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Introduction

The finite element (FE) method is a well-established technique to numerically solve partial differential equations [START_REF] Ciarlet | The Finite Element Method for Elliptic Problems[END_REF]. One key aspect of FE methods is the construction of finite dimensional spaces able to provide an approximated and physically meaningfull solution to the considered PDE. Suitable examples of FE spaces have been proposed to deal with differential operators such as the gradient, the curl and the divergence. As an example, Raviart-Thomas and Brezzi-Douglas-Marini divconforming FEs [START_REF] Raviart | A mixed finite element method for 2nd order elliptic problems[END_REF][START_REF] Brezzi | Two families of mixed finite elements for second order elliptic problems[END_REF] became popular for problems in fluid dynamics and Nédélec curl-conforming ones [START_REF] Nédélec | Mixed finite elements in R 3[END_REF][START_REF] Nédélec | A new family of mixed finite elements in R 3[END_REF] were widely adopted in electromagnetics (for further examples, see [START_REF] Monk | Finite element methods for Maxwell's equations[END_REF][START_REF] Brezzi | Mixed and Hybrid Finite Element Methods[END_REF][START_REF] Hiptmair | Finite elements in computational electromagnetism[END_REF]). All these successful FEs can be unified in the finite element exterior calculus framework where physical fields are treated as instances of differential forms [START_REF] Bossavit | Computational Electromagnetism[END_REF][START_REF] Hiptmair | Canonical construction of finite elements[END_REF][START_REF] Arnold | Finite element exterior calculus, homological techniques, and applications[END_REF][START_REF] Arnold | Finite Element Exterior Calculus[END_REF]. In addition to the shape functions of a FE space, we must specify the degrees of freedom (DoFs) we adopt to reconstruct fields in that space. These are a unisolvent set of functionals on the shape functions. The construction of DoFs for higher order Whitney space of k-forms P - r+1 Λ k is classically based on moments [START_REF] Hiptmair | Canonical construction of finite elements[END_REF] associated with a face of some dimension q with q ≥ k. DoFs determine inter element continuity and provide interpolation operators, projections, which are defined at least for smooth fields. Moments pop up naturally from integration-by-part formulas, which thus gives a way to reconstruct differential operators and potentials.

By adopting a geometrical point of view similar to the one of Whitney in [START_REF] Whitney | Geometric Integration Theory[END_REF], new DoFs have been proposed in [START_REF] Rapetti | Whitney forms of higher degree[END_REF] for the interpolation of fields in the FE spaces of trimmed polynomial forms of arbitrary degree r ≥ 1 on simplices. These new DoFs, called weights, are integrals of the field, intended as a differential k-form, on some small faces of dimension only q = k, being k the degree of the form. They have a clear physical interpretation, such as circulations along curves, fluxes across surfaces, densities in volumes, depending on the value of k. Their combinatorial and accuracy properties have been largely analysed, see for example [START_REF] Christiansen | On high order finite element spaces of differential forms[END_REF][START_REF] Alonso Rodríguez | Some remarks on spanning families and weights for high order Whitney spaces on simplices[END_REF][START_REF] Alonso Rodríguez | Towards nonuniform distributions of unisolvent weights for high-order Whitney edge elements[END_REF]. They have been defined also for spaces of complete polynomials (see [START_REF] Zampa | Using the FES framework to derive new physical degrees of freedom for finite element spaces of differential forms[END_REF] for an example in 2D) and on tensor product ones, as presented in [START_REF] Lohi | New degrees of freedom for differential forms on cubical meshes[END_REF].

Fig. 1 Schematization of the correspondence between two sets of DoFs for P - 3 Λ 1 (T ) in a tetrahedron T . Center, the visualization of symbols referring to the distribution of edge-type (in a circle), of face-type (in a square) and of volume-type (in an diamond) moments as given in the periodic table of FEs for N 1 e 3 (courtesy of D. Arnold). Right and left, coded with the same symbol, the small edges supporting the corresponding weights.

For k = 0, that is, we deal with a scalar field, when r ≥ 1, weights are evaluations of 0-forms at some points in the FEs. We can say that weights, generalise to k > 0 the idea of r-version of Lagrangian finite elements to other (e.g., Nédélec and Raviart-Thomas) finite elements. For r = 1, that is, we deal with low order polynomial approximations, weights and moments coincide, whenever is the degree k of the form. Thus, a natural question arises. What happens when the polynomial degree r of the k-form is greater than 1? In other words, is there a connection between these two sets of DoFs when r > 1, for any k? The answer is yes, and in this contribution, we develop this connection (see Figure 1, where k = 1 and the polynomial degree is 3).

In particular, we present an isomorphism between these two sets of DoFs, the weights and the moments, for the FE spaces of trimmed polynomial k-forms of arbitrary degree r ≥ 1 on simplices. By means of this isomorphism, we can underline the physical, geometrical and analytical aspects hidden in the definition of moments and weights. Moreover, with an appropriate selection of the discrete space bases for k = 0, 1, the matrix which represents the gradient operator, is the same with both sets of DoFs to reconstruct a field from its potential.

The paper is structured as follows. After the introduction of classical notations for the spaces of differential polynomial k-forms on a simplex T in Section 2, we explore the definition of weights and moments in Section 3. The isomorphism is detailed in Section 4. The matrix representing the exterior derivative operator working between 0-and 1-forms, in both cases of weights and moments, is analysed in Section 5. Some concluding remarks end this contribution.

Notation and basic tools

The notation and theoretical results are illustrated by several examples. For the sake of clarity, we use the symbol ⊓ ⊔ (resp. ⋄) to close a proof (resp., an example).

Increasing sequences and multi-index

Let j, l, m, n be integers such that 0 ≤ l -j ≤ n -m. By Σ(j : l, m : n) we denote the set of increasing maps from {j, . . . , l} to {m, . . . , n}, that is Σ(j : l, m : n) = {σ : {j, . . . , l} -→ {m, . . . , n} : σ(j) < σ(j + 1) We use multi-index notation and consider the sets

< • • • < σ(l)}.
I(d + 1, r) := {α = (α 0 , . . . , α d ) ∈ N d+1 : |α| = r} being |α| = d i=0 α i . For a multi-index α ∈ I(d + 1, r), [[α]
] will stand for the support of α defined as the set

[[α]] = {i : α i > 0} ⊂ {0, . . . , d}
and we denote ⌊α⌋ the minimal element of [[α]].

Let S be a subset of {0, . . . , d} and #S its cardinality. By e S we denote the (unique) multi-index in I(d + 1, #S) such that [[e S ]] = S. The sum of multiindexes of the same length is defined in the natural way: if α ∈ I(d + 1, r) and β ∈ I(d+1, r ′ ), then α+β ∈ I(d+1, r +r ′ ) and (α+β

) i = α i +β i for i = 0, . . . , d. Example 1 If σ ∈ Σ(0 : d, 0 : n) with d ≤ n then [[σ]] is a subset of {0, 1, . . . , n} with #[[σ]] = d + 1. Then, e [[σ]] ∈ I(n + 1, d + 1) is the multi-index with entries (e [[σ]] ) i = 1 if i ∈ [[σ]] 0 otherwise.
For any α ∈ I(n+1, r), the multi-index α ∈ I(n+1, r+d+1) given by α = α+e [[σ]] has entries

α i = α i + 1 if i ∈ [[σ]] α i otherwise, respectively. ⋄ Given σ ∈ Σ(0 : d, 0 : n), the matrix E σ ∈ Z (d+1)×(n+1) with entries (E σ ) i,j = 1 if j -1 = σ(i -1) 0 otherwise. ( 1 
)
allows to extend a multi-index d+1) allows to restrict a multi-index α ∈ I(n + 1, r) to a multi-index β ∈ I(d + 1, r), with r ≤ r, by identifying any multi-index with a row vector, and setting β = αE ⊤ σ . We notice that

β ∈ I(d + 1, r) to a multi-index α ∈ I(n + 1, r) by setting α = β E σ . It is worth noting that [[β E σ ]] ⊂ [[σ]] hence in particular (β E σ ) i = 0 if 0 ≤ i < σ(0). Furthermore, the matrix E ⊤ σ ∈ Z (n+1)×(
E σ E ⊤ σ = I ∈ Z (d+1)×(d+1)
whereas, for α ∈ I(n + 1, r), we have

αE ⊤ σ E σ = α if and only if [[α]] ⊂ [[σ]]. Example 2 If σ ∈ Σ(0 : 1, 0 : 3) has [[σ]] = {1, 3}, the associated matrix E σ ∈ Z 2×4 is E σ = 0 1 0 0 0 0 0 1 . If (β 0 , β 1 ) ∈ I(2, r) then we get (α 0 , α 1 , α 2 , α 3 ) = (β 0 , β 1 ) E σ = (0, β 0 , 0, β 1 ) ∈ I(4, r). It holds that α σ(j) = β j whereas α i = 0 if i ̸ ∈ [[σ]]. Reciprocally, if (α 0 , α 1 , α 2 , α 3 ) ∈ I(4, r) then (β 0 , β 1 ) = (α 0 , α 1 , α 2 , α 3 ) E ⊤ σ = (α 1 , α 3 ) ∈ I(2, r).
In this case r ≤ r. ⋄

Simplices and barycentric coordinates

Let T ∈ R n be an n-simplex with vertices x 0 , x 1 , . . . , x n in general position. We let ∆(T ) denote all the subsimplices, or faces, of T , while ∆ k (T ) is the set of subsimplices of T of dimension k, for any selected value of k between 0 and n.

For each σ ∈ Σ(j : l, 0 : n), we let f σ be the (oriented) closed convex hull of the vertices x σ(j) , . . . , x σ(l) which we henceforth denote by f σ = [x σ(j) , . . . , x σ(l) ]. There is a one-to-one correspondence between ∆ k (T ) and Σ(0 : k, 0 : n).

Let P r (T ) denote the space of polynomials in n variables of degree at most r. In the following, λ T,0 , λ T,1 , . . . , λ T,n are the barycentric coordinate functions with respect to T . Each function λ T,i ∈ P 1 (T ) is determined by the equations λ T,i (x j ) = δ i,j , 0 ≤ i, j ≤ n, being δ .,. the Kronecker's symbol. All together, the functions λ T,i form a basis of P 1 (T ), are non-negative on T , and sum to 1 identically on T .

To make for the higher order r ≥ 1, we introduce the Bernstein basis of the space P r (T ): it consists of all monomials of degree r in the variables λ T,i . We have

P r (T ) = span{λ α T : α ∈ I(n + 1, r)}, λ α T := λ α 0 T,0 λ α 1 T,1 . . . λ α n T,n .
Whenever a fixed simplex T is understood, we may simplify the notation by writing

λ i ≡ λ T,i , λ α ≡ λ α T .

Polynomial Differential Forms

We denote by Λ k (T ) the space of differential k-forms over T with smooth bounded coefficients. For k = 0, the set Λ 0 (T ) = C ∞ (T ) is the space of smooth functions over T with uniformly bounded derivatives of all orders. Furthermore, Λ k (T ) ̸ = {0} for 0 ≤ k ≤ n. We recall the exterior product ω ∧ η ∈ Λ k+l (T ) for ω ∈ Λ k (T ) and η ∈ Λ l (T ). Let d : Λ k (T ) → Λ k+1 (T ) denote the exterior derivative operator. We write dλ 0 , dλ 1 , . . . , dλ n ∈ Λ 1 (T ) for the exterior derivatives of the barycentric coordinate functions. Clearly

dλ 0 + dλ 1 + • • • + dλ n = 0, on T since n i=0 λ i = 1. If σ ∈ Σ(j : l, m : n), we set dλ σ := dλ σ(j) ∧ • • • ∧ dλ σ(l)
. For k > 0 any element ω of Λ k (T ) can be written as

ω = σ∈Σ(0:k-1,1:n) a σ dλ σ ,
where a σ ∈ C ∞ (T ). Taking a σ ∈ P r (T ) we obtain the space P r Λ k (T ) of polynomial differential k-forms of polynomial degree at most r. Moreover P r Λ 0 (T ) coincides with P r (T ).

For k > 0,

P 0 Λ k (T ) = span{dλ σ : σ ∈ Σ(0 : k -1, 1 : n)}.
Example 3 For n = 3 one has,

P 0 Λ 1 (T ) = span{dλ 1 , dλ 2 , dλ 3 }, P 0 Λ 2 (T ) = span{dλ 1 ∧ dλ 2 , dλ 1 ∧ dλ 3 , dλ 2 ∧ dλ 3 }, P 0 Λ 3 (T ) = span{dλ 1 ∧ dλ 2 ∧ dλ 3 },
respectively. ⋄ Furthermore, if 0 < k < n, we can write

P r Λ k (T ) = span{λ α dλ σ : σ ∈ Σ(0 : k -1, 1 : n) and α ∈ I(n + 1, r)}.
The set

BP r Λ k (T ) := {λ α dλ σ : σ ∈ Σ(0 : k -1, 1 : n) and α ∈ I(n + 1, r)} (2) 
is a basis of P r Λ k (T ).

For

k = 0 BP r Λ 0 (T ) := {λ α : α ∈ I(n + 1, r)} is a basis of P r Λ 0 (T ) while for k = n BP r Λ n (T ) := {λ α dλ 1 ∧ • • • ∧ dλ n : α ∈ I(n + 1, r)}
is a basis of P r Λ n (T ).

A particular set of polynomial differential k-forms of polynomial degree 1 are the Whitney's differential forms. They are associated with the k-simplices f of T . If k = n then f = T and the Whitney's differential form w T is the volume form, of polynomial degree 0.

Definition 1 Let k ≥ 0 and f ∈ ∆ k (T ). The Whitney's differential form w f associated with the subsimplex f is defined as follows:

if k = 0 then f is a vertex of T , namely, f = [x i ] for i = 0, . . . , n, and

w f = w [x i ] = λ i ; -if k > 0 then f = f σ for a σ ∈ Σ(0 : k, 0 : n) and w f σ = k i=0 (-1) i λ σ(i) dw f σ \[x σ(i) ] being f σ \ [x σ(i) ] ∈ ∆ k-1 (T ) the oriented (k -1)-face of T with the vertices of f σ except x σ(i) .
We can write f σ \ [x σ(i) ] = [x σ(0) , . . . , x σ(i) , . . . , x σ(k) ], where the widehat means that the underlying term is omitted from the list. For each σ ∈ Σ(0 : k, 0 : n) it holds that

dw f σ = (k + 1)! dλ σ = (k + 1)! dλ σ(0) ∧ • • • ∧ dλ σ(k) .
Then

w f σ = k i=0 (-1) i λ σ(i) dw f σ \[x σ(i) ] = k! k i=0 (-1) i λ σ(i) dλ σ(0) ∧• • •∧ dλ σ(i) ∧• • •∧dλ σ(k) .
Example 4 The Whitney's 1-form associated with the edge e = [x σ(0) , x σ(1) ] is w e = λ σ(0) dλ σ(1) -λ σ(1) dλ σ(0) . The Whitney's 2-form associated with the face f = [x σ(0) , x σ(1) , x σ(2) ] reads

w f = 2(λ σ(0) dλ σ(1) ∧ dλ σ(2) -λ σ(1) dλ σ(0) ∧ dλ σ(2) + λ σ(2) dλ σ(0) ∧ dλ σ(1) ).
In R 3 , the Whitney 3-form associated with T = [x σ(0) , x σ(1) , x σ(2) , x σ(3) ] is

w T = 6 dλ σ(1) ∧ dλ σ(2) ∧ dλ σ(3) ,
where we have used the fact that λ 0 + λ 1 + λ 2 + λ 3 = 1. ⋄

In finite element exterior calculus, the space of Whitney's differential k-forms on T is denoted by

P - 1 Λ k (T ) := span{w f : f ∈ ∆ k (T )}.
Since there is a one to one correspondence between ∆ k (T ) and Σ(0 : k, 0 : n) we can also write

P - 1 Λ k (T ) := span{w f σ : σ ∈ Σ(0 : k, 0 : n)}.
Definition 2 Whitney's differential k-forms of polynomial degree r + 1 are the elements of the space

P - r+1 Λ k (T ) := span{λ α w f σ : σ ∈ Σ(0 : k, 0 : n) and α ∈ I(n + 1, r)}.
For k > 0, the space

P - r+1 Λ k (T ) ⊊ P r+1 Λ k (T ). For k = 0 P - r+1 Λ 0 (T ) = span{λ α λ i : i ∈ {0, . . . , n} and α ∈ I(n + 1, r)} = span{λ α : α ∈ I(n + 1, r + 1)} = P r+1 Λ 0 (T ).
For k = n

P - r+1 Λ n (T ) = span{λ α dλ 1 ∧ • • • ∧ dλ n : α ∈ I(n + 1, r)} = P r Λ n (T ).
Remark 1 It is worth noting that, in the n-simplex T with vertices x 0 , x 1 , . . . , x n , the elements belonging to the set

{λ α w f σ : σ ∈ Σ(0 : k, 0 : n), α ∈ I(n + 1, r)}
are not linear independent. As an example, for n = 2, if k = 1, and r = 1, it can be veryfied that

λ 0 w [x 1 ,x 2 ] -λ 1 w [x 0 ,x 2 ] + λ 2 w [x 0 ,x 1 ] = 0. ( 3 
)
Given σ ∈ Σ(0 : k, 0 : n) we set

I σ (n + 1, r) := {α ∈ I(n + 1, r) : α i = 0 ∀ i < σ(0)}. When k = 0 then f σ is a vertex of T , namely, f σ = [x j ] being σ(0) = j.
In this case, to be clearer, we will sometimes use the notation

I [x j ] (n + 1, r) instead of I σ (n + 1, r). A basis of P - r+1 Λ k (T ) is BP - r+1 Λ k (T ) = {λ α w f σ : σ ∈ Σ(0 : k, 0 : n) and α ∈ I σ (n + 1, r)}.
For n = 2, k = 1 and r = 1, the 8 elements of

BP - 2 Λ 1 (T ), with T = [x 0 , x 1 , x 2 ], are λ i w [x 0 ,x 1 ] = λ i ( λ 0 dλ 1 -λ 1 dλ 0 ), i = 0, 1, 2, λ i w [x 0 ,x 2 ] = λ i ( λ 0 dλ 2 -λ 2 dλ 0 ), i = 0, 1, 2, λ i w [x 1 ,x 2 ] = λ i ( λ 1 dλ 2 -λ 2 dλ 1 ), i = 1, 2 . The condition α ∈ I σ (3, 1) prevents λ 0 w [x 1 ,x 2 ] in (3) from being in the set BP - 2 Λ 1 (T ).
3 Weights and moments

Small simplexes and weights

The concepts of small simplices and weights for polynomial differential forms in P - r+1 Λ k (T ), were born in [START_REF] Rapetti | Geometrical localisation of the degrees of freedom for whitney elements of higher order[END_REF][START_REF] Rapetti | Whitney forms of higher degree[END_REF], for any order k and any polynomial degree r ≥ 0, to solve the difficulty raised in [START_REF] Bossavit | Generating whitney forms of polynomial degree one and higher[END_REF]: "The main problem with such forms is the interpretation of DoFs" in geometrical terms. We recall these concepts here below with a notation adapted to the isomorphism we want to state between these new DoFs, the weights, and the classical ones, moments, introduced in [START_REF] Nédélec | Mixed finite elements in R 3[END_REF][START_REF] Arnold | Finite element exterior calculus, homological techniques, and applications[END_REF].

In the n-simplex T with vertices x 0 , x 1 , . . . , x n the principal lattice of order r + 1 (r ≥ 0) in T is the set of points defined by their barycentric coordinates with respect to the vertices of T as follows

S r+1 (T ) = x ∈ T : λ i (x) ∈ 0, 1 r + 1 , . . . , r r + 1
, 1 for each i ∈ {0, . . . , n} .

To each multi-index α ∈ I(n + 1, r) we associate an affine function,

τ α : T -→ T , such that τ α (λ i (x)) = λ i (x)+α i r+1 . If f σ is a face of T then τ α (f σ ) := {τ α (x) : x ∈ f σ }.
Definition 3 The small k-simplexes of order r in T are the elements of the set

S k r (T ) = {τ α (f σ ) : f σ ∈ ∆ k (T ) and α ∈ I(n + 1, r)} = {τ α (f σ ) : σ ∈ Σ(0 : k, 0 : n) and α ∈ I(n + 1, r)}.
For k > 0, they are 1/(r + 1)-homothetic to k-faces of T , with vertices in S r+1 (T ).

For k = 0, we have S 0 r (T ) = S r+1 (T ).

For k > 0 there is a one-to-one correspondence between the elements of S k r (T ) and the couples (σ, α) with σ ∈ Σ(0 : k, 0 : n) and α ∈ I(n + 1, r). In fact, if α, α ′ ∈ I(n + 1, r) and α ̸ = α ′ then τ α (T ) ∩ τ α ′ (T ) is either empty or an element of S 0 r (T ).

x 0 x 1 x 2
Fig. 2 Points of the principal lattice for P - 4 Λ 0 (T ), where T is a 2-simplex. The node with barycentric coordinates ( 14 , 1 4 , 2 4 ) in T is shared by the three gray small triangles.

Example 5 Let us suppose n = 2, r = 3. The point with barycentric coordinates

( 1 4 , 1 4 , 2 4 
) in T , has different representations as small node. Indeed, by referring to Figure 2, this point can be τ α (f σ ) with,

α = (1, 0, 2), f σ = x 1 , in the top-left gray small triangle, α = (0, 1, 2), f σ = x 0 , in the top-right gray small triangle, α = (1, 1, 1), f σ = x 2 ,
in the bottom-center gray small triangle, respectively. ⋄

The weight of ω ∈ Λ k (T ) on a k-simplex s contained in T is denoted by s ω. If k = 0, for ω ∈ C ∞ (T ) and s ∈ T we have s ω = ω(s).
In particular we are interested in the following set of weights.

Definition 4 Let ω ∈ Λ k (T ), σ ∈ Σ(0 : k, 0 : n) and α ∈ I(n + 1, r). W σ,α (ω) := τ α (f σ ) ω. (4) 
The weights of Definition 4 are determinant in P - r+1 Λ k (T ), namely, if ω ∈ P - r+1 Λ k (T ) and s ω = 0 for all s ∈ S k r (T ) then ω = 0 (see [START_REF] Christiansen | On high order finite element spaces of differential forms[END_REF] for a proof). However, for 0 < k < n, the cardinality of the set of weights {W σ,α (ω) : σ ∈ Σ(0 : k, 0 : n), α ∈ I(n + 1, r)} is greater than the dimension of P - r+1 Λ k (T ). Hence in the sequel we often consider the following set of weights:

W k := {W σ,α (ω) : σ ∈ Σ(0 : k, 0 : n), α ∈ I σ (n + 1, r)}. (5) 
It is worth noting that W k is determinant (see [START_REF] Alonso Rodríguez | Towards nonuniform distributions of unisolvent weights for high-order Whitney edge elements[END_REF]) and its cardinality coincides with the dimension of P - r+1 Λ k (T ).

Remark 2 Only one of the three representations in Example 5 verifies the condition α i = 0 for all i < σ(0) required to support a weight of the set defined in [START_REF] Arnold | Finite element exterior calculus, homological techniques, and applications[END_REF]. The first representation fails the condition (since α 0 ̸ = 0 with 0 < σ(0) = 1), the second satisfies it (since α 1 ̸ = 0 with 1 > σ(0) = 0), the third fails too (since α 0 ̸ = 0 with 0 < σ(0) = 2).

Moments associated with a particular basis of polynomial differential forms

Let ω be a differential k-form defined on

T ⊂ R n . For each d-face f ζ of T , with ζ ∈ Σ(0 : d, 0 : n) and k ≤ d ≤ n, the moments of ω in f ζ of degree r -(d -k) are M ζ,η (ω) := f ζ Tr f ζ ω ∧ η, ∀ η ∈ P r-(d-k) Λ d-k (f ζ ) , (6) 
where Tr f ζ is the trace operator on f ζ . It is well known that these moments are determinant in P - r+1 Λ k (T ). Taking η in a basis of each space P r-(d-k) Λ d-k (f ζ ), one obtains a determinant set of moments with cardinality equal to the dimension of P - r+1 Λ k (T ) (see [START_REF] Arnold | Finite element exterior calculus, homological techniques, and applications[END_REF] and [START_REF] Christiansen | On high order finite element spaces of differential forms[END_REF], for two different proofs).

The goal of the present work is to point out an isomorphism between moments and weights which is consistent in a sense specified in the next sections with the exterior derivative operator. To do that, we will consider a particular basis of the space [START_REF] Bossavit | Computational Electromagnetism[END_REF].

P r-(d-k) Λ d-k (f ζ ) in
-If d = k we adopt the Bernstein's basis of the space P r (f ζ ), namely

BP r Λ 0 (f ζ ) = {λ β f ζ : β ∈ I(d + 1, r)},
where

λ β f ζ = λ β 0 f ζ ,0 . . . λ β d f ζ ,d = λ β 0 T,ζ(0) . . . λ β d T,ζ(d) . -If d > k we rely on the basis indicated in (2), namely, BP r-(d-k) Λ d-k (f ζ ) = {λ β f ζ (dλ f ζ ) ρ : ρ ∈ Σ(0 : d -(k + 1), 1 : d), β ∈ I(d + 1, r -(d -k))}.
Here (dλ

f ζ ) ρ = dλ f ζ ,ρ(0) ∧ • • • ∧ dλ f ζ ,ρ(d-(k+1)) = dλ T,ζ(ρ(0)) ∧ • • • ∧ dλ T,ζ(ρ(d-(k+1))) .
Example 6 For k = 1,

-if f ζ = [x 0 , x 2 , x 3 ] ∈ ∆ 2 (T ) then d -k = 1 and BP r-1 Λ 1 (f ) = {λ β f dλ 2 : β ∈ I(3, r -1)} ∪ {λ β f dλ 3 : β ∈ I(3, r -1)}; -if f ζ = [x 0 , x 1 , x 2 , x 3 ] ∈ ∆ 3 (T ) (for n = 3 it means f = T ) then d -k = 2 and BP r-2 Λ 2 (f ) = {λ β f dλ 1 ∧ dλ 2 : β ∈ I(4, r -2)}∪ ∪{λ β f dλ 1 ∧ dλ 3 : β ∈ I(4, r -2)} ∪ {λ β f dλ 2 ∧ dλ 3 : β ∈ I(4, r -2)},

respectively. ⋄

With these choices of basis we obtain the following moments for ω ∈ Λ k (T ):

for each ζ ∈ Σ(0 : k, 0 : n), and β ∈ I(k + 1, r) M ζ,∅,β (ω) := f ζ Tr f ζ ω ∧ λ β f ζ ; (7) for each d > k, ζ ∈ Σ(0 : d, 0 : n), ρ ∈ Σ(0 : d -(k + 1), 1 : d) and β ∈ I(d + 1, r -(d -k)) M ζ,ρ,β (ω) := f ζ Tr f ζ ω ∧ λ β f ζ (dλ f ζ ) ρ . (8) 
We use the notation "ρ = ∅" when d = k since Σ(0 : d -(k + 1), 1 : d) has not been defined for d = k. We thus have the following set of moments for ω ∈ P - r+1 Λ k (T ):

M k := {M ζ,ρ,β (ω) : ζ ∈ Σ(0 : d, 0 : n), ρ ∈ Σ(0 : d -(k + 1), 1 : d),
and

β ∈ I(d + 1, r -(d -k)) with k ≤ d ≤ n}. ( 9 
)
Remark 3 If ω ∈ Λ 0 (T ), then -when d = k = 0, then ζ ∈ Σ(0 : 0, 0 : n), so f ζ = [x j ]
for some j ∈ {0, . . . , n}; moreover I(1, r) has a unique element, hence β = (r) and we have

M ζ,∅,β (ω) = ω(x j ) -when d > 0, then ζ ∈ Σ(0 : d, 0 : n), ρ ∈ Σ(0 : d -1, 1 : d) and β ∈ I(d + 1, r -d). It is worth noting that Σ(0 : d -1, 1 : d) has a unique element and (dλ f ζ ) ρ = dλ ζ(1) ∧ • • • ∧ dλ ζ(d) , namely M ζ,ρ,β (ω) = f ζ Tr f ζ ω ∧ λ β f ζ (dλ ζ(1) ∧ • • • ∧ dλ ζ(d) ).
This means that in Λ 0 (T ) the moments are in fact

M ζ,∅,β (ω) = M ζ (ω) when d = k = 0 and M ζ,ρ,β (ω) = M ζ,β (ω) when d > k = 0.

Isomorphism

We establish an isomorphism, one for each value of k ∈ {0, . . . , n}, between the set of moments M k defined in [START_REF] Brezzi | Mixed and Hybrid Finite Element Methods[END_REF], and the set of weights W k defined in [START_REF] Arnold | Finite element exterior calculus, homological techniques, and applications[END_REF]. We distinguish two cases, when the support f ζ of the moment has dimension d either equal to the order k of the differential form or higher.

The moment M ζ,∅,β (ω) with ζ ∈ Σ(0 : k, 0 : n) and β ∈ I(k + 1, r), is linked to the weight W σ,α (ω), with σ = ζ and α = β E ζ , the extension of β to a multiindex in I(n + 1, r) by the matrix E ζ defined in [START_REF] Alonso Rodríguez | Towards nonuniform distributions of unisolvent weights for high-order Whitney edge elements[END_REF]. In this case the small-simplex

s = τ α (f σ ) is not only parallel to f σ = f ζ but (9)it is in fact contained in f ζ .
In order to associate a weight with the moment M ζ,ρ,β (ω) when d > k, we first prove the following lemma.

Lemma 1 If ζ ∈ Σ(0 : d, 0 : n) and ρ ∈ Σ(0 : d -(k + 1), 1 : d) for some d with k < d ≤ n then ζ • ρ ∈ Σ(0 : d -(k + 1), 1 : n) and the face of T = [x 0 , . . . , x n ] with vertices {x j : j ∈ [[ζ]] \ [[ζ • ρ]]} is a k-face of f ζ that contains x ζ(0) , the first vertex of f ζ . Proof If ζ ∈ Σ(0 : d, 0 : n) and ρ ∈ Σ(0 : d -(k + 1), 1 : d) then ρ(0) > 0 and ζ(ρ(0)) > ζ(0) ≥ 0 hence ζ • ρ ∈ Σ(0 : d -(k + 1), 1 : n). We notice that #[[ζ]] = d + 1, #[[ζ • ρ]] = d -k, and [[ζ • ρ]] ⊂ [[ζ]] hence #([[ζ]] \ [[ζ • ρ]]) = k + 1 and the face of T = [x 0 , . . . , x n ] with vertices {x j : j ∈ [[ζ]] \ [[ζ • ρ]]} is a k-face of f ζ = [x ζ(0) , . . . , x ζ(d) ].
Using again that ρ ∈ Σ(0

: d -(k + 1), 1 : d) one has ζ(0) < ζ(1) ≤ ζ(ρ(j)) for all j ∈ {0, . . . , d -(k + 1)}. Hence ζ(0) ̸ ∈ [[ζ • ρ]] and the vertex x ζ(0) belongs to the set {x j : j ∈ [[ζ]] \ [[ζ • ρ]]}. ⊓ ⊔
We identify moments M ζ,ρ,β (ω) with weights W σ,α (ω) in small simplices that are parallel to the k-face of f ζ with vertices {x j : j

∈ [[ζ]] \ [[ζ • ρ]]} and that are not completely contained in the boundary of f ζ . The map σ ∈ Σ(0 : k, 0 : n) is such that f σ is the element of ∆ k (T ) with vertices [[ζ]] \ [[ζ • ρ]]. 1
The multi-index α is constructed in the following way. Since [[ρ]] is a subset of {0, . . . , d} with d -k elements and

β ∈ I(d + 1, r -(d -k)), the multi-index β = β + e [[ρ]] belongs to I(d + 1, r). We set α = β E ζ , the extension of β to a multi-index in I(n + 1, r) by the matrix E ζ .
Example 7 For n = 3 and k = 1, we explain which weights are associated with some selected elements of the set of moments unisolvent in

P - 5 Λ 1 (T ) (r = 4). -Let us consider the moment [x 2 ,x 3 ] ω λ 2 λ 3 3 , thus d = 1 = k.
Here we have σ = ζ and the multi-index α is the extension of β. More precisely

α = (1, 3) 0 0 1 0 0 0 0 1 = (0, 0, 1 , 3). 
The associated weight is s ω with s = τ (0,0,1,3) ([x 2 , x 3 ]).

-Let us consider the moment

[x 0 ,x 2 ,x 3 ] ω ∧ λ 2 0 λ 3 (dλ 2 ) , thus d = 2 > 1 = k.
Here Then we extend it as α = (2, 1, 1)

  1 0 0 0 0 0 1 0 0 0 0 1   = (2, 0, 1, 1).
The associated weight is s ω with s = τ (2,0,1,1) ([x 0 , x 3 ]).

-Let us consider the moment

[x 0 ,x 1 ,x 2 ,x 3 ] ω ∧ λ 0 λ 2 (dλ 1 ∧ dλ 2 ) , thus d = 3 > 1 = k.
Here we have

[[ζ]] = {0, 1, 2, 3}, [[ρ]] = {1, 2} = [[ζ • ρ]]. Then σ ∈ Σ(0 : 1, 0 : 3) with [[σ]] = {0, 1, 2, 3} \ {1, 2} = {0, 3}, so σ(0) = 0, σ(1) = 3. Concerning the multi-index β = (1, 0, 1, 0) ∈ I(4, 4 -(3 -1)) = I(4, 2)
. Note that it is not necessary to extend β.

Finally, α = β + e {1,2} = (1, 0, 1, 0) + (0, 1, 1, 0) = (1, 1, 2, 0). The associated weight is s ω with s = τ (1,1,2,0) ([x 0 , x 3 ]). ⋄ Example 8
We consider the three types of moments for P - 3 Λ 1 (T ) indicated by different symbols in Figure 1, center. They can be geometrically localized in T by resorting to the small edges s (shown in Figure 1, right and left) supporting the corresponding weights. Indeed, we have as follows:

[1,2] ω λ 2 2 (⇐⇒ s ω with s = τ (0,0,2,0) ([1, 2]) ) ⇐⇒ s = ⃝ [0,1,2] ω ∧ λ 1 (dλ 1 ) (⇐⇒ s ω with s = τ (0,2,0,0) ([0, 2]) ) ⇐⇒ s = □ 1 [0,1,2] ω ∧ λ 1 (dλ 2 ) (⇐⇒ s ω with s = τ (0,1,1,0) ([0, 1]) ) ⇐⇒ s = □ 2 [0,1,2,3] ω ∧ (dλ 1 ∧ dλ 2 ) (⇐⇒ s ω with s = τ (0,1,1,0) ([0, 3]) ) ⇐⇒ s = 3 1 [0,1,2,3] ω ∧ (dλ 1 ∧ dλ 3 ) (⇐⇒ s ω with s = τ (0,1,0,1) ([0, 2]) ) ⇐⇒ s = 3 2 [0,1,2,3] ω ∧ (dλ 2 ∧ dλ 3 ) (⇐⇒ s ω with s = τ (0,0,1,1) ([0, 1]) ) ⇐⇒ s = 3 3 .
The moments (on the left) are in correspondence (⇐⇒) with the weights (in the center) as it is established by the isomorphism described in the present Section. Weights have a precise geometrical localization in T , namely they are supported on precise small edges s (indicated in the center). As a result, moments can be geometrically localized in T by associating with each of them the small simplex s (on the right) supporting the weight they correspond with. ⋄

The set of moments defined in ( 9) and the set of weights defined in (5) are subsets of (P - r+1 Λ k (T )) * , the dual space of P - r+1 Λ k (T ). We are interested in the maps W k defined from this set of moments to the set of weights in the following way:

Definition 5 For each k, d, n ∈ N, 0 ≤ k ≤ d ≤ n, ζ ∈ Σ(0 : d, 0 : n), ρ ∈ Σ(0 : d -(k + 1), 1 : d) (ρ = ∅ if d = k) and β ∈ I(d + 1, r -(d -k)) we set -if d = k W k (M ζ,∅,β ) = W ζ,β E ζ ; -if d > k W k (M ζ,ρ,β ) = W ζ•ρ * ,(β+e [[ρ]] ) E ζ , where ζ • ρ * ∈ Σ(0 : k, 0 : n) is such that [[ζ • ρ * ]] = [[ζ]] \ [[ζ • ρ]].
The following proposition shows that the image of this map is, in fact, the set of weights considered in [START_REF] Arnold | Finite element exterior calculus, homological techniques, and applications[END_REF].

Proposition 1 If W σ,α = W k (M ζ,∅,β ) with ζ ∈ Σ(0 : d, 0 : n) and β ∈ I(d+1, r) or W σ,α = W k (M ζ,ρ,β ) for a triplet (ζ, ρ, β) ∈ Σ(0 : d, 0 : n) × Σ(0 : d -(k + 1), 1 : d) × I(d + 1, r -(d -k)) with k < d ≤ n, then (σ, α) ∈ Σ(0 : k, 0 : n) × I σ (n + 1, r).
Proof Note that (σ, α) ∈ Σ(0 : k, 0 : n) × I(n + 1, r) by construction. We have thus to prove that α ∈ I σ (n + 1, r), namely, that α i = 0 for all i < σ(0).

We recall that if ζ ∈ Σ(0 : d, 0 : n) and

β ∈ I(d + 1, r) then ( β E ζ ) i = 0 if 0 ≤ i < ζ(0), hence β E ζ ∈ I ζ (n + 1, r) If W σ,α = W k (M ζ,∅,β ) then σ = ζ and α = β E ζ ∈ I ζ (n + 1, r) = I σ (n + 1, r). If d > k and W σ,α = W k (M ζ,ρ,β ) then α = (β + e [[ρ]] ) E ζ ∈ I ζ (n + 1, r). We notice that σ(0) = ζ(0) because [[σ]] = [[ζ]] \ [[ζ • ρ]] and ζ(0) ̸ ∈ [[ζ • ρ]] ⊂ {1, . . . , d}. Hence I ζ (n + 1, r) = I σ (n + 1, r).
⊓ ⊔

Similarly we can define a map M k from the set of weights in [START_REF] Arnold | Finite element exterior calculus, homological techniques, and applications[END_REF] to the set of moments in [START_REF] Brezzi | Mixed and Hybrid Finite Element Methods[END_REF].

Definition 6 Given a couple (σ, α) ∈ Σ(0 : k, 0 : n) × I σ (n + 1, r) we denote d = #([[α]] ∪ [[σ]]) -1. -If [[α]] ⊂ [[σ]] then [[α]] ∪ [[σ]] = [[σ]] and d = k. We set ζ = σ, ρ = ∅ and β = αE ⊤ ζ (= αE ⊤ σ ). -If [[α]] ̸ ⊂ [[σ]] then [[α]] ∪ [[σ]] ⊋ [[σ]] and d > k. We set ζ ∈ Σ(0 : d, 0 : n) such that [[ζ]] = [[α]] ∪ [[σ]], ρ ∈ Σ(0 : d -k -1, 1 : d) such that [[ζ • ρ]] = [[α]] \ [[σ]],
and

β = αE ⊤ ζ -e [[ρ]] . Then, we set M k (W σ,α ) := M ζ,ρ,β .
Proposition 2 For each (σ, α) ∈ Σ(0 : k, 0 : n) × I σ (n + 1, r), the element M k (W σ,α ) belongs to the set of moments defined in [START_REF] Brezzi | Mixed and Hybrid Finite Element Methods[END_REF].

Proof In fact, k ≤ d ≤ n, ζ ∈ Σ(0 : d, 0 : n) and ρ = ∅ if d = k or ρ ∈ Σ(0 : d-(k+1), 1 : d) if d > k by construction. Furthermore β is a multi-index with d+1 components. Since [[α]] ⊂ [[ζ]] then |αE ⊤ ζ | = |α| and |β| = |α|-(d-k) = r-(d-k). Hence β ∈ I(d + 1, r -(d -k)). ⊓ ⊔ Remark 4
From a geometric point of view, we associate with the multi-index α ∈ I σ (n + 1, r) a subsimplex f a(α) of T with vertices those in [[α]], namely, x i is a vertex of f a(α) if and only if α i ̸ = 0. Given f σ and f σ two subsimplices of T we denote by f σ ∨ f σ the subsimplex of T with vertices those of f σ and f σ . The moment associated with the weight W σ,α is an integral on the face f ζ = f σ ∨f a(α) .

-

If [[α]] ⊂ [[σ]] then f σ ∨ f a(α) = f σ and ρ = ∅. -If [[α]] ̸ ⊂ [[σ]] then f σ ∨ f a(α) ̸ = f σ and ρ involves all the vertices of f σ ∨ f a(α) that are not in f σ . Example 9 In R 3 for f σ = [x 1 , x 3 
] (namely, k = 1 and σ ∈ Σ(0 : 1, 0 : 3), σ(0) = 1 and σ(1) = 3) we have

M 1 W σ,(0,3,0,0) (ω) = [x 1 ,x 3 ] ω λ 3 1 (f a(α) = [x 1 ]) M 1 W σ,(0,2,0,1) (ω) = [x 1 ,x 3 ] ω λ 2 1 λ 3 (f a(α) = [x 1 , x 3 ]) M 1 W σ,(0,2,0,1) (ω) = [x 1 ,x 2 ,x 3 ] ω ∧ λ 2 1 (dλ 2 ) (f a(α) = [x 1 , x 2 ]).
For f σ = [x 0 , x 3 ] (namely, k = 1 and σ ∈ Σ(0 : 1, 0 : 3), σ(0) = 0 and σ(1) = 3) we have

M 1 W σ,(0,2,1,0) (ω) = [x 0 ,x 1 ,x 2 ,x 3 ] ω ∧ λ 1 (dλ 1 ∧ dλ 2 ) (f a(α) = [x 1 , x 2 ]).
For f σ = [x 0 , x 1 , x 3 ] (namely, k = 2 and σ ∈ Σ(0 : 2, 0 : 3), σ(0) = 0, σ(1) = 1, σ(2) = 3) we have

M 2 W σ,(0,3,0,0) (ω) = [x 0 ,x 1 ,x 3 ] ω λ 3 1 (f a(α) = [x 1 ]) M 2 W σ,(1,1,0,1) (ω) = [x 0 ,x 1 ,x 3 ] ω λ 0 λ 1 λ 3 (f a(α) = [x 0 , x 1 , x 3 ]) M 2 W σ,(1,1,1,0) (ω) = [x 0 ,x 1 ,x 2 ,x 3 ] ω ∧ λ 0 λ 1 (dλ 2 ) (f a(α) = [x 0 , x 1 , x 2 ]) M 2 W σ,(0,0,3,0) (ω) = [x 0 ,x 1 ,x 2 ,x 3 ] ω ∧ λ 2 2 (dλ 2 ) (f a(α) = [x 2 ]).
With this geometric rule we associate with a couple (σ, α) ∈ Σ(0 : k, 0 : n) × I(n + 1, r) with α ̸ ∈ I σ (n + 1, r) a moment not in [START_REF] Brezzi | Mixed and Hybrid Finite Element Methods[END_REF]. For instance, if f σ = [x 1 , x 3 ] and α = (1, 1, 0, 1) we have f a(α) = [x 0 , x 1 , x 3 ] and then the moment

[x 0 ,x 1 ,x 3 ] ω ∧ λ 1 λ 3 (dλ 0 ). If α = (1, 1, 1, 0) f a(α) = [x 0 , x 1 , x 2 ]
and then the corresponding moment should be

[x 0 ,x 1 ,x 2 ,x 3 ] ω ∧ λ 1 (dλ 0 ∧ dλ 2 ). ⋄ Proposition 3 For any (σ, α) ∈ Σ(0 : k, 0 : n) × I σ (n + 1, r) it holds that W k M k (W σ,α ) = W σ,α . Proof If [[α]] ⊂ [[σ]] then d = k and W k M k (W σ,α ) = W k (M σ,∅,αE ⊤ σ ) = W σ,αE ⊤ σ E σ = W σ,α where the last equality holds because [[α]] ⊂ [[σ]]. If [[α]] ̸ ⊂ [[σ]] then d > k and W k M k (W σ,α ) = W k (M ζ,ρ,β ) with ζ ∈ Σ(0 : d, 0 : n) such that [[ζ]] = [[α]] ∪ [[σ]], ρ ∈ Σ(0 : d -(k + 1), 1 : d) such that [[ζ • ρ]] = [[α]] \ [[σ]], and β = αE ⊤ ζ -e [[ρ]] . Then W k (M ζ,ρ,β ) = W σ, α with σ ∈ Σ(0 : k, 0 : n) such that [[ σ]] = [[ζ]] \ [[ζ • ρ]] = ([[α]] ∪ [[σ]]) \ ([[α]] \ [[σ]]) = [[σ]] and α = (β + e [[ρ]] )E ζ = αE ⊤ ζ E ζ = α.

Also in this case the last equality holds because [[α]] ⊂ [[ζ]] = [[α]] ∪ [[σ]].

⊓ ⊔

The matrix of the gradient operator

Let us fix a set R 0 of unisolvent degrees of freedom in P - r+1 Λ 0 (T ), and a set R 1 of unisolvent degrees of freedom in P - r+1 Λ 1 (T ). Given ω ∈ P - r+1 Λ k (T ) we denote r k (ω), for k = 0, 1, the vector collecting the degrees of freedom of the set R k evaluated on a 0-form and the 1-form given by its exterior derivative. Then, there exists a unique matrix G R (that depends on the sets R 0 and R 1 ) such that

r 1 (dω) = G R r 0 (ω), ∀ ω ∈ P - r+1 Λ 0 (T ) .
When the two sets, R 0 , R 1 , of degrees of freedom contain the weights defined in Definition 4 (namely when R k = W k , for k = 0, 1), the matrix G R , denoted by G W , has a clear geometrical meaning. By Stokes' theorem, G W is the transposed of the incidence matrix of the graph M G with nodes the points of the principal lattice of T and arcs the oriented small edges corresponding to couples (σ, α) with σ ∈ Σ(0 : 1, 0 : n) and α ∈ I σ (n + 1, r). This geometrical characterisation is at the basis of the tree-cotree techniques used in electromagnetism, that are well known in the low order case r = 0 and that have been recently extended to the high order case r > 0 using weights (see [START_REF] Santos | Construction of a spanning tree for high-order edge elements[END_REF]; see also [START_REF] Kapidani | Tree-cotree decomposition of isogeometric mortared spaces in H(curl) on multi-patch domains[END_REF] for an analogous result in the framework of the isogeometric analysis).

Fig. 3 Schematic graph which gives an insight, for k = 0, 1, on the toolkit of mathematical concepts sharpened by Alain Bossavit and that takes part in the foundation of computational methods in applied mathematics. In the scheme, G is the gradient matrix of size E r+1 × N r+1 with E r+1 = dimP - r+1 Λ 1 (T ) and N r+1 = dimP - r+1 Λ 0 (T ), R q is the set of arrays with q real components, w is the array of weights for the 0-form ω, M 0 is the weight-to-moment isomorphism for 0-forms, p k and pk are FE reconstruction operators, and the cycling symbol stands for commutativity.

We claim that the isomorphism defined in the previous section preserves the matrix G R . This means that, if m k is the vector collecting the moments in M k for ω (k = 0) and dω (k = 1), associated, through this isomorphism M k , with the weights r k , i.e., (m 0 (ω)) j = M 0 (r 0 (ω)) j , ∀ j = 1, ..., dim P - r+1 Λ 0 (T ), (m 1 (dω)) j = M 1 (r 1 (dω)) j , ∀ j = 1, ..., dim P - r+1 Λ 1 (T ), the matrix G R , now denoted by G M , does not change, namely G M = G W (see Figure 3 for a visualization of this property). This gives a geometrical meaning to the set of moments M k at least for k = 0, 1 and allows to extend in a very natural way the tree-cotree techniques to the high order case when the two sets of degrees of freedom are the moments in M k .

To illustrate this fact we complete the analysis previously done in [START_REF] Alonso Rodríguez | The discrete relations between fields and potentials with high order Whitney forms[END_REF], by involving the isomorphism. In [START_REF] Alonso Rodríguez | The discrete relations between fields and potentials with high order Whitney forms[END_REF], we explained, for any k ∈ {0, . . . , n}, the information an integration by parts (IBP) formula can provide. We have shown that an IBP formula allows to identify the unknowns for fields in polynomial spaces. Moreover, it gives the way to reconstruct differential operators and potentials, once the unknowns (for fields and potentials) have been fixed. Hence, for k = 0, 1, the IBP formula reconstructs the gradient operator.

Weights: the matrix G

W If φ ∈ Λ 0 (T ) then dφ ∈ Λ 1 (T ). Its weights in P - r+1 Λ 1 (T ) are W σ,α (dφ) = τ α (f σ ) dφ = ∂(τ α (f σ )) φ = τ α (∂f σ ) φ = τ α (x σ(1) ) φ -τ α (x σ(0) ) φ
for all σ ∈ Σ(0 : 1, 0 : n) and α ∈ I σ (n + 1, r). Note that the weights of a 0-form in P - r+1 Λ 0 (T ) are the values at the points of the principal lattice, so

W σ,α (dφ) = φ(τ α (x σ(1) )) -φ(τ α (x σ(0) )).
We recall that ⌊α⌋ denotes the minimal element of 1) ] (n + 1, r). However being τ α (x σ(1) ) a point in the principal lattice of T we can write it as τ β (x j ) with

[[α]]. If σ ∈ Σ(0 : 1, 0 : n) and α ∈ I σ (n + 1, r) then σ(0) ≤ ⌊α⌋ and α ∈ I [x σ(0) ] (n + 1, r). On the other hand, if σ(0) ≤ ⌊α⌋ < σ(1) then α ̸ ∈ I [x σ(
β ∈ I [x j ] (n + 1, r). In fact, τ α (x σ(1) ) = τ β (x ⌊α⌋ ) with β = α + e σ(1) -e ⌊α⌋ . If σ(0) ≤ ⌊α⌋ < σ(1) then α + e σ(1) -e ⌊α⌋ ∈ I [x ⌊α⌋ ] (n + 1, r).
So we can write

W σ,α (dφ) = φ(τ α+e σ(1) -e ⌊α⌋ (x ⌊α⌋ )) -φ(τ α (x σ(0) )). (10) 
Example 10 For the sake of simplicity, in the following, in order to refer to the weight of a particular σ ∈ Σ(0 : d, 0 : n) we will write W f σ ,α instead of W σ,α . In P - 4 Λ k (T ) we have

W [x 0 ,x 3 ],(0,2,1,0) (dφ) = φ(τ (0,2,1,0) (x 3 )) -φ(τ (0,2,1,0) (x 0 )).
The multi-index (0, 2, 1, 0) does not belong to I [x 3 ] (4, 3). However

τ (0,2,1,0) (x 3 ) = τ (0,1,1,1) (x 1 )
and the multi-index (0, 1, 1, 1) belongs to I [x 1 ] (4, 3). So we have

W [x 0 ,x 3 ],(0,2,1,0) (dφ) = φ(τ (0,1,1,1) (x 1 )) -φ(τ (0,2,1,0) (x 0 )),

respectively. ⋄

Let us consider the (oriented) graph M G with nodes the small vertices (namely, the points of the principal lattice) and arcs the (oriented) small edges corresponding to couples (σ, α) with σ ∈ Σ(0 : 1, 0 : n) and α ∈ I σ (n + 1, r). Relation [START_REF] Christiansen | On high order finite element spaces of differential forms[END_REF] states that the all-nodes incidence matrix of M G is G ⊤ W , with G W the matrix representing the gradient operator at the discrete level using the weights W k for k = 0, 1 (thus extending to r > 0 the presentation done in [START_REF] Bossavit | Computational Electromagnetism[END_REF], Chap.5, for r = 0). For the construction of a global spanning tree of this graph for any r ≥ 0, see [START_REF] Santos | Construction of a spanning tree for high-order edge elements[END_REF]. For the tree-cotree technique intended as a way to impose uniqueness for a vector potential problem formulation, see [START_REF] Rapetti | On the tree gauge in magnetostatics[END_REF].

Moments: the matrix G M

We aim at associating an oriented graph, M G , with the gradient operator, when working with moments.

We note that when ω ∈ Λ 1 (T ) the moments defined in (8), M ζ,ρ,β (ω), have ρ ∈ Σ(0 : d -2, 1 : d). So there exists a unique element of {1, . . . , d} that is not in

[[ρ]]. Let us set j ρ := {1, . . . , d} \ [[ρ]]. Furthemore, if β ∈ I(d + 1, r) we set β! := β 0 ! • • • β d !.
We use these notations in the following proposition: Proposition 4 For k = 0, 1, let us consider the following moments in P - r+1 Λ k (T ):

-for d = k M ζ,∅,β (ω) := 1 β! M ζ,∅,β (ω) for each ζ ∈ Σ(0 : d, 0 : n) and β ∈ I(d + 1, r); -for d > k M ζ,ρ,β (ω) :=    (-1) jρ -1 β! M ζ,ρ,β (ω) if k = 1 1 β! M ζ,ρ,β (ω) if k = 0 for each ζ ∈ Σ(0 : d, 0 : n), ρ ∈ Σ(0 : d-(k +1), 1 : d), β ∈ I(d+1, r -(d-k)).
Then, if φ ∈ Λ 0 (T ), each moment of dφ ∈ Λ 1 (T ) is the difference of two moments of φ.

Proof If φ ∈ Λ 0 (T ) then dφ ∈ Λ 1 (T ) and its moments in P - r+1 Λ 1 (T ) are as follows.

• Case d = k = 1. For each ζ ∈ Σ(0 : 1, 0 : n) and β ∈ I(2, r), M ζ,∅,β (dφ) = f ζ Tr f ζ dφ ∧ λ β f ζ = f ζ d(Tr f ζ φ) ∧ λ β f ζ = -f ζ Tr f ζ φ ∧ dλ β f ζ + ∂f ζ Tr ∂f ζ φ ∧ Tr ∂f ζ λ β f ζ = (⋄) Since f ζ = [x ζ(0) , x ζ(1) ] then ∂f ζ = [x ζ(1) ] -[x ζ(0) ] (⋄) = - f ζ Tr f ζ φ ∧ β 0 λ β-e 0 f ζ dλ ζ(0) + β 1 λ β-e 1 f ζ dλ ζ(1) +(φλ β f ζ )(x ζ(1) ) -(φλ β f ζ )(x ζ(0) ) In [x ζ(0) , x ζ(1) ], dλ ζ(0) = -dλ ζ(1) (⋄) = f ζ Tr f ζ φ ∧ β 0 λ β-e 0 f ζ dλ ζ(1) - f ζ Tr f ζ φ ∧ β 1 λ β-e 1 f ζ dλ ζ(1) +(φλ β f ζ )(x ζ(1) ) -(φλ β f ζ )(x ζ(0) ).
Multiplying by 1 β! we obtain

1 β! f ζ Tr f ζ dφ ∧ λ β f ζ = β 0 β! f ζ Tr f ζ φ ∧ λ β-e 0 f ζ dλ ζ(1) - β 1 β! f ζ Tr f ζ φ ∧ λ β-e 1 f ζ dλ ζ(1) + 1 β! (φλ β f ζ )(x ζ(1) ) - 1 β! (φλ β f ζ )(x ζ(0) ).
We notice that

β j β! = 1 (β-e j )! if β j ̸ = 0 0 if β j = 0 .
Moreover, only two of these four terms are different from zero because if 

β 0 ̸ = 0 then (φλ β f ζ )(x ζ(1) ) = 0, whereas if β 1 ̸ = 0 then (φλ β f ζ )(x ζ(0) ) = 0. • Case d > k = 1. For each ζ ∈ Σ(0 : d, 0 : n), ρ ∈ Σ(0 : d -2, 1 : d) and β ∈ I(d + 1, r -(d -1)), M ζ,ρ,β (dφ) = f ζ Tr f ζ dφ ∧ λ β f ζ (dλ f ζ ) ρ = f ζ d(Tr f ζ φ) ∧ λ β f ζ (dλ f ζ ) ρ = - f ζ Tr f ζ φ ∧ d(λ β f ζ (dλ f ζ ) ρ ) + ∂f ζ Tr ∂f ζ φ ∧ Tr ∂f ζ (λ β f ζ (dλ f ζ ) ρ ) = - d i=0 β i f ζ Tr f ζ φ ∧ (λ β-e i f ζ dλ ζ(i) ) ∧ (dλ f ζ ) ρ + d i=0 (-1) i [x ζ(0) ,..., x ζ(i) ,...,x ζ(d) ] Tr ∂f ζ φ ∧ Tr ∂f ζ (λ β f ζ (dλ f ζ ) ρ ) = (⋆).
f ζ Tr f ζ φ ∧ (λ β-e 0 f ζ dλ ζ(0) ) ∧ (dλ f ζ ) ρ -β j ρ f ζ Tr f ζ φ ∧ (λ β-e jρ f ζ dλ ζ(j ρ ) ) ∧ (dλ f ζ ) ρ + [x ζ(1) ,...,x ζ(d) ] Tr ∂f ζ φ ∧ Tr ∂f ζ (λ β f ζ (dλ f ζ ) ρ ) +(-1) j ρ [x ζ(0) ,..., x ζ(jρ ) ,...,x ζ(d) ] Tr ∂f ζ φ ∧ Tr ∂f ζ (λ β f ζ (dλ f ζ ) ρ ).
Taking into account that in

f ζ , dλ ζ(0) = -d i=1 dλ ζ(i) and recalling that (dλ f ζ ) ρ = dλ ζ(1) ∧ • • • ∧ dλ ζ(j ρ ) ∧ • • • ∧ dλ ζ(d) it follows that dλ ζ(0) ∧ (dλ f ζ ) ρ = -dλ ζ(j ρ ) ∧ (dλ f ζ ) ρ , so (⋆) = β 0 f ζ Tr f ζ φ ∧ (λ β-e 0 f ζ dλ ζ(j ρ ) ) ∧ (dλ f ζ ) ρ -β j ρ f ζ Tr f ζ φ ∧ (λ β-e jρ f ζ dλ ζ(j ρ ) ) ∧ (dλ f ζ ) ρ + [x ζ(1) ,...,x ζ(d) ] Tr ∂f ζ φ ∧ Tr ∂f ζ (λ β f ζ (dλ f ζ ) ρ ) +(-1) j ρ [x ζ(0) ,..., x ζ(jρ ) ,...,x ζ(d) ]
Tr

∂f ζ φ ∧ Tr ∂f ζ (λ β f ζ (dλ f ζ ) ρ ). Moreover dλ ζ(j ρ ) ∧ (dλ f ζ ) ρ = dλ ζ(j ρ ) ∧ (dλ ζ(1) ∧ • • • ∧ dλ ζ(j ρ ) ∧ • • • ∧ dλ ζ(d) ) = (-1) j ρ -1 dλ ζ(1) ∧ • • • ∧ dλ ζ(d) . Then (⋆) = (-1) j ρ -1 β 0 f ζ Tr f ζ φ ∧ (λ β-e 0 f ζ dλ ζ(1) ∧ • • • ∧ dλ ζ(d) ) +(-1) j ρ β j ρ f ζ Tr f ζ φ ∧ (λ β-e jρ f ζ dλ ζ(1) ∧ • • • ∧ dλ ζ(d) ) + [x ζ(1) ,...,x ζ(d) ]
Tr

∂f ζ φ ∧ Tr ∂f ζ (λ β f ζ (dλ f ζ ) ρ ) +(-1) j ρ [x ζ(0) ,..., x ζ(jρ ) ,...,x ζ(d) ] Tr ∂f ζ φ ∧ Tr ∂f ζ (λ β f ζ (dλ f ζ ) ρ ) If j ρ = 1 then (dλ f ζ ) ρ = dλ ζ(2) ∧ • • • ∧ dλ ζ(d) . If j ρ > 1, we can use that in [x ζ(1) , . . . , x ζ(d) ] it holds dλ ζ(1) = -d j=2 dλ ζ(j) to write (dλ f ζ ) ρ = dλ ζ(1) ∧ • • • ∧ dλ ζ(j ρ ) ∧ • • • ∧ dλ ζ(d) = -dλ ζ(j ρ ) ∧ dλ ζ(2) ∧ • • • ∧ dλ ζ(j ρ ) ∧ • • • ∧ dλ ζ(d) = -(-1) j ρ dλ ζ(2) ∧ • • • ∧ dλ ζ(d) = (-1) j ρ -1 dλ ζ(2) ∧ • • • ∧ dλ ζ(d) .
So we have

(⋆) = (-1) j ρ -1 β 0 f ζ Tr f ζ φ ∧ (λ β-e 0 f ζ dλ ζ(1) ∧ • • • ∧ dλ ζ(d) ) +(-1) j ρ β j ρ f ζ Tr f ζ φ ∧ (λ β-e jρ f ζ dλ ζ(1) ∧ • • • ∧ dλ ζ(d) ) +(-1) j ρ -1 [x ζ(1) ,...,x ζ(d) ] Tr ∂f ζ φ ∧ Tr ∂f ζ (λ β f ζ (dλ ζ(2) ∧ • • • ∧ dλ ζ(d) )) +(-1) j ρ [x ζ(0) ,..., x ζ(jρ ) ,...,x ζ(d) ] Tr ∂f ζ φ∧Tr ∂f ζ (λ β f ζ (dλ ζ(1) ∧• • •∧ dλ ζ(j ρ ) ∧• • •∧dλ ζ(d) )).
Multiplying by (-1) jρ -1 β!

we have

(-1) j ρ -1 β! f ζ Tr f ζ dφ ∧ λ β f ζ (dλ f ζ ) ρ = β 0 β! f ζ Tr f ζ φ ∧ (λ β-e 0 f ζ dλ ζ(1) ∧ • • • ∧ dλ ζ(d) ) - β j ρ β! f ζ Tr f ζ φ ∧ (λ β-e jρ f ζ dλ ζ(1) ∧ • • • ∧ dλ ζ(d) ) + [x ζ(1) ,...,x ζ(d) ] Tr ∂f ζ φ ∧ Tr ∂f ζ (λ β f ζ (dλ ζ(2) ∧ • • • ∧ dλ ζ(d) )) - [x ζ(0) ,..., x ζ(jρ ) ,...,x ζ(d) ] Tr ∂f ζ φ ∧ Tr ∂f ζ (λ β f ζ (dλ ζ(1) ∧ • • • ∧ dλ ζ(j ρ ) ∧ • • • ∧ dλ ζ(d) )).
Finally we notice that if

β 0 ̸ = 0 then Tr [x ζ(1) ,...,x ζ(d) ] λ β f ζ = 0 while if β j ρ ̸ = 0 then Tr [x ζ(0) ,..., x ζ(jρ ) ,...,x ζ(d) ] λ β f ζ = 0.
This means that only two of these four terms are different from zero.

⊓ ⊔ Proposition 4 allows to associate an oriented graph, M G , with the gradient operator as follows: the set of nodes is the set of moments

M 0 := { M ζ,ρ,β ∈ (P - r+1 Λ 0 (T )) * : ζ ∈ Σ(0 : d, 0 : n), ρ ∈ Σ(0 : d -1, 1 : d), β ∈ I(d + 1, r -d), with 0 ≤ d ≤ n}
and the set of arcs is the set of moments

M 1 := { M ζ,ρ,β ∈ (P - r+1 Λ 1 (T )) * : ζ ∈ Σ(0 : d, 0 : n), ρ ∈ Σ(0 : d -2, 1 : d), β ∈ I(d + 1, r -(d -1)) with 1 ≤ d ≤ n}.
The arc corresponding with the moment M ζ,ρ,β ∈ M 1 goes from the node M ζ 0 ,ρ 0 ,β 0 to the node M ζ 1 ,ρ 1 ,β 1 , both in M 0 , if, for any φ ∈ Λ 0 (T ), we have

M ζ,ρ,β (dφ) = M ζ 1 ,ρ 1 ,β 1 (φ) -M ζ 0 ,ρ 0 ,β 0 (φ).
As a consequence, also in this case, the all-nodes incidence matrix of the graph M G is G ⊤ M with G M the matrix representing the gradient operator at the discrete level when using these moments.

Proposition 5

The two graphs M G and M G coincide, that is, by considering these moments, the map W k preserves the matrix of the gradient operator in the following sense: for any φ ∈ Λ 0 (T ), if

M ζ,ρ,β (dφ) = M ζ 1 ,ρ 1 ,β 1 (φ) -M ζ 0 ,ρ 0 ,β 0 (φ) then (W 1 M ζ,ρ,β )(dφ) = (W 0 M ζ 1 ,ρ 1 ,β 1 )(φ) -(W 0 M ζ 0 ,ρ 0 ,β 0 )(φ).
We propose to check the claim of Proposition 5 by presenting three rather general examples for n = 3 and r = 3. In the three cases, we proceed as follows:

we start from M ζ,ρ,β (dφ) and, by IBP, we obtain the moments M

ζ 1 ,ρ 1 ,β 1 and M ζ 0 ,ρ 0 ,β 0 such that M ζ,ρ,β (dφ) = M ζ 1 ,ρ 1 ,β 1 (φ) -M ζ 0 ,ρ 0 ,β 0 (φ);
we compute (W 1 M ζ,ρ,β )(dφ) and by Stokes' theorem we write it as the difference of two weights

(W 1 M ζ,ρ,β )(dφ) = W σ 1 ,α 1 (φ) -W σ 0 ,α 0 (φ);
finally we check that, for j = 0, 1, we have

W 0 M ζ j ,ρ j ,β j (φ) = W σ j ,α j (φ). . Example 11 Let us consider M ζ,∅,β (dφ) with ζ ∈ Σ(0 : 1, 0 : 3), ζ(0) = 1, ζ(1) = 3 and β = (1, 2). -M ζ,∅,β (dφ) = 1 1! 2! M ζ,∅,β (dφ) = 1 2 [x 1 ,x 3 ] dφ (λ 1 λ 2 
3 ) and by IBP we get

1 2 [x 1 ,x 3 ] dφ (λ 1 λ 2 3 ) = 1 2 -[x 1 ,x 3 ] φ d(λ 1 λ 2 3 ) + (φ λ 1 λ 2 3 )(x 3 ) -(φ λ 1 λ 2 3 )(x 1 ) = -1 2 [x 1 ,x 3 ] φ d(λ 1 λ 2 3 ) = -1 2 [x 1 ,x 3 ] φ λ 2 3 (dλ 1 ) -[x 1 ,x 3 ] φ λ 1 λ 3 (dλ 3 ) = 1 2 [x 1 ,x 3 ] φ λ 2 3 (dλ 3 ) -[x 1 ,x 3 ] φ λ 1 λ 3 (dλ 3 ) = 1 2 M ζ,ρ,(0,2) (φ) -M ζ,ρ,(1,1) (φ) = M ζ,ρ,(0,2) (φ) -M ζ,ρ,(1,1) (φ).
-The corresponding weight is

(W 1 M ζ,∅,β )(dφ) = (W 1 M ζ,∅,β )(dφ) = τ (0,1,0,2) ([x 1 ,x 3 ]) dφ.
Since the boundary of τ (0,1,0,2) ([x 1 , x 3 ]) is ∂τ (0,1,0,2) ([x 1 , x 3 ]) = τ (0,1,0,2) (x 3 ) -τ (0,1,0,2) (x 1 ), by Stokes' theorem we have

τ (0,1,0,2) ([x 1 ,x 3 ]) dφ = φ(τ (0,1,0,2) (x 3 )) -φ(τ (0,1,0,2) (x 1 )) = φ(τ (0,0,0,3) (x 1 )) -φ(τ (0,1,0,2) (x 1 )) = W [x 1 ],(0,0,0,3) (φ) -W [x 1 ](0,1,0,2) (φ).
-Finally we observe that

W 0 M ζ,ρ,(0,2) (φ) = W 0 [x 1 ,x 3 ] φ λ 2 3 (dλ 3 ) = W [x 1 ],(0,0,0,3) (φ)
and -In this example ρ j = 1 and M ζ,ρ,β (dφ) = (-1) 1-1

W 0 M ζ,ρ,(1,1) (φ) = W 0 [x 1 ,x 3 ] φ λ 1 λ 3 (dλ 3 ) = W [x 1 ],( 0 
1! 1! [x 0 ,x 1 ,x 3 ] dφ ∧ λ 1 λ 3 (dλ 3 ). By IBP, we obtain Since the boundary of τ (0,1,0,2) ([x 0 , x 1 ]) is ∂τ (0,1,0,2) ([x 0 , x 1 ]) = τ (0,1,0,2) (x 1 ) -τ (0,1,0,2) (x 0 ) by Stokes' theorem we have τ (0,1,0,2) ([x 0 ,x 1 ]) dφ = φ(τ (0,1,0,2) (x 1 )) -φ(τ (0,1,0,2) (x 0 )).

-Finally we observe that dφ ∧ λ 3 (dλ 1 ∧ dλ 3 ).

By IBP, we have

-[x 0 ,x 1 ,x 2 ,x 3 ] dφ ∧ λ 3 (dλ 1 ∧ dλ 3 ) = [x 0 ,x 1 ,x 2 ,x 3 ] φ ∧ d(λ 3 dλ 1 ∧ dλ 3 ) -∂[x 0 ,x 1 ,x 2 ,x 3 ] φ ∧ λ 3 (dλ 1 ∧ dλ 3 ) = -[x 1 ,x 2 ,x 3 ] φ ∧ λ 3 (dλ 1 ∧ dλ 3 ) -[x 0 ,x 1 ,x 3 ] φ ∧ λ 3 (dλ 1 ∧ dλ 3 ) = [x 1 ,x 2 ,x 3 ] φ ∧ λ 3 (dλ 2 ∧ dλ 3 ) -[x 0 ,x 1 ,x 3 ] φ ∧ λ 3 (dλ 1 ∧ dλ 3 )
since d(λ 3 dλ 1 ∧ dλ 3 ) = 0, λ 3 dλ 1 ∧ dλ 3 = 0 on [x 0 , x 2 , x 3 ] and [x 0 , x 1 , x 2 ], and dλ 1 = -dλ 2 -dλ 3 on [x 1 , x 2 , x 3 ].

-The corresponding weight is (W 1 M ζ,ρ,β )(dφ) = τ (0,1,0,2) ([x 0 ,x 2 ]) dφ.

Since the boundary of τ (0,1,0,2) ([x 0 , x 2 ]) is ∂τ (0,1,0,2) ([x 0 , x 2 ]) = τ (0,1,0,2) (x 2 ) -τ (0,1,0,2) (x 0 ) by Stokes' theorem we have τ (0,1,0,2) ([x 0 ,x 2 ]) dφ = φ(τ (0,1,0,2) (x 2 )) -φ(τ (0,1,0,2) (x 0 )) = φ(τ (0,0,1,2) (x 1 )) -φ(τ (0,1,0,2) (x 0 )),

where we have used that τ (0,1,0,2) (x 2 ) = τ (0,0,1,2) (x 1 ). We prefer this second form because α = (0, 1, 0, 2) ̸ ∈ I φ ∧ λ 3 (dλ 1 ∧ dλ 3 ) = φ(τ (0,1,0,2) (x 0 )), respectively. ⋄

Conclusions

The spaces P - 1 Λ k (T ) present a high geometrical feature, having one degree of freedom per k-simplex in T , and thus being isomorphic to the space of simplicial k-cochains. These spaces were indeed introduced in 1957 by Whitney in his book [START_REF] Whitney | Geometric Integration Theory[END_REF]. For r = 1, the connection of Whitney's spaces with mixed finite elements, appeared in the late 70s, was developed by Bossavit in the 80s. With the time passing, in [START_REF] Rapetti | Whitney forms of higher degree[END_REF] we were able to generalize this connection to r > 1 and to introduce new DoFs for P - r+1 Λ k (T ), the weights on the small k-simplices of T . In this contribution, we have made a step forward, namely we have constructed isomorphisms W k , for any value of k ∈ {0, . . . , n}, between moments and weights for fields in the discrete spaces P - r+1 Λ k (T ), for r ≥ 0. Furthermore, we have shown that, with a suitable definition of moments, the newly introduced isomorphisms W k preserves, for example, the gradient matrix G (i.e., the matrix G has fixed entries G i,j , whatever type of DoFs, weights or moments, are used in P - r+1 Λ k (T )). We can thus transfer, for any r ≥ 0, all achievements on tree-cotree construction for weights in, e.g, [START_REF] Bossavit | Computational Electromagnetism[END_REF][START_REF] Rapetti | On the tree gauge in magnetostatics[END_REF][START_REF] Santos | Construction of a spanning tree for high-order edge elements[END_REF] (see also the therein references) to the case of moments (see, e.g., [START_REF] Nédélec | Mixed finite elements in R 3[END_REF][START_REF] Monk | Finite element methods for Maxwell's equations[END_REF]). The construction for the isomorphism between weights and moments is compatible (see Figure 3, for k = 0, 1) with the powerful and general toolkit sharpened by Alain Bossavit all along his carreer.

For a map

  σ ∈ Σ(j : l, m : n), [[σ]] will indicate its range, i.e., [[σ]] = {σ(i) : i ∈ {j, . . . , l}} ⊂ {m, . . . , n}.

  we have [[ζ]] = {0, 2, 3}, [[ρ]] = {1}, and [[ζ • ρ]] = {2}. Then σ ∈ Σ(0 : 1, 0 : 3) with [[σ]] = {0, 2, 3}\{2} = {0, 3} so σ(0) = 0, σ(1) = 3. Concerning the multi-index, first we compute β = (2, 0, 1) + (0, 1, 0) = (2, 1, 1).

  Taking into account the fact that ifi ∈ [[ρ]] then Tr [x ζ(0) ,..., x ζ(i) ,...,x ζ(d) ] (dλ f ζ ) ρ = 0 and dλ ζ(i) ∧ (dλ f ζ ) ρ = 0, both sums reduce to i ∈ {0, . . . , d} \ [[ρ]]. Recalling that k = 1, ρ ∈ Σ(0 : d -2, 1 : d) so bothsums reduce, in fact, to two terms i = 0 and i = {1, . . . , d} \ [[ρ]] =: j ρ . So we have (⋆) = -β 0

Example 12

 12 Let us consider the moment M ζ,ρ,β (dφ) with ζ ∈ Σ(0 : 2, 0 : 3), ζ(0) = 1, ζ(1) = 1, ζ(2) = 3, ρ ∈ Σ(0 : 0, 1 : 2), ρ(0) = 2 and β = (0, 1, 1).

[x 0

 0 ,x 1 ,x 3 ] dφ ∧ λ 1 λ 3 (dλ 3 ) = -[x 0 ,x 1 ,x 3 ] φ d(λ 1 λ 3 dλ 3 ) + ∂[x 0 ,x 1 ,x 3 ] φ ∧ λ 1 λ 3 (dλ 3 ) = -[x 0 ,x 1 ,x 3 ] φ λ 3 (dλ 1 ∧ dλ 3 ) + [x 1 ,x 3 ] φ ∧ λ 1 λ 3 (dλ 3 ) since d(λ 1 λ 3 dλ 3 ) = λ 3 dλ 1 ∧ dλ 3 , λ 1 = 0 in [x 0 , x 3 ] and λ 3 = 0 in [x 0 , x 1 ]. -The corresponding weight is (W 1 M ζ,ρ,β )(dφ) = τ (0,1,0,2) ([x 0 ,x 1 ])dφ.

W 0 [ 0 [x 1

 001 x 0 ,x 1 ,x 3 ] φ λ 3 (dλ 1 ∧ dλ 3 ) = φ(τ (0,1,0,2) (x 0 )) and W ,x 3 ] φ ∧ λ 1 λ 3 (dλ 3 ) = φ(τ (0,1,0,2) (x 1 )),respectively. ⋄ Example 13 Let us consider the moment M ζ,ρ,β (dφ) with ζ ∈ Σ(0 : 3, 0 : 3), ρ ∈ Σ(0 : 1, 1 : 3), ρ(0) = 1, ρ(1) = 3 and β = (0, 0, 0, 1).-In this example ρ j = 2 andM ζ,ρ,β (dφ) = (-1) 2-1 1! [x 0 ,x 1 ,x 2 ,x 3 ]

[x 2 ]

 2 [START_REF] Arnold | Finite Element Exterior Calculus[END_REF][START_REF] Alonso Rodríguez | Some remarks on spanning families and weights for high order Whitney spaces on simplices[END_REF] since ⌊α⌋ = 1 < 2 while α ′ = (0, 0, 1, 2) ∈ I [x 1 ] (4, 3) since ⌊α ′ ⌋ = 2 ≥ 1.-Finally we observe thatW 0 [x 0 ,x 2 ,x 3 ] φ ∧ λ 3 (dλ 2 ∧ dλ 3 ) = φ(τ (0,0,1,2) (x 1 )) and W 0 [x 0 ,x 1 ,x 3 ]

If ρ * ∈ Σ(0 : k, 0 : d) is the complementary map of ρ, namely, [[ρ]] ∪ [[ρ * ]] = {0, 1, . . . , d} then σ = ζ • ρ * .
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