τα(xσ(0))).

Let us denote σ1 ∈ Σ(0 : 0, 0 : n) such that σ1(0) = σ(1), and σ0 ∈ Σ(0 : 0, 0 :
n) such that σ0(0) = σ(0). We recall that ⌊α⌋ denotes the minimal element of [[α]].

Since α ∈ Iσ(n + 1, r), then σ(0) ≤ ⌊α⌋ and α ∈ Iσ0(n + 1, r). This means
that φ(τα(xσ(0))) = Wσ0,α(φ), being Wσ0,α an element of W 0.

On the other hand, if ⌊α⌋ < σ(1), then α ̸∈ Iσ1(n+1, r), hence Wσ1,α defined
as Wσ1,α(φ) = φ(τα(xσ(1))) is not an element of W 0. However, being τα(xσ(1)) a
point in the principal lattice of T of order r + 1, there exists a couple (σ∗,β) ∈
Σ(0 : 0, 0 : n)×Iσ∗(n+1, r) such that τα(xσ(1)) = τβ(xσ∗(0)) (see Fig. 2). In fact,
τα(xσ(1)) = τβ(x⌊α⌋) with β = α+ eσ(1) − e⌊α⌋ since

λi(τα(xσ(1))) =
λi(xσ(1)) + αi

r + 1
=

{
1+αi

r+1 if i = σ(1)
αi

r+1 otherwise

and

λi(τβ(x⌊α⌋)) =
λi(x⌊α⌋) + βi

r + 1
=


1+αi−1

r+1 if i = ⌊α⌋
αi+1
r+1 if i = σ(1)
αi

r+1 otherwise.

Moreover, if σ∗ ∈ Σ(0 : 0, 0 : n) is such that σ∗(0) = ⌊α⌋, then β ∈ Iσ∗(n+ 1, r)
since ⌊β⌋ ≥ ⌊α⌋ if ⌊α⌋ < σ(1). Hence, Wσ∗,β ∈ W 0 and we can write

Wσ,α(dφ) = φ(τα+eσ(1)−e⌊α⌋(x⌊α⌋))− φ(τα(xσ(0)))
= Wσ∗,β(φ)−Wσ0,α(φ).

(11)

Example 11 For the sake of simplicity, in the following, in order to refer to the
weight of a particular σ ∈ Σ(0 : k, 0 : n) we will write Wσ,α instead of Wfσ,α.

In P−
4 Λk(T ) we have

W[x0,x3],(0,2,1,0)(dφ) = φ(τ(0,2,1,0)(x3))− φ(τ(0,2,1,0)(x0)).

The multi-index (0, 2, 1, 0) does not belong to I[x3](4, 3). However,

τ(0,2,1,0)(x3) = τ(0,1,1,1)(x1),

and the multi-index (0, 1, 1, 1) belongs to I[x1](4, 3). So we have

W[x0,x3],(0,2,1,0)(dφ) = φ(τ(0,1,1,1)(x1))− φ(τ(0,2,1,0)(x0)),

respectively. ⋄
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Let us consider the (oriented) graphMG with nodes the small vertices (namely,
the points of the principal lattice) and arcs the (oriented) small edges correspond-
ing to couples (σ,α) with σ ∈ Σ(0 : 1, 0 : n) and α ∈ Iσ(n + 1, r). Relation (11)
states that the all-nodes incidence matrix of MG is G⊤

W , with GW the matrix
representing the gradient operator at the discrete level using the weights W k for
k = 0, 1 (thus extending to r > 0 the presentation done in [6], Chap.5, for r = 0).
For the construction of a global spanning tree of this graph for any r ≥ 0, see [25].
For the tree-cotree technique intended as a way to impose uniqueness for a vector
potential problem formulation, see [23].

5.2 Moments: the matrix GM

We aim at associating an oriented graph, M̃G, with the gradient operator, when
working with moments.

We note that when ω ∈ Λ1(T ) the moments defined in (9), Mζ,ρ,β(ω), have
ρ ∈ Σ(0 : d − 2, 1 : d). So there exists a unique element of {1, . . . , d} that is not
in [[ρ]]. Let us set jρ := {1, . . . , d} \ [[ρ]]. Furthermore, if β ∈ I(d + 1, s) we set
β! := β0! · · · βd!. We use these notations in the following proposition:

Proposition 4 For k = 0, 1, let us consider the following moments for P−
r+1Λ

k(T ):

– for d = k

M̃ζ,∅,β(ω) :=
1

β!
Mζ,∅,β(ω)

for each ζ ∈ Σ(0 : d, 0 : n) and β ∈ I(d+ 1, r);
– for d > k

M̃ζ,ρ,β(ω) :=


(−1)jρ−1

β! Mζ,ρ,β(ω) if k = 1

1
β!Mζ,ρ,β(ω) if k = 0

for each ζ ∈ Σ(0 : d, 0 : n), ρ ∈ Σ(0 : d−(k+1), 1 : d), β ∈ I(d+1, r−(d−k)).

Then, if φ ∈ Λ0(T ), each moment of dφ ∈ Λ1(T ) is the difference of two moments
of φ.

Proof If φ ∈ Λ0(T ), then dφ ∈ Λ1(T ) and its moments for P−
r+1Λ

1(T ) are as
follows.

• Case d = k = 1. For each ζ ∈ Σ(0 : 1, 0 : n) and β ∈ I(2, r),

Mζ,∅,β(dφ) =
∫
fζ

Trfζ
dφ ∧ λβ

fζ

=
∫
fζ

d(Trfζ
φ) ∧ λβ

fζ

= −
∫
fζ

Trfζ
φ ∧ dλβ

fζ
+
∫
∂fζ

Tr∂fζ
φ ∧ Tr∂fζ

λβ
fζ

.

Since fζ = [xζ(0), xζ(1)], then ∂fζ = [xζ(1)]− [xζ(0)]

Mζ,∅,β(dφ) = −
∫
fζ

Trfζ
φ ∧

(
β0λ

β−e0

fζ
dλζ(0) + β1λ

β−e1

fζ
dλζ(1)

)
+(φλβ

fζ
)(xζ(1))− (φλβ

fζ
)(xζ(0)) .
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In [xζ(0), xζ(1)], we have dλζ(0) = −dλζ(1), so

Mζ,∅,β(dφ) =

∫
fζ

Trfζ
φ ∧ β0λ

β−e0

fζ
dλζ(1) −

∫
fζ

Trfζ
φ ∧ β1λ

β−e1

fζ
dλζ(1)

+(φλβ
fζ
)(xζ(1))− (φλβ

fζ
)(xζ(0)).

Multiplying Mζ,∅,β(dφ) by
1
β! we obtain

1

β!

∫
fζ

Trfζ
dφ ∧ λβ

fζ
=

β0

β!

∫
fζ

Trfζ
φ ∧ λβ−e0

fζ
dλζ(1) −

β1

β!

∫
fζ

Trfζ
φ ∧ λβ−e1

fζ
dλζ(1)

+
1

β!
(φλβ

fζ
)(xζ(1))−

1

β!
(φλβ

fζ
)(xζ(0)).

(12)
We notice that

βj

β!
=

{
1

(β−ej)!
if βj ̸= 0

0 if βj = 0 .

Moreover, only two of these four terms are different from zero because if β0 ̸= 0,
then (φλβ

fζ
)(xζ(1)) = 0, whereas if β1 ̸= 0, then (φλβ

fζ
)(xζ(0)) = 0.

In conclusion:

- if β0 ̸= 0 and β1 ̸= 0, then

M̃ζ,∅,β(dφ) =
1

(β − e0)!
M̂ζ,β−e0

(φ)− 1

(β − e1)!
M̂ζ,β−e1

(φ);

- if β0 = 0, then β1 = r ̸= 0 and

M̃ζ,∅,β(dφ) = − 1
(β−e1)!

M̂ζ,β−e1
(φ) + 1

β!M̂ζ1,β(φ)

= − 1
(β−e1)!

M̂ζ,β−e1
(φ) + 1

r!φ(xζ(1)),

being ζ1 ∈ Σ(0 : 0, 0 : n) such that ζ1(0) = ζ(1);
- if β1 = 0, then β0 = r ̸= 0 and

M̃ζ,∅,β(dφ) =
1

(β−e0)!
M̂ζ,β−e0

(φ)− 1
β!M̂ζ0,β(φ)

= 1
(β−e0)!

M̂ζ,β−e0
(φ)− 1

r!φ(xζ(0))

being ζ0 ∈ Σ(0 : 0, 0 : n) such that ζ0(0) = ζ(0).

• Case d > k = 1. For each ζ ∈ Σ(0 : d, 0 : n), ρ ∈ Σ(0 : d − 2, 1 : d) and
β ∈ I(d+ 1, r − (d− 1)),

Mζ,ρ,β(dφ) =

∫
fζ

Trfζ
dφ ∧ λβ

fζ
(dλfζ

)ρ =

∫
fζ

d(Trfζ
φ) ∧ λβ

fζ
(dλfζ

)ρ

= −
∫
fζ

Trfζ
φ ∧ d(λβ

fζ
(dλfζ

)ρ) +

∫
∂fζ

Tr∂fζ
φ ∧ Tr∂fζ

(λβ
fζ
(dλfζ

)ρ),

= −
d∑

i=0

βi

∫
fζ

Trfζ
φ ∧ (λβ−ei

fζ
dλζ(i)) ∧ (dλfζ

)ρ

+
d∑

i=0

(−1)i
∫
[xζ(0),...,x̂ζ(i),...,xζ(d)]

Tr∂fζ
φ ∧ Tr∂fζ

(λβ
fζ
(dλfζ

)ρ) .
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Taking into account the fact that if i ∈ [[ρ]], then Tr[xζ(0),...,x̂ζ(i),...,xζ(d)]
(dλfζ

)ρ = 0

and dλζ(i) ∧ (dλfζ
)ρ = 0, both sums reduce to i ∈ {0, . . . , d} \ [[ρ]]. Recalling that

k = 1, ρ ∈ Σ(0 : d− 2, 1 : d) so both sums reduce, in fact, to two terms i = 0 and
i = {1, . . . , d} \ [[ρ]] =: jρ. So we have

Mζ,ρ,β(dφ) = −β0

∫
fζ

Trfζ
φ ∧ (λβ−e0

fζ
dλζ(0)) ∧ (dλfζ

)ρ

−βjρ

∫
fζ

Trfζ
φ ∧ (λ

β−ejρ

fζ
dλζ(jρ)) ∧ (dλfζ

)ρ

+

∫
[xζ(1),...,xζ(d)]

Tr∂fζ
φ ∧ Tr∂fζ

(λβ
fζ
(dλfζ

)ρ)

+(−1)jρ
∫
[xζ(0),...,x̂ζ(jρ),...,xζ(d)]

Tr∂fζ
φ ∧ Tr∂fζ

(λβ
fζ
(dλfζ

)ρ).

Taking into account that, in fζ , dλζ(0) = −
∑d

i=1 dλζ(i) and by recalling that

(dλfζ
)ρ = dλζ(1) ∧ · · · ∧ d̂λζ(jρ) ∧ · · · ∧ dλζ(d)

it follows that dλζ(0) ∧ (dλfζ
)ρ = −dλζ(jρ) ∧ (dλfζ

)ρ, so

Mζ,ρ,β(dφ) = +β0

∫
fζ

Trfζ
φ ∧ (λβ−e0

fζ
dλζ(jρ)) ∧ (dλfζ

)ρ

−βjρ

∫
fζ

Trfζ
φ ∧ (λ

β−ejρ

fζ
dλζ(jρ)) ∧ (dλfζ

)ρ

+

∫
[xζ(1),...,xζ(d)]

Tr∂fζ
φ ∧ Tr∂fζ

(λβ
fζ
(dλfζ

)ρ)

+(−1)jρ
∫
[xζ(0),...,x̂ζ(jρ),...,xζ(d)]

Tr∂fζ
φ ∧ Tr∂fζ

(λβ
fζ
(dλfζ

)ρ).

Moreover

dλζ(jρ) ∧ (dλfζ
)ρ = dλζ(jρ) ∧ (dλζ(1) ∧ · · · ∧ d̂λζ(jρ) ∧ · · · ∧ dλζ(d))

= (−1)jρ−1dλζ(1) ∧ · · · ∧ dλζ(d).

Then,

Mζ,ρ,β(dφ) = +(−1)jρ−1β0

∫
fζ

Trfζ
φ ∧ (λβ−e0

fζ
dλζ(1) ∧ · · · ∧ dλζ(d))

+(−1)jρβjρ

∫
fζ

Trfζ
φ ∧ (λ

β−ejρ

fζ
dλζ(1) ∧ · · · ∧ dλζ(d))

+

∫
[xζ(1),...,xζ(d)]

Tr∂fζ
φ ∧ Tr∂fζ

(λβ
fζ
(dλfζ

)ρ)

+(−1)jρ
∫
[xζ(0),...,x̂ζ(jρ),...,xζ(d)]

Tr∂fζ
φ ∧ Tr∂fζ

(λβ
fζ
(dλfζ

)ρ) .
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If jρ = 1, then (dλfζ
)ρ = dλζ(2) ∧ · · · ∧ dλζ(d). If jρ > 1, we can use that in

[xζ(1), . . . , xζ(d)] it holds dλζ(1) = −
∑d

j=2 dλζ(j) to write

(dλfζ
)ρ = dλζ(1) ∧ · · · ∧ d̂λζ(jρ) ∧ · · · ∧ dλζ(d)

= −dλζ(jρ) ∧ dλζ(2) ∧ · · · ∧ d̂λζ(jρ) ∧ · · · ∧ dλζ(d)

= −(−1)jρdλζ(2) ∧ · · · ∧ dλζ(d)

= (−1)jρ−1dλζ(2) ∧ · · · ∧ dλζ(d).

So we have

Mζ,ρ,β(dφ) = (−1)jρ−1β0

∫
fζ

Trfζ
φ ∧ (λβ−e0

fζ
dλζ(1) ∧ · · · ∧ dλζ(d))

+(−1)jρβjρ

∫
fζ

Trfζ
φ ∧ (λ

β−ejρ

fζ
dλζ(1) ∧ · · · ∧ dλζ(d))

+(−1)jρ−1

∫
[xζ(1),...,xζ(d)]

Tr∂fζ
φ ∧ Tr∂fζ

(λβ
fζ
(dλζ(2) ∧ · · · ∧ dλζ(d)))

+(−1)jρ
∫
[xζ(0),...,x̂ζ(jρ),...,xζ(d)]

Tr∂fζ
φ∧Tr∂fζ

(λβ
fζ
(dλζ(1)∧· · ·∧d̂λζ(jρ)∧· · ·∧dλζ(d))).

Multiplying Mζ,ρ,β(dφ) by
(−1)jρ−1

β! we have

(−1)jρ−1

β!

∫
fζ

Trfζ
dφ ∧ λβ

fζ
(dλfζ

)ρ =
β0

β!

∫
fζ

Trfζ
φ ∧ (λβ−e0

fζ
dλζ(1) ∧ · · · ∧ dλζ(d))

−
βjρ

β!

∫
fζ

Trfζ
φ ∧ (λ

β−ejρ

fζ
dλζ(1) ∧ · · · ∧ dλζ(d))

+
1

β!

∫
[xζ(1),...,xζ(d)]

Tr∂fζ
φ ∧ Tr∂fζ

(λβ
fζ
(dλζ(2) ∧ · · · ∧ dλζ(d)))

− 1

β!

∫
[xζ(0),...,x̂ζ(jρ),...,xζ(d)]

Tr∂fζ
φ∧Tr∂fζ

(λβ
fζ
(dλζ(1)∧· · ·∧ d̂λζ(jρ)∧· · ·∧dλζ(d))).

Finally we notice that if β0 ̸= 0, then Tr[xζ(1),...,xζ(d)]λ
β
fζ

= 0 while if βjρ ̸= 0,

then Tr[xζ(0),...,x̂ζ(jρ),...,xζ(d)]
λβ
fζ

= 0. This means that only two of these four terms

are different from zero.
In conclusion:

- if β0 ̸= 0 and βjρ ̸= 0, then

M̃ζ,ρ,β(dφ) =
1

(β − e0)!
M̂ζ,β−e0

(φ)− 1

(β − ejρ)!
M̂ζ,β−ejρ

(φ);

- if β0 = 0 and βjρ ̸= 0, then

M̃ζ,ρ,β(dφ) = − 1

(β − ejρ)!
M̂ζ,β−ejρ

(φ) +
1

β!
M̂ζ0,β(φ),

being ζ0 ∈ Σ(0 : d− 1, 0 : n) such that ζ0(i) = ζ(i+ 1);
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- if βjρ = 0 and β0 ̸= 0, then

M̃ζ,ρ,β(dφ) =
1

(β − e0)!
M̂ζ,β−e0

(φ)− 1

β!
M̂ζjρ ,β(φ),

being ζjρ ∈ Σ(0 : d − 1, 0 : n) such that ζjρ(i) = ζ(i) if i < jρ and ζjρ(i) =
ζ(i+ 1) if i ≥ jρ ;

- if β0 = βjρ = 0, then

M̃ζ,ρ,β(dφ) =
1

β!
M̂ζ0,β(φ)−

1

β!
M̂ζjρ ,β(φ).

⊓⊔

Proposition 4 allows to associate an oriented graph, M̃G, with the gradient
operator as follows: the set of nodes is the set of moments

M̃0 := {M̃ζ,ρ,β ∈ (P−
r+1Λ

0(T ))∗ : ζ ∈ Σ(0 : d, 0 : n), ρ ∈ Σ(0 : d− 1, 1 : d),

β ∈ I(d+ 1, r − d), with 0 ≤ d ≤ n}

and the set of arcs is the set of moments

M̃1 := {M̃ζ,ρ,β ∈ (P−
r+1Λ

1(T ))∗ : ζ ∈ Σ(0 : d, 0 : n), ρ ∈ Σ(0 : d− 2, 1 : d),

β ∈ I(d+ 1, r − (d− 1)) with 1 ≤ d ≤ n}.

The arc corresponding with the moment M̃ζ,ρ,β ∈ M̃1 goes from the node M̃ζI ,ρI ,βI

to the node M̃ζF ,ρF ,βF
, both in M̃0, if, for any φ ∈ Λ0(T ), we have

M̃ζ,ρ,β(dφ) = M̃ζF ,ρF ,βF
(φ)− M̃ζI ,ρI ,βI

(φ).

As a consequence, also in this case, the all-nodes incidence matrix of the graph
M̃G is G⊤

M with GM the matrix representing the gradient operator at the discrete
level when using these moments.

For k = 0, 1 let us consider the map g from the sets of moments M̃k to the set of
moments Mk defined as g(M̃ζ,ρ,β) := Mζ,ρ,β for d ∈ {k, . . . , n}, ζ ∈ Σ(0 : d, 0 : n),
ρ = ∅ if d = k or ρ ∈ Σ(0 : d− (k+1), 1 : d) if d ̸= k and β ∈ I(d+1, r− (d− k)).

Then W̃k = Wk ◦ g is an isomorphism from the sets of moments M̃k to the set of
weights W k and

W̃k(M̃ζ,ρ,β) := Wk( g(M̃ζ,ρ,β) ) = Wk(Mζ,ρ,β) ,

for each M̃ζ,ρ,β ∈ M̃k. The isomorphism W̃k is illustrated here below:

Mk W k

M̃k

Wk

g W̃k
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Proposition 5 The two graphs MG and M̃G coincide, that is, by considering
these moments, the map W̃k preserves the matrix of the gradient operator in the
following sense: for any φ ∈ Λ0(T ), if

M̃ζ,ρ,β(dφ) = M̃ζF ,ρF ,βF
(φ)− M̃ζI ,ρI ,βI

(φ)

then
(W̃1M̃ζ,ρ,β)(dφ) = (W̃0M̃ζF ,ρF ,βF

)(φ)− (W̃0M̃ζI ,ρI ,βI
)(φ).

The proof of Proposition 5 is given in the Appendix. Here, we propose to
illustrate the claim of Proposition 5 by presenting three rather general examples
for n = 3 and r = 3. In the three cases, we proceed as follows:

– we start from M̃ζ,ρ,β(dφ) and, by IBP, we obtain the moments M̃ζF ,ρF ,βF
and

M̃ζI ,ρI ,βI
such that

M̃ζ,ρ,β(dφ) = M̃ζF ,ρF ,βF
(φ)− M̃ζI ,ρI ,βI

(φ);

– we compute (W̃1M̃ζ,ρ,β)(dφ) and by Stokes’ theorem we write it as the differ-
ence of two weights

(W̃1M̃ζ,ρ,β)(dφ) = WσF ,αF (φ)−WσI ,αI (φ);

– finally we check that, for L = I, F , we have

W̃0M̃ζL,ρL,βL
(φ) = WσL,αL(φ).

.
Example 12 (d = 1) Let us consider M̃ζ,∅,β(dφ) with ζ ∈ Σ(0 : 1, 0 : 3), ζ(0) = 1,
ζ(1) = 3 and β = (1, 2).

– M̃ζ,∅,β(dφ) =
1

1! 2!Mζ,∅,β(dφ) =
1
2

∫
[x1,x3]

dφ (λ1λ
2
3) by IBP, and using that on

the edge [x1, x3] one has dλ1 = −dλ3, we get

1
2

∫
[x1,x3]

dφ (λ1λ2
3) = 1

2

(
−

∫
[x1,x3]

φ d(λ1λ2
3) + (φλ1λ2

3)(x3)− (φλ1λ2
3)(x1)

)
= − 1

2

∫
[x1,x3]

φ d(λ1λ2
3)

= − 1
2

∫
[x1,x3]

φλ2
3(dλ1)−

∫
[x1,x3]

φλ1λ3(dλ3)

= 1
2

∫
[x1,x3]

φλ2
3(dλ3)−

∫
[x1,x3]

φλ1λ3(dλ3)

= 1
2
Mζ,ρ,(0,2)(φ)−Mζ,ρ,(1,1)(φ)

= M̃ζ,ρ,(0,2)(φ)− M̃ζ,ρ,(1,1)(φ),

being ρ the unique element of Σ(0 : 0, 1 : 1).
– The corresponding weight is

(W̃1M̃ζ,∅,β)(dφ) = (W1Mζ,∅,β)(dφ) =

∫
τ(0,1,0,2)([x1,x3])

dφ.

Since the boundary of τ(0,1,0,2)([x1, x3]) is

∂τ(0,1,0,2)([x1, x3]) = τ(0,1,0,2)(x3)− τ(0,1,0,2)(x1),

by Stokes’ theorem we have∫
τ(0,1,0,2)([x1,x3])

dφ = φ(τ(0,1,0,2)(x3))− φ(τ(0,1,0,2)(x1))

= φ(τ(0,0,0,3)(x1))− φ(τ(0,1,0,2)(x1))
= W[x1],(0,0,0,3)(φ)−W[x1](0,1,0,2)(φ).
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– Finally we observe that

W̃0M̃ζ,ρ,(0,2)(φ) = W0

(∫
[x1,x3]

φλ2
3(dλ3)

)
= W[x1],(0,0,0,3)(φ)

and

W̃0M̃ζ,ρ,(1,1)(φ) = W0

(∫
[x1,x3]

φλ1λ3(dλ3)

)
= W[x1],(0,1,0,2)(φ),

respectively. ⋄

Example 13 (d = 2) Let us consider the moment M̃ζ,ρ,β(dφ) with ζ ∈ Σ(0 : 2, 0 :
3), ζ(0) = 0, ζ(1) = 1, ζ(2) = 3, ρ ∈ Σ(0 : 0, 1 : 2), ρ(0) = 2 and β = (0, 1, 1).

– In this example jρ = 1 and M̃ζ,ρ,β(dφ) = (−1)1−1

1! 1!

∫
[x0,x1,x3]

dφ ∧ λ1λ3(dλ3).

By IBP, we obtain∫
[x0,x1,x3]

dφ ∧λ1λ3(dλ3)

= −
∫
[x0,x1,x3]

φ d(λ1λ3dλ3) +
∫
∂[x0,x1,x3]

φ ∧ λ1λ3(dλ3)

= −
∫
[x0,x1,x3]

φλ3(dλ1 ∧ dλ3) +
∫
[x1,x3]

φ ∧ λ1λ3(dλ3)

since d(λ1λ3dλ3) = λ3dλ1 ∧ dλ3, λ1 = 0 in [x0, x3] and λ3 = 0 in [x0, x1].
– The corresponding weight is

(W̃1M̃ζ,ρ,β)(dφ) =

∫
τ(0,1,0,2)([x0,x1])

dφ.

Since the boundary of τ(0,1,0,2)([x0, x1]) is

∂τ(0,1,0,2)([x0, x1]) = τ(0,1,0,2)(x1)− τ(0,1,0,2)(x0)

by Stokes’ theorem we have∫
τ(0,1,0,2)([x0,x1])

dφ = φ(τ(0,1,0,2)(x1))− φ(τ(0,1,0,2)(x0)).

– Finally we observe that

W0

(∫
[x0,x1,x3]

φλ3(dλ1 ∧ dλ3)

)
= W0(M̂ζ,(0,0,1)(φ)) =φ(τ(0,1,0,2)(x0))

and, setting ξ ∈ Σ(0 : 1, 0 : 3), ξ(0) = 1, ξ(1) = 3

W0

(∫
[x1,x3]

φ ∧ λ1λ3(dλ3)

)
= W0(M̂ξ,(1,1)(φ)) =φ(τ(0,1,0,2)(x1)),

respectively. (Note that, since k = 0, the moments do not depend on ρ.) ⋄

Example 14 (d = 3) Let us consider the moment M̃ζ,ρ,β(dφ) with ζ ∈ Σ(0 : 3, 0 :
3), ρ ∈ Σ(0 : 1, 1 : 3), ρ(0) = 1, ρ(1) = 3 and β = (0, 0, 0, 1).
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– In this example jρ = 2 and

M̃ζ,ρ,β(dφ) =
(−1)2−1

1!

∫
[x0,x1,x2,x3]

dφ ∧ λ3(dλ1 ∧ dλ3).

By IBP, we have

−
∫
[x0,x1,x2,x3]

dφ ∧ λ3(dλ1 ∧ dλ3)

=
∫
[x0,x1,x2,x3]

φ ∧ d(λ3dλ1 ∧ dλ3)−
∫
∂[x0,x1,x2,x3]

φ ∧ λ3(dλ1 ∧ dλ3)

= −
∫
[x1,x2,x3]

φ ∧ λ3(dλ1 ∧ dλ3)−
∫
[x0,x1,x3]

φ ∧ λ3(dλ1 ∧ dλ3)

=
∫
[x1,x2,x3]

φ ∧ λ3(dλ2 ∧ dλ3)−
∫
[x0,x1,x3]

φ ∧ λ3(dλ1 ∧ dλ3)

since d(λ3dλ1 ∧ dλ3) = 0, λ3dλ1 ∧ dλ3 = 0 on [x0, x2, x3] and [x0, x1, x2], and
dλ1 = −dλ2 − dλ3 on [x1, x2, x3].

– The corresponding weight is

(W̃1M̃ζ,ρ,β)(dφ) =

∫
τ(0,1,0,2)([x0,x2])

dφ.

Since the boundary of τ(0,1,0,2)([x0, x2]) is

∂τ(0,1,0,2)([x0, x2]) = τ(0,1,0,2)(x2)− τ(0,1,0,2)(x0)

by Stokes’ theorem we have

∫
τ(0,1,0,2)([x0,x2])

dφ = φ(τ(0,1,0,2)(x2))− φ(τ(0,1,0,2)(x0))

= φ(τ(0,0,1,2)(x1))− φ(τ(0,1,0,2)(x0)),

where we have used that τ(0,1,0,2)(x2) = τ(0,0,1,2)(x1). We prefer this second
form because α = (0, 1, 0, 2) ̸∈ I[x2](4, 3) since ⌊α⌋ = 1 < 2 while α′ =
(0, 0, 1, 2) ∈ I[x1](4, 3) since ⌊α′⌋ = 2 ≥ 1.

– Finally we observe that

W0

(∫
[x1,x2,x3]

φ ∧ λ3(dλ2 ∧ dλ3)

)
= φ(τ(0,0,1,2)(x1))

and

W0

(∫
[x0,x1,x3]

φ ∧ λ3(dλ1 ∧ dλ3)

)
= φ(τ(0,1,0,2)(x0)),

respectively. ⋄
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6 Conclusions

The spaces P−
1 Λk(T ) present a high geometrical feature, having one degree of

freedom per k-simplex in T , and thus being isomorphic to the space of simplicial
k-cochains. These spaces were indeed introduced in 1957 by Whitney in his book
[26]. For r = 1, the connection of Whitney’s spaces with mixed finite elements,
appeared in the late 70s, was developed by Bossavit in the 80s. With the time
passing, in [22] we were able to generalize this connection to r > 1 and to introduce
new DoFs for P−

r+1Λ
k(T ), the weights on the small k-simplices of T .

In this contribution, we have made a step forward, namely we have constructed
isomorphisms Wk, for any value of k ∈ {0, . . . , n}, between moments and weights
for fields in the discrete spaces P−

r+1Λ
k(T ), for r ≥ 0. Furthermore, we have shown

that, with a suitable definition of moments, the newly introduced isomorphisms
W̃k preserve, for example, the gradient matrix G (i.e., the matrix G has fixed
entries Gi,j , whatever type of DoFs, weights or moments, are used in P−

r+1Λ
k(T )).

We can thus transfer, for any r ≥ 0, all achievements on tree-cotree construction for
weights in, e.g, [6,23,25] (see also references therein) to the case of moments (see,
e.g., [19,18]). The construction of the isomorphism between weights and moments
is compatible (see Figure 3, for k = 0, 1) with the powerful and general toolkit
sharpened by Alain Bossavit all along his career.
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Appendix

We report here the proof of Proposition 5.

Proof Case d = k = 1, namely, ζ ∈ Σ(0 : 1, 0 : n), ρ = ∅ and β ∈ I(2, r).
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From Proposition 4,

M̃ζ,∅,β(dφ) =
β0

β!

∫
fζ

Trfζ
φ ∧ λβ−e0

fζ
dλζ(1)

−β1

β!

∫
fζ

Trfζ
φ ∧ λβ−e1

fζ
dλζ(1) +

1

β!
(φλβ

fζ
)(xζ(1))−

1

β!
(φλβ

fζ
)(xζ(0)).

From Definition 5

- if β0 ̸= 0

W̃0

(
1

(β − e0)!
M̂ζ ,β−e0

)
= Wζ0,(β−e0+e1)Eζ

;

- if β1 ̸= 0

W̃0

(
1

(β − e1)!
M̂ζ ,β−e1

)
= Wζ0,βEζ

;

- if β0 = 0, then β1 = r ̸= 0 and

W̃0

(
1

β!
M̂ζ1,β

)
= Wζ1,rEζ1

;

- if β1 = 0, then β0 = r ̸= 0 and

W̃0

(
1

β!
M̂ζ0,β

)
= Wζ0,rEζ0

.

From Definition 5

(W̃1M̃ζ,∅,β)(dφ) = Wζ,βEζ
(dφ)

From (11)

Wζ,βEζ
(dφ) = Wζ∗,β∗(φ)−Wζ0,βEζ

(φ)

being ζ∗ ∈ Σ(0 : 0, 0 : n) with ζ∗(0) = ⌊βEζ⌋ and β∗ = βEζ + eζ(1) − e⌊βEζ⌋.
In this case

⌊βEζ⌋ =
{
ζ(0) if β0 ̸= 0
ζ(1) if β0 = 0.

Hence

Wζ,βEζ
(dφ) =

{
Wζ0,(β−e0+e1)Eζ

(φ)−Wζ0,βEζ
(φ) if β0 ̸= 0

Wζ1,βEζ
(φ)−Wζ0,βEζ

(φ) if β0 = 0,

since βEζ − eζ(0) + eζ(1) = (β − e0 + e1)Eζ . Notice also that if β0 = 0, then
βEζ = rEζ1

. On the other hand if β1 = 0, then β0 = r and βEζ = rEζ0
.

In conclusion:

- if β0 ̸= 0 and β1 ̸= 0

Wζ,βEζ
(dφ) = Wζ0,(β−e0+e1)Eζ

(φ)−Wζ0,βEζ
(φ);

- if β0 = 0, then β1 = r ̸= 0 and

Wζ,βEζ
(dφ) = Wζ1,rEζ1

(φ)−Wζ0,βEζ
(φ)
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- if β1 = 0, then β0 = r ̸= 0 and

Wζ,βEζ
(dφ) = Wζ0,(β−e0+e1)Eζ

(φ)−Wζ0,rEζ0
(φ).

Case d > k = 1, namely, ζ ∈ Σ(0 : d, 0 : n), ρ ∈ Σ(0 : d − 2, 1 : d) and
β ∈ I(d+ 1, r − (d− 1)).

M̃ζ,ρ,β(dφ) =
β0

β!

∫
fζ

Trfζ
φ ∧ (λβ−e0

fζ
dλζ(1) ∧ · · · ∧ dλζ(d))

−
βjρ

β!

∫
fζ

Trfζ
φ ∧ (λ

β−ejρ

fζ
dλζ(1) ∧ · · · ∧ dλζ(d))

+
1

β!

∫
[xζ(1),...,xζ(d)]

Tr∂fζ
φ ∧ Tr∂fζ

(λβ
fζ
(dλζ(2) ∧ · · · ∧ dλζ(d)))

− 1

β!

∫
[xζ(0),...,x̂ζ(jρ),...,xζ(d)]

Tr∂fζ
φ∧Tr∂fζ

(λβ
fζ
(dλζ(1)∧· · ·∧ d̂λζ(jρ)∧· · ·∧dλζ(d))).

From Definition 5:

- if β0 ̸= 0

W̃0

(
1

(β − e0)!
M̂ζ ,β−e0

)
= Wζ0,(β−e0+(0,1,...,1))Eζ

;

- if βjρ ̸= 0

W̃0

(
1

(β − ejρ)!
M̂ζ ,β−ejρ

)
= Wζ0,(β−ejρ+(0,1,...,1))Eζ

;

(notice that in this case, if we denote β̃ = β − ejρ + (0, 1, . . . , 1), one has

β̃jρ ̸= 0);
- if β0 = 0

W̃0

(
1

β!
M̂ζ0 ,β

)
= Wζ1,(β−e1+(0,1,...,1))Eζ

;

- if βjρ = 0

W̃0

(
1

β!
M̂ζjρ ,β

)
= Wζ0,(β−ejρ+(0,1,...,1))Eζ

;

(notice that in this case, if we denote β̃ = β − ejρ + (0, 1, . . . , 1), one has

β̃jρ = 0).

(ζ0 and ζjρ are the elements of Σ(0 : d− 1, 0 : n) defined in the conclusion of the
proof of Proposition 4. )

From Definition 5

(W̃1M̃ζ,ρ,β)(dφ) = Wζ◦ρ∗,(β+e[[ρ]])Eζ
(dφ) .

Since k = 1, fζ◦ρ∗ = [xζ(0), xζ(jρ)]. More precisely, η := ζ ◦ ρ∗ ∈ Σ(0 : 1, 0 : n),
η(0) = ζ(0) and η(1) = ζ(jρ). From Stokes’ theorem

Wζ◦ρ∗,(β+e[[ρ]])Eζ
(dφ) = Wζjρ ,(β+e[[ρ]])Eζ

(φ)−Wζ0,(β+e[[ρ]])Eζ
(φ)
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and

Wζjρ ,(β+e[[ρ]])Eζ
(φ) =

{
Wζ0,(β+e[[ρ]]+ejρ−e0)Eζ

(φ) if β0 ̸= 0

Wζ1,(β+e[[ρ]]+ejρ−e1)Eζ
(φ) if β0 = 0.

Since e[[ρ]] = (0, 1, . . . , 1)− ejρ hence

Wζjρ ,(β+e[[ρ]])Eζ
(φ) =

{
Wζ0,(β−e0+(0,1,...,1))Eζ

(φ) if β0 ̸= 0
Wζ1,(β−e1+(0,1,...,1))Eζ

(φ) if β0 = 0.

In conclusion:

- if β0 ̸= 0 then

Wζ◦ρ∗,(β+e[[ρ]])Eζ
(dφ) = Wζ0,(β−e0+(0,1,...,1))Eζ

(φ)−Wζ0,(β−ejρ+(0,1,...,1))Eζ
(φ);

- if β0 = 0 then

Wζ◦ρ∗,(β+e[[ρ]])Eζ
(dφ) = Wζ1,(β−e1+(0,1,...,1))Eζ

(φ)−Wζ0,(β−ejρ+(0,1,...,1))Eζ
(φ);

and this ends the proof. ⊓⊔
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