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High quality document layout analysis is fundamental to the accurate processing of handwritten textual material, on both the level of individual lines and higher order zones demarking textual and non-textual content. We present an artificial neural network based approach to prediction of either that is implemented as part of a libre optical character recognition package and highly reconfigurable for a variety of tasks. Experiments on different openly available datasets show competitive results to state-of-the-art methods.

I. INTRODUCTION

Over the last decades tremendous amounts of historical handwritten documents have been digitized by archives, libraries, and other institutions engaging in the preservation of cultural heritage. Nevertheless the vast volume of scanned images, often with lack of metadata, results in the majority of this material being inaccessible in any meaningful way to scholars and the wider public. Optical Character Recognition 1 and Keyword Spotting aim to be technical solutions to the exploitation of large amounts of scanned textual data.

Current OCR systems operate largely on line-level data, i.e. the module in the OCR pipeline performing conversion into text does so one line image at a time. Therefore, a prior method is needed to extract these line images from whole document images. In addition, many documents require higher level understanding of how lines relate to each other for meaningful interaction. The usual way these higher level relations are modelled is through zoning, i.e. splitting a page into regions such as main text, marginalia, headings, illustrations, etc. Importantly, the nature of those regions can vary considerably between applications and material; they can often overlap, lines might extend across them or not be in any region at all. Consequently, text line extraction and region detection are arguably the most important part of an OCR system apart from the actual text recognizer.

As such, robust and accurate historical and handwritten document image analysis remains an open issue despite the recent advances facilitated by deep learning methods. Highly curved lines, variable orientation, interlinear notes, and multiple texts on the same page remain challenging to even state 1 As methods have converged considerably we do not distinguish between recognition of printed (OCR) and handwritten text (HTR) of the art layout analysis systems. Further, cultural bias in the conception of methods and data models continues to be a persistent problem: [START_REF] Kiessling | Badam: A public dataset for baseline detection in arabic-script manuscripts[END_REF] shows the large amount of adaptation necessary to apply a seemingly script-neutral line model to Arabic manuscripts.

For our purposes we consider layout analysis along two principal axes. The geometric axis deals with the location, shape, and relations of found entitites, e.g. the by now obsolete character segmentation, text line extraction, and region detection. Text line extraction refers to the locating of individual text lines in the document images. In most modern LA systems text lines are the smallest unit of output, albeit for specialized tasks like scene text recognition subdivisions into words is also widespread. Region detection aims to find higher level, almost exclusively structural, zones, both textual and not, in document images.

The semantic axis concerns itself with the functional nature of detected entities, such as titles, illustrations, apparatus criticus, . . . . While not strictly necessary for most applications and often neglected outside of tools tailored for specific input data, enriching with semantic information can both boost raw metrics through allowing better incorporation of domain knowledge and aid in human understanding by improving output structuring, such as suppressing certain ancillary textual components.

Of note is that the focus of most methods is limited to a single or a subset of the tasks and axes. For example, no method could be found that allows semantic classification of both region and text line detection output simultaneously. In contrast, our method admits geometric and semantic classification on both text lines and regions while not requiring either.

Our method is implemented as part of a free OCR engine 2 which exposes the full customizability of the method's layout analysis features to end users. Hence, we are referring to the system as modular; it is possible to perform a wide range of tasks, ranging from simple text line extraction to highly specialized analysis like writing surface defect detection in a unified software package.

A. Related work

As a well established task in computer vision research a number of comprehensive surveys of document layout analysis 2 http://kraken.re exist [START_REF] Binmakhashen | Document layout analysis: A comprehensive survey[END_REF]- [START_REF] Nagy | Twenty years of document image analysis in pami[END_REF].

B. Text line extraction

The capabilities of text line extraction methods in the literature is to some extent driven by existing datasets. A variety of formulations for line extraction can be found in published datasets. These range from polygons [START_REF] Fischer | Transcription alignment of latin manuscripts using hidden markov models[END_REF]- [START_REF] Clausner | Icfhr 2018 competition on recognition of historical arabic scientific manuscripts-rasm2018[END_REF], to subword bounding boxes [START_REF] Kassis | Vml-hd: The historical arabic documents dataset for recognition systems[END_REF], down to explicit pixel labeling [START_REF] Gatos | Ichfr 2010 handwriting segmentation contest[END_REF]. Some others such as [START_REF] Antonacopoulos | Icdar2015 competition on recognition of documents with complex layouts-rdcl2015[END_REF], [START_REF]Historical document layout analysis competition[END_REF] also include extensive metadata like reading order, text order, or full transcriptions. A recent model [START_REF] Diem | cbad: Icdar2017 competition on baseline detection[END_REF] reduces text line detection to the extraction of baselines, i.e. imaginary polylines upon which the text rests or hangs from. These polylines in combination with a bounding polygon can be ingested by line-based text recognizers with minimal adaptation while at the same time requiring only modest effort for manual annotation, encouraging the creation of substantial training datasets for machine learning based methods.

The methods employed for text line extraction are just as varied as the the data models employed. [START_REF] Ouwayed | A general approach for multi-oriented text line extraction of handwritten documents[END_REF], [START_REF] Diem | Text line detection for heterogeneous documents[END_REF] use connected components combined with filtering to perform pixel labeling. A common paradigm utilizes projection profiles in one way or another such as [START_REF] Arvanitopoulos | Seam carving for text line extraction on color and grayscale historical manuscripts[END_REF] for bounding box extraction, [START_REF] Saabni | Text line extraction for historical document images[END_REF], [START_REF] Moysset | Paragraph text segmentation into lines with recurrent neural networks[END_REF] in combination with seamcarving for polygonal output, or RNN-based artificial projection profile generation for in-paragraph line splitting in [START_REF] Garz | Binarization-free text line segmentation for historical documents based on interest point clustering[END_REF]. A common drawback of the previously mentioned methods is that they operate on binarized input images which can be difficult to obtain for degraded historical material. [START_REF] Ahn | Textline detection in degraded historical document images[END_REF]- [START_REF] Mechi | Text line segmentation in historical document images using an adaptive u-net architecture[END_REF] bypass this requirement through clustering of superpixels that can be obtained directly from color or grayscale image data to calculate polygons and baselines respectively. A number of deep learning based schemes have been proposed as well: [START_REF] Quirós | Multi-task handwritten document layout analysis[END_REF]- [START_REF] Baechler | Multi resolution layout analysis of medieval manuscripts using dynamic mlp[END_REF] apply variants of the U-Net architecture for semantic segmentation.

C. Region detection

Region detection is almost always performed across both the geometric and semantic axis although they vary in the variety of zone labels they can yield. The most basic methods such as [START_REF] Chen | Page segmentation for historical handwritten document images using color and texture features[END_REF], [START_REF] Déjean | Versatile layout understanding via conjugate graph[END_REF] only distinguish between text and non-text regions while [START_REF] Soullard | Multi-scale gated fully convolutional densenets for semantic labeling of historical newspaper images[END_REF] can in principle be extended to all textual regions determinable solely by layout relations, and [START_REF] Oliveira | dhsegment: A generic deeplearning approach for document segmentation[END_REF], [START_REF] Baechler | Multi resolution layout analysis of medieval manuscripts using dynamic mlp[END_REF], [START_REF] Kaddas | A deep convolutional encoder-decoder network for page segmentation of historical handwritten documents into text zones[END_REF], [START_REF] Lemaitre | Multiresolution cooperation makes easier document structure recognition[END_REF] are able to distinguish arbitrary, non-overlapping regions with appropriate training data.

Like for text line extraction [START_REF] Oliveira | dhsegment: A generic deeplearning approach for document segmentation[END_REF], [START_REF] Baechler | Multi resolution layout analysis of medieval manuscripts using dynamic mlp[END_REF], [START_REF] Kaddas | A deep convolutional encoder-decoder network for page segmentation of historical handwritten documents into text zones[END_REF] variants of convolutional encoder-decoder networks are popular albeit pixel classifiers on handcrafted features [START_REF] Chen | Page segmentation for historical handwritten document images using color and texture features[END_REF], [START_REF] Déjean | Versatile layout understanding via conjugate graph[END_REF] exist. [START_REF] Soullard | Multi-scale gated fully convolutional densenets for semantic labeling of historical newspaper images[END_REF] performs clustering of text lines with convolutional conjugate graph networks. Definite clause grammars on a feature vocabulary as part of a user-driven interactive segmentation system are shown in [START_REF] Visin | Renet: A recurrent neural network based alternative to convolutional networks[END_REF].

II. METHOD

This section describes the proposed method for joint text line and region layout analysis. Our method can be divided into three main stages: multi-label pixel classification, baseline extraction and polygonization, and region extraction.

The first stage comprises of an Artifical Neural Network which outputs the probability of one or more classes (baselines, regions, and auxiliary classes) being present for each pixel of the input image. The second stage consists of the postprocessing extracting baselines from the auxiliary and baseline classes heatmaps, followed by a seam-carving step incorporating the original image to compute the bounding polygons required for inclusion of our method in a fully functional OCR pipeline. The final step extracts the regions from their respective class heatmaps through a contour finding algorithm. Notably, baselines are not restricted to regions, i.e. they can occur outside of regions and cross region boundaries.

A. R-BLLA -Architecture

The overall pixel labeling network neural network is described in Fig 1 . Instead of conventional semantic segmentation encoder-decoder networks whose output is at the same scale as the input, our architecture decodes the learned representations at the downsampled scale of the last layer as the spatial information of regions and baselines can be recovered with sufficient accuracy at this reduced resolution. This architecture roughly halves the memory requirements in comparison to an equivalent U-Net with a Resnet-50 backbone.

Our network is composed of a convolutional feature extractor, utilizing atrous convolutions (3 × 3 kernel size with 2 × 2 dilation, ReLU activation) to increase receptive field without increasing filter size or a more memory intensive deeper decoding network. This convolutional stack is followed by consecutive unidimensional LSTM layers as proposed for the ReNet architecture [START_REF] Wu | Group normalization[END_REF]. In this configuration the feature maps from the previous layers are swept by a bidirectional 1D LSTM layer in one direction (vertical or horizontal), followed by a second sweep over the output by a LSTM layer in the other direction, attaining similar performance to more complex multidimensional RNNs. The final decoding layer is a 1 × 1 convolution with |τ | filters and a sigmoid activation function that results in per class probability maps. Regularization is performed with group normalization (G = 32) [START_REF] Buslaev | Albumentations: Fast and flexible image augmentations[END_REF] after each convolutional layer.

The output of the network is a stack of probability maps ŷ ∈ R w/n×h/n×|τ | for an input image I ∈ R w×h×c with height h, width w, c channels, a downsampling factor n, and |τ | different classes {start sep, end sep, bl 0 , . . . , bl k , reg 0 , . . . , reg l } for k and l different baseline and region types. The special classes start sep and end sep are placed at the beginning and end of each baseline respectively and serve two purposes. First, by explicitly encoding line bounds at locations where lines can be minimally separated such as multi-column texts we avoid inadvertent baseline merging during postprocessing. Second, introducing separate indicator classes for the beginning and end of a line allows the system to determine the orientation of lines. These auxiliary classes are shared across all possible baseline classes {bl 0 , . . . , bl k }. As our method is intended to work with most scripts, including multi-script documents, 

B. Training

The network is trained in a supervised manner with binary cross-entropy loss L(y, ŷ) = 1

N N i=0 (y • log(ŷ i ) + (1 -y) • log(1 -ŷi )).
We adopt the Adam optimizer with moderate weight decay (α = 20 -5 , β 1 = 0.9, β 2 = 0.999, w = 10 -6 ). Input data are whole RGB color images scaled to a height of 1200 pixels.

In line with conventional practice, data augmentation is applied to the training set. With a probability of 0.5 a set of randomly parametrized transformations such as rotation, flipping, blurring, shifting, elastic transformations and hue changes are applied to each image [START_REF] Grüning | A twostage method for text line detection in historical documents[END_REF].

We train for a fixed number of epochs, per default 50.

C. Baseline vectorization

Baseline vectorization refers to the extraction of baselines from the probability map output of the model. This task consists of multiple substeps: superpixel calculation, triangulation filtering, and interpolation.

As the process is identical for each baseline type we define the output of the neural network for an arbitrary baseline type H = ŷ:,:,n , n ∈ {bl 0 , . . . , bl k }. P = ŷ:,:,start sep , Q = ŷ:,:,end sep . Further we define a combined separator map C = P + Q.

In a first step we reduce the number of pixels to be considered for baseline clustering through calculating a subset T of all image pixels. Elements of this subset are called superpixels (SPs). Determining SPs is largely identical to the algorithm proposed in [START_REF] Avidan | Seam carving for content-aware image resizing[END_REF]. For an arbitrary probability map H the map is binarized with a threshold 0.2 producing H b and skeletonized with a medial axis transformation that also returns a distance transform of H b , resulting in the skeleton H s and the average diameter d cc of each uneroded baseline. All foreground pixels in H s are projected onto H and sorted in descending order by their probability (S). T is iteratively filled by removing elements from T as long as their distance exceed a minimum (d min = 10) from all other pixels in S.

Algorithm 1 Triangulation filter

Input: DT (T ), H, C

1: E = ∅ 2: for e p,q ∈ DT (T ) do if µ(H, e p,q ) ≥ 0.4 ∧ σ 2 (H, e p,q ) ≤ 0.05 then if µ(C, e p,q ) ≤ 0.125 ∧ max(C, e p,q ) ≤ 0.25 then

5:

E ← e p,q 6: end if

7:
end if 8: end for 9: return E

The following step of the vectorization algorithm filters the Delaunay triangulation DT (T ) of T to subdivide it into a set of baseline clusters. An edge between two SPs p, q ∈ DT (T ) is denoted by e p,q . As a prerequisite of the filtering algorithm we also define a number of edge metrics. Given the discrete line coordinates produced by a line drawing method l(e p,q ) between the SPs p, q we define for an arbitrary map I ∈ {H, P, Q}: µ(I, e p,q ) = 1

|p-q|2

I[l(e p,q )] σ 2 (I, e p,q ) = 1 |p-q|2

(I[l(e p,q )] -µ(I, e p,q )) 2 max(I, e p,q ) = max(I[l(e p,q )])

The output of the filtering algorithm Alg. 1 is a set of edges E defining a euclidean distance-weighted graph graph G E = G(V, E, w) where V = {p, q}, ∀e p,q ∈ E, w(e p,q ) = |p -q| 2 , with a set of components C G E . Each component C G E n is treated as a separate baseline cluster. The remaining task is to create a directed polyline representation of each cluster. For each cluster we calculate the pairwise distances of all vertices and select the two most distant nodes a, b as the extrema of the baseline. The polyline approximation of each cluster is the shortest path γ a,b between the extrema in C G E n . A slight correction of the line coordinates is necessary to compensate for the erosion incurred through the skeletonization prior to superpixel selection. The adjusted polyline path γ a ,b of γ a,b is obtained by elongating the initial and last edges by d cc .

Due to the unknown orientation of each line we inspect each line end's affinity to the difference between the separator classes. As the separators are placed beyond the end of the line, the values of the separator maps at those points are commonly close to 0. By preprocessing P, Q with a maximum filter of size 2 • d min resulting in maps P , Q containing sufficiently dilated separators the correct line orientation is such that:

L(γ a ,b , P , Q ) =          γ a ,b if(P -Q ) p > 0.2∧ (Q -P ) q > 0.2 rev(γ a ,b ) if(P -Q ) p > 0.2∧ (Q -P ) q > 0.2 otherwise L(γ a ,b , P , Q ) = γ a ,b a x ≤ b x rev(γ a ,b ) a x > b x
The final baselines for each baseline class is the set of all paths Γ m = {γ 1 , . . . , γ o }, m ∈ {bl 0 , . . . , bl k }, o ∈ N determined as above.

D. Polygonization

For recognition by an HTR engine the vectorized baselines have to be supplemented by full polygons. A baseline with polygon can then rectified to produce a normalized line image with suppression of non-line content by projection onto a straight baseline through a piecewise affine transformation, allowing recognition of even highly curved lines by text recognition models.

Our polygonization algorithm consists of a line-wise seam carving [START_REF] Lorensen | Marching cubes: A high resolution 3d surface construction algorithm[END_REF] biased by distance from the baseline. The initial energy map is the derivative of the smoothed grayscale input image I σ :

E(I σ ) = ∂(I σ ) ∂x + ∂(I σ ) ∂(y)
The primary purpose of the smoothing is to prevent the seam from crossing below disconnected line components such as diacritics and tonal marks. A gaussian filter with σ = 2.5 is sufficient for this purpose. Our implementation estimates the gradient with the Sobel operator.

Let {Γ 0 , . . . , Γ n , . . . , Γ m }, 0 < n < m, m ∈ {bl 0 , . . . , bl k } be the baselines of all classes and γ ∈ Γ n be an arbitrary baseline. To calculate the bounding polygon we first extract two regions of interest (RoI) E(I σ )[r left ] and E(I σ )[r right ] around γ; these RoIs contain the energy map area between the left-and righthand side of γ and {Γ 0 , . . . , Γ n \ γ, . . . , Γ m } as shown in Fig. 2b. The seams through r left and r right will form the respective halves of the bounding polygon.

Depending on the layout of the document the RoIs can vary considerably in size. Especially for baselines bordered only by the energy map boundaries, a distance bias has to be added to the energy map to ensure sufficiently tight boundary polygons. The biased energy map E (I σ )[r l ], l ∈ {left, right} is computed through a euclidean distance transform D from the baseline with a scaling factor:

E (I σ )[r l ] = E(I σ )[r l ] + D • E(I σ )[r l ] • 0.01.
Requiring a rectangular area and principal direction for seam calculation, the RoIs need to be rotated. We rotate each RoI patch by the magnitude-weighted average direction. The energy-minimizing seam for each patch is then calculated using dynamic programming as described in [START_REF] Lorensen | Marching cubes: A high resolution 3d surface construction algorithm[END_REF]. Afterwards, the seams are rotated back into the original image coordinate system and concatenated to form the final bounding polygon for a line. Fig. 2c shows the result for a single line. 

E. Region extraction

Regions are extracted from the network output for each region type separately by thresholding at 0.5 and then extracting the contours around high-valued regions using the marching squares algorithm [START_REF] Markus | ICDAR 2019 Competition on Baseline Detection (cBAD)[END_REF].

III. EVALUATION

We evaluate the performance of the proposed method on 4 publicly available datasets: cBAD 2019 [START_REF] Toselli | Htr dataset icfhr 2016[END_REF], Bozen [START_REF] Quirós | From hmms to rnns: computer-assisted transcription of a handwritten notarial records collection[END_REF], OHG [START_REF] Grüning | Read-bad: A new dataset and evaluation scheme for baseline detection in archival documents[END_REF], and BADAM [START_REF] Kiessling | Badam: A public dataset for baseline detection in arabic-script manuscripts[END_REF]. Bozen and OHG are Latin script 3 Calculated on random 200 pages of the test set. 4 Combined region and baseline model datasets with both region and baseline annotations, cBAD consists largely of Latin script annotated on the baseline line, while BADAM is an exclusively Arabic script baseline dataset.

For datasets providing both region and line data models we evaluate models trained solely on baselines and combined baseline and region detection models.

A. Metrics

Baseline measurements for precision, recall, and F1-score are calculated as defined in [START_REF] Long | Fully convolutional networks for semantic segmentation[END_REF] with the default tolerance parameters. For region segmentation the standard metrics mean accuracy, mean intersection-over-union, and frequencyweighted intersection over union are reported: mean accuracy (1/n cl ) i n ii /t i mean IU

(1/n cl ) i n ii /(t i + j n ji -n ii ) frequency weighted IU k t k ) -1 i t i n ii /(t i + j n jin ii ) where n ij is the number of pixels of class i predicted to belong to class j, where there are n cl different region classes and t i = j n ij is the total number of pixels of class i [START_REF] Romero | Influence of text line segmentation in handwritten text recognition[END_REF].

Two aspects of the proposed method are not evaluated as there are no available datasets or widely accepted metrics: the orientation of the baseline (orientation is disregarded by [START_REF] Long | Fully convolutional networks for semantic segmentation[END_REF] and only one dataset contains rotated lines) and the polygonization. According to [43] the size of the environment extracted around the baseline is not crucial to recognition accuracy as long as the line contents are contained in the rectified line image.

Results are reported in table I and II for baseline and region detection respectively.

IV. CONCLUSION

In this work we presented a flexible machine learning based method for text line and region layout analysis for historical documents including procedures for postprocessing which enable its use in a typical OCR workflow without further adaptation. The experimental results show its competitiveness with the current state of the art on a number of historical document layout analysis benchmarks.
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 1 Fig. 1: Architecture of the pixel labelling network. Group normalization layers are omitted. (salmon: 3x3 convolutional layers, dotting indicates dilation by 2x2; purple: 1x1 convolution, blue: bidirectional LSTM blocks, striping indicates row/column time axis; grey: 1x1 convolution with |τ | filters + sigmoid)

Fig. 2 :

 2 Fig. 2: Examples of the data model and intermediate representations for a page from the BADAM [1] dataset

TABLE I :

 I Baseline recognition metrics on cBAD 2019, BADAM, OHG, and Bozen

		P-val	R-val	F-val
	cBAD			
	Planet	0.937	0.926	0.931
	DMRZ	0.925	0.905	0.915
	UPVLC	0.911	0.902	0.907
	TJNU	0.852	0.885	0.868
	DMRZ-2017 0.773	0.743	0.758
	proposed 3	0.867	0.945	0.904
	BADAM			
	[1]	0.941	0.901	0.924
	proposed	0.932	0.957	0.944
	OHG			
	[24]	0.962	0.971	0.966
	[24] 4	0.984	0.977	0.980
	proposed	0.978	0.973	0.975
	proposed 4	0.909	0.919	0.914
	Bozen			
	[24]	0.958	0.991	0.974
	[24] 4	0.945	0.989	0.966
	proposed	0.972	0.982	0.977
	proposed 4	0.936	0.949	0.942

TABLE II :

 II Metrics for the region detection task of the OHG and Bozen datasets

		Mean acc	Mean IU	fw IU
	OHG			
	[24]	0.789	0.727	0.872
	proposed 0.988	0.486	0.912
	Bozen			
	[24]	0.933	0.827	0.913
	proposed 0.988	0.81	0.915